1
|
Xu H, Wu F, Ding C, Qin Y, Sun W, Feng L, Chen J, Jiang Z, Li Y, Xia H, Lou J. The effect of the nucleolar protein ZNF385A on the ribosomal DNA copy number variation in response to Cr(VI)-induced DNA damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117018. [PMID: 39260214 DOI: 10.1016/j.ecoenv.2024.117018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Hexavalent chromium [Cr(VI)] is a widely distributed carcinogen in industrial contexts and general environmental contexts. Emerging research highlights the central role of ribosomal DNA (rDNA) in DNA Damage Responses (DDRs). However, there remains a lack of investigation into the potential dose-dependent relationship between exposure to Cr(VI) and alterations in rDNA copy number (CN), as well as the related mechanisms underlying these effects. A molecular epidemiological investigation involving 67 workers exposed to Cr(VI) and 75 unexposed controls was conducted. There was a notable increase in ZNF385A expression, variations in rDNA CN, and elevated γH2AX levels in the peripheral blood of Cr(VI)-exposed workers. Restricted cubic spline (RCS) models showed that blood Cr levels in the exposed population exhibited non-linear dose-dependent relationships with γH2AX, rDNA CN, and ZNF385A. Of considerable interest, there were robust and positive associations between ZNF385A and both γH2AX and rDNA CN. Further in vitro experiments provided concrete evidence that Cr(VI) simultaneously caused an increase in ZNF385A expression and variations in rDNA CN. ZNF385A-depleted cells showed increased sensitivity to Cr(VI)-mediated DDRs and alterations in rDNA CN. This study indicated that ZNF385A played a highly significant role in the rDNA CN variation in response to Cr(VI)-induced DNA damage.
Collapse
Affiliation(s)
- Huadong Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Fan Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Chan Ding
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Yao Qin
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Wen Sun
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Junfei Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Zhaoqiang Jiang
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Yongxin Li
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Hailing Xia
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China; Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, and the First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang 313000, China.
| |
Collapse
|
2
|
Rothschild D, Susanto TT, Sui X, Spence JP, Rangan R, Genuth NR, Sinnott-Armstrong N, Wang X, Pritchard JK, Barna M. Diversity of ribosomes at the level of rRNA variation associated with human health and disease. CELL GENOMICS 2024; 4:100629. [PMID: 39111318 PMCID: PMC11480859 DOI: 10.1016/j.xgen.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/07/2024] [Accepted: 07/14/2024] [Indexed: 09/14/2024]
Abstract
With hundreds of copies of rDNA, it is unknown whether they possess sequence variations that form different types of ribosomes. Here, we developed an algorithm for long-read variant calling, termed RGA, which revealed that variations in human rDNA loci are predominantly insertion-deletion (indel) variants. We developed full-length rRNA sequencing (RIBO-RT) and in situ sequencing (SWITCH-seq), which showed that translating ribosomes possess variation in rRNA. Over 1,000 variants are lowly expressed. However, tens of variants are abundant and form distinct rRNA subtypes with different structures near indels as revealed by long-read rRNA structure probing coupled to dimethyl sulfate sequencing. rRNA subtypes show differential expression in endoderm/ectoderm-derived tissues, and in cancer, low-abundance rRNA variants can become highly expressed. Together, this study identifies the diversity of ribosomes at the level of rRNA variants, their chromosomal location, and unique structure as well as the association of ribosome variation with tissue-specific biology and cancer.
Collapse
Affiliation(s)
- Daphna Rothschild
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Xin Sui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey P Spence
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ramya Rangan
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Naomi R Genuth
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
3
|
Zhang Z, Hu X, Sun Y, Lei L, Liu Z. Early inhibition of BRD4 facilitates iPSC reprogramming via accelerating rDNA dynamic expression. BMC Biol 2024; 22:195. [PMID: 39256730 PMCID: PMC11389306 DOI: 10.1186/s12915-024-01997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND iPSC reprogramming technology exhibits significant promise in the realms of clinical therapeutics, disease modeling, pharmaceutical drug discovery, and various other applications. However, the extensive utilization of this technology has encountered impediments in the form of inefficiency, prolonged procedures, and ambiguous biological processes. Consequently, in order to improve this technology, it is of great significance to delve into the underlying mechanisms involved in iPSC reprogramming. The BET protein BRD4 plays a crucial role in the late stage of reprogramming; however, its precise function in the early stage remains unclear. RESULTS Our study aims to investigate BRD4's role in the early stages of iPSC reprogramming. Our investigation reveals that early inhibition of BRD4 substantially enhances iPSC reprogramming, whereas its implementation during the middle-late stage impedes the process. During the reprogramming, ribosome DNA expression initially increases before decreasing and then gradually recovers. Early inhibition of BRD4 improved the decline and restoration of rDNA expression in the early and middle-late stages, respectively. Additionally, we uncovered the mechanism of BRD4's regulation of rDNA transcription throughout reprogramming. Specifically, BRD4 interacts with UBF and co-localizes to both the rDNA promoter and enhancer regions. Ultimately, BRD4 facilitates rDNA transcription by promoting the enrichment of histone H3 lysine 27 acetylation in the surrounding chromatin. Moreover, we also discovered that early inhibition of BRD4 facilitates cells' transition out of the somatic cell state and activate pluripotent genes. CONCLUSIONS In conclusion, our results demonstrate that early inhibition of BRD4 promotes sequential dynamic expression of rDNA, which improves iPSC reprogramming efficiency.
Collapse
Affiliation(s)
- Zhijing Zhang
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 31 Mucai Street, Xiangfang DistrictHeilongjiang Province 150030, Harbin, China
| | - Xinglin Hu
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
| | - Yuchen Sun
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China.
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 31 Mucai Street, Xiangfang DistrictHeilongjiang Province 150030, Harbin, China.
| |
Collapse
|
4
|
Kindelay SM, Maggert KA. Insights into ribosomal DNA dominance and magnification through characterization of isogenic deletion alleles. Genetics 2024; 227:iyae063. [PMID: 38797870 DOI: 10.1093/genetics/iyae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/29/2024] Open
Abstract
The major loci for the large primary ribosomal RNA (rRNA) genes (35S rRNAs) exist as hundreds to thousands of tandem repeats in all organisms and dozens to hundreds in Drosophila. The highly repetitive nature of the ribosomal DNA (rDNA) makes it intrinsically unstable, and many conditions arise from the reduction in or magnification of copy number, but the conditions under which it does so remain unknown. By targeted DNA damage to the rDNA of the Y chromosome, we created and investigated a series of rDNA alleles. We found that complete loss of rDNA leads to lethality after the completion of embryogenesis, blocking larval molting and metamorphosis. We find that the resident retrotransposons-R1 and R2-are regulated by active rDNA such that reduction in copy number derepresses these elements. Their expression is highest during the early first instar, when loss of rDNA is lethal. Regulation of R1 and R2 may be related to their structural arrangement within the rDNA, as we find they are clustered in the flanks of the nucleolus organizing region (NOR; the cytological appearance of the rDNA). We assessed the complex nucleolar dominance relationship between X- and Y-linked rDNA using a histone H3.3-GFP reporter construct and incorporation at the NOR and found that dominance is controlled by rDNA copy number as at high multiplicity the Y-linked array is dominant, but at low multiplicity the X-linked array becomes derepressed. Finally, we found that multiple conditions that disrupt nucleolar dominance lead to increased rDNA magnification, suggesting that the phenomena of dominance and magnification are related, and a single mechanism may underlie and unify these two longstanding observations in Drosophila.
Collapse
Affiliation(s)
- Selina M Kindelay
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
| | - Keith A Maggert
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
5
|
Rodriguez-Algarra F, Evans DM, Rakyan VK. Ribosomal DNA copy number variation associates with hematological profiles and renal function in the UK Biobank. CELL GENOMICS 2024; 4:100562. [PMID: 38749448 PMCID: PMC11228893 DOI: 10.1016/j.xgen.2024.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/19/2023] [Accepted: 04/21/2024] [Indexed: 06/15/2024]
Abstract
The phenotypic impact of genetic variation of repetitive features in the human genome is currently understudied. One such feature is the multi-copy 47S ribosomal DNA (rDNA) that codes for rRNA components of the ribosome. Here, we present an analysis of rDNA copy number (CN) variation in the UK Biobank (UKB). From the first release of UKB whole-genome sequencing (WGS) data, a discovery analysis in White British individuals reveals that rDNA CN associates with altered counts of specific blood cell subtypes, such as neutrophils, and with the estimated glomerular filtration rate, a marker of kidney function. Similar trends are observed in other ancestries. A range of analyses argue against reverse causality or common confounder effects, and all core results replicate in the second UKB WGS release. Our work demonstrates that rDNA CN is a genetic influence on trait variance in humans.
Collapse
Affiliation(s)
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia; MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Vardhman K Rakyan
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
6
|
Zang Y, Ran X, Yuan J, Wu H, Wang Y, Li H, Teng H, Sun Z. Genomic hallmarks and therapeutic targets of ribosome biogenesis in cancer. Brief Bioinform 2024; 25:bbae023. [PMID: 38343327 PMCID: PMC10859687 DOI: 10.1093/bib/bbae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Hyperactive ribosome biogenesis (RiboSis) fuels unrestricted cell proliferation, whereas genomic hallmarks and therapeutic targets of RiboSis in cancers remain elusive, and efficient approaches to quantify RiboSis activity are still limited. Here, we have established an in silico approach to conveniently score RiboSis activity based on individual transcriptome data. By employing this novel approach and RNA-seq data of 14 645 samples from TCGA/GTEx dataset and 917 294 single-cell expression profiles across 13 cancer types, we observed the elevated activity of RiboSis in malignant cells of various human cancers, and high risk of severe outcomes in patients with high RiboSis activity. Our mining of pan-cancer multi-omics data characterized numerous molecular alterations of RiboSis, and unveiled the predominant somatic alteration in RiboSis genes was copy number variation. A total of 128 RiboSis genes, including EXOSC4, BOP1, RPLP0P6 and UTP23, were identified as potential therapeutic targets. Interestingly, we observed that the activity of RiboSis was associated with TP53 mutations, and hyperactive RiboSis was associated with poor outcomes in lung cancer patients without TP53 mutations, highlighting the importance of considering TP53 mutations during therapy by impairing RiboSis. Moreover, we predicted 23 compounds, including methotrexate and CX-5461, associated with the expression signature of RiboSis genes. The current study generates a comprehensive blueprint of molecular alterations in RiboSis genes across cancers, which provides a valuable resource for RiboSis-based anti-tumor therapy.
Collapse
Affiliation(s)
- Yue Zang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences and Institute of Genomic Medicine, Wenzhou Medical University, China
| | - Xia Ran
- Liangzhu Laboratory, Zhejiang University Medical Center, China
| | - Jie Yuan
- BGI Education Center, University of Chinese Academy of Sciences, China
| | - Hao Wu
- Institute of Genomic Medicine, Wenzhou Medical University, China
| | - Youya Wang
- Institute of Genomic Medicine, Wenzhou Medical University, China
| | - He Li
- Institute of Genomic Medicine, Wenzhou Medical University, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) at Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhongsheng Sun
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Institute of Genomic Medicine, Wenzhou Medical University, and Beijing Institutes of Life Science, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
7
|
Razzaq A, Bejaoui Y, Alam T, Saad M, El Hajj N. Ribosomal DNA Copy Number Variation is Coupled with DNA Methylation Changes at the 45S rDNA Locus. Epigenetics 2023; 18:2229203. [PMID: 37368968 DOI: 10.1080/15592294.2023.2229203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
The human ribosomal DNA (rDNA) copy number (CN) has been challenging to analyse, and its sequence has been excluded from reference genomes due to its highly repetitive nature. The 45S rDNA locus encodes essential components of the cell, nevertheless rDNA displays high inter-individual CN variation that could influence human health and disease. CN alterations in rDNA have been hypothesized as a possible factor in autism spectrum disorders (ASD) and were shown to be altered in Schizophrenia patients. We tested whether whole-genome bisulphite sequencing can be used to simultaneously quantify rDNA CN and measure DNA methylation at the 45S rDNA locus. Using this approach, we observed high inter-individual variation in rDNA CN, and limited intra-individual copy differences in several post-mortem tissues. Furthermore, we did not observe any significant alterations in rDNA CN or DNA methylation in Autism Spectrum Disorder (ASD) brains in 16 ASD vs 11 control samples. Similarly, no difference was detected when comparing neurons form 28 Schizophrenia (Scz) patients vs 25 controls or oligodendrocytes from 22 Scz samples vs 20 controls. However, our analysis revealed a strong positive correlation between CN and DNA methylation at the 45S rDNA locus in multiple tissues. This was observed in brain and confirmed in small intestine, adipose tissue, and gastric tissue. This should shed light on a possible dosage compensation mechanism that silences additional rDNA copies to ensure homoeostatic regulation of ribosome biogenesis.
Collapse
Affiliation(s)
- Aleem Razzaq
- College of Health and Life Sciences, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- College of Health and Life Sciences, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Mohamad Saad
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Nady El Hajj
- College of Health and Life Sciences, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
8
|
Jia W, Yuan J, Li S, Cheng B. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins. Biochim Biophys Acta Rev Cancer 2023; 1878:189018. [PMID: 37944831 DOI: 10.1016/j.bbcan.2023.189018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Dysregulated protein synthesis is a hallmark of tumors. mRNA translation reprogramming contributes to tumorigenesis, which is fueled by abnormalities in ribosome formation, tRNA abundance and modification, and translation factors. Not only malignant cells but also stromal cells within tumor microenvironment can undergo transformation toward tumorigenic phenotypes during translational reprogramming. Ribosome-inactivating proteins (RIPs) have garnered interests for their ability to selectively inhibit protein synthesis and suppress tumor growth. This review summarizes the role of dysregulated translation machinery in tumor development and explores the potential of RIPs in cancer treatment.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
9
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
10
|
Sharp NP, Smith DR, Driscoll G, Sun K, Vickerman CM, Martin SCT. Contribution of Spontaneous Mutations to Quantitative and Molecular Variation at the Highly Repetitive rDNA Locus in Yeast. Genome Biol Evol 2023; 15:evad179. [PMID: 37847861 PMCID: PMC10581546 DOI: 10.1093/gbe/evad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
The ribosomal DNA array in Saccharomyces cerevisiae consists of many tandem repeats whose copy number is believed to be functionally important but highly labile. Regulatory mechanisms have evolved to maintain copy number by directed mutation, but how spontaneous variation at this locus is generated and selected has not been well characterized. We applied a mutation accumulation approach to quantify the impacts of mutation and selection on this unique genomic feature across hundreds of mutant strains. We find that mutational variance for this trait is relatively high, and that unselected mutations elsewhere in the genome can disrupt copy number maintenance. In consequence, copy number generally declines gradually, consistent with a previously proposed model of rDNA maintenance where a downward mutational bias is normally compensated by mechanisms that increase copy number when it is low. This pattern holds across ploidy levels and strains in the standard lab environment but differs under some stressful conditions. We identify several alleles, gene categories, and genomic features that likely affect copy number, including aneuploidy for chromosome XII. Copy number change is associated with reduced growth in diploids, consistent with stabilizing selection. Levels of standing variation in copy number are well predicted by a balance between mutation and stabilizing selection, suggesting this trait is not subject to strong diversifying selection in the wild. The rate and spectrum of point mutations within the rDNA locus itself are distinct from the rest of the genome and predictive of polymorphism locations. Our findings help differentiate the roles of mutation and selection and indicate that spontaneous mutation patterns shape several aspects of ribosomal DNA evolution.
Collapse
Affiliation(s)
- Nathaniel P Sharp
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Denise R Smith
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gregory Driscoll
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kexin Sun
- Present address: Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Sterling C T Martin
- Present address: Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Chen C, Feng L, Chen J, Shen J, Lin L. Ribosomal DNA copy number alteration in blood sample from gastric cancer patients. Mol Biol Rep 2023; 50:7155-7160. [PMID: 37407803 DOI: 10.1007/s11033-023-08630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Ribosomal DNA (rDNA) is the most abundant and important housekeeping gene in the cell. It usually acted as DNA damage sensor in DNA damage reaction. Gastric cancer (GC) as a tumor with high morbidity and mortality, it is hard to diagnosis in an early stage. METHODS In this study, we collected and test the copy number of rDNA in blood sample of 42 GC patients and 56 healthy controls (HC) to explore the relationship between rDNA and GC. Besides, we make a correlation between the copy number of rDNA and ten biomarkers (CYFR21-1, CA15-3, CA72-4, NSE, CEA, CA125, ProGRP, AFP, SCC, CA19-9). RESULTS The copy number of 18 S, 5.8 S, 28 S rDNA in GC is less than HC and 5 S is more than HC in their blood sample. And the expression of H-cox-1 and ND1 in GC is higher than HC in blood sample. it shows the expression of CA15-3 is related to ND1 and H-cox-1. CONCLUSION We found for the first time the changes of rDNA and mtDNA expression in the blood of patients with gastric cancer. All these finding suggests rDNA may have potential in diagnosing GC.
Collapse
Affiliation(s)
- Changchang Chen
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junfei Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jian Shen
- Department of Medical Administration, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lijun Lin
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Zylstra A, Hadj-Moussa H, Horkai D, Whale AJ, Piguet B, Houseley J. Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation. PLoS Biol 2023; 21:e3002250. [PMID: 37643194 PMCID: PMC10464983 DOI: 10.1371/journal.pbio.3002250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.
Collapse
Affiliation(s)
- Andre Zylstra
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | | | - Dorottya Horkai
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Alex J. Whale
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Baptiste Piguet
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
14
|
Zhao T, Sun D, Long K, Lemos B, Zhang Q, Man J, Zhao M, Zhang Z. N 6-methyladenosine upregulates ribosome biogenesis in environmental carcinogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163428. [PMID: 37061066 DOI: 10.1016/j.scitotenv.2023.163428] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens.
Collapse
Affiliation(s)
- Tianhe Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Donglei Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Keyan Long
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Bernardo Lemos
- Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston 02108, MA, USA
| | - Qian Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Jin Man
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Manyu Zhao
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, Sichuan, China.
| |
Collapse
|
15
|
Xu H, Shi L, Feng L, Wu F, Chen J, Qin Y, Dong X, Jiang Z, Li Y, Xia H, Lou J. Hexavalent chromium [Cr(VI)]-induced ribosomal DNA copy number variation and DNA damage responses and their associations with nucleolar protein HRAS in humans and cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121816. [PMID: 37182578 DOI: 10.1016/j.envpol.2023.121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
The carcinogenicity of hexavalent chromium [Cr(VI)] and its compounds has been widely recognized, yet the mechanism of genetic damage is still not fully understood. The ribosomal DNA (rDNA) copy number is recently considered a potential marker of cancer-associated stress. To investigate the roles of rDNA copy number variation (CNV) in DNA damage responses (DDRs) induced by Cr(VI) and the potential mechanism from nucleolar protein HRAS, a cross-sectional study in Cr(Ⅵ)-exposed workers and an in vitro experiment using HeLa cells were conducted. Our results showed increased levels of rDNA CNV, DDRs, and HRAS expression in Cr(VI)-exposed workers. Generalized linear regression analyses showed that Cr(VI) exposure was significantly positively associated with increased levels of rDNA CNV, DDRs, and HRAS expression in Cr(VI)-exposed workers. Moreover, there were pairwise associations between rDNA CNV, DDRs, and HRAS levels. Mediation analyses found that rDNA CNV significantly mediated the association between Cr(VI) exposure and DDRs. The in vitro experiments further confirmed that Cr(VI) treatment induced increased levels of rDNA CNV, DDRs, and HRAS expression in HeLa cells. Cr(VI)-induced rDNA CNV, ATM activation, and apoptosis damage were then strongly enhanced by HRAS depletion with siRNA in vitro, suggesting the important role of HRAS in CNV and DDRs caused by Cr(VI). The combined results of the human and cell line studies indicated that Cr(VI) exposure might enhance rDNA CNV by regulation of HRAS expression, which leads to Cr(VI)-induced genetic damage.
Collapse
Affiliation(s)
- Huadong Xu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Li Shi
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Fan Wu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Junfei Chen
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Yao Qin
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Xiaowen Dong
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Zhaoqiang Jiang
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Yongxin Li
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Hailing Xia
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China; School of Medicine, and the First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang, 313000, China.
| |
Collapse
|
16
|
Morton EA, Hall AN, Cuperus JT, Queitsch C. Substantial rDNA copy number reductions alter timing of development and produce variable tissue-specific phenotypes in C. elegans. Genetics 2023; 224:iyad039. [PMID: 36919976 PMCID: PMC10474940 DOI: 10.1093/genetics/iyad039] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
The genes that encode ribosomal RNAs are present in several hundred copies in most eukaryotes. These vast arrays of repetitive ribosomal DNA (rDNA) have been implicated not just in ribosome biogenesis, but also aging, cancer, genome stability, and global gene expression. rDNA copy number is highly variable among and within species; this variability is thought to associate with traits relevant to human health and disease. Here we investigate the phenotypic consequences of multicellular life at the lower bounds of rDNA copy number. We use the model Caenorhabditis elegans, which has previously been found to complete embryogenesis using only maternally provided ribosomes. We find that individuals with rDNA copy number reduced to ∼5% of wild type are capable of further development with variable penetrance. Such individuals are sterile and exhibit severe morphological defects, particularly in post-embryonically dividing tissues such as germline and vulva. Developmental completion and fertility are supported by an rDNA copy number ∼10% of wild type, with substantially delayed development. Worms with rDNA copy number reduced to ∼33% of wild type display a subtle developmental timing defect that was absent in worms with higher copy numbers. Our results support the hypothesis that rDNA requirements vary across tissues and indicate that the minimum rDNA copy number for fertile adulthood is substantially less than the lowest naturally observed total copy number. The phenotype of individuals with severely reduced rDNA copy number is highly variable in penetrance and presentation, highlighting the need for continued investigation into the biological consequences of rDNA copy number variation.
Collapse
Affiliation(s)
| | - Ashley N Hall
- Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Wang Y, Meng T, Zhang L, Lin Y, Wu N, Yuan H, He Z, Niu Y, Dai Y, Zhao X, Duan H. Inhalable mixture of polycyclic aromatic hydrocarbons and metals, DNA oxidative stress and nasal ribosomal DNA copy number amplification: Direct and indirect effect analyses among population. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131538. [PMID: 37156045 DOI: 10.1016/j.jhazmat.2023.131538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
The ribosomal DNA (rDNA) plays a crucial role in maintaining genome stability. So far, alterations of rDNA from airborne pollutants exposure remain unclear. Nasal epithelial cells are the earliest respiratory barrier, which has an accessible surrogate for evaluating respiratory impairment. We developed a mixture-centered biomarkers study integrated epidemiological and biological evidence among 768 subjects, a mixture of polycyclic aromatic hydrocarbons (PAHs) and metals. We identified the mixed exposure of PAHs and metals by environmental and biological monitoring, selected urinary 8-hydroxy-2'-deoxyguanosine as DNA oxidative stress marker, and measured their rDNA copy number (rDNA CN) in nasal epithelial cells. We performed linear regression, adaptive elastic net regression, BKMR, and mediation analyses to assess the direct and indirect effects. We found a 10% elevation in urinary 1-hydroxypyrene was correlated with a separate 0.31% and 0.82% amplification of nasal 5S and 45S rDNA CN, respectively (all P < 0.05). A 10% increment of urine nickel was associated with a separate 0.37% and 1.18% elevation of nasal 5S and 45S rDNA CN, respectively (all P < 0.05). BKMR results also confirmed our findings of PAHs and nickel. Our findings suggested that DNA oxidative stress might trigger rDNA instability induced by inhaled PAHs and metals.
Collapse
Affiliation(s)
- Yanhua Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- Institute of Brain Science, Shanxi Datong University, Datong, Shanxi, China
| | - Liya Zhang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Lin
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Disease Control and Prevention of Chaoyang District of Beijing, Beijing, China
| | - Nan Wu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; China National Center for Food Safety Risk Assessment, Beijing, China
| | - Huige Yuan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhizhou He
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xing Zhao
- West China school of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
18
|
Kwan EX, Alvino GM, Lynch KL, Levan PF, Amemiya HM, Wang XS, Johnson SA, Sanchez JC, Miller MA, Croy M, Lee SB, Naushab M, Bedalov A, Cuperus JT, Brewer BJ, Queitsch C, Raghuraman MK. Ribosomal DNA replication time coordinates completion of genome replication and anaphase in yeast. Cell Rep 2023; 42:112161. [PMID: 36842087 PMCID: PMC10142053 DOI: 10.1016/j.celrep.2023.112161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/27/2023] Open
Abstract
Timely completion of genome replication is a prerequisite for mitosis, genome integrity, and cell survival. A challenge to this timely completion comes from the need to replicate the hundreds of untranscribed copies of rDNA that organisms maintain in addition to the copies required for ribosome biogenesis. Replication of these rDNA arrays is relegated to late S phase despite their large size, repetitive nature, and essentiality. Here, we show that, in Saccharomyces cerevisiae, reducing the number of rDNA repeats leads to early rDNA replication, which results in delaying replication elsewhere in the genome. Moreover, cells with early-replicating rDNA arrays and delayed genome-wide replication aberrantly release the mitotic phosphatase Cdc14 from the nucleolus and enter anaphase prematurely. We propose that rDNA copy number determines the replication time of the rDNA locus and that the release of Cdc14 upon completion of rDNA replication is a signal for cell cycle progression.
Collapse
Affiliation(s)
- Elizabeth X Kwan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Gina M Alvino
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kelsey L Lynch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Paula F Levan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Haley M Amemiya
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xiaobin S Wang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sarah A Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joseph C Sanchez
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Madison A Miller
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Mackenzie Croy
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Seung-Been Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maria Naushab
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Bonita J Brewer
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| | - M K Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
19
|
Regulation of RNA Polymerase I Stability and Function. Cancers (Basel) 2022; 14:cancers14235776. [PMID: 36497261 PMCID: PMC9737084 DOI: 10.3390/cancers14235776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
RNA polymerase I is a highly processive enzyme with fast initiation and elongation rates. The structure of Pol I, with its in-built RNA cleavage ability and incorporation of subunits homologous to transcription factors, enables it to quickly and efficiently synthesize the enormous amount of rRNA required for ribosome biogenesis. Each step of Pol I transcription is carefully controlled. However, cancers have highjacked these control points to switch the enzyme, and its transcription, on permanently. While this provides an exceptional benefit to cancer cells, it also creates a potential cancer therapeutic vulnerability. We review the current research on the regulation of Pol I transcription, and we discuss chemical biology efforts to develop new targeted agents against this process. Lastly, we highlight challenges that have arisen from the introduction of agents with promiscuous mechanisms of action and provide examples of agents with specificity and selectivity against Pol I.
Collapse
|
20
|
Xu P, Feng L, Xu D, Wu L, Chen Y, Xiang J, Cheng P, Wang X, Lou J, Tang J, Lou X, Chen Z. Ribosomal DNA copy number associated with blood metal levels in school-age children: A follow-up study on a municipal waste incinerator in Zhejiang, China. CHEMOSPHERE 2022; 307:135676. [PMID: 35842053 DOI: 10.1016/j.chemosphere.2022.135676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/15/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
To evaluate the body burdens of heavy metals and explore the impact of environmental metal exposure on ribosomal DNA (rDNA) or mitochondrial DNA (mtDNA) copy number (CN) variation in school-age children living near a municipal waste incinerator (MWI), we conducted a follow-up study in 2019. A total of 146 sixth-grade children from a primary school located 1.2 km away from the MWI were recruited for our study. Metals, including vanadium (V), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), stannum (Sn), stibium (Sb), thallium (Tl), and lead (Pb), were determined by an inductively coupled plasma mass spectrometer method. Real-time qPCR was used to measure the rDNA and mtDNA CN. The blood metal levels followed this order: Zn > Cu > Se > Pb > Mn > Sb > As > Ni > Cd > Co > Cr > Sn > V > Tl. Blood Cr level was significantly correlated with 18 S, 2.5 S, and 45 S CN (β = -0.25, -0.22, -0.26, p < 0.05); Ni was correlated with 5 S (β = -0.36, p < 0.01); Cu was correlated with 28 S, 18 S, and 5.8 S (β = -0.24, -0.24, -0.23, p < 0.05); while Zn was correlated with 18 S, 5.8 S, and 45 S (β = -0.28, -0.32, -0.26, p < 0.05). In conclusion, school-age children living near the MWI had lower blood metal levels compared to children recruited in 2013, while rDNA CN loss was found to be correlated to several heavy metals in these children.
Collapse
Affiliation(s)
- Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, 8 Yi Kang Street, Lin'an District, 311399, Hangzhou, Zhejiang, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Jianlin Lou
- School of Public Health, Hangzhou Medical College, 8 Yi Kang Street, Lin'an District, 311399, Hangzhou, Zhejiang, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou 310051, China.
| |
Collapse
|
21
|
Tsaridou S, Velimezi G, Willenbrock F, Chatzifrangkeskou M, Elsayed W, Panagopoulos A, Karamitros D, Gorgoulis V, Lygerou Z, Roukos V, O'Neill E, Pefani DE. 53BP1-mediated recruitment of RASSF1A to ribosomal DNA breaks promotes local ATM signaling. EMBO Rep 2022; 23:e54483. [PMID: 35758159 PMCID: PMC9346497 DOI: 10.15252/embr.202154483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/29/2022] Open
Abstract
DNA lesions occur across the genome and constitute a threat to cell viability; however, damage at specific genomic loci has a relatively greater impact on overall genome stability. The ribosomal RNA gene repeats (rDNA) are emerging fragile sites. Recent progress in understanding how the rDNA damage response is organized has highlighted a key role of adaptor proteins. Here, we show that the scaffold tumor suppressor RASSF1A is recruited to rDNA breaks. RASSF1A recruitment to double-strand breaks is mediated by 53BP1 and depends on RASSF1A phosphorylation at Serine 131 by ATM kinase. Employing targeted rDNA damage, we uncover that RASSF1A recruitment promotes local ATM signaling. RASSF1A silencing, a common epigenetic event during malignant transformation, results in persistent breaks, rDNA copy number alterations and decreased cell viability. Overall, we identify a novel role for RASSF1A at rDNA break sites, provide mechanistic insight into how the DNA damage response is organized in a chromatin context, and provide further evidence for how silencing of the RASSF1A tumor suppressor contributes to genome instability.
Collapse
Affiliation(s)
- Stavroula Tsaridou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Georgia Velimezi
- Department of Biology, School of Medicine, University of Patras, Patras, Greece.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | | | | - Dimitris Karamitros
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Gorgoulis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty of Biology, Medicine and Health, Manchester Academic Health Centre, University of Manchester, Manchester, UK.,Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Vassilis Roukos
- Department of Biology, School of Medicine, University of Patras, Patras, Greece.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | | |
Collapse
|
22
|
Sharma D, Denmat SHL, Matzke NJ, Hannan K, Hannan RD, O'Sullivan JM, Ganley ARD. A new method for determining ribosomal DNA copy number shows differences between Saccharomyces cerevisiae populations. Genomics 2022; 114:110430. [PMID: 35830947 DOI: 10.1016/j.ygeno.2022.110430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/23/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Ribosomal DNA genes (rDNA) encode the major ribosomal RNAs and in eukaryotes typically form tandem repeat arrays. Species have characteristic rDNA copy numbers, but there is substantial intra-species variation in copy number that results from frequent rDNA recombination. Copy number differences can have phenotypic consequences, however difficulties in quantifying copy number mean we lack a comprehensive understanding of how copy number evolves and the consequences. Here we present a genomic sequence read approach to estimate rDNA copy number based on modal coverage to help overcome limitations with existing mean coverage-based approaches. We validated our method using Saccharomyces cerevisiae strains with known rDNA copy numbers. Application of our pipeline to a global sample of S. cerevisiae isolates showed that different populations have different rDNA copy numbers. Our results demonstrate the utility of the modal coverage method, and highlight the high level of rDNA copy number variation within and between populations.
Collapse
Affiliation(s)
- Diksha Sharma
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Sylvie Hermann-Le Denmat
- School of Biological Sciences, University of Auckland, Auckland, New Zealand; Ecole Normale Supérieure, PSL Research University, F-75005 Paris, France
| | - Nicholas J Matzke
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Katherine Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ACT 2601, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross D Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ACT 2601, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia; Division of Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | - Justin M O'Sullivan
- Liggins Institute, University of Auckland, Auckland, New Zealand; Maurice Wilkins Center, University of Auckland, New Zealand; MRC Lifecourse Unit, University of Southampton, United Kingdom; Brain Research New Zealand, The University of Auckland, Auckland, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
23
|
Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Res 2022; 82:2344-2353. [PMID: 35303060 PMCID: PMC9256764 DOI: 10.1158/0008-5472.can-21-4087] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Ribosomes are a complex ensemble of rRNA and ribosomal proteins that function as mRNA translation machines. Ribosome biogenesis is a multistep process that begins in the nucleolus and concludes in the cytoplasm. The process is tightly controlled by multiple checkpoint and surveillance pathways. Perturbations in these checkpoints and pathways can lead to hyperactivation of ribosome biogenesis. Emerging evidence suggests that cancer cells harbor a specialized class of ribosomes (onco-ribosomes) that facilitates the oncogenic translation program, modulates cellular functions, and promotes metabolic rewiring. Mutations in ribosomal proteins, rRNA processing, and ribosome assembly factors result in ribosomopathies that are associated with an increased risk of developing malignancies. Recent studies have linked mutations in ribosomal proteins and aberrant ribosomes with poor prognosis, highlighting ribosome-targeted therapy as a promising approach for treating patients with cancer. Here, we summarize various aspects of dysregulation of ribosome biogenesis and the impact of resultant onco-ribosomes on malignant tumor behavior, therapeutic resistance, and clinical outcome. Ribosome biogenesis is a promising therapeutic target, and understanding the important determinants of this process will allow for improved and perhaps selective therapeutic strategies to target ribosome biosynthesis.
Collapse
Affiliation(s)
- Amr R. Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama.,Corresponding Author: Rajeev S. Samant, The University of Alabama at Birmingham, WTI 320E, 1824 6th Avenue South, Birmingham, AL 35233. Phone: 205-975-6262; E-mail:
| |
Collapse
|
24
|
Hall AN, Morton E, Queitsch C. First discovered, long out of sight, finally visible: ribosomal DNA. Trends Genet 2022; 38:587-597. [PMID: 35272860 PMCID: PMC10132741 DOI: 10.1016/j.tig.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
With the advent of long-read sequencing, previously unresolvable genomic elements are being revisited in an effort to generate fully complete reference genomes. One such element is ribosomal DNA (rDNA), the highly conserved genomic region that encodes rRNAs. Genomic structure and content of the rDNA are variable in both prokarya and eukarya, posing interesting questions about the biology of rDNA. Here, we consider the types of variation observed in rDNA - including locus structure and number, copy number, and sequence variation - and their known phenotypic consequences. With recent advances in long-read sequencing technology, incorporating the full rDNA sequence into reference genomes is within reach. This knowledge will have important implications for understanding rDNA biology within the context of cell physiology and whole-organism phenotypes.
Collapse
Affiliation(s)
- Ashley N Hall
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Elizabeth Morton
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
25
|
Global genomic instability caused by reduced expression of DNA polymerase ε in yeast. Proc Natl Acad Sci U S A 2022; 119:e2119588119. [PMID: 35290114 PMCID: PMC8944251 DOI: 10.1073/pnas.2119588119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceAlthough most studies of the genetic regulation of genome stability involve an analysis of mutations within the coding sequences of genes required for DNA replication or DNA repair, recent studies in yeast show that reduced levels of wild-type enzymes can also produce a mutator phenotype. By whole-genome sequencing and other methods, we find that reduced levels of the wild-type DNA polymerase ε in yeast greatly increase the rates of mitotic recombination, aneuploidy, and single-base mutations. The observed pattern of genome instability is different from those observed in yeast strains with reduced levels of the other replicative DNA polymerases, Pol α and Pol δ. These observations are relevant to our understanding of cancer and other diseases associated with genetic instability.
Collapse
|
26
|
Brown IN, Lafita-Navarro MC, Conacci-Sorrell M. Regulation of Nucleolar Activity by MYC. Cells 2022; 11:cells11030574. [PMID: 35159381 PMCID: PMC8834138 DOI: 10.3390/cells11030574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC’s role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.
Collapse
Affiliation(s)
- Isabella N. Brown
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - M. Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Correspondence: (M.C.L.-N.); (M.C.-S.)
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (M.C.L.-N.); (M.C.-S.)
| |
Collapse
|
27
|
Cockrell AJ, Gerton JL. Nucleolar Organizer Regions as Transcription-Based Scaffolds of Nucleolar Structure and Function. Results Probl Cell Differ 2022; 70:551-580. [PMID: 36348121 DOI: 10.1007/978-3-031-06573-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Eukaryotic genomes maintain multiple copies of ribosomal DNA gene repeats in tandem arrays to provide sufficient ribosomal RNAs to make ribosomes. These DNA repeats are the most highly transcribed regions of the genome, with dedicated transcriptional machinery to manage the enormous task of producing more than 50% of the total RNA in a proliferating cell. The arrays are called nucleolar organizer regions (NORs) and constitute the scaffold of the nucleolar compartment, where ribosome biogenesis occurs. Advances in molecular and cellular biology have brought great insights into how these arrays are transcribed and organized within genomes. Much of their biology is driven by their high transcription level, which has also driven the development of unique methods to understand rDNA gene activity, beginning with classic techniques such as silver staining and Miller spreads. However, the application of modern methodologies such as CRISPR gene editing, super-resolution microscopy, and long-read sequencing has enabled recent advances described herein, with many more discoveries possible soon. This chapter highlights what is known about NOR transcription and organization and the techniques applied historically and currently. Given the potential for NORs to impact organismal health and disease, as highlighted at the end of the chapter, the field must continue to develop and apply innovative analysis to understand genetic, epigenetic, and organizer properties of the ribosomal DNA repeats.
Collapse
Affiliation(s)
- Alexandria J Cockrell
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
28
|
Kasselimi E, Pefani DE, Taraviras S, Lygerou Z. Ribosomal DNA and the nucleolus at the heart of aging. Trends Biochem Sci 2022; 47:328-341. [DOI: 10.1016/j.tibs.2021.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022]
|
29
|
Abstract
In human cells, each rDNA unit consists of the ~13 kb long ribosomal part and ~30 kb long intergenic spacer (IGS). The ribosomal part, transcribed by RNA polymerase I (pol I), includes genes coding for 18S, 5.8S, and 28S RNAs of the ribosomal particles, as well as their four transcribed spacers. Being highly repetitive, intensively transcribed, and abundantly methylated, rDNA is a very fragile site of the genome, with high risk of instability leading to cancer. Multiple small mutations, considerable expansion or contraction of the rDNA locus, and abnormally enhanced pol I transcription are usual symptoms of transformation. Recently it was found that both IGS and the ribosomal part of the locus contain many functional/potentially functional regions producing non-coding RNAs, which participate in the pol I activity regulation, stress reactions, and development of the malignant phenotype. Thus, there are solid reasons to believe that rDNA locus plays crucial role in carcinogenesis. In this review we discuss the data concerning the human rDNA and its closely associated factors as both targets and drivers of the pathways essential for carcinogenesis. We also examine whether variability in the structure of the locus may be blamed for the malignant transformation. Additionally, we consider the prospects of therapy focused on the activity of rDNA.
Collapse
|
30
|
de Lima LG, Howe E, Singh VP, Potapova T, Li H, Xu B, Castle J, Crozier S, Harrison CJ, Clifford SC, Miga KH, Ryan SL, Gerton JL. PCR amplicons identify widespread copy number variation in human centromeric arrays and instability in cancer. CELL GENOMICS 2021; 1:100064. [PMID: 34993501 PMCID: PMC8730464 DOI: 10.1016/j.xgen.2021.100064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Centromeric α-satellite repeats represent ~6% of the human genome, but their length and repetitive nature make sequencing and analysis of those regions challenging. However, centromeres are essential for the stable propagation of chromosomes, so tools are urgently needed to monitor centromere copy number and how it influences chromosome transmission and genome stability. We developed and benchmarked droplet digital PCR (ddPCR) assays that measure copy number for five human centromeric arrays. We applied them to characterize natural variation in centromeric array size, analyzing normal tissue from 37 individuals from China and 39 individuals from the US and UK. Each chromosome-specific array varies in size up to 10-fold across individuals and up to 50-fold across chromosomes, indicating a unique complement of arrays in each individual. We also used the ddPCR assays to analyze centromere copy number in 76 matched tumor-normal samples across four cancer types, representing the most-comprehensive quantitative analysis of centromeric array stability in cancer to date. In contrast to stable transmission in cultured cells, centromeric arrays show gain and loss events in each of the cancer types, suggesting centromeric α-satellite DNA represents a new category of genome instability in cancer. Our methodology for measuring human centromeric-array copy number will advance research on centromeres and genome integrity in normal and disease states.
Collapse
Affiliation(s)
| | - Edmund Howe
- The Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Tamara Potapova
- The Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Hua Li
- The Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Baoshan Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jemma Castle
- Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Steve Crozier
- Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | | | | | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Sarra L. Ryan
- Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Jennifer L. Gerton
- The Stowers Institute for Medical Research, Kansas City, MO, USA
- University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
31
|
Mercer M, Jang S, Ni C, Buszczak M. The Dynamic Regulation of mRNA Translation and Ribosome Biogenesis During Germ Cell Development and Reproductive Aging. Front Cell Dev Biol 2021; 9:710186. [PMID: 34805139 PMCID: PMC8595405 DOI: 10.3389/fcell.2021.710186] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
The regulation of mRNA translation, both globally and at the level of individual transcripts, plays a central role in the development and function of germ cells across species. Genetic studies using flies, worms, zebrafish and mice have highlighted the importance of specific RNA binding proteins in driving various aspects of germ cell formation and function. Many of these mRNA binding proteins, including Pumilio, Nanos, Vasa and Dazl have been conserved through evolution, specifically mark germ cells, and carry out similar functions across species. These proteins typically influence mRNA translation by binding to specific elements within the 3′ untranslated region (UTR) of target messages. Emerging evidence indicates that the global regulation of mRNA translation also plays an important role in germ cell development. For example, ribosome biogenesis is often regulated in a stage specific manner during gametogenesis. Moreover, oocytes need to produce and store a sufficient number of ribosomes to support the development of the early embryo until the initiation of zygotic transcription. Accumulating evidence indicates that disruption of mRNA translation regulatory mechanisms likely contributes to infertility and reproductive aging in humans. These findings highlight the importance of gaining further insights into the mechanisms that control mRNA translation within germ cells. Future work in this area will likely have important impacts beyond germ cell biology.
Collapse
Affiliation(s)
- Marianne Mercer
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seoyeon Jang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chunyang Ni
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Buszczak
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
32
|
Cruz J, Lemos B. Post-transcriptional diversity in riboproteins and RNAs in aging and cancer. Semin Cancer Biol 2021; 76:292-300. [PMID: 34474152 PMCID: PMC8627441 DOI: 10.1016/j.semcancer.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 12/19/2022]
Abstract
Post-transcriptional (PtscM) and post-translational (PtrnM) modifications of nucleotides and amino acids are covalent modifications able to change physio-chemical properties of RNAs and proteins. In the ribosome, the adequate assembly of rRNAs and ribosomal protein subunits in the nucleolus ensures suitable translational activity, with protein synthesis tuned according to intracellular demands of energy production, replication, proliferation, and growth. Disruption in the regulatory control of PtscM and PtrnM can impair ribosome biogenesis and ribosome function. Ribosomal impairment may, in turn, impact the synthesis of proteins engaged in functions as varied as telomere maintenance, apoptosis, and DNA repair, as well as intersect with mitochondria and telomerase activity. These cellular processes often malfunction in carcinogenesis and senescence. Here we discuss regulatory mechanisms of PtscMs and PtrnMs on ribosomal function. We also address chemical modification in rRNAs and their impacts on cellular metabolism, replication control, and senescence. Further, we highlight similarities and differences of PtscMs and PtrnMs in ribosomal intermediates during aging and carcinogenesis. Understanding these regulatory mechanisms may uncover critical steps for the development of more efficient oncologic and anti-aging therapies.
Collapse
Affiliation(s)
- Jurandir Cruz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 01246, Brazil
| | - Bernardo Lemos
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
33
|
Haig D. Concerted evolution of ribosomal DNA: Somatic peace amid germinal strife: Intranuclear and cellular selection maintain the quality of rRNA. Bioessays 2021; 43:e2100179. [PMID: 34704616 DOI: 10.1002/bies.202100179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022]
Abstract
Most eukaryotes possess many copies of rDNA. Organismal selection alone cannot maintain rRNA function because the effects of mutations in one rDNA are diluted by the presence of many other rDNAs. rRNA quality is maintained by processes that increase homogeneity of rRNA within, and heterogeneity among, germ cells thereby increasing the effectiveness of cellular selection on ribosomal function. A successful rDNA repeat will possess adaptations for spreading within tandem arrays by intranuclear selection. These adaptations reside in the non-coding regions of rDNA. Single-copy genes are predicted to manage processes of intranuclear and cellular selection in the germline to maintain the quality of rRNA expressed in somatic cells of future generations.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
35
|
Lou J, Yu S, Feng L, Guo X, Wang M, Branco AT, Li T, Lemos B. Environmentally induced ribosomal DNA (rDNA) instability in human cells and populations exposed to hexavalent chromium [Cr (VI)]. ENVIRONMENT INTERNATIONAL 2021; 153:106525. [PMID: 33774497 PMCID: PMC8477438 DOI: 10.1016/j.envint.2021.106525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 05/12/2023]
Abstract
Hexavalent Chromium [Cr (VI)] is an established toxicant, carcinogen, and a significant source of public health concern. The multicopy ribosomal DNA (rDNA) array is mechanistically linked to aging and cancer, is the most evolutionarily conserved segment of the human genome, and gives origin to nucleolus, a nuclear organelle where ribosomes are assembled. Here we show that exposure to Cr (VI) induces instability in the rDNA, triggering cycles of rapid, specific, and transient amplification and contraction of the array in human cells. The dynamic of environmentally responsive rDNA copy number (CN) amplification and contraction occurs at doses to which millions of individuals are regularly exposed. Finally, analyses of human populations occupationally exposed to Cr (VI) indicate that environmental exposure history and drinking habits but not age shape extensive naturally occurring rDNA copy number variation. Our observations identify a novel pathway of response to hexavalent chromium exposure and raise the prospect that a suite of environmental determinants of rDNA copy number remain to be discovered.
Collapse
Affiliation(s)
- Jianlin Lou
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Shoukai Yu
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Lingfang Feng
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Xinnian Guo
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Meng Wang
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Alan T Branco
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tao Li
- School of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China; Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Bernardo Lemos
- Program in Molecular and Integrative Physiological Sciences & Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
36
|
Xuan J, Gitareja K, Brajanovski N, Sanij E. Harnessing the Nucleolar DNA Damage Response in Cancer Therapy. Genes (Basel) 2021; 12:genes12081156. [PMID: 34440328 PMCID: PMC8393943 DOI: 10.3390/genes12081156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
The nucleoli are subdomains of the nucleus that form around actively transcribed ribosomal RNA (rRNA) genes. They serve as the site of rRNA synthesis and processing, and ribosome assembly. There are 400-600 copies of rRNA genes (rDNA) in human cells and their highly repetitive and transcribed nature poses a challenge for DNA repair and replication machineries. It is only in the last 7 years that the DNA damage response and processes of DNA repair at the rDNA repeats have been recognized to be unique and distinct from the classic response to DNA damage in the nucleoplasm. In the last decade, the nucleolus has also emerged as a central hub for coordinating responses to stress via sequestering tumor suppressors, DNA repair and cell cycle factors until they are required for their functional role in the nucleoplasm. In this review, we focus on features of the rDNA repeats that make them highly vulnerable to DNA damage and the mechanisms by which rDNA damage is repaired. We highlight the molecular consequences of rDNA damage including activation of the nucleolar DNA damage response, which is emerging as a unique response that can be exploited in anti-cancer therapy. In this review, we focus on CX-5461, a novel inhibitor of Pol I transcription that induces the nucleolar DNA damage response and is showing increasing promise in clinical investigations.
Collapse
Affiliation(s)
- Jiachen Xuan
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Kezia Gitareja
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
| | - Natalie Brajanovski
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.X.); (K.G.); (N.B.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3010, Australia
- St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine -St Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence: ; Tel.: +61-3-8559-5279
| |
Collapse
|
37
|
Jernfors T, Danforth J, Kesäniemi J, Lavrinienko A, Tukalenko E, Fajkus J, Dvořáčková M, Mappes T, Watts PC. Expansion of rDNA and pericentromere satellite repeats in the genomes of bank voles Myodes glareolus exposed to environmental radionuclides. Ecol Evol 2021; 11:8754-8767. [PMID: 34257925 PMCID: PMC8258220 DOI: 10.1002/ece3.7684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Altered copy number of certain highly repetitive regions of the genome, such as satellite DNA within heterochromatin and ribosomal RNA loci (rDNA), is hypothesized to help safeguard the genome against damage derived from external stressors. We quantified copy number of the 18S rDNA and a pericentromeric satellite DNA (Msat-160) in bank voles (Myodes glareolus) inhabiting the Chernobyl Exclusion Zone (CEZ), an area that is contaminated by radionuclides and where organisms are exposed to elevated levels of ionizing radiation. We found a significant increase in 18S rDNA and Msat-160 content in the genomes of bank voles from contaminated locations within the CEZ compared with animals from uncontaminated locations. Moreover, 18S rDNA and Msat-160 copy number were positively correlated in the genomes of bank voles from uncontaminated, but not in the genomes of animals inhabiting contaminated, areas. These results show the capacity for local-scale geographic variation in genome architecture and are consistent with the genomic safeguard hypothesis. Disruption of cellular processes related to genomic stability appears to be a hallmark effect in bank voles inhabiting areas contaminated by radionuclides.
Collapse
Affiliation(s)
- Toni Jernfors
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - John Danforth
- Department of Biochemistry & Molecular BiologyRobson DNA Science CentreArnie Charbonneau Cancer InstituteCumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Jenni Kesäniemi
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anton Lavrinienko
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Eugene Tukalenko
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- National Research Center for Radiation Medicine of the National Academy of Medical ScienceKyivUkraine
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and ProteomicsCentral European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
- Laboratory of Functional Genomics and ProteomicsNCBRFaculty of ScienceMasaryk UniversityBrnoCzech Republic
- Department of Cell Biology and RadiobiologyInstitute of Biophysics of the Czech Academy of SciencesBrnoCzech Republic
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and ProteomicsCentral European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzech Republic
| | - Tapio Mappes
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Phillip C. Watts
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
38
|
The Ribosomal Gene Loci-The Power behind the Throne. Genes (Basel) 2021; 12:genes12050763. [PMID: 34069807 PMCID: PMC8157237 DOI: 10.3390/genes12050763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleoli form around actively transcribed ribosomal RNA (rRNA) genes (rDNA), and the morphology and location of nucleolus-associated genomic domains (NADs) are linked to the RNA Polymerase I (Pol I) transcription status. The number of rDNA repeats (and the proportion of actively transcribed rRNA genes) is variable between cell types, individuals and disease state. Substantial changes in nucleolar morphology and size accompanied by concomitant changes in the Pol I transcription rate have long been documented during normal cell cycle progression, development and malignant transformation. This demonstrates how dynamic the nucleolar structure can be. Here, we will discuss how the structure of the rDNA loci, the nucleolus and the rate of Pol I transcription are important for dynamic regulation of global gene expression and genome stability, e.g., through the modulation of long-range genomic interactions with the suppressive NAD environment. These observations support an emerging paradigm whereby the rDNA repeats and the nucleolus play a key regulatory role in cellular homeostasis during normal development as well as disease, independent of their role in determining ribosome capacity and cellular growth rates.
Collapse
|
39
|
Guan L, Grigoriev A. Computational meta-analysis of ribosomal RNA fragments: potential targets and interaction mechanisms. Nucleic Acids Res 2021; 49:4085-4103. [PMID: 33772581 PMCID: PMC8053083 DOI: 10.1093/nar/gkab190] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The most abundant cellular RNA species, ribosomal RNA (rRNA), appears to be a source of massive amounts of non-randomly generated fragments. We found rRNA fragments (rRFs) in immunoprecipitated Argonaute (Ago-IP) complexes in human and mouse cells and in small RNA sequencing datasets. In human Ago1-IP, guanine-rich rRFs were preferentially cut in single-stranded regions of mature rRNAs between pyrimidines and adenosine, and non-randomly paired with cellular transcripts in crosslinked chimeras. Numerous identical rRFs were found in the cytoplasm and nucleus in mouse Ago2-IP. We report specific interaction motifs enriched in rRF-target pairs. Locations of such motifs on rRFs were compatible with the Ago structural features and patterns of the Ago-RNA crosslinking in both species. Strikingly, many of these motifs may bind to double-stranded regions on target RNAs, suggesting a potential pathway for regulating translation by unwinding mRNAs. Occurring on either end of rRFs and matching intronic, untranslated or coding regions in targets, such interaction sites extend the concept of microRNA seed regions. Targeting both borders of certain short introns, rRFs may be involved in their biogenesis or function, facilitated by Ago. Frequently dismissed as noise, rRFs are poised to greatly enrich the known functional spectrum of small RNA regulation.
Collapse
Affiliation(s)
- Lingyu Guan
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| |
Collapse
|
40
|
Salim D, Bradford WD, Rubinstein B, Gerton JL. DNA replication, transcription, and H3K56 acetylation regulate copy number and stability at tandem repeats. G3-GENES GENOMES GENETICS 2021; 11:6174693. [PMID: 33729510 DOI: 10.1093/g3journal/jkab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022]
Abstract
Tandem repeats are inherently unstable and exhibit extensive copy number polymorphisms. Despite mounting evidence for their adaptive potential, the mechanisms associated with regulation of the stability and copy number of tandem repeats remain largely unclear. To study copy number variation at tandem repeats, we used two well-studied repetitive arrays in the budding yeast genome, the ribosomal DNA (rDNA) locus, and the copper-inducible CUP1 gene array. We developed powerful, highly sensitive, and quantitative assays to measure repeat instability and copy number and used them in multiple high-throughput genetic screens to define pathways involved in regulating copy number variation. These screens revealed that rDNA stability and copy number are regulated by DNA replication, transcription, and histone acetylation. Through parallel studies of both arrays, we demonstrate that instability can be induced by DNA replication stress and transcription. Importantly, while changes in stability in response to stress are observed within a few cell divisions, a change in steady state repeat copy number requires selection over time. Further, H3K56 acetylation is required for regulating transcription and transcription-induced instability at the CUP1 array, and restricts transcription-induced amplification. Our work suggests that the modulation of replication and transcription is a direct, reversible strategy to alter stability at tandem repeats in response to environmental stimuli, which provides cells rapid adaptability through copy number variation. Additionally, histone acetylation may function to promote the normal adaptive program in response to transcriptional stress. Given the omnipresence of DNA replication, transcription, and chromatin marks like histone acetylation, the fundamental mechanisms we have uncovered significantly advance our understanding of the plasticity of tandem repeats more generally.
Collapse
Affiliation(s)
- Devika Salim
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States of America.,Open University, Milton Keynes MK7 6BJ, United Kingdom
| | - William D Bradford
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States of America
| | - Boris Rubinstein
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States of America
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States of America.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| |
Collapse
|
41
|
Thousands of high-quality sequencing samples fail to show meaningful correlation between 5S and 45S ribosomal DNA arrays in humans. Sci Rep 2021; 11:449. [PMID: 33432083 PMCID: PMC7801704 DOI: 10.1038/s41598-020-80049-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022] Open
Abstract
The ribosomal RNA genes (rDNA) are tandemly arrayed in most eukaryotes and exhibit vast copy number variation. There is growing interest in integrating this variation into genotype-phenotype associations. Here, we explored a possible association of rDNA copy number variation with autism spectrum disorder and found no difference between probands and unaffected siblings. Because short-read sequencing estimates of rDNA copy number are error prone, we sought to validate our 45S estimates. Previous studies reported tightly correlated, concerted copy number variation between the 45S and 5S arrays, which should enable the validation of 45S copy number estimates with pulsed-field gel-verified 5S copy numbers. Here, we show that the previously reported strong concerted copy number variation may be an artifact of variable data quality in the earlier published 1000 Genomes Project sequences. We failed to detect a meaningful correlation between 45S and 5S copy numbers in thousands of samples from the high-coverage Simons Simplex Collection dataset as well as in the recent high-coverage 1000 Genomes Project sequences. Our findings illustrate the challenge of genotyping repetitive DNA regions accurately and call into question the accuracy of recently published studies of rDNA copy number variation in cancer that relied on diverse publicly available resources for sequence data.
Collapse
|
42
|
Shi S, Luo H, Wang L, Li H, Liang Y, Xia J, Wang Z, Cheng B, Huang L, Liao G, Xu B. Combined inhibition of RNA polymerase I and mTORC1/2 synergize to combat oral squamous cell carcinoma. Biomed Pharmacother 2021; 133:110906. [PMID: 33190037 DOI: 10.1016/j.biopha.2020.110906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 01/27/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the major cause of morbidity and mortality in head and neck cancer patients worldwide. This malignant disease is challenging to treat because of the lack of effective curative strategies and the high incidence of recurrence. This study aimed to investigate the efficacy of a single and dual approach targeting ribosome biogenesis and protein translation to treat OSCC associated with the copy number variation (CNV) of ribosomal DNA (rDNA). Here, we found that primary OSCC tumors frequently exhibited a partial loss of 45S rDNA copy number and demonstrated a high susceptibility to CX5461 (a selective inhibitor of RNA polymerase I) and the coadministration of CX5461 and INK128 (a potent inhibitor of mTORC1/2). Combined treatment displayed the promising synergistic effects that induced cell apoptosis and reactive oxygen species (ROS) generation, and inhibited cell growth and proliferation. Moreover, INK128 compromised NHEJ-DNA repair pathway to reinforce the antitumor activity of CX5461. In vivo, the cotreatment synergistically suppressed tumor growth, triggered apoptosis and strikingly extended the survival time of tumor-bearing mice. Additionally, treatment with the individual compounds and coadministration appeared to reduce the incidence of enlarged inguinal lymph nodes. Our study supports that the combination of CX5461 and INK128 is a novel and efficacious therapeutic strategy that can combat this cancer and that 45S rDNA may serve as a useful indicator to predict the efficacy of this cotreatment.
Collapse
Affiliation(s)
- Shanwei Shi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huigen Luo
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lihong Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hua Li
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States
| | - Yujie Liang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Juan Xia
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bin Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Linfeng Huang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Guiqing Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Baoshan Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
43
|
Pan-cancer driver copy number alterations identified by joint expression/CNA data analysis. Sci Rep 2020; 10:17199. [PMID: 33057153 PMCID: PMC7566486 DOI: 10.1038/s41598-020-74276-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
AbstractAnalysis of large gene expression datasets from biopsies of cancer patients can identify co-expression signatures representing particular biomolecular events in cancer. Some of these signatures involve genomically co-localized genes resulting from the presence of copy number alterations (CNAs), for which analysis of the expression of the underlying genes provides valuable information about their combined role as oncogenes or tumor suppressor genes. Here we focus on the discovery and interpretation of such signatures that are present in multiple cancer types due to driver amplifications and deletions in particular regions of the genome after doing a comprehensive analysis combining both gene expression and CNA data from The Cancer Genome Atlas.
Collapse
|
44
|
Korsholm LM, Gál Z, Nieto B, Quevedo O, Boukoura S, Lund CC, Larsen DH. Recent advances in the nucleolar responses to DNA double-strand breaks. Nucleic Acids Res 2020; 48:9449-9461. [PMID: 32857853 PMCID: PMC7515731 DOI: 10.1093/nar/gkaa713] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
DNA damage poses a serious threat to human health and cells therefore continuously monitor and repair DNA lesions across the genome. Ribosomal DNA is a genomic domain that represents a particular challenge due to repetitive sequences, high transcriptional activity and its localization in the nucleolus, where the accessibility of DNA repair factors is limited. Recent discoveries have significantly extended our understanding of how cells respond to DNA double-strand breaks (DSBs) in the nucleolus, and new kinases and multiple down-stream targets have been identified. Restructuring of the nucleolus can occur as a consequence of DSBs and new data point to an active regulation of this process, challenging previous views. Furthermore, new insights into coordination of cell cycle phases and ribosomal DNA repair argue against existing concepts. In addition, the importance of nucleolar-DNA damage response (n-DDR) mechanisms for maintenance of genome stability and the potential of such factors as anti-cancer targets is becoming apparent. This review will provide a detailed discussion of recent findings and their implications for our understanding of the n-DDR. The n-DDR shares features with the DNA damage response (DDR) elsewhere in the genome but is also emerging as an independent response unique to ribosomal DNA and the nucleolus.
Collapse
Affiliation(s)
| | | | - Blanca Nieto
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Oliver Quevedo
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Stavroula Boukoura
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Casper Carstens Lund
- Danish Cancer Society Research Center, Nucleolar Stress and Disease Group, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | | |
Collapse
|
45
|
Frequent Germline and Somatic Single Nucleotide Variants in the Promoter Region of the Ribosomal RNA Gene in Japanese Lung Adenocarcinoma Patients. Cells 2020; 9:cells9112409. [PMID: 33153169 PMCID: PMC7692307 DOI: 10.3390/cells9112409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/25/2022] Open
Abstract
Ribosomal RNA (rRNA), the most abundant non-coding RNA species, is a major component of the ribosome. Impaired ribosome biogenesis causes the dysfunction of protein synthesis and diseases called “ribosomopathies,” including genetic disorders with cancer risk. However, the potential role of rRNA gene (rDNA) alterations in cancer is unknown. We investigated germline and somatic single-nucleotide variants (SNVs) in the rDNA promoter region (positions −248 to +100, relative to the transcription start site) in 82 lung adenocarcinomas (LUAC). Twenty-nine tumors (35.4%) carried germline SNVs, and eight tumors (9.8%) harbored somatic SNVs. Interestingly, the presence of germline SNVs between positions +1 and +100 (n = 12; 14.6%) was associated with significantly shorter recurrence-free survival (RFS) and overall survival (OS) by univariate analysis (p < 0.05, respectively), and was an independent prognostic factor for RFS and OS by multivariate analysis. LUAC cell line PC9, carrying rDNA promoter SNV at position +49, showed significantly higher ribosome biogenesis than H1650 cells without SNV. Upon nucleolar stress induced by actinomycin D, PC9 retained significantly higher ribosome biogenesis than H1650. These results highlight the possible functional role of SNVs at specific sites of the rDNA promoter region in ribosome biogenesis, the progression of LUAC, and their potential prognostic value.
Collapse
|
46
|
Dichotomous Impact of Myc on rRNA Gene Activation and Silencing in B Cell Lymphomagenesis. Cancers (Basel) 2020; 12:cancers12103009. [PMID: 33081395 PMCID: PMC7656300 DOI: 10.3390/cancers12103009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 01/20/2023] Open
Abstract
Simple Summary B cell lymphomas mostly arise from malignant transformation of mature B cells and are typically driven by elevated levels of the oncoprotein Myc. Myc is a transcription factor regulating many protein-coding genes as well as the multicopy genes encoding ribosomal RNA (rRNA). The aim of this study was to understand, how Myc impacts rRNA genes in the course of B cell lymphomagenesis. Using a transgenic mouse model, we found that Myc and rRNA gene expression strongly increase upon tumor formation. Surprisingly, Myc also facilitates epigenetic silencing of a fraction of rRNA genes, thereby safeguarding genomic integrity in lymphoma cells. Together, the results show that Myc balances high activity and stability of rRNA genes. Perturbation of this equilibrium may be used as a therapeutic strategy. Abstract A major transcriptional output of cells is ribosomal RNA (rRNA), synthesized by RNA polymerase I (Pol I) from multicopy rRNA genes (rDNA). Constitutive silencing of an rDNA fraction by promoter CpG methylation contributes to the stabilization of these otherwise highly active loci. In cancers driven by the oncoprotein Myc, excessive Myc directly stimulates rDNA transcription. However, it is not clear when during carcinogenesis this mechanism emerges, and how Myc-driven rDNA activation affects epigenetic silencing. Here, we have used the Eµ-Myc mouse model to investigate rDNA transcription and epigenetic regulation in Myc-driven B cell lymphomagenesis. We have developed a refined cytometric strategy to isolate B cells from the tumor initiation, promotion, and progression phases, and found a substantial increase of both Myc and rRNA gene expression only in established lymphoma. Surprisingly, promoter CpG methylation and the machinery for rDNA silencing were also strongly up-regulated in the tumor progression state. The data indicate a dichotomous role of oncogenic Myc in rDNA regulation, boosting transcription as well as reinforcing repression of silent repeats, which may provide a novel angle on perturbing Myc function in cancer cells.
Collapse
|
47
|
Picart-Picolo A, Grob S, Picault N, Franek M, Llauro C, Halter T, Maier TR, Jobet E, Descombin J, Zhang P, Paramasivan V, Baum TJ, Navarro L, Dvořáčková M, Mirouze M, Pontvianne F. Large tandem duplications affect gene expression, 3D organization, and plant-pathogen response. Genome Res 2020; 30:1583-1592. [PMID: 33033057 PMCID: PMC7605254 DOI: 10.1101/gr.261586.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Rapid plant genome evolution is crucial to adapt to environmental changes. Chromosomal rearrangements and gene copy number variation (CNV) are two important tools for genome evolution and sources for the creation of new genes. However, their emergence takes many generations. In this study, we show that in Arabidopsis thaliana, a significant loss of ribosomal RNA (rRNA) genes with a past history of a mutation for the chromatin assembly factor 1 (CAF1) complex causes rapid changes in the genome structure. Using long-read sequencing and microscopic approaches, we have identified up to 15 independent large tandem duplications in direct orientation (TDDOs) ranging from 60 kb to 1.44 Mb. Our data suggest that these TDDOs appeared within a few generations, leading to the duplication of hundreds of genes. By subsequently focusing on a line only containing 20% of rRNA gene copies (20rDNA line), we investigated the impact of TDDOs on 3D genome organization, gene expression, and cytosine methylation. We found that duplicated genes often accumulate more transcripts. Among them, several are involved in plant–pathogen response, which could explain why the 20rDNA line is hyper-resistant to both bacterial and nematode infections. Finally, we show that the TDDOs create gene fusions and/or truncations and discuss their potential implications for the evolution of plant genomes.
Collapse
Affiliation(s)
- Ariadna Picart-Picolo
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Stefan Grob
- Institute of Plant and Microbial Biology, University of Zurich, CH-8008 Zurich, Switzerland
| | - Nathalie Picault
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Michal Franek
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Christel Llauro
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Thierry Halter
- ENS, IBENS, CNRS/INSERM, PSL Research University, 75005 Paris, France
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Edouard Jobet
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Julie Descombin
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| | - Panpan Zhang
- UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,IRD, UMR232 DIADE, 34394 Montpellier, France
| | | | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | - Lionel Navarro
- ENS, IBENS, CNRS/INSERM, PSL Research University, 75005 Paris, France
| | - Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, 625 00 Brno, Czech Republic
| | - Marie Mirouze
- UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,IRD, UMR232 DIADE, 34394 Montpellier, France
| | - Frédéric Pontvianne
- CNRS, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France.,UPVD, LGDP UMR5096, Université de Perpignan, 66860 Perpignan, France
| |
Collapse
|
48
|
de Bustos A, Figueroa RI, Sixto M, Bravo I, Cuadrado Á. The 5S rRNA genes in Alexandrium: their use as a FISH chromosomal marker in studies of the diversity, cell cycle and sexuality of dinoflagellates. HARMFUL ALGAE 2020; 98:101903. [PMID: 33129460 DOI: 10.1016/j.hal.2020.101903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/25/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Chromosomal markers of the diversity and evolution of dinoflagellates are scarce because the genomes of these organisms are unique among eukaryotes in terms of their base composition and chromosomal structure. Similarly, a lack of appropriate tools has hindered studies of the chromosomal localization of 5S ribosomal DNA (rDNA) in the nucleosome-less chromosomes of dinoflagellates. In this study, we isolated and cloned 5S rDNA sequences from various toxin-producing species of the genus Alexandrium and developed a fluorescence in situ hybridization (FISH) probe that allows their chromosomal localization. Our results can be summarized as follows: 1) The 5S rDNA unit is composed of a highly conserved 122-bp coding region and an intergenic spacer (IGS), the length and sequence of which are variable even within strains. 2) Three different IGS types, one containing the U6 small nuclear RNA (snRNA) gene, were found among four of the studied species (A. minutum, A. tamarense, A. catenella and A. pacificum). 3) In all strains investigated by FISH (A. minutum, A. tamarense, A. pacificum, A. catenella, A. andersonii and A. ostenfeldii), 5S rDNA gene arrays were separate from the nucleolar organizer region, which contains the genes for the large 45S pre-ribosomal RNA. 4) One to three 5S rDNA sites per haploid genome were detected, depending on the strains/species. Intraspecific variability in the number of 5S rDNA sites was determined among strains of A. minutum and A. pacificum. 5) 5S rDNA is a useful chromosomal marker of mitosis progression and can be employed to differentiate vegetative (haploid) vs. planozygotes (diploid) cells. Thus, the FISH probe (oligo-Dino5Smix5) developed in this study facilitates analyses of the diversity, cell cycle and life stages of the genus Alexandrium.
Collapse
Affiliation(s)
- Alfredo de Bustos
- Universidad de Alcalá (UAH), Dpto Biomedicina y Biotecnología, 28805 Alcalá de Henares, Madrid, Spain.
| | - Rosa I Figueroa
- Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Marta Sixto
- Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain; Campus do Mar, Facultad de Ciencias del Mar, Universidad de Vigo, 36311 Vigo, Spain.
| | - Isabel Bravo
- Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Ángeles Cuadrado
- Universidad de Alcalá (UAH), Dpto Biomedicina y Biotecnología, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
49
|
Mapping and Quantification of Non-Coding RNA Originating from the rDNA in Human Glioma Cells. Cancers (Basel) 2020; 12:cancers12082090. [PMID: 32731436 PMCID: PMC7464196 DOI: 10.3390/cancers12082090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022] Open
Abstract
Ribosomal DNA is one of the most conserved parts of the genome, especially in its rRNA coding regions, but some puzzling pieces of its noncoding repetitive sequences harbor secrets of cell growth and development machinery. Disruptions in the neat mechanisms of rDNA orchestrating the cell functioning result in malignant conversion. In cancer cells, the organization of rRNA coding genes and their transcription somehow differ from that of normal cells, but little is known about the particular mechanism for this switch. In this study, we demonstrate that the region ~2 kb upstream of the rDNA promoter is transcriptionally active in one type of the most malignant human brain tumors, and we compare its expression rate to that of healthy human tissues and cell cultures. Sense and antisense non-coding RNA transcripts were detected and mapped, but their secondary structure and functions remain to be elucidated. We propose that the transcripts may relate to a new class of so-called promoter-associated RNAs (pRNAs), or have some other regulatory functions. We also hope that the expression of these non-coding RNAs can be used as a marker in glioma diagnostics and prognosis.
Collapse
|
50
|
Son J, Hannan KM, Poortinga G, Hein N, Cameron DP, Ganley ARD, Sheppard KE, Pearson RB, Hannan RD, Sanij E. rDNA Chromatin Activity Status as a Biomarker of Sensitivity to the RNA Polymerase I Transcription Inhibitor CX-5461. Front Cell Dev Biol 2020; 8:568. [PMID: 32719798 PMCID: PMC7349920 DOI: 10.3389/fcell.2020.00568] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Hyperactivation of RNA polymerase I (Pol I) transcription of ribosomal RNA (rRNA) genes (rDNA) is a key determinant of growth and proliferation and a consistent feature of cancer cells. We have demonstrated that inhibition of rDNA transcription by the Pol I transcription inhibitor CX-5461 selectively kills tumor cells in vivo. Moreover, the first-in human trial of CX-5461 has demonstrated CX-5461 is well-tolerated in patients and has single-agent anti-tumor activity in hematologic malignancies. However, the mechanisms underlying tumor cell sensitivity to CX-5461 remain unclear. Understanding these mechanisms is crucial for the development of predictive biomarkers of response that can be utilized for stratifying patients who may benefit from CX-5461. The rDNA repeats exist in four different and dynamic chromatin states: inactive rDNA can be either methylated silent or unmethylated pseudo-silent; while active rDNA repeats are described as either transcriptionally competent but non-transcribed or actively transcribed, depending on the level of rDNA promoter methylation, loading of the essential rDNA chromatin remodeler UBF and histone marks status. In addition, the number of rDNA repeats per human cell can reach hundreds of copies. Here, we tested the hypothesis that the number and/or chromatin status of the rDNA repeats, is a critical determinant of tumor cell sensitivity to Pol I therapy. We systematically examined a panel of ovarian cancer (OVCA) cell lines to identify rDNA chromatin associated biomarkers that might predict sensitivity to CX-5461. We demonstrated that an increased proportion of active to inactive rDNA repeats, independent of rDNA copy number, determines OVCA cell line sensitivity to CX-5461. Further, using zinc finger nuclease genome editing we identified that reducing rDNA copy number leads to an increase in the proportion of active rDNA repeats and confers sensitivity to CX-5461 but also induces genome-wide instability and sensitivity to DNA damage. We propose that the proportion of active to inactive rDNA repeats may serve as a biomarker to identify cancer patients who will benefit from CX-5461 therapy in future clinical trials. The data also reinforces the notion that rDNA instability is a threat to genomic integrity and cellular homeostasis.
Collapse
Affiliation(s)
- Jinbae Son
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Katherine M. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Gretchen Poortinga
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Donald P. Cameron
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Austen R. D. Ganley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Karen E. Sheppard
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Richard B. Pearson
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ross D. Hannan
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|