1
|
Masiero C, Aresi C, Forlino A, Tonelli F. Zebrafish Models for Skeletal and Extraskeletal Osteogenesis Imperfecta Features: Unveiling Pathophysiology and Paving the Way for Drug Discovery. Calcif Tissue Int 2024:10.1007/s00223-024-01282-5. [PMID: 39320469 DOI: 10.1007/s00223-024-01282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024]
Abstract
In the last decades, the easy genetic manipulation, the external fertilization, the high percentage of homology with human genes and the reduced husbandry costs compared to rodents, made zebrafish a valid model for studying human diseases and for developing new therapeutical strategies. Since zebrafish shares with mammals the same bone cells and ossification types, it became widely used to dissect mechanisms and possible new therapeutic approaches in the field of common and rare bone diseases, such as osteoporosis and osteogenesis imperfecta (OI), respectively. OI is a heritable skeletal disorder caused by defects in gene encoding collagen I or proteins/enzymes necessary for collagen I synthesis and secretion. Nevertheless, OI patients can be also characterized by extraskeletal manifestations such as dentinogenesis imperfecta, muscle weakness, cardiac valve and pulmonary abnormalities and skin laxity. In this review, we provide an overview of the available zebrafish models for both dominant and recessive forms of OI. An updated description of all the main similarities and differences between zebrafish and mammal skeleton, muscle, heart and skin, will be also discussed. Finally, a list of high- and low-throughput techniques available to exploit both larvae and adult OI zebrafish models as unique tools for the discovery of new therapeutic approaches will be presented.
Collapse
Affiliation(s)
- Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Carla Aresi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy.
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Via Taramelli 3B, 27100, Pavia, Italy
| |
Collapse
|
2
|
Bouchenafa R, Johnson de Sousa Brito FM, Piróg KA. Involvement of kinesins in skeletal dysplasia: a review. Am J Physiol Cell Physiol 2024; 327:C278-C290. [PMID: 38646780 PMCID: PMC11293425 DOI: 10.1152/ajpcell.00613.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Skeletal dysplasias are group of rare genetic diseases resulting from mutations in genes encoding structural proteins of the cartilage extracellular matrix (ECM), signaling molecules, transcription factors, epigenetic modifiers, and several intracellular proteins. Cell division, organelle maintenance, and intracellular transport are all orchestrated by the cytoskeleton-associated proteins, and intracellular processes affected through microtubule-associated movement are important for the function of skeletal cells. Among microtubule-associated motor proteins, kinesins in particular have been shown to play a key role in cell cycle dynamics, including chromosome segregation, mitotic spindle formation, and ciliogenesis, in addition to cargo trafficking, receptor recycling, and endocytosis. Recent studies highlight the fundamental role of kinesins in embryonic development and morphogenesis and have shown that mutations in kinesin genes lead to several skeletal dysplasias. However, many questions concerning the specific functions of kinesins and their adaptor molecules as well as specific molecular mechanisms in which the kinesin proteins are involved during skeletal development remain unanswered. Here we present a review of the skeletal dysplasias resulting from defects in kinesins and discuss the involvement of kinesin proteins in the molecular mechanisms that are active during skeletal development.
Collapse
Affiliation(s)
- Roufaida Bouchenafa
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Anna Piróg
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Tan WH, Rücklin M, Larionova D, Ngoc TB, Joan van Heuven B, Marone F, Matsudaira P, Winkler C. A Collagen10a1 mutation disrupts cell polarity in a medaka model for metaphyseal chondrodysplasia type Schmid. iScience 2024; 27:109405. [PMID: 38510140 PMCID: PMC10952040 DOI: 10.1016/j.isci.2024.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Heterozygous mutations in COL10A1 lead to metaphyseal chondrodysplasia type Schmid (MCDS), a skeletal disorder characterized by epiphyseal abnormalities. Prior analysis revealed impaired trimerization and intracellular retention of mutant collagen type X alpha 1 chains as cause for elevated endoplasmic reticulum (ER) stress. However, how ER stress translates into structural defects remained unclear. We generated a medaka (Oryzias latipes) MCDS model harboring a 5 base pair deletion in col10a1, which led to a frameshift and disruption of 11 amino acids in the conserved trimerization domain. col10a1Δ633a heterozygotes recapitulated key features of MCDS and revealed early cell polarity defects as cause for dysregulated matrix secretion and deformed skeletal structures. Carbamazepine, an ER stress-reducing drug, rescued this polarity impairment and alleviated skeletal defects in col10a1Δ633a heterozygotes. Our data imply cell polarity dysregulation as a potential contributor to MCDS and suggest the col10a1Δ633a medaka mutant as an attractive MCDS animal model for drug screening.
Collapse
Affiliation(s)
- Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Martin Rücklin
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, the Netherlands
| | - Daria Larionova
- Department of Biology, Research Group Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | - Tran Bich Ngoc
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Paul Matsudaira
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
4
|
Hama Y, Date H, Fujimoto A, Matsui A, Ishiura H, Mitsui J, Yamamoto T, Tsuji S, Mizusawa H, Takahashi Y. A Novel de novo KIF1A Mutation in a Patient with Ataxia, Intellectual Disability and Mild Foot Deformity. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1308-1311. [PMID: 36227410 PMCID: PMC10657280 DOI: 10.1007/s12311-022-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Early-onset ataxias are often difficult to diagnose due to the genetic and phenotypic heterogeneity of patients. Whole exome sequencing (WES) is a powerful method for determining causative mutations of early-onset ataxias. We report a case in which a novel de novo KIF1A mutation was identified in a patient with ataxia, intellectual disability and mild foot deformity.A patient presented with sporadic forms of ataxia with mild foot deformity, intellectual disability, peripheral neuropathy, pyramidal signs, and orthostatic hypotension. WES was used to identify a novel de novo mutation in KIF1A, a known causative gene of neurodegeneration and spasticity with or without cerebellar atrophy or cortical visual impairment syndrome (NESCAVS).We report a novel phenotype of NESCAVS that is associated with a novel de novo missense mutation in KIF1A, which provides valuable information for the diagnosis of NESCAVS even in the era of WES. Early rehabilitation of patients with NESCAVS may prevent symptom worsening and improve the disease course.
Collapse
Affiliation(s)
- Yuka Hama
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8551, Japan
| | - Hidetoshi Date
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8551, Japan
| | - Akiko Fujimoto
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8551, Japan
| | - Ayano Matsui
- Department of Orthopedics, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8551, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8551, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8551, Japan.
| |
Collapse
|
5
|
Li Q, Sun M, Meng Y, Feng M, Wang M, Chang C, Dong H, Bu F, Xu C, Liu J, Ling Q, Qiao Y, Chen J. Kinesin family member 18B activates mTORC1 signaling via actin gamma 1 to promote the recurrence of human hepatocellular carcinoma. Oncogenesis 2023; 12:54. [PMID: 37957153 PMCID: PMC10643429 DOI: 10.1038/s41389-023-00499-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway is frequently reported to be hyperactivated in hepatocellular carcinoma (HCC) and contributes to HCC recurrence. However, the underlying regulatory mechanisms of mTORC1 signaling in HCC are not fully understood. In the present study, we found that the expression of kinesin family member 18B (KIF18B) was positively correlated with mTORC1 signaling in HCC, and the upregulation of KIF18B and p-mTOR was associated with a poor prognosis and HCC recurrence. Utilizing in vitro and in vivo assays, we showed that KIF18B promoted HCC cell proliferation and migration through activating mTORC1 signaling. Mechanistically, we identified Actin gamma 1 (γ-Actin) as a binding partner of KIF18B. KIF18B and γ-Actin synergistically modulated lysosome positioning, promoted mTORC1 translocation to lysosome membrane, and prohibited p70 S6K from entering lysosomes for degradation, which finally led to the enhancement of mTORC1 signaling transduction. Moreover, we found that KIF18B was a direct target of Forkhead box M1, which explains the potential mechanism of KIF18B overexpression in HCC. Our study highlights the potential of KIF18B as a therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Qian Li
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Mengqing Sun
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Yao Meng
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Mengqing Feng
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Menglan Wang
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Cunjie Chang
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Heng Dong
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Fangtian Bu
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Chao Xu
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, P. R. China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Jing Liu
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Qi Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China.
| | - Yiting Qiao
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, P. R. China.
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, P. R. China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, 250000, P. R. China.
| | - Jianxiang Chen
- School of Pharmacy and Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 311121, P. R. China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China.
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.
| |
Collapse
|
6
|
Marom R, Zhang B, Washington ME, Song IW, Burrage LC, Rossi VC, Berrier AS, Lindsey A, Lesinski J, Nonet ML, Chen J, Baldridge D, Silverman GA, Sutton VR, Rosenfeld JA, Tran AA, Hicks MJ, Murdock DR, Dai H, Weis M, Jhangiani SN, Muzny DM, Gibbs RA, Caswell R, Pottinger C, Cilliers D, Stals K, Eyre D, Krakow D, Schedl T, Pak SC, Lee BH. Dominant negative variants in KIF5B cause osteogenesis imperfecta via down regulation of mTOR signaling. PLoS Genet 2023; 19:e1011005. [PMID: 37934770 PMCID: PMC10656020 DOI: 10.1371/journal.pgen.1011005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/17/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Bo Zhang
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Megan E. Washington
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - I-Wen Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Vittoria C. Rossi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Ava S. Berrier
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anika Lindsey
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jacob Lesinski
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Michael L. Nonet
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jian Chen
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Gary A. Silverman
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alyssa A. Tran
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - M. John Hicks
- Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - David R. Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Shalini N. Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Carrie Pottinger
- All Wales Medical Genomics Service, Wrexham Maelor Hospital, Wrexham, UK
| | - Deirdre Cilliers
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Karen Stals
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | | | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Deborah Krakow
- Human Genetics, Obstetrics & Gynecology, Orthopedic Surgery, University of California, Los Angeles, California, United States of America
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Stephen C. Pak
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Brendan H. Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital, Houston, Texas, United States of America
| |
Collapse
|
7
|
Santos-Ledo A, Pérez-Montes C, DeOliveira-Mello L, Arévalo R, Velasco A. Oligodendrocyte origin and development in the zebrafish visual system. J Comp Neurol 2023; 531:515-527. [PMID: 36477827 PMCID: PMC10107312 DOI: 10.1002/cne.25440] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Oligodendrocytes are the myelinating cells in the central nervous system. In birds and mammals, the oligodendrocyte progenitor cells (OPCs) originate in the preoptic area (POA) of the hypothalamus. However, it remains unclear in other vertebrates such as fish. Thus, we have studied the early progression of OPCs during zebrafish visual morphogenesis from 2 days post fertilization (dpf) until 11 dpf using the olig2:EGFP transgenic line; and we have analyzed the differential expression of transcription factors involved in oligodendrocyte differentiation: Sox2 (using immunohistochemistry) and Sox10 (using the transgenic line sox10:tagRFP). The first OPCs (olig2:EGFP/Sox2) were found at 2 dpf in the POA. From 3 dpf onwards, these olig2:EGFP/Sox2 cells migrate to the optic chiasm, where they invade the optic nerve (ON), extending toward the retina. At 5 dpf, olig2:EGFP/Sox2 cells in the ON also colocalize with sox10:tagRFP. When olig2:EGFP cells differentiate and present more projections, they become positive only for sox10:tagRFP. olig2:EGFP/sox10: tagRFP cells ensheath the ON by 5 dpf when they also become positive for a myelin marker, based on the mbpa:tagRFPt transgenic line. We also found olig2:EGFP cells in other regions of the visual system. In the central retina at 2 dpf, they are positive for Sox2 but later become restricted to the proliferative germinal zone without this marker. In the ventricular areas of the optic tectum, olig2:EGFP cells present Sox2 but arborized ones sox10:tagRFP instead. Our data matches with other models, where OPCs are specified in the POA and migrate to the ON through the optic chiasm.
Collapse
Affiliation(s)
- Adrián Santos-Ledo
- Department of Cell Biology and Pathology, Instituto de NeurocienciasdeCastilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Pérez-Montes
- Department of Cell Biology and Pathology, Instituto de NeurocienciasdeCastilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Laura DeOliveira-Mello
- Department of Cell Biology and Pathology, Instituto de NeurocienciasdeCastilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Rosario Arévalo
- Department of Cell Biology and Pathology, Instituto de NeurocienciasdeCastilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Almudena Velasco
- Department of Cell Biology and Pathology, Instituto de NeurocienciasdeCastilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
8
|
Ritter DJ, Choudhary D, Unlu G, Knapik EW. Rgp1 contributes to craniofacial cartilage development and Rab8a-mediated collagen II secretion. Front Endocrinol (Lausanne) 2023; 14:1120420. [PMID: 36843607 PMCID: PMC9947155 DOI: 10.3389/fendo.2023.1120420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Rgp1 was previously identified as a component of a guanine nucleotide exchange factor (GEF) complex to activate Rab6a-mediated trafficking events in and around the Golgi. While the role of Rgp1 in protein trafficking has been examined in vitro and in yeast, the role of Rgp1 during vertebrate embryogenesis and protein trafficking in vivo is unknown. Using genetic, CRISPR-induced zebrafish mutants for Rgp1 loss-of-function, we found that Rgp1 is required for craniofacial cartilage development. Within live rgp1-/- craniofacial chondrocytes, we observed altered movements of Rab6a+ vesicular compartments, consistent with a conserved mechanism described in vitro. Using transmission electron microscopy (TEM) and immunofluorescence analyses, we show that Rgp1 plays a role in the secretion of collagen II, the most abundant protein in cartilage. Our overexpression experiments revealed that Rab8a is a part of the post-Golgi collagen II trafficking pathway. Following loss of Rgp1, chondrocytes activate an Arf4b-mediated stress response and subsequently respond with nuclear DNA fragmentation and cell death. We propose that an Rgp1-regulated Rab6a-Rab8a pathway directs secretion of ECM cargoes such as collagen II, a pathway that may also be utilized in other tissues where coordinated trafficking and secretion of collagens and other large cargoes is required for normal development and tissue function.
Collapse
Affiliation(s)
- Dylan J. Ritter
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Dharmendra Choudhary
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gokhan Unlu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ela W. Knapik
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
9
|
Itai T, Wang Z, Nishimura G, Ohashi H, Guo L, Wakano Y, Sugiura T, Hayakawa H, Okada M, Saisu T, Kitta A, Doi H, Kurosawa K, Hotta Y, Hosono K, Sato M, Shimizu K, Takikawa K, Watanabe S, Ikeda N, Suzuki M, Fujita A, Uchiyama Y, Tsuchida N, Miyatake S, Miyake N, Matsumoto N, Ikegawa S. De novo heterozygous variants in KIF5B cause kyphomelic dysplasia. Clin Genet 2022; 102:3-11. [PMID: 35342932 DOI: 10.1111/cge.14133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
Kyphomelic dysplasia is a heterogeneous group of skeletal dysplasias characterized by severe bowing of the limbs associated with other variable findings, such as narrow thorax and abnormal facies. We searched for the genetic etiology of this disorder. Four individuals diagnosed with kyphomelic dysplasia were enrolled. We performed whole-exome sequencing and evaluated the pathogenicity of the identified variants. All individuals had de novo heterozygous variants in KIF5B encoding kinesin-1 heavy chain: two with c.272A>G:p.(Lys91Arg), one with c.584C>A:p.(Thr195Lys), and the other with c.701G>T:p.(Gly234Val). All variants involved conserved amino acids in or close to the ATPase activity-related motifs in the catalytic motor domain of the KIF5B protein. All individuals had sharp angulation of the femora and humeri, distinctive facial features, and neonatal respiratory distress. Short stature was observed in three individuals. Three developed postnatal osteoporosis with subsequent fractures, two showed brachycephaly, and two were diagnosed with optic atrophy. Our findings suggest that heterozygous KIF5B deleterious variants cause a specific form of kyphomelic dysplasia. Furthermore, alterations in kinesins cause various symptoms known as kinesinopathies, and our findings also extend the phenotypic spectrum of kinesinopathies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Toshiyuki Itai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Zheng Wang
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Minato-ku, Tokyo, Japan
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Moroyama, Iruma-gun, Saitama, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Saitama, Japan
| | - Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Minato-ku, Tokyo, Japan
| | - Yasuhiro Wakano
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Takahiro Sugiura
- Department of Pediatrics, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Hiromi Hayakawa
- Department of Obstetrics, Aichi Children's Health and Medical Center, Obu, Aichi, Japan
| | - Mayumi Okada
- Department of Obstetrics and Gynecology, Genome Medical Center, Toyohashi Municipal Hospital, Toyohashi, Aichi, Japan
| | - Takashi Saisu
- Chiba Child & Adult Orthopaedic Clinic, Chiba, Chiba, Japan
| | - Ayana Kitta
- Department of Orthopedic Surgery, Tokyo Women's Medical University, Yachiyo Medical Center, Yachiyo, Chiba, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Miho Sato
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenji Shimizu
- Division of Clinical Genetics and Cytogenetics, Shizuoka Children's Hospital, Shizuoka, Shizuoka, Japan
| | - Kazuharu Takikawa
- Department of Pediatric Orthopedics, Shizuoka Children's Hospital, Shizuoka, Shizuoka, Japan
| | - Seiji Watanabe
- Department of Pediatrics, Izu Medical and Welfare Center, Izunokuni, Shizuoka, Japan
| | - Naho Ikeda
- Department of Neonatology, Juntendo University Shizuoka Hospital, Izunokuni, Shizuoka, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Naomi Tsuchida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Clinical Genetics Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Noriko Miyake
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Minato-ku, Tokyo, Japan
| |
Collapse
|
10
|
Klaver EJ, Dukes-Rimsky L, Kumar B, Xia ZJ, Dang T, Lehrman MA, Angel P, Drake RR, Freeze HH, Steet R, Flanagan-Steet H. Protease-dependent defects in N-cadherin processing drive PMM2-CDG pathogenesis. JCI Insight 2021; 6:153474. [PMID: 34784297 PMCID: PMC8783681 DOI: 10.1172/jci.insight.153474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
The genetic bases for the congenital disorders of glycosylation (CDG) continue to expand, but how glycosylation defects cause patient phenotypes remains largely unknown. Here, we combined developmental phenotyping and biochemical studies in a potentially new zebrafish model (pmm2sa10150) of PMM2-CDG to uncover a protease-mediated pathogenic mechanism relevant to craniofacial and motility phenotypes in mutant embryos. Mutant embryos had reduced phosphomannomutase activity and modest decreases in N-glycan occupancy as detected by matrix-assisted laser desorption ionization mass spectrometry imaging. Cellular analyses of cartilage defects in pmm2sa10150 embryos revealed a block in chondrogenesis that was associated with defective proteolytic processing, but seemingly normal N-glycosylation, of the cell adhesion molecule N-cadherin. The activities of the proconvertases and matrix metalloproteinases responsible for N-cadherin maturation were significantly altered in pmm2sa10150 mutant embryos. Importantly, pharmacologic and genetic manipulation of proconvertase activity restored matrix metalloproteinase activity, N-cadherin processing, and cartilage pathology in pmm2sa10150 embryos. Collectively, these studies demonstrate in CDG that targeted alterations in protease activity create a pathogenic cascade that affects the maturation of cell adhesion proteins critical for tissue development.
Collapse
Affiliation(s)
- Elsenoor J Klaver
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States of America
| | - Lynn Dukes-Rimsky
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | - Brijesh Kumar
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | - Zhi-Jie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Tammie Dang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, United States of America
| | - Mark A Lehrman
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, United States of America
| | - Peggi Angel
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, United States of America
| | - Richard R Drake
- Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, United States of America
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States of America
| | - Richard Steet
- Research Department, Greenwood Genetic Center, Greenwood, United States of America
| | | |
Collapse
|
11
|
Moss JJ, Wirth M, Tooze SA, Lane JD, Hammond CL. Autophagy coordinates chondrocyte development and early joint formation in zebrafish. FASEB J 2021; 35:e22002. [PMID: 34708458 DOI: 10.1096/fj.202101167r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Autophagy is a catabolic process responsible for the removal of waste and damaged cellular components by lysosomal degradation. It plays a key role in fundamental cell processes, including ER stress mitigation, control of cell metabolism, and cell differentiation and proliferation, all of which are essential for cartilage cell (chondrocyte) development and survival, and for the formation of cartilage. Correspondingly, autophagy dysregulation has been implicated in several skeletal disorders such as osteoarthritis and osteoporosis. To test the requirement for autophagy during skeletal development in zebrafish, we generated an atg13 CRISPR knockout zebrafish line. This line showed a complete loss of atg13 expression, and restricted autophagic activity in vivo. In the absence of autophagy, chondrocyte maturation was accelerated, with chondrocytes exhibiting signs of premature hypertrophy. Focussing on the jaw element, autophagy disruption affected joint articulation causing restricted mouth opening. This gross behavioural phenotype corresponded with a failure to thrive, and death in homozygote atg13 nulls within 17 days. Taken together, our results are consistent with autophagy contributing to the timely regulation of chondrocyte maturation and for extracellular matrix formation.
Collapse
Affiliation(s)
- Joanna J Moss
- School of Biochemistry, University of Bristol, Bristol, UK.,School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martina Wirth
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK
| | - Jon D Lane
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
12
|
Bertho S, Kaufman O, Lee K, Santos-Ledo A, Dellal D, Marlow FL. A transgenic system for targeted ablation of reproductive and maternal-effect genes. Development 2021; 148:269197. [PMID: 34143203 DOI: 10.1242/dev.198010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Maternally provided gene products regulate the earliest events of embryonic life, including formation of the oocyte that will develop into an egg, and eventually into an embryo. Forward genetic screens have provided invaluable insights into the molecular regulation of embryonic development, including the essential contributions of some genes whose products must be provided to the transcriptionally silent early embryo for normal embryogenesis, called maternal-effect genes. However, other maternal-effect genes are not accessible due to their essential zygotic functions during embryonic development. Identifying these regulators is essential to fill the large gaps in our understanding of the mechanisms and molecular pathways contributing to fertility and to maternally regulated developmental processes. To identify these maternal factors, it is necessary to bypass the earlier requirement for these genes so that their potential later functions can be investigated. Here, we report reverse genetic systems to identify genes with essential roles in zebrafish reproductive and maternal-effect processes. As proof of principle and to assess the efficiency and robustness of mutagenesis, we used these transgenic systems to disrupt two genes with known maternal-effect functions: kif5ba and bucky ball.
Collapse
Affiliation(s)
- Sylvain Bertho
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020 New York, NY 10029-6574, USA
| | - Odelya Kaufman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - KathyAnn Lee
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020 New York, NY 10029-6574, USA
| | - Adrian Santos-Ledo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - Daniel Dellal
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020 New York, NY 10029-6574, USA
| | - Florence L Marlow
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020 New York, NY 10029-6574, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| |
Collapse
|
13
|
Moss JJ, Hammond CL, Lane JD. Zebrafish as a model to study autophagy and its role in skeletal development and disease. Histochem Cell Biol 2020; 154:549-564. [PMID: 32915267 PMCID: PMC7609422 DOI: 10.1007/s00418-020-01917-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/13/2022]
Abstract
In the last twenty years, research using zebrafish as a model organism has increased immensely. With the many advantages that zebrafish offer such as high fecundity, optical transparency, ex vivo development, and genetic tractability, they are well suited to studying developmental processes and the effect of genetic mutations. More recently, zebrafish models have been used to study autophagy. This important protein degradation pathway is needed for cell and tissue homeostasis in a variety of contexts. Correspondingly, its dysregulation has been implicated in multiple diseases including skeletal disorders. In this review, we explore how zebrafish are being used to study autophagy in the context of skeletal development and disease, and the ways these areas are intersecting to help identify potential therapeutic targets for skeletal disorders.
Collapse
Affiliation(s)
- Joanna J Moss
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.,School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| | - Jon D Lane
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol, UK.
| |
Collapse
|
14
|
Zhang Y, Ji D, Li L, Yang S, Zhang H, Duan X. ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth. Am J Cancer Res 2019; 9:1387-1400. [PMID: 30867839 PMCID: PMC6401512 DOI: 10.7150/thno.29761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/09/2019] [Indexed: 11/05/2022] Open
Abstract
Human CLCN7 encodes voltage-gated chloride channel 7 (ClC-7); mutations of CLCN7 lead to osteopetrosis which is characterized by increased bone mass and impaired osteoclast function. In our previous clinical practice, we noticed that osteopetrosis patients with CLCN7 mutations had some special deformities in craniofacial morphology and tooth dysplasia. It is unclear whether these phenotypes are the typical features of CLCN7 involved osteopetrosis and whether ClC-7 could regulate the development of craniofacial bone and tooth in some signaling pathways. Methods: First, we collected 80 osteopetrosis cases from the literature and compared their craniofacial and dental phenotypes. Second, four osteopetrosis pedigrees with CLCN7 mutations were recruited from our clinic for gene testing and clinical analysis of their craniofacial and dental phenotypes. Third, we used a zebrafish model with clcn7 morpholino treatment to detect the effects of ClC-7 deficiency on the development of craniofacial and dental phenotypes. General observation, whole mount alcian blue and alizarin red staining, whole mount in situ hybridization, scanning electron microscope observation, lysoSensor staining, Q-PCR and western blotting were performed to observe the in vivo characteristics of craniofacial bone and tooth changes. Fourth, mouse marrow stromal cells were further primarily cultured to detect ClC-7 related mRNA and protein changes using siRNA, Q-PCR and western blotting. Results: Over 84% of osteopetrosis patients in the literature had some typical craniofacial and tooth phenotypes, including macrocephaly, frontal bossing, and changes in shape and proportions of facial skeleton, and these unique features are more severe and frequent in autosomal recessive osteopetrosis than in autosomal dominant osteopetrosis patients. Our four pedigrees with CLCN7 mutations confirmed the aforementioned clinical features. clcn7 knockdown in zebrafish reproduced the craniofacial cartilage defects and various dental malformations combined the decreased levels of col10a1, sp7, dlx2b, eve1, and cx43. Loss of clcn7 function resulted in lysosomal storage in the brain and jaw as well as downregulated cathepsin K (CTSK). The craniofacial phenotype severity also presented a dose-dependent relationship with the levels of ClC-7 and CTSK. ClC-7/CTSK further altered the balance of TGF-β/BMP signaling pathway, causing elevated TGF-β-like Smad2 signals and reduced BMP-like Smad1/5/8 signals in clcn7 morphants. SB431542 inhibitor of TGF-β pathway partially rescued the aforementioned craniofacial bone and tooth defects of clcn7 morphants. The ClC-7 involved CTSK/BMP and SMAD changes were also confirmed in mouse bone marrow stromal cells. Conclusion: These findings highlighted the vital role of clcn7 in zebrafish craniofacial bone and tooth development and mineralization, revealing novel insights for the causation of osteopetrosis with CLCN7 mutations. The mechanism chain of ClC-7/CTSK/ TGF-β/BMP/SMAD might explain the typical craniofacial bone and tooth changes in osteopetrosis as well as pycnodysostosis patients.
Collapse
|
15
|
Reilly ML, Benmerah A. Ciliary kinesins beyond IFT: Cilium length, disassembly, cargo transport and signalling. Biol Cell 2019; 111:79-94. [PMID: 30720881 DOI: 10.1111/boc.201800074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
Cilia and flagella are microtubule-based antenna which are highly conserved among eukaryotes. In vertebrates, primary and motile cilia have evolved to exert several key functions during development and tissue homoeostasis. Ciliary dysfunction in humans causes a highly heterogeneous group of diseases called ciliopathies, a class of genetic multisystemic disorders primarily affecting kidney, skeleton, retina, lung and the central nervous system. Among key ciliary proteins, kinesin family members (KIF) are microtubule-interacting proteins involved in many diverse cellular functions, including transport of cargo (organelles, proteins and lipids) along microtubules and regulating the dynamics of cytoplasmic and spindle microtubules through their depolymerising activity. Many KIFs are also involved in diverse ciliary functions including assembly/disassembly, motility and signalling. We here review these ciliary kinesins in vertebrates and focus on their involvement in ciliopathy-related disorders.
Collapse
Affiliation(s)
- Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Paris Descartes University, Imagine Institute, Paris, 75015, France.,Paris Diderot University, Paris, 75013, France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Paris Descartes University, Imagine Institute, Paris, 75015, France
| |
Collapse
|
16
|
Yu N, Yang J, Mishina Y, Giannobile WV. Genome Editing: A New Horizon for Oral and Craniofacial Research. J Dent Res 2018; 98:36-45. [PMID: 30354846 DOI: 10.1177/0022034518805978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Precise and efficient genetic manipulations have enabled researchers to understand gene functions in disease and development, providing a platform to search for molecular cures. Over the past decade, the unprecedented advancement of genome editing techniques has revolutionized the biological research fields. Early genome editing strategies involved many naturally occurring nucleases, including meganucleases, zinc finger nucleases, and transcription activator-like effector-based nucleases. More recently, the clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nucleases (CRISPR/Cas) system has greatly enriched genetic manipulation methods in conducting research. Those nucleases generate double-strand breaks in the target gene sequences and then utilize DNA repair mechanisms to permit precise yet versatile genetic manipulations. The oral and craniofacial field harbors a plethora of diseases and developmental defects that require genetic models that can exploit these genome editing techniques. This review provides an overview of the genome editing techniques, particularly the CRISPR/Cas9 technique, for the oral and craniofacial research community. We also discuss the details about the emerging applications of genome editing in oral and craniofacial biology.
Collapse
Affiliation(s)
- N Yu
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J Yang
- 2 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,3 The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Mishina
- 2 Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - W V Giannobile
- 1 Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,4 Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Krupkova O, Cambria E, Besse L, Besse A, Bowles R, Wuertz‐Kozak K. The potential of CRISPR/Cas9 genome editing for the study and treatment of intervertebral disc pathologies. JOR Spine 2018; 1:e1003. [PMID: 31463435 PMCID: PMC6686831 DOI: 10.1002/jsp2.1003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 12/11/2022] Open
Abstract
The CRISPR/Cas9 system has emerged as a powerful tool for mammalian genome engineering. In basic and translational intervertebral disc (IVD) research, this technique has remarkable potential to answer fundamental questions on pathway interactions, to simulate IVD pathologies, and to promote drug development. Furthermore, the precisely targeted CRISPR/Cas9 gene therapy holds promise for the effective and targeted treatment of degenerative disc disease and low back pain. In this perspective, we provide an overview of recent CRISPR/Cas9 advances stemming from/with transferability to IVD research, outline possible treatment approaches for degenerative disc disease, and discuss current limitations that may hinder clinical translation.
Collapse
Affiliation(s)
- Olga Krupkova
- Department of Health Sciences and TechnologyInstitute for BiomechanicsETH ZurichSwitzerland
| | - Elena Cambria
- Department of Health Sciences and TechnologyInstitute for BiomechanicsETH ZurichSwitzerland
| | - Lenka Besse
- Department of Oncology and HematologyCantonal Hospital St GallenSt GallenSwitzerland
| | - Andrej Besse
- Department of Oncology and HematologyCantonal Hospital St GallenSt GallenSwitzerland
| | - Robert Bowles
- Department of BioengineeringUniversity of UtahSalt Lake CityUtah
- Department of OrthopaedicsUniversity of UtahSalt Lake CityUtah
| | - Karin Wuertz‐Kozak
- Department of Health Sciences and TechnologyInstitute for BiomechanicsETH ZurichSwitzerland
- Spine CenterSchön Klinik München HarlachingMunichGermany
- Academic Teaching Hospital and Spine Research InstituteParacelsus Private Medical University SalzburgSalzburgAustria
- Department of Health SciencesUniversity of PotsdamPotsdamGermany
| |
Collapse
|
18
|
Santos-Ledo A, Garcia-Macia M, Campbell PD, Gronska M, Marlow FL. Correction: Kinesin-1 promotes chondrocyte maintenance during skeletal morphogenesis. PLoS Genet 2017; 13:e1007099. [PMID: 29140986 PMCID: PMC5687701 DOI: 10.1371/journal.pgen.1007099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|