1
|
Hung SK, Yu CC, Lin HY, Chiou WY, Lee MS, Lin RI, Lu MC. Targeting PADI2 as a potential therapeutic strategy against metastasis in oral cancer via suppressing EMT-mediated migration and invasion and CCL3/5-induced angiogenesis. Clin Exp Metastasis 2024; 41:925-935. [PMID: 39215870 DOI: 10.1007/s10585-024-10310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent and aggressive malignancy, with metastasis being the leading cause of death in patients. Unfortunately, therapeutic options for metastatic OSCC remain limited. Peptidylarginine deiminases (PADI) are implicated in various tumorigenesis and metastasis processes across multiple cancers. However, the role of PADI2, a type of PADI, in OSCC is not well understood. This study aimed to explore the impact of PADI2 on epithelial-mesenchymal transition (EMT), angiogenesis, and OSCC metastasis. The effect of PADI2 on EMT was evaluated using cell lines by Western blot analysis with shRNA targeting PADI2. In addition, the selective PADI2 inhibitor AFM32a was used to assess the effect of PADI2 on cancer metastasis and angiogenesis in animal models. Our findings indicated that PADI2 expression correlated with EMT changes, and PADI2 knockdown reversed these changes, reducing cell proliferation, cell migration, and invasion. PADI2 inhibition also diminished tube formation in HUVECs and decreased secretion of angiogenesis-related chemokines CCL3, CCL5 and CCL20. In a mouse model, AFM32a markedly reduced lung metastasis and production of CCL3 and CCL5. Our in vitro and in vivo studies suggested inhibiting PADI2 could prevent OSCC metastasis by impeding EMT and angiogenesis via AKT/mTOR signaling pathway. These results highlight PADI2 as a potential therapeutic target for combating OSCC metastasis.
Collapse
Affiliation(s)
- Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Chia Yu
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Ming-Chi Lu
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Min-Sheng Road, Dalin, Chiayi, 62247, Taiwan.
| |
Collapse
|
2
|
Jha P, Rajoria P, Poonia P, Chopra M. Identification of novel PAD2 inhibitors using pharmacophore-based virtual screening, molecular docking, and MD simulation studies. Sci Rep 2024; 14:28097. [PMID: 39543332 PMCID: PMC11564549 DOI: 10.1038/s41598-024-78330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
In the realm of epigenetic regulation, Protein arginine deiminase 2 (PAD2) stands out as a therapeutic target due to its significant role in neurological disorders, rheumatoid arthritis (RA), multiple sclerosis (MS), and various cancers. To date, no in silico studies have focused on PAD2 for lead compound identification. Therefore, we conducted structure-based pharmacophore modeling, virtual screening, molecular docking, molecular dynamics (MD) simulations, and essential dynamics studies using PCA and free energy landscape analyses to identify repurposed drugs and selective inhibitors against PAD2. The best pharmacophore model, 'Pharm_01,' had a selectivity score of 10.485 and an excellent ROC curve quality of 0.972. Pharm1 consisted of three hydrogen bond donors (HBD) and two hydrophobic (Hy) features (DDDHH). A virtual screening of about 9.2 million compounds yielded 2575 hits using a fit value threshold of 2.5 and drug-likeness criteria. Molecular docking identified the top ten molecules, which were verified using MD simulations. Stability was verified using MM-PBSA studies, whereas conformational differences were investigated using PCA and free energy landscape analyses. Two hits (Leads 1 and 2) from the DrugBank dataset showed promise for repurposing as PAD2 inhibitors, while one hit compound (Lead 8) from the ZINC database emerged as a novel PAD2 inhibitor. These findings indicate that the discovered compounds may be potent PAD2 inhibitors, necessitating additional preclinical and clinical research to produce viable treatments for cancer and neurological disorders.
Collapse
Affiliation(s)
- Prakash Jha
- Laboratory of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Prerna Rajoria
- Laboratory of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Priya Poonia
- Laboratory of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
3
|
Inoue Y, Ren Y, Zhang S, Bamkole M, Islam NN, Selvaraj M, Lu W, Caulfield TR, Li Y, Kanekiyo T. A novel histone deacetylase inhibitor W2A-16 improves the barrier integrity in brain vascular endothelial cells. Front Cell Neurosci 2024; 18:1368018. [PMID: 39100897 PMCID: PMC11294206 DOI: 10.3389/fncel.2024.1368018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
The maturation of brain microvascular endothelial cells leads to the formation of a tightly sealed monolayer, known as the blood-brain barrier (BBB). The BBB damage is associated with the pathogenesis of age-related neurodegenerative diseases including vascular cognitive impairment and Alzheimer's disease. Growing knowledge in the field of epigenetics can enhance the understanding of molecular profile of the BBB and has great potential for the development of novel therapeutic strategies or targets to repair a disrupted BBB. Histone deacetylases (HDACs) inhibitors are epigenetic regulators that can induce acetylation of histones and induce open chromatin conformation, promoting gene expression by enhancing the binding of DNA with transcription factors. We investigated how HDAC inhibition influences the barrier integrity using immortalized human endothelial cells (HCMEC/D3) and the human induced pluripotent stem cell (iPSC)-derived brain vascular endothelial cells. The endothelial cells were treated with or without a novel compound named W2A-16. W2A-16 not only activates Wnt/β-catenin signaling but also functions as a class I HDAC inhibitor. We demonstrated that the administration with W2A-16 sustained barrier properties of the monolayer of endothelial cells, as evidenced by increased trans-endothelial electrical resistance (TEER). The BBB-related genes and protein expression were also increased compared with non-treated controls. Analysis of transcript profiles through RNA-sequencing in hCMEC/D3 cells indicated that W2A-16 potentially enhances BBB integrity by influencing genes associated with the regulation of the extracellular microenvironment. These findings collectively propose that the HDAC inhibition by W2A-16 plays a facilitating role in the formation of the BBB. Pharmacological approaches to inhibit HDAC may be a potential therapeutic strategy to boost and/or restore BBB integrity.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Shuwen Zhang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Michael Bamkole
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Naeyma N. Islam
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | | | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
4
|
Zhu C, Liu C, Chai Z. Role of the PADI family in inflammatory autoimmune diseases and cancers: A systematic review. Front Immunol 2023; 14:1115794. [PMID: 37020554 PMCID: PMC10067674 DOI: 10.3389/fimmu.2023.1115794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
The peptidyl arginine deiminase (PADI) family is a calcium ion-dependent group of isozymes with sequence similarity that catalyze the citrullination of proteins. Histones can serve as the target substrate of PADI family isozymes, and therefore, the PADI family is involved in NETosis and the secretion of inflammatory cytokines. Thus, the PADI family is associated with the development of inflammatory autoimmune diseases and cancer, reproductive development, and other related diseases. In this review, we systematically discuss the role of the PADI family in the pathogenesis of various diseases based on studies from the past decade to provide a reference for future research.
Collapse
Affiliation(s)
- Changhui Zhu
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Chunyan Liu
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| | - Zhengbin Chai
- Department of Clinical Laboratory Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
- *Correspondence: Chunyan Liu, ; Zhengbin Chai,
| |
Collapse
|
5
|
Mao L, Mostafa R, Ibili E, Fert-Bober J. Role of protein deimination in cardiovascular diseases: potential new avenues for diagnostic and prognostic biomarkers. Expert Rev Proteomics 2021; 18:1059-1071. [PMID: 34929115 DOI: 10.1080/14789450.2021.2018303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Arginine deimination (citrullination) is a post-translational modification catalyzed by a family of peptidyl arginine deiminase (PAD) enzymes. Cell-based functional studies and animal models have manifested the key role of PADs in various cardiovascular diseases (CVDs). AREA COVERED This review summarizes the latest developments in the role of PADs in CVD pathogenesis. It focuses on the PAD functions and diverse citrullinated proteins in cardiovascular conditions like deep vein thrombosis, ischemia/reperfusion, and atherosclerosis. Identification of PAD isoforms and citrullinated targets are essential for directing diagnosis and clinical intervention. Finally, anti-citrullinated protein antibodies (ACPAs) are addressed as an independent risk factor for cardiovascular events. A search of PubMed biomedical literature from the past ten years was performed with a combination of the following keywords: PAD/PADI, deimination/citrullination, autoimmune, fibrosis, NET, neutrophil, macrophage, inflammation, inflammasome, cardiovascular, heart disease, myocardial infarction, ischemia, atherosclerosis, thrombosis, and aging. Additional papers from retrieved articles were also considered. EXPERT OPINION PADs are unique family of enzymes that converts peptidyl-arginine to -citrulline in protein permanently. Overexpression or increased activity of PAD has been observed in various CVDs with acute and chronic inflammation as the background. Importantly, far beyond being simply involved in forming neutrophil extracellular traps (NETs), accumulating evidence indicated PAD activation as a trigger for numerous processes, such as transcriptional regulation, endothelial dysfunction, and thrombus formation. In summary, the findings so far have testified the important role of deimination in cardiovascular biology, while more basic and translational studies are essential to further exploration.
Collapse
Affiliation(s)
- Liqun Mao
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rowann Mostafa
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Esra Ibili
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Justyna Fert-Bober
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Advanced Clinical Biosystems Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
6
|
Khajavi M, Zhou Y, Schiffer AJ, Bazinet L, Birsner AE, Zon L, D'Amato RJ. Identification of Basp1 as a novel angiogenesis-regulating gene by multi-model system studies. FASEB J 2021; 35:e21404. [PMID: 33899275 DOI: 10.1096/fj.202001936rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/23/2023]
Abstract
We have previously used the genetic diversity available in common inbred mouse strains to identify quantitative trait loci (QTLs) responsible for the differences in angiogenic response using the corneal micropocket neovascularization (CoNV) assay. Employing a mouse genome-wide association study (GWAS) approach, the region on chromosome 15 containing Basp1 was identified as being significantly associated with angiogenesis in inbred strains. Here, we developed a unique strategy to determine and verify the role of BASP1 in angiogenic pathways. Basp1 expression in cornea had a strong correlation with a haplotype shared by mouse strains with varied angiogenic phenotypes. In addition, inhibition of BASP1 demonstrated a dosage-dependent effect in both primary mouse brain endothelial and human microvascular endothelial cell (HMVEC) migration. To investigate its role in vivo, we knocked out basp1 in transgenic kdrl:zsGreen zebrafish embryos using a widely adopted CRISPR-Cas9 system. These embryos had severely disrupted vessel formation compared to control siblings. We further show that basp1 promotes angiogenesis by upregulating β-catenin gene and the Dll4/Notch1 signaling pathway. These results, to the best of our knowledge, provide the first in vivo evidence to indicate the role of Basp1 as an angiogenesis-regulating gene and opens the potential therapeutic avenues for a wide variety of systemic angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Mehrdad Khajavi
- Department of Surgery, Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Zhou
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Alex J Schiffer
- Department of Surgery, Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren Bazinet
- Department of Surgery, Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy E Birsner
- Department of Surgery, Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonard Zon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| | - Robert J D'Amato
- Department of Surgery, Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Bai J, Khajavi M, Sui L, Fu H, Tarakkad Krishnaji S, Birsner AE, Bazinet L, Kamm RD, D'Amato RJ. Angiogenic responses in a 3D micro-engineered environment of primary endothelial cells and pericytes. Angiogenesis 2021; 24:111-127. [PMID: 32955682 DOI: 10.1007/s10456-020-09746-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Angiogenesis plays a key role in the pathology of diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. Understanding the driving forces of endothelial cell migration and organization, as well as the time frame of these processes, can elucidate mechanisms of action of important pathological pathways. Herein, we have developed an organ-specific microfluidic platform recapitulating the in vivo angiogenic microenvironment by co-culturing mouse primary brain endothelial cells with brain pericytes in a three-dimensional (3D) collagen scaffold. As a proof of concept, we show that this model can be used for studying the angiogenic process and further comparing the angiogenic properties between two different common inbred mouse strains, C57BL/6J and 129S1/SvlmJ. We further show that the newly discovered angiogenesis-regulating gene Padi2 promotes angiogenesis through Dll4/Notch1 signaling by an on-chip mechanistic study. Analysis of the interplay between primary endothelial cells and pericytes in a 3D microfluidic environment assists in the elucidation of the angiogenic response.
Collapse
Affiliation(s)
- Jing Bai
- The Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mehrdad Khajavi
- The Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lufei Sui
- The Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Haojie Fu
- The Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | | | - Amy E Birsner
- The Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lauren Bazinet
- The Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert J D'Amato
- The Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Balogh EE, Gábor G, Bodó S, Rózsa L, Rátky J, Zsolnai A, Anton I. Effect of single-nucleotide polymorphisms on specific reproduction parameters in Hungarian Large White sows. Acta Vet Hung 2019; 67:256-273. [PMID: 31238725 DOI: 10.1556/004.2019.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The aim of this study was to reveal the effect of single-nucleotide polymorphisms (SNPs) on the total number of piglets born (TNB), the litter weight born alive (LWA), the number of piglets born dead (NBD), the average litter weight on the 21st day (M21D) and the interval between litters (IBL). Genotypes were determined on a high-density Illumina Porcine SNP 60K BeadChip. Data screening and data identification were performed by a multi-locus mixed-model. Statistical analyses were carried out to find associations between individual genotypes of 290 Hungarian Large White sows and the investigated reproduction parameters. According to the analysis outcome, three SNPs were identified to be associated with TNB. These loci are located on chromosomes 1, 6 and 13 (-log10P = 6.0, 7.86 and 6.22, the frequencies of their minor alleles, MAF, were 0.298, 0.299 and 0.364, respectively). Two loci showed considerable association (-log10P = 10.35 and 10.46) with LWA on chromosomes 5 and X, the MAF were 0.425 and 0.446, respectively. Seven loci were found to be associated with NBD. These loci are located on chromosomes 5, 6, 13, 14, 15, 16 and 18 (-log10P = 10.95, 5.43, 8.29, 6.72, 6.81, 5.90, and 5.15, respectively). One locus showed association (-log10P = 5.62) with M21D on chromosome 1 (the MAF was 0.461). Another locus was found to be associated with IBL on chromosome 8 (-log10P = 7.56; the MAF was 0.438). The above-mentioned loci provide a straightforward possibility to assist selection by molecular tools and, consequently, to improve the competitiveness of the Hungarian Large White (HLW) breed.
Collapse
Affiliation(s)
- Eszter Erika Balogh
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - György Gábor
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - Szilárd Bodó
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - László Rózsa
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - József Rátky
- 2Department of Obstetrics and Reproduction, University of Veterinary Medicine, Budapest, Hungary
| | - Attila Zsolnai
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| | - István Anton
- 1 NARIC Research Institute for Animal Breeding, Nutrition and Meat Science, Gesztenyés u. 1, H-2053 Herceghalom, Hungary
| |
Collapse
|
9
|
Magnadóttir B, Bragason BT, Bricknell IR, Bowden T, Nicholas AP, Hristova M, Guðmundsdóttir S, Dodds AW, Lange S. Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny - Complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:1-19. [PMID: 30395876 DOI: 10.1016/j.dci.2018.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Ian R Bricknell
- Aquaculture Research Institute School of Marine Sciences, University of Maine, Orono, ME, USA.
| | - Timothy Bowden
- Aquaculture Research Institute School of Food & Agriculture, University of Maine, University of Maine, Orono, ME, USA.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, London, WC1E 6HX, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
10
|
Magnadóttir B, Hayes P, Hristova M, Bragason BT, Nicholas AP, Dodds AW, Guðmundsdóttir S, Lange S. Post-translational protein deimination in cod (Gadus morhua L.) ontogeny novel roles in tissue remodelling and mucosal immune defences? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:157-170. [PMID: 29908202 DOI: 10.1016/j.dci.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Peptidylarginine deiminases (PADs) are calcium dependent enzymes with physiological and pathophysiological roles conserved throughout phylogeny. PADs promote post-translational deimination of protein arginine to citrulline, altering the structure and function of target proteins. Deiminated proteins were detected in the early developmental stages of cod from 11 days post fertilisation to 70 days post hatching. Deiminated proteins were present in mucosal surfaces and in liver, pancreas, spleen, gut, muscle, brain and eye during early cod larval development. Deiminated protein targets identified in skin mucosa included nuclear histones; cytoskeletal proteins such as tubulin and beta-actin; metabolic and immune related proteins such as galectin, mannan-binding lectin, toll-like receptor, kininogen, Beta2-microglobulin, aldehyde dehydrogenase, bloodthirsty and preproapolipoprotein A-I. Deiminated histone H3, a marker for anti-pathogenic neutrophil extracellular traps, was particularly elevated in mucosal tissues in immunostimulated cod larvae. PAD-mediated protein deimination may facilitate protein moonlighting, allowing the same protein to exhibit a range of biological functions, in tissue remodelling and mucosal immune defences in teleost ontogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Polly Hayes
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX, London, UK.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
11
|
Halladay JR, Lenhart KC, Robasky K, Jones W, Homan WF, Cummings DM, Cené CW, Hinderliter AL, Miller CL, Donahue KE, Garcia BA, Keyserling TC, Ammerman AS, Patterson C, DeWalt DA, Johnston LF, Willis MS, Schisler JC. Applicability of Precision Medicine Approaches to Managing Hypertension in Rural Populations. J Pers Med 2018; 8:E16. [PMID: 29710874 PMCID: PMC6023309 DOI: 10.3390/jpm8020016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 12/28/2022] Open
Abstract
As part of the Heart Healthy Lenoir Project, we developed a practice level intervention to improve blood pressure control. The goal of this study was: (i) to determine if single nucleotide polymorphisms (SNPs) that associate with blood pressure variation, identified in large studies, are applicable to blood pressure control in subjects from a rural population; (ii) to measure the association of these SNPs with subjects' responsiveness to the hypertension intervention; and (iii) to identify other SNPs that may help understand patient-specific responses to an intervention. We used a combination of candidate SNPs and genome-wide analyses to test associations with either baseline systolic blood pressure (SBP) or change in systolic blood pressure one year after the intervention in two genetically defined ancestral groups: African Americans (AA) and Caucasian Americans (CAU). Of the 48 candidate SNPs, 13 SNPs associated with baseline SBP in our study; however, one candidate SNP, rs592582, also associated with a change in SBP after one year. Using our study data, we identified 4 and 15 additional loci that associated with a change in SBP in the AA and CAU groups, respectively. Our analysis of gene-age interactions identified genotypes associated with SBP improvement within different age groups of our populations. Moreover, our integrative analysis identified AQP4-AS1 and PADI2 as genes whose expression levels may contribute to the pleiotropy of complex traits involved in cardiovascular health and blood pressure regulation in response to an intervention targeting hypertension. In conclusion, the identification of SNPs associated with the success of a hypertension treatment intervention suggests that genetic factors in combination with age may contribute to an individual's success in lowering SBP. If these findings prove to be applicable to other populations, the use of this genetic variation in making patient-specific interventions may help providers with making decisions to improve patient outcomes. Further investigation is required to determine the role of this genetic variance with respect to the management of hypertension such that more precise treatment recommendations may be made in the future as part of personalized medicine.
Collapse
Affiliation(s)
- Jacqueline R Halladay
- Department of Family Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kaitlin C Lenhart
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Kimberly Robasky
- Q2 Solutions|EA Genomics, Morrisville, North Carolina. 27560, USA.
| | - Wendell Jones
- Q2 Solutions|EA Genomics, Morrisville, North Carolina. 27560, USA.
| | - Wayne F Homan
- Department of Family Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Doyle M Cummings
- Department of Family Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Crystal W Cené
- Cecil R. Sheps Center for Health Services Research, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Alan L Hinderliter
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Cassandra L Miller
- Center for Health Promotion and Disease Prevention at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Katrina E Donahue
- Department of Family Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Cecil R. Sheps Center for Health Services Research, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Beverly A Garcia
- Center for Health Promotion and Disease Prevention at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Thomas C Keyserling
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Nutrition, Gillings School of Global Public Health at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Alice S Ammerman
- Center for Health Promotion and Disease Prevention at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Nutrition, Gillings School of Global Public Health at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA.
| | - Darren A DeWalt
- Cecil R. Sheps Center for Health Services Research, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Larry F Johnston
- Center for Health Promotion and Disease Prevention at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Monte S Willis
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Pharmacology and Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Jonathan C Schisler
- McAllister Heart Institute at The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Pharmacology and Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|