1
|
Lu H, Zheng Y, Wang D. ATF3 affects osteogenic differentiation in inflammatory hPDLSCs by mediating ferroptosis via regulating the Nrf2/HO-1 signaling pathway. Tissue Cell 2024; 89:102447. [PMID: 38991270 DOI: 10.1016/j.tice.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024]
Abstract
Activating transcription factor 3 (ATF3) has been identified as a regulator associated with osteoblast differentiation. However, the effects of ATF3 on the osteogenic differentiation and proliferation of human periodontal stem cells (hPDLSCs) in periodontitis have not been reported. With the purpose of establishing an in vitro model of periodontitis, hPDLSCs were challenged with lipopolysaccharide (LPS). The Cell Counting Kit-8 assay was applied to assess cell viability, while reverse transcription-quantitative PCR and western blotting were employed to detect ATF3 expression. Inflammatory release was assessed using ELISA, together with western blotting. Lipid peroxidation was explored using the C11 BODIPY 581/591 probe, biochemical kits, thiobarbituric acid reactive substances (TBARS) assay and DCFH-DA staining. Iron and Fe2+ levels, and the expression levels of ferroptosis-related proteins were measured using corresponding kits and western blotting. Osteogenic differentiative capability was evaluated using alkaline phosphatase staining, Alizarin red staining and western blotting. The expression levels of proteins associated with Nrf2/HO-1 signaling were identified using western blotting. The results indicated that ATF3 expression was upregulated in LPS-induced hPDLSCs. The knockdown of ATF3 alleviated the LPS-induced inflammatory response in hPDLSCs, together with increased levels of TNF-α, IL-6, IL-1β, Cox-2 and iNOS, and decreased levels of IL-10. ATF3 silencing also led to lower TBARS production rate, and reduced levels of reactive oxygen species, iron, Fe2+, ACSL4 and TFR1, whereas it elevated the levels of SLC7A11 and GPX4. In addition, ATF3 silencing promoted hPDLSC mineralization and cell differentiation, and elevated the levels of OCN2, RUNX2 and BMP2. Additionally, ATF3 depletion upregulated the expression levels of proteins related with Nrf2/HO-1 signaling. The Nrf2 inhibitor ML385 partially counteracted the effects of ATF3 interference on the LPS-challenged inflammatory response, lipid peroxidation, ferroptosis as well as osteogenic differentiative capability in hPDLSCs. In summary, the results revealed that ATF3 silencing suppressed inflammation and ferroptosis, while it improved osteogenic differentiation in LPS-induced hPDLSCs by regulating Nrf2/HO-1 signaling, which may provide promising therapeutic targets for the treatment of periodontitis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pediatric Dentistry, Stomatological Hospital of Guizhou Medical University, Guiyang 550004, China.
| | - Yuemei Zheng
- School of Stomatology, Guizhou Medical University, Guiyang 550004, China
| | - Dan Wang
- School of Stomatology, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
2
|
Cebrian-Silla A, Assis Nascimento M, Mancia W, Gonzalez-Granero S, Romero-Rodriguez R, Obernier K, Steffen DM, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Neural Stem Cell Relay from B1 to B2 cells in the adult mouse Ventricular-Subventricular Zone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.600695. [PMID: 39005355 PMCID: PMC11244865 DOI: 10.1101/2024.06.28.600695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Neurogenesis and gliogenesis continue in the Ventricular-Subventricular Zone (V-SVZ) of the adult rodent brain. B1 cells are astroglial cells derived from radial glia that function as primary progenitors or neural stem cells (NSCs) in the V-SVZ. B1 cells, which have a small apical contact with the ventricle, decline in numbers during early postnatal life, yet neurogenesis continues into adulthood. Here we found that a second population of V-SVZ astroglial cells (B2 cells), that do not contact the ventricle, function as NSCs in the adult brain. B2 cell numbers increase postnatally, remain constant in 12-month-old mice and decrease by 18 months. Transcriptomic analysis of ventricular-contacting and non-contacting B cells revealed key molecular differences to distinguish B1 from B2 cells. Transplantation and lineage tracing of B2 cells demonstrate their function as primary progenitors for adult neurogenesis. This study reveals how NSC function is relayed from B1 to B2 progenitors to maintain adult neurogenesis.
Collapse
|
3
|
Pravallika G, Rajasekaran R. Stage II oesophageal carcinoma: peril in disguise associated with cellular reprogramming and oncogenesis regulated by pseudogenes. BMC Genomics 2024; 25:135. [PMID: 38308202 PMCID: PMC10835973 DOI: 10.1186/s12864-024-10023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Pseudogenes have been implicated for their role in regulating cellular differentiation and organismal development. However, their role in promoting cancer-associated differentiation has not been well-studied. This study explores the tumour landscape of oesophageal carcinoma to identify pseudogenes that may regulate events of differentiation to promote oncogenic transformation. MATERIALS AND METHOD De-regulated differentiation-associated pseudogenes were identified using DeSeq2 followed by 'InteractiVenn' analysis to identify their expression pattern. Gene expression dependent and independent enrichment analyses were performed with GSEA and ShinyGO, respectively, followed by quantification of cellular reprogramming, extent of differentiation and pleiotropy using three unique metrics. Stage-specific gene regulatory networks using Bayesian Network Splitting Average were generated, followed by network topology analysis. MEME, STREME and Tomtom were employed to identify transcription factors and miRNAs that play a regulatory role downstream of pseudogenes to initiate cellular reprogramming and further promote oncogenic transformation. The patient samples were stratified based on the expression pattern of pseudogenes, followed by GSEA, mutation analysis and survival analysis using GSEA, MAF and 'survminer', respectively. RESULTS Pseudogenes display a unique stage-wise expression pattern that characterizes stage II (SII) ESCA with a high rate of cellular reprogramming, degree of differentiation and pleiotropy. Gene regulatory network and associated topology indicate high robustness, thus validating high pleiotropy observed for SII. Pseudogene-regulated expression of SOX2, FEV, PRRX1 and TFAP2A in SII may modulate cellular reprogramming and promote oncogenesis. Additionally, patient stratification-based mutational analysis in SII signifies APOBEC3A (A3A) as a potential hallmark of homeostatic mutational events of reprogrammed cells which in addition to de-regulated APOBEC3G leads to distinct events of hypermutations. Further enrichment analysis for both cohorts revealed the critical role of combinatorial expression of pseudogenes in cellular reprogramming. Finally, survival analysis reveals distinct genes that promote poor prognosis in SII ESCA and patient-stratified cohorts, thus providing valuable prognostic bio-markers along with markers of differentiation and oncogenesis for distinct landscapes of pseudogene expression. CONCLUSION Pseudogenes associated with the events of differentiation potentially aid in the initiation of cellular reprogramming to facilitate oncogenic transformation, especially during SII ESCA. Despite a better overall survival of SII, patient stratification reveals combinatorial de-regulation of pseudogenes as a notable marker for a high degree of cellular differentiation with a unique mutational landscape.
Collapse
Affiliation(s)
- Govada Pravallika
- Quantitative Biology Lab, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramalingam Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
4
|
Knudsen C, Woo Seuk Koh, Izumikawa T, Nakato E, Akiyama T, Kinoshita-Toyoda A, Haugstad G, Yu G, Toyoda H, Nakato H. Chondroitin sulfate is required for follicle epithelial integrity and organ shape maintenance in Drosophila. Development 2023; 150:dev201717. [PMID: 37694610 PMCID: PMC10508698 DOI: 10.1242/dev.201717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) are evolutionarily conserved glycosaminoglycans that are found in most animal species, including the genetically tractable model organism Drosophila. In contrast to extensive in vivo studies elucidating co-receptor functions of Drosophila HS proteoglycans (PGs), only a limited number of studies have been conducted for those of CSPGs. To investigate the global function of CS in development, we generated mutants for Chondroitin sulfate synthase (Chsy), which encodes the Drosophila homolog of mammalian chondroitin synthase 1, a crucial CS biosynthetic enzyme. Our characterizations of the Chsy mutants indicated that a fraction survive to adult stage, which allowed us to analyze the morphology of the adult organs. In the ovary, Chsy mutants exhibited altered stiffness of the basement membrane and muscle dysfunction, leading to a gradual degradation of the gross organ structure as mutant animals aged. Our observations show that normal CS function is required for the maintenance of the structural integrity of the ECM and gross organ architecture.
Collapse
Affiliation(s)
- Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Woo Seuk Koh
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Tomomi Izumikawa
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Takuya Akiyama
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Greg Haugstad
- Characterization Facility, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Guichuan Yu
- Characterization Facility, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Hidenao Toyoda
- Faculty of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
The nanoCUT&RUN technique visualizes telomeric chromatin in Drosophila. PLoS Genet 2022; 18:e1010351. [PMID: 36048878 PMCID: PMC9473618 DOI: 10.1371/journal.pgen.1010351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/14/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
Advances in genomic technology led to a more focused pattern for the distribution of chromosomal proteins and a better understanding of their functions. The recent development of the CUT&RUN technique marks one of the important such advances. Here we develop a modified CUT&RUN technique that we termed nanoCUT&RUN, in which a high affinity nanobody to GFP is used to bring micrococcal nuclease to the binding sites of GFP-tagged chromatin proteins. Subsequent activation of the nuclease cleaves the chromatin, and sequencing of released DNA identifies binding sites. We show that nanoCUT&RUN efficiently produces high quality data for the TRL transcription factor in Drosophila embryos, and distinguishes binding sites specific between two TRL isoforms. We further show that nanoCUT&RUN dissects the distributions of the HipHop and HOAP telomere capping proteins, and uncovers unexpected binding of telomeric proteins at centromeres. nanoCUT&RUN can be readily applied to any system in which a chromatin protein of interest, or its isoforms, carries the GFP tag. The method of chromatin immunoprecipitation followed by genomic sequencing (ChIP-seq) has been employed to study the distribution of chromatin binding proteins genome-wide. Such studies have greatly enhanced our understanding of the function of the target proteins. However, the uses of chemical crosslinking combined with the procedure of antibody-medicated precipitation of the protein-DNA complex have limited the efficiency of ChIP-seq. The recently developed CUT&RUN method has greatly improved that efficiency. We here developed the “nanoCUT&RUN” extension of CUT&RUN, which can be readily applied to any target protein with a GFP tag. Using nanoCUT&RUN, we profiled the HipHop and HOAP proteins that protect telomeric chromatin in Drosophila. We uncovered sequence-independent binding of both proteins predominantly to telomeres. Interestingly, HipHop binding can also be detected at centromeric chromatin suggestive of a novel function of a telomere capping protein.
Collapse
|
6
|
Külshammer E, Kilinc M, Csordás G, Bresser T, Nolte H, Uhlirova M. The mechanosensor Filamin A/Cheerio promotes tumourigenesis via specific interactions with components of the cell cortex. FEBS J 2022; 289:4497-4517. [DOI: 10.1111/febs.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Eva Külshammer
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Merve Kilinc
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Gábor Csordás
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Tina Bresser
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Hendrik Nolte
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Mirka Uhlirova
- Institute for Genetics Faculty of Mathematics and Natural Sciences Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
| |
Collapse
|
7
|
Afzal MW, Duan K, Zhang Y, Gao Y, Qin B, Wang G, Lei L, Tang H, Guo Y. A rhodol-based fluorescent probe with a pair of hydrophilic and rotatable wings for sensitively monitoring intracellular polarity. Chem Asian J 2022; 17:e202200063. [PMID: 35191194 DOI: 10.1002/asia.202200063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/21/2022] [Indexed: 11/06/2022]
Abstract
Cell polarity, as a vital intracellular microenvironment characteristic, has immense effects on numerous pathological and biological processes. Therefore, the tracking of polarity variations is highly essential to explore the role and mechanism of the polarity in pathophysiological processes. Herein, we designed and synthesized a novel rhodol-based fluorescent probe RDS sensitive to polarity by introducing a bis(2-hydroxyethylthio)methyl group, like a pair of hydrophilic and rotatable wings, into the rhodol skeleton. This unique design makes RDS adopt the colorless and non-fluorescent spirocyclic form in low polarity medium while the colored and fluorescent ring-open form in high polarity system, resulting in a positive-correlation response of fluorescence intension to polarity. Importantly, RDS was successfully applied to monitor the polarity changes in living cells including cancer cells, healthy cells and senescent healthy cells, visualizing that the polarity of cancer cells is lower than that of healthy cells in which the more senescent ones have higher polarity.
Collapse
Affiliation(s)
| | - Kaixuan Duan
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Yanhui Zhang
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Ying Gao
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Bo Qin
- Xi'an University of Posts and Telecommunications, School of Automation, CHINA
| | - Guangwei Wang
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Lin Lei
- Northwest University, College of Chemistry and Materials Science, CHINA
| | - Haoyang Tang
- Xi'an University of Posts and Telecommunications, School of Automation, CHINA
| | - Yuan Guo
- Northwest University, College of Chemistry and Materials Science, 1 Xuefu Road, Chang'an district, 710127, Xi'an, CHINA
| |
Collapse
|
8
|
Logeay R, Géminard C, Lassus P, Rodríguez-Vázquez M, Kantar D, Heron-Milhavet L, Fischer B, Bray SJ, Colinge J, Djiane A. Mechanisms underlying the cooperation between loss of epithelial polarity and Notch signaling during neoplastic growth in Drosophila. Development 2022; 149:274230. [PMID: 35005772 DOI: 10.1242/dev.200110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Aggressive neoplastic growth can be initiated by a limited number of genetic alterations, such as the well-established cooperation between loss of cell architecture and hyperactive signaling pathways. However, our understanding of how these different alterations interact and influence each other remains very incomplete. Using Drosophila paradigms of imaginal wing disc epithelial growth, we have monitored the changes in Notch pathway activity according to the polarity status of cells (scrib mutant). We show that the scrib mutation impacts the direct transcriptional output of the Notch pathway, without altering the global distribution of Su(H), the Notch-dedicated transcription factor. The Notch-dependent neoplasms require, however, the action of a group of transcription factors, similar to those previously identified for Ras/scrib neoplasm (namely AP-1, Stat92E, Ftz-F1 and basic leucine zipper factors), further suggesting the importance of this transcription factor network during neoplastic growth. Finally, our work highlights some Notch/scrib specificities, in particular the role of the PAR domain-containing basic leucine zipper transcription factor and Notch direct target Pdp1 for neoplastic growth.
Collapse
Affiliation(s)
- Rémi Logeay
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Charles Géminard
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Patrice Lassus
- IRCM, Inserm, University of Montpellier, ICM, CNRS, Montpellier, France
| | | | - Diala Kantar
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | | | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jacques Colinge
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Alexandre Djiane
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| |
Collapse
|
9
|
Wang Z, Liu Y, Liu J, Kong N, Jiang Y, Jiang R, Zhen X, Zhou J, Li C, Sun H, Yan G. ATF3 deficiency impairs the proliferative-secretory phase transition and decidualization in RIF patients. Cell Death Dis 2021; 12:387. [PMID: 33846304 PMCID: PMC8041902 DOI: 10.1038/s41419-021-03679-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022]
Abstract
Decidualization is a complex process involving cellular proliferation and differentiation of the endometrial stroma and is required to establish and support pregnancy. Dysregulated decidualization has been reported to be a critical cause of recurrent implantation failure (RIF). In this study, we found that Activating transcription factor 3 (ATF3) expression was significantly downregulated in the endometrium of RIF patients. Knockdown of ATF3 in human endometrium stromal cells (hESCs) hampers decidualization, while overexpression could trigger the expression of decidual marker genes, and ameliorate the decidualization of hESCs from RIF patients. Mechanistically, ATF3 promotes decidualization by upregulating FOXO1 via suppressing miR-135b expression. In addition, the endometrium of RIF patients was hyperproliferative, while overexpression of ATF3 inhibited the proliferation of hESCs through CDKN1A. These data demonstrate the critical roles of endometrial ATF3 in regulating decidualization and proliferation, and dysregulation of ATF3 in the endometrium may be a novel cause of RIF and therefore represent a potential therapeutic target for RIF.
Collapse
Affiliation(s)
- Zhilong Wang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Yang Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Jingyu Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Na Kong
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Ruiwei Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Xin Zhen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Jidong Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Chaojun Li
- Nanjing University Medical School, 210008, Nanjing, People's Republic of China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China.
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008, Nanjing, People's Republic of China.
| |
Collapse
|
10
|
Iyer KV, Taubenberger A, Zeidan SA, Dye NA, Eaton S, Jülicher F. Apico-basal cell compression regulates Lamin A/C levels in epithelial tissues. Nat Commun 2021; 12:1756. [PMID: 33767161 PMCID: PMC7994818 DOI: 10.1038/s41467-021-22010-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
The levels of nuclear protein Lamin A/C are crucial for nuclear mechanotransduction. Lamin A/C levels are known to scale with tissue stiffness and extracellular matrix levels in mesenchymal tissues. But in epithelial tissues, where cells lack a strong interaction with the extracellular matrix, it is unclear how Lamin A/C is regulated. Here, we show in epithelial tissues that Lamin A/C levels scale with apico-basal cell compression, independent of tissue stiffness. Using genetic perturbations in Drosophila epithelial tissues, we show that apico-basal cell compression regulates the levels of Lamin A/C by deforming the nucleus. Further, in mammalian epithelial cells, we show that nuclear deformation regulates Lamin A/C levels by modulating the levels of phosphorylation of Lamin A/C at Serine 22, a target for Lamin A/C degradation. Taken together, our results reveal a mechanism of Lamin A/C regulation which could provide key insights for understanding nuclear mechanotransduction in epithelial tissues.
Collapse
Affiliation(s)
- K. Venkatesan Iyer
- grid.419537.d0000 0001 2113 4567Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany ,grid.419560.f0000 0001 2154 3117Max Planck Institute for the Physics of Complex Systems, Dresden, Germany ,grid.34980.360000 0001 0482 5067Present Address: Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Anna Taubenberger
- grid.4488.00000 0001 2111 7257Biotechnology Center TU Dresden, Dresden, Germany
| | - Salma Ahmed Zeidan
- grid.419537.d0000 0001 2113 4567Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Natalie A. Dye
- grid.419537.d0000 0001 2113 4567Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany ,grid.4488.00000 0001 2111 7257Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Suzanne Eaton
- grid.419537.d0000 0001 2113 4567Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany ,grid.4488.00000 0001 2111 7257Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Frank Jülicher
- grid.419560.f0000 0001 2154 3117Max Planck Institute for the Physics of Complex Systems, Dresden, Germany ,grid.4488.00000 0001 2111 7257Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany ,grid.495510.cCenter for Systems Biology Dresden, Dresden, Germany
| |
Collapse
|
11
|
Van De Bor V, Loreau V, Malbouyres M, Cerezo D, Placenti A, Ruggiero F, Noselli S. A dynamic and mosaic basement membrane controls cell intercalation in Drosophila ovaries. Development 2021; 148:dev.195511. [PMID: 33526583 DOI: 10.1242/dev.195511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022]
Abstract
Basement membranes (BM) are extracellular matrices assembled into complex and highly organized networks essential for organ morphogenesis and function. However, little is known about the tissue origin of BM components and their dynamics in vivo Here, we unravel the assembly and role of the BM main component, Collagen type IV (ColIV), in Drosophila ovarian stalk morphogenesis. Stalks are short strings of cells assembled through cell intercalation that link adjacent follicles and maintain ovarian integrity. We show that stalk ColIV has multiple origins and is assembled following a regulated pattern leading to a unique BM organisation. Absence of ColIV leads to follicle fusion, as observed upon ablation of stalk cells. ColIV and integrins are both required to trigger cell intercalation and maintain mechanically strong cell-cell attachment within the stalk. These results show how the dynamic assembly of a mosaic BM controls complex tissue morphogenesis and integrity.
Collapse
Affiliation(s)
| | | | - Marilyne Malbouyres
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon - CNRS UMR 5242 - INRA USC 1370, 46, allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon - CNRS UMR 5242 - INRA USC 1370, 46, allée d'Italie, 69364 Lyon cedex 07, France
| | | |
Collapse
|
12
|
Csordás G, Grawe F, Uhlirova M. Eater cooperates with Multiplexin to drive the formation of hematopoietic compartments. eLife 2020; 9:57297. [PMID: 33026342 PMCID: PMC7541089 DOI: 10.7554/elife.57297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Blood development in multicellular organisms relies on specific tissue microenvironments that nurture hematopoietic precursors and promote their self-renewal, proliferation, and differentiation. The mechanisms driving blood cell homing and their interactions with hematopoietic microenvironments remain poorly understood. Here, we use the Drosophila melanogaster model to reveal a pivotal role for basement membrane composition in the formation of hematopoietic compartments. We demonstrate that by modulating extracellular matrix components, the fly blood cells known as hemocytes can be relocated to tissue surfaces where they function similarly to their natural hematopoietic environment. We establish that the Collagen XV/XVIII ortholog Multiplexin in the tissue-basement membranes and the phagocytosis receptor Eater on the hemocytes physically interact and are necessary and sufficient to induce immune cell-tissue association. These results highlight the cooperation of Multiplexin and Eater as an integral part of a homing mechanism that specifies and maintains hematopoietic sites in Drosophila.
Collapse
Affiliation(s)
- Gábor Csordás
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ferdinand Grawe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Molecular Cell Biology, Institute I for Anatomy, University of Cologne Medical School, Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Hamaratoglu F, Atkins M. Rounding up the Usual Suspects: Assessing Yorkie, AP-1, and Stat Coactivation in Tumorigenesis. Int J Mol Sci 2020; 21:E4580. [PMID: 32605129 PMCID: PMC7370090 DOI: 10.3390/ijms21134580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Can hyperactivation of a few key signaling effectors be the underlying reason for the majority of epithelial cancers despite different driver mutations? Here, to address this question, we use the Drosophila model, which allows analysis of gene expression from tumors with known initiating mutations. Furthermore, its simplified signaling pathways have numerous well characterized targets we can use as pathway readouts. In Drosophila tumor models, changes in the activities of three pathways, Jun N-terminal Kinase (JNK), Janus Kinase / Signal Transducer and Activator of Transcription (JAK/STAT), and Hippo, mediated by AP-1 factors, Stat92E, and Yorkie, are reported frequently. We hypothesized this may indicate that these three pathways are commonly deregulated in tumors. To assess this, we mined the available transcriptomic data and evaluated the activity levels of eight pathways in various tumor models. Indeed, at least two out of our three suspects contribute to tumor development in all Drosophila cancer models assessed, despite different initiating mutations or tissues of origin. Surprisingly, we found that Notch signaling is also globally activated in all models examined. We propose that these four pathways, JNK, JAK/STAT, Hippo, and Notch, are paid special attention and assayed for systematically in existing and newly developed models.
Collapse
Affiliation(s)
| | - Mardelle Atkins
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX 77341, USA
| |
Collapse
|
14
|
Rohini M, Arumugam B, Vairamani M, Selvamurugan N. Stimulation of ATF3 interaction with Smad4 via TGF-β1 for matrix metalloproteinase 13 gene activation in human breast cancer cells. Int J Biol Macromol 2019; 134:954-961. [PMID: 31082421 DOI: 10.1016/j.ijbiomac.2019.05.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/27/2019] [Accepted: 05/09/2019] [Indexed: 02/08/2023]
Abstract
We previously reported that transforming growth factor-β1 (TGF-β1) stimulated the sustained and prolonged expression of activating transcription factor 3 (ATF3) in highly metastatic and invasive human breast cancer cells (MDA-MB231), in contrast to normal human mammary epithelial cells. However, the mechanism behind the stability of ATF3 expression is not yet known. Based on an in silico approach with co-immunoprecipitation and mass spectrometric analyses, we identified a number of proteins, including Smad4, that interacted with ATF3 after TGF-β1 treatment in MDA-MB231 cells. The knockdown of Smad4 using the siRNA technique resulted in a significant loss of ATF3 expression in these cells. Chromatin immunoprecipitation was then used to identify the formation of an ATF3 and Smad4 complex at the matrix metalloproteinase 13 (MMP13) promoter upon TGF-β1-treatment, and the knockdown of Smad4 decreased MMP13 promoter activity in MDA-MB231 cells. Our findings indicate that Smad4 is a pre-requisite for providing stability to ATF3 via TGF-β1 in human breast cancer cells. The targeting of Smad4 may thus provide the sustainable loss of ATF3 expression that is needed to control breast cancer progression.
Collapse
Affiliation(s)
- M Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - B Arumugam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - M Vairamani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
15
|
Papagiannouli F, Berry CW, Fuller MT. The Dlg Module and Clathrin-Mediated Endocytosis Regulate EGFR Signaling and Cyst Cell-Germline Coordination in the Drosophila Testis. Stem Cell Reports 2019; 12:1024-1040. [PMID: 31006632 PMCID: PMC6523063 DOI: 10.1016/j.stemcr.2019.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 11/25/2022] Open
Abstract
Tissue homeostasis and repair relies on proper communication of stem cells and their differentiating daughters with the local tissue microenvironment. In the Drosophila male germline adult stem cell lineage, germ cells proliferate and progressively differentiate enclosed in supportive somatic cyst cells, forming a small organoid, the functional unit of differentiation. Here we show that cell polarity and vesicle trafficking influence signal transduction in cyst cells, with profound effects on the germ cells they enclose. Our data suggest that the cortical components Dlg, Scrib, Lgl and the clathrin-mediated endocytic (CME) machinery downregulate epidermal growth factor receptor (EGFR) signaling. Knockdown of dlg, scrib, lgl, or CME components in cyst cells resulted in germ cell death, similar to increased signal transduction via the EGFR, while lowering EGFR or downstream signaling components rescued the defects. This work provides insights into how cell polarity and endocytosis cooperate to regulate signal transduction and sculpt developing tissues. Dlg, Scrib, Lgl, and clathrin-mediated endocytosis (CME) attenuate EGFR signaling Knockdown of Dlg module or CME results in cell non-autonomous germ cell death Dlg module and CME control MAPK activation and the levels of the PIP2 phospholipid PIP2 and its synthesizing kinase Sktl/dPIP5K mediate MAPK activation
Collapse
Affiliation(s)
- Fani Papagiannouli
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5329, USA; Institute for Genetics, University of Cologne, 50674 Cologne, Germany.
| | - Cameron Wynn Berry
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| |
Collapse
|
16
|
Bonello TT, Peifer M. Scribble: A master scaffold in polarity, adhesion, synaptogenesis, and proliferation. J Cell Biol 2018; 218:742-756. [PMID: 30598480 PMCID: PMC6400555 DOI: 10.1083/jcb.201810103] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 12/14/2018] [Indexed: 02/08/2023] Open
Abstract
Key events ranging from cell polarity to proliferation regulation to neuronal signaling rely on the assembly of multiprotein adhesion or signaling complexes at particular subcellular sites. Multidomain scaffolding proteins nucleate assembly and direct localization of these complexes, and the protein Scribble and its relatives in the LAP protein family provide a paradigm for this. Scribble was originally identified because of its role in apical-basal polarity and epithelial integrity in Drosophila melanogaster It is now clear that Scribble acts to assemble and position diverse multiprotein complexes in processes ranging from planar polarity to adhesion to oriented cell division to synaptogenesis. Here, we explore what we have learned about the mechanisms of action of Scribble in the context of its multiple known interacting partners and discuss how this knowledge opens new questions about the full range of Scribble protein partners and their structural and signaling roles.
Collapse
Affiliation(s)
- Teresa T Bonello
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC .,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
17
|
Tiwari N, Pataskar A, Péron S, Thakurela S, Sahu SK, Figueres-Oñate M, Marichal N, López-Mascaraque L, Tiwari VK, Berninger B. Stage-Specific Transcription Factors Drive Astrogliogenesis by Remodeling Gene Regulatory Landscapes. Cell Stem Cell 2018; 23:557-571.e8. [PMID: 30290178 PMCID: PMC6179960 DOI: 10.1016/j.stem.2018.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/08/2018] [Accepted: 09/10/2018] [Indexed: 01/08/2023]
Abstract
A broad molecular framework of how neural stem cells are specified toward astrocyte fate during brain development has proven elusive. Here we perform comprehensive and integrated transcriptomic and epigenomic analyses to delineate gene regulatory programs that drive the developmental trajectory from mouse embryonic stem cells to astrocytes. We report molecularly distinct phases of astrogliogenesis that exhibit stage- and lineage-specific transcriptomic and epigenetic signatures with unique primed and active chromatin regions, thereby revealing regulatory elements and transcriptional programs underlying astrocyte generation and maturation. By searching for transcription factors that function at these elements, we identified NFIA and ATF3 as drivers of astrocyte differentiation from neural precursor cells while RUNX2 promotes astrocyte maturation. These transcription factors facilitate stage-specific gene expression programs by switching the chromatin state of their target regulatory elements from primed to active. Altogether, these findings provide integrated insights into the genetic and epigenetic mechanisms steering the trajectory of astrogliogenesis.
Collapse
Affiliation(s)
- Neha Tiwari
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | | | - Sophie Péron
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Sudhir Thakurela
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | | | - Nicolás Marichal
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | | | - Vijay K Tiwari
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Focus Program Translational Neuroscience, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|