1
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and Developmental Divergence in the Neural Crest Program between Cichlid Fish Species. Mol Biol Evol 2024; 41:msae217. [PMID: 39412298 PMCID: PMC11558072 DOI: 10.1093/molbev/msae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic program in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to interspecific morphological differences, such as craniofacial structures and pigmentation. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared with teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes-particularly those controlled by sox10s-are involved in generating morphological diversification between species and lays the groundwork for further investigations into the mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | - Grégoire Vernaz
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Maxon J Ngochera
- Malawi Fisheries Department, Senga Bay Fisheries Research Center, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Tzika AC, Ullate-Agote A, Helleboid PY, Kummrow M. PMEL is involved in snake colour pattern transition from blotches to stripes. Nat Commun 2024; 15:7655. [PMID: 39227572 PMCID: PMC11371805 DOI: 10.1038/s41467-024-51927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Corn snakes are emerging models for animal colouration studies. Here, we focus on the Terrazzo morph, whose skin pattern is characterized by stripes rather than blotches. Using genome mapping, we discover a disruptive mutation in the coding region of the Premelanosome protein (PMEL) gene. Our transcriptomic analyses reveal that PMEL expression is significantly downregulated in Terrazzo embryonic tissues. We produce corn snake PMEL knockouts, which present a comparable colouration phenotype to Terrazzo and the subcellular structure of their melanosomes and xanthosomes is also similarly impacted. Our single-cell expression analyses of wild-type embryonic dorsal skin demonstrate that all chromatophore progenitors express PMEL at varying levels. Finally, we show that in wild-type embryos PMEL-expressing cells are initially uniformly spread before forming aggregates and eventually blotches, as seen in the adults. In Terrazzo embryos, the aggregates fail to form. Our results provide insights into the mechanisms governing colouration patterning in reptiles.
Collapse
Affiliation(s)
- Athanasia C Tzika
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland.
| | - Asier Ullate-Agote
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
- Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Pierre-Yves Helleboid
- Laboratory of Artificial & Natural Evolution (LANE), Department of Genetics & Evolution, University of Geneva, Geneva, Switzerland
| | - Maya Kummrow
- Tierspital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Kelsh RN. Myron Gordon Award Lecture 2023: Painting the neural crest: How studying pigment cells illuminates neural crest cell biology. Pigment Cell Melanoma Res 2024; 37:555-561. [PMID: 38010612 DOI: 10.1111/pcmr.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 11/29/2023]
Abstract
It has been 30 (!!) years since I began working on zebrafish pigment cells, as a postdoc in the laboratory of Prof. Christiane Nüsslein-Volhard. There, I participated in the first large-scale mutagenesis screen in zebrafish, focusing on pigment cell mutant phenotypes. The isolation of colourless, shady, parade and choker mutants allowed us (as a postdoc in Prof. Judith Eisen's laboratory, and then in my own laboratory at the University of Bath since 1997) to pursue my ambition to address long-standing problems in the neural crest field. Thus, we have studied how neural crest cells choose individual fates, resulting in our recent proposal of a new, and potentially unifying, model which we call Cyclical Fate Restriction, as well as addressing how pigment cell patterns are generated. A key feature of our work in the last 10 years has been the use of mathematical modelling approaches to clarify our biological models and to refine our interpretations. None of this would have been possible without a hugely talented group of laboratory members and other collaborators from around the world-it has been, and I am sure will continue to be, a pleasure and privilege to work with you all!
Collapse
Affiliation(s)
- Robert N Kelsh
- Department of Life Sciences, University of Bath, Bath, UK
| |
Collapse
|
4
|
Mouri T, Usa S, Tokumoto T. Pax7 is involved in leucophore formation in goldfish and gene knockout improves the transparency of transparent goldfish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1701-1710. [PMID: 38819758 DOI: 10.1007/s10695-024-01364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Lines with few or no pigment cells have been established in fishes, and these lines are useful for bioimaging. The transparent goldfish (tra) line previously established by N-ethyl-N-nitrosourea (ENU) mutagenesis is also suitable for such experiments. However, in the case of tra, leucophores form in the adult fish, making it difficult to observe the organs inside body from outside the body. In this study, we attempted to create a knockout line of the pax7a and pax7b genes, which are thought to be involved in the formation of leucophores, to further improve the transparency of tra strain.Mutations were introduced by microinjection of the CRISPR/Cas9 mixture into single-cell embryos, mutant individuals were found in F0, and the next generation was generated to confirm the mutation patterns. As a result, multiple mutation patterns, including knockout, were obtained. The same pattern of knockout F1 with pax7a and pax7b mutations was crossed to generate a homozygous knockout in F2.In the resulting pax7b-/- (tra) fish but not in pax7a-/- (tra) fish, the number of leucophores was reduced compared to that in tra, and the transparency of the body was improved. It was suggested that pax7b plays an important role in leucophore formation in goldfish. The established transparent pax7b-/- (tra) goldfish line will be a useful model for bioimaging of the body interior.
Collapse
Affiliation(s)
- Takumi Mouri
- Department of Bioscience, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Syunsuke Usa
- Biological Science Course, Department of Biological Science, Faculty of Science, National University Corporation Shizuoka University, Shizuoka, 422, Japan
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation Shizuoka University, Ohya 836, Suruga-Ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
5
|
Marconi A, Vernaz G, Karunaratna A, Ngochera MJ, Durbin R, Santos ME. Genetic and developmental divergence in the neural crest programme between cichlid fish species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578004. [PMID: 38352436 PMCID: PMC10862805 DOI: 10.1101/2024.01.30.578004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Neural crest (NC) is a vertebrate-specific embryonic progenitor cell population at the basis of important vertebrate features such as the craniofacial skeleton and pigmentation patterns. Despite the wide-ranging variation of NC-derived traits across vertebrates, the contribution of NC to species diversification remains underexplored. Here, leveraging the adaptive diversity of African Great Lakes' cichlid species, we combined comparative transcriptomics and population genomics to investigate the evolution of the NC genetic programme in the context of their morphological divergence. Our analysis revealed substantial differences in transcriptional landscapes across somitogenesis, an embryonic period coinciding with NC development and migration. This included dozens of genes with described functions in the vertebrate NC gene regulatory network, several of which showed signatures of positive selection. Among candidates showing between-species expression divergence, we focused on teleost-specific paralogs of the NC-specifier sox10 (sox10a and sox10b) as prime candidates to influence NC development. These genes, expressed in NC cells, displayed remarkable spatio-temporal variation in cichlids, suggesting their contribution to inter-specific morphological differences. Finally, through CRISPR/Cas9 mutagenesis, we demonstrated the functional divergence between cichlid sox10 paralogs, with the acquisition of a novel skeletogenic function by sox10a. When compared to the teleost models zebrafish and medaka, our findings reveal that sox10 duplication, although retained in most teleost lineages, had variable functional fates across their phylogeny. Altogether, our study suggests that NC-related processes - particularly those controlled by sox10s - might be involved in generating morphological diversification between species and lays the groundwork for further investigations into mechanisms underpinning vertebrate NC diversification.
Collapse
Affiliation(s)
| | | | | | - Maxon J. Ngochera
- Senga Bay Fisheries Research Center, Malawi Fisheries Department, P.O. Box 316, Salima, Malawi
| | - Richard Durbin
- Department of Genetics, University of Cambridge, United Kingdom
| | | |
Collapse
|
6
|
Perlee S, Ma Y, Hunter MV, Swanson JB, Ming Z, Xia J, Lionnet T, McGrail M, White RM. Identifying in vivo genetic dependencies of melanocyte and melanoma development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586101. [PMID: 38562693 PMCID: PMC10983904 DOI: 10.1101/2024.03.22.586101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The advent of large-scale sequencing in both development and disease has identified large numbers of candidate genes that may be linked to important phenotypes. Validating the function of these candidates in vivo is challenging, due to low efficiency and low throughput of most model systems. We have developed a rapid, scalable system for assessing the role of candidate genes using zebrafish. We generated transgenic zebrafish in which Cas9 was knocked-in to the endogenous mitfa locus, a master transcription factor of the melanocyte lineage. We used this system to identify both cell-autonomous and non-cell autonomous regulators of normal melanocyte development. We then applied this to the melanoma setting to demonstrate that loss of genes required for melanocyte survival can paradoxically promote more aggressive phenotypes, highlighting that in vitro screens can mask in vivo phenotypes. Our high-efficiency genetic approach offers a versatile tool for exploring developmental processes and disease mechanisms that can readily be applied to other cell lineages.
Collapse
|
7
|
Orlova SY, Ruzina MN, Emelianova OR, Sergeev AA, Chikurova EA, Orlov AM, Mugue NS. In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species. Genes (Basel) 2024; 15:726. [PMID: 38927661 PMCID: PMC11202958 DOI: 10.3390/genes15060726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use.
Collapse
Affiliation(s)
- Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Maria N. Ruzina
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Olga R. Emelianova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexey A. Sergeev
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Evgeniya A. Chikurova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
| | - Nikolai S. Mugue
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 105187 Moscow, Russia; (S.Y.O.)
- Laboratory of Genome Evolution and Speciation, Institute of Developmental Biology Russian Academy of Sciences, 117808 Moscow, Russia
| |
Collapse
|
8
|
Miyadai M, Takada H, Shiraishi A, Kimura T, Watakabe I, Kobayashi H, Nagao Y, Naruse K, Higashijima SI, Shimizu T, Kelsh RN, Hibi M, Hashimoto H. A gene regulatory network combining Pax3/7, Sox10 and Mitf generates diverse pigment cell types in medaka and zebrafish. Development 2023; 150:dev202114. [PMID: 37823232 PMCID: PMC10617610 DOI: 10.1242/dev.202114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Neural crest cells generate numerous derivatives, including pigment cells, and are a model for studying how fate specification from multipotent progenitors is controlled. In mammals, the core gene regulatory network for melanocytes (their only pigment cell type) contains three transcription factors, Sox10, Pax3 and Mitf, with the latter considered a master regulator of melanocyte development. In teleosts, which have three to four pigment cell types (melanophores, iridophores and xanthophores, plus leucophores e.g. in medaka), gene regulatory networks governing fate specification are poorly understood, although Mitf function is considered conserved. Here, we show that the regulatory relationships between Sox10, Pax3 and Mitf are conserved in zebrafish, but the role for Mitf is more complex than previously emphasized, affecting xanthophore development too. Similarly, medaka Mitf is necessary for melanophore, xanthophore and leucophore formation. Furthermore, expression patterns and mutant phenotypes of pax3 and pax7 suggest that Pax3 and Pax7 act sequentially, activating mitf expression. Pax7 modulates Mitf function, driving co-expressing cells to differentiate as xanthophores and leucophores rather than melanophores. We propose that pigment cell fate specification should be considered to result from the combinatorial activity of Mitf with other transcription factors.
Collapse
Affiliation(s)
- Motohiro Miyadai
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroyuki Takada
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Akiko Shiraishi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tetsuaki Kimura
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Ikuko Watakabe
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Hikaru Kobayashi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yusuke Nagao
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shin-ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Takashi Shimizu
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Robert N. Kelsh
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Masahiko Hibi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hisashi Hashimoto
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
9
|
Zhang Y, Mei Y, Cao A, Li S, He C, Song L, Gao J, Zhu Y, Cao X. Transcriptome analyses of betta fish (Betta splendens) provide novel insights into fin regeneration and color-related genes. Gene 2023:147508. [PMID: 37230203 DOI: 10.1016/j.gene.2023.147508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
The betta fish (Betta splendens), an important ornamental fish, haswell-developed and colorful fins.After fin amputation, betta fish can easily regenerate finssimilar to the originalsin terms of structureand color. The powerful fin regeneration ability and a variety of colors in the betta fish are fascinating. However, the underlying molecular mechanisms are still not fully understood. In this study, tail fin amputation and regeneration experiments were performed on two kinds of betta fish: red and white color betta fish. Then, transcriptome analyseswere conducted to screen out fin regeneration and color-relatedgenes in betta fish. Through enrichment analyses of differentially expressed genes (DEGs), we founda series of enrichment pathways and genes related to finregeneration, including cell cycle (i.e. plcg2), TGF-beta signaling pathway (i.e. bmp6), PI3K-Akt signaling pathway (i.e. loxl2aand loxl2b), Wnt signaling pathway(i.e. lef1), gap junctions (i.e. cx43), angiogenesis (i.e. foxp1), and interferon regulatory factor (i.e. irf8). Meanwhile, some fin color-related pathways and genes were identified in betta fish, especially melanogenesis (i.e. tyr, tyrp1a, tyrp1b, and mc1r) and carotenoid color genes (i.e. pax3, pax7, sox10, and ednrba). In conclusion, this studycan not only enrich the research onfish tissue regeneration, but also has a potential significance for the aquaculture and breeding of the betta fish.
Collapse
Affiliation(s)
- Yunbang Zhang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China
| | - Yihui Mei
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Aiying Cao
- Beijing Aquaculture Technology Extention Station, Beijing 100176, China
| | - Sen Li
- Beijing Aquaculture Technology Extention Station, Beijing 100176, China
| | - Chuan He
- Beijing Aquaculture Technology Extention Station, Beijing 100176, China
| | - Liyuan Song
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China
| | - Yurong Zhu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Subkhankulova T, Camargo Sosa K, Uroshlev LA, Nikaido M, Shriever N, Kasianov AS, Yang X, Rodrigues FSLM, Carney TJ, Bavister G, Schwetlick H, Dawes JHP, Rocco A, Makeev VJ, Kelsh RN. Zebrafish pigment cells develop directly from persistent highly multipotent progenitors. Nat Commun 2023; 14:1258. [PMID: 36878908 PMCID: PMC9988989 DOI: 10.1038/s41467-023-36876-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Neural crest cells are highly multipotent stem cells, but it remains unclear how their fate restriction to specific fates occurs. The direct fate restriction model hypothesises that migrating cells maintain full multipotency, whilst progressive fate restriction envisages fully multipotent cells transitioning to partially-restricted intermediates before committing to individual fates. Using zebrafish pigment cell development as a model, we show applying NanoString hybridization single cell transcriptional profiling and RNAscope in situ hybridization that neural crest cells retain broad multipotency throughout migration and even in post-migratory cells in vivo, with no evidence for partially-restricted intermediates. We find that leukocyte tyrosine kinase early expression marks a multipotent stage, with signalling driving iridophore differentiation through repression of fate-specific transcription factors for other fates. We reconcile the direct and progressive fate restriction models by proposing that pigment cell development occurs directly, but dynamically, from a highly multipotent state, consistent with our recently-proposed Cyclical Fate Restriction model.
Collapse
Affiliation(s)
| | - Karen Camargo Sosa
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Leonid A Uroshlev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
| | - Masataka Nikaido
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo Pref., 678-1297, Japan
| | - Noah Shriever
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Artem S Kasianov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
- Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
- A.A. Kharkevich Institute for Information Transmission Problems (IITP), Russian Academy of Sciences, Bolshoy Karetny per. 19, build.1, Moscow, 127051, Russia
| | - Xueyan Yang
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- The MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | | | - Thomas J Carney
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, Nanyang Technological University, 59 Nanyang Drive, Yunnan Garden, 636921, Singapore
| | - Gemma Bavister
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Hartmut Schwetlick
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jonathan H P Dawes
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, FHMS, University of Surrey, GU2 7XH, Guildford, UK
- Department of Physics, FEPS, University of Surrey, GU2 7XH, Guildford, UK
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russia
- Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
- Laboratory 'Regulatory Genomics', Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya street, Kazan, 420008, Russia
| | - Robert N Kelsh
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
11
|
Svitačová K, Slavík O, Horký P. Pigmentation potentially influences fish welfare in aquaculture. Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
12
|
Peñalba JV, Peters JL, Joseph L. Sustained plumage divergence despite weak genomic differentiation and broad sympatry in sister species of Australian woodswallows (
Artamus
spp.). Mol Ecol 2022; 31:5060-5073. [DOI: 10.1111/mec.16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua V. Peñalba
- Museum für Naturkunde Berlin Leibniz Institute for Evolution and Biodiversity Science Center for Integrative Biodiversity Discovery, Invalidenstr. 43, D‐10115 Berlin Germany
| | - Jeffrey L. Peters
- Department of Biological Sciences Wright State University Dayton OH USA
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections Australia Canberra Australia
| |
Collapse
|
13
|
Min Y, Li Q, Yu H. Heme-Peroxidase 2 Modulated by POU2F1 and SOX5 is Involved in Pigmentation in Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:263-275. [PMID: 35275290 DOI: 10.1007/s10126-022-10098-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Color polymorphism is frequently observed in molluscan shellfish, while the molecular regulation of shell pigmentation is not well understood. Peroxidase is a key enzyme involved in melanogenesis. Here, we identified a heme-peroxidase 2 gene (CgHPX2), and characterized the expression patterns and transcriptional regulation of CgHPX2 in the Pacific oyster Crassostrea gigas. Tissues expression analysis showed that CgHPX2 was a mantle-specific gene and primarily expressed in the edge mantle in black shell color oyster compared with white shell oyster. In situ hybridization showed that strong signals for CgHPX2 were detected in the both inner and outer surface of the outer fold of mantle in the black shell color oyster, whereas positive signals in white shell oyster were mainly localized in the outer surface of the outer fold of mantle. In the embryos and larvae, a high expression level of CgHPX2 was detected in the trochophore stage in both black and white shell color oysters. The temporal localization of CgHPX2 was mainly detected in the shell gland and edge mantle of trochophore and calcified shell larvae, respectively. In addition, a 2227 bp of 5' flanking region sequence of CgHPX2 was cloned, which contained a presumed core promoter region and many potential transcription factor binding sites. Further luciferase assay experiment confirmed that POU domain, class 2, transcription factor 1 (POU2F1), and SRY-box transcription factor 5 (SOX5) were involved in transcriptional regulation of CgHPX2 gene through binding to its specific promoter region. After CgPOU2F1 and CgSOX5 RNA interference, the CgHPX2 gene expression was significantly decreased. These results suggested that CgPOU2F1 and CgSOX5 might be two important transcription factors that positively regulated the expression of CgHPX2 gene, improving our understanding of the transcriptional regulation of molluscan shell pigmentation.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education College of Fisheries, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education College of Fisheries, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
14
|
Isolation of Chromatophores from Brown Trout (Salmo trutta) Skin. FISHES 2022. [DOI: 10.3390/fishes7020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
As new techniques for single-cell analysis are evolving, there is a growing need for streamlined and flexible protocols for single-cell suspension preparation and single-cell isolation. Based on previous research on the model species zebrafish (Danio rerio), a novel protocol for the isolation of chromatophores from brown trout (Salmo trutta) skin was developed and specific gene expression in chromatophore types evaluated with qPCR. This is the first report on a protocol for the isolation of chromatophores from the skin of salmonids. The method is simple and fast (taking about 90 min), requires no special equipment and is in line with the high ethical standards required in animal research, as no animals need to be sacrificed. In addition, skin biopsies can be taken from the same fish at multiple time points, allowing monitoring of chromatophore differentiation and their involvement in the formation of pigmentation patterns. The protocol should be effective for the vast majority of salmonid species due to similarities in skin morphology.
Collapse
|
15
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
16
|
Genetic and correlative light and electron microscopy evidence for the unique differentiation pathway of erythrophores in brown trout skin. Sci Rep 2022; 12:1015. [PMID: 35046436 PMCID: PMC8770521 DOI: 10.1038/s41598-022-04799-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Based on their cell ultrastructure, two types of erythrophores in the spotted skin regions of brown trout (Salmo trutta) were previously described. To test the hypothesis regarding the origin of a new cell type following genome duplication, we analysed the gene and paralogue gene expression patterns of erythrophores in brown trout skin. In addition, the ultrastructure of both erythrophore types was precisely examined using transmission electron microscopy (TEM) and correlative light microscopy and electron microscopy (CLEM). Ultrastructural differences between the sizes of erythrophore inclusions were confirmed; however, the overlapping inclusion sizes blur the distinction between erythrophore types, which we have instead defined as cell subtypes. Nevertheless, the red spots of brown trout skin with subtype 2 erythrophores, exhibited unique gene expression patterns. Many of the upregulated genes are involved in melanogenesis or xanthophore differentiation. In addition, sox10, related to progenitor cells, was also upregulated in the red spots. The expressions of paralogues derived from two genome duplication events were also analysed. Multiple paralogues were overexpressed in the red spots compared with other skin regions, suggesting that the duplicated gene copies adopted new functions and contributed to the origin of a new cell subtype that is characteristic for red spot. Possible mechanisms regarding erythrophore origin are proposed and discussed. To the best of our knowledge, this is the first study to evaluate pigment cell types in the black and red spots of brown trout skin using the advanced CLEM approach together with gene expression profiling.
Collapse
|
17
|
Wu S, Huang J, Li Y, Zhao L, Liu Z. Analysis of yellow mutant rainbow trout transcriptomes at different developmental stages reveals dynamic regulation of skin pigmentation genes. Sci Rep 2022; 12:256. [PMID: 34997156 PMCID: PMC8742018 DOI: 10.1038/s41598-021-04255-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Yellow mutant rainbow trout (YR), an economically important aquaculture species, is popular among consumers due to its excellent meat quality and attractive appearance. Skin color is a key economic trait for YR, but little is known about the molecular mechanism of skin color development. In this study, YR skin transcriptomes were analyzed to explore temporal expression patterns of pigmentation-related genes in three different stages of skin color development. In total, 16,590, 16,682, and 5619 genes were differentially expressed between fish at 1 day post-hatching (YR1d) and YR45d, YR1d and YR90d, and YR45d and YR90d. Numerous differentially expressed genes (DEGs) associated with pigmentation were identified, and almost all of them involved in pteridine and carotenoid synthesis were significantly upregulated in YR45d and YR90d compared to YR1d, including GCH1, PTS, QDPR, CSFIR1, SLC2A11, SCARB1, DGAT2, PNPLA2, APOD, and BCO2. Interestingly, many DEGs enriched in melanin synthesis pathways were also significantly upregulated, including melanogenesis (MITF, MC1R, SLC45A2, OCA2, and GPR143), tyrosine metabolism (TYR, TYRP1, and DCT), and MAPK signaling (KITA) pathways. Using short time-series expression miner, we identified eight differential gene expression pattern profiles, and DEGs in profile 7 were associated with skin pigmentation. Protein–protein interaction network analysis showed that two modules were related to xanthophores and melanophores. In addition, 1,812,329 simple sequence repeats and 2,011,334 single-nucleotide polymorphisms were discovered. The results enhance our understanding of the molecular mechanism underlying skin pigmentation in YR, and could accelerate the molecular breeding of fish species with valuable skin color traits and will likely be highly informative for developing new therapeutic approaches to treat pigmentation disorders and melanoma.
Collapse
Affiliation(s)
- Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yongjuan Li
- College of Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
18
|
Dawes JHP, Kelsh RN. Cell Fate Decisions in the Neural Crest, from Pigment Cell to Neural Development. Int J Mol Sci 2021; 22:13531. [PMID: 34948326 PMCID: PMC8706606 DOI: 10.3390/ijms222413531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The neural crest shows an astonishing multipotency, generating multiple neural derivatives, but also pigment cells, skeletogenic and other cell types. The question of how this process is controlled has been the subject of an ongoing debate for more than 35 years. Based upon new observations of zebrafish pigment cell development, we have recently proposed a novel, dynamic model that we believe goes some way to resolving the controversy. Here, we will firstly summarize the traditional models and the conflicts between them, before outlining our novel model. We will also examine our recent dynamic modelling studies, looking at how these reveal behaviors compatible with the biology proposed. We will then outline some of the implications of our model, looking at how it might modify our views of the processes of fate specification, differentiation, and commitment.
Collapse
Affiliation(s)
- Jonathan H. P. Dawes
- Centre for Networks and Collective Behaviour, University of Bath, Bath BA2 7AY, UK;
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| | - Robert N. Kelsh
- Centre for Mathematical Biology, University of Bath, Bath BA2 7AY, UK
- Department of Biology & Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
19
|
Integrative mRNA-miRNA interaction analysis reveals the molecular mechanism of skin color variation between wild-type and yellow mutant rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100914. [PMID: 34653947 DOI: 10.1016/j.cbd.2021.100914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022]
Abstract
Rainbow trout (Oncorhynchus mykiss) is an important economic fish in China. Skin color affects the economic value of trout. However, the molecular mechanism of the skin color variation between wild-type (WR) and yellow mutant rainbow trout (YR) is unclear. We sequenced mRNAs and miRNAs of dorsal skin to identify key color variation-associated mRNAs and miRNAs between WR and YR. Overall, 2060 out of 3625 differentially expressed genes were upregulated in YR, and 196 out of 275 differentially expressed miRNAs were downregulated in WR. We identified three key YR-upregulated genes related to the formation of xanthophores (GCH1, SLC2A11, and SOX10). Interestingly, several genes related to melanogenesis (TYR, TYRP1, TYRP2, MC1R, MITF, PMEL, SLC45A2, and OCA2) were downregulated in WR. Integrated analysis identified five miRNAs that target at least two skin color-related genes (miR-495-y, miR-543-y, miR-665-z, miR-433-y, and miR-382-x). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of target genes identified noncoding RNA metabolic process as the most significantly enriched GO term, and several metabolic pathways associated with skin color were enriched significantly, such as tyrosine metabolism, histidine metabolism, and vitamin B6 metabolism. Quantitative real-time PCR of selected mRNAs and miRNAs validated the reliability of the integrated analysis. This study provides in-depth insights into the molecular mechanism of skin color variation between WR and YR, which will accelerate the genetic selection and breeding of rainbow trout with consumer-favored traits.
Collapse
|
20
|
Genetic basis of orange spot formation in the guppy (Poecilia reticulata). BMC Ecol Evol 2021; 21:211. [PMID: 34823475 PMCID: PMC8613973 DOI: 10.1186/s12862-021-01942-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background To understand the evolutionary significance of female mate choice for colorful male ornamentation, the underlying regulatory mechanisms of such ornamentation must be understood for examining how the ornaments are associated with “male qualities” that increase the fitness or sexual attractiveness of offspring. In the guppy (Poecilia reticulata), an established model system for research on sexual selection, females prefer males possessing larger and more highly saturated orange spots as potential mates. Although previous studies have identified some chromosome regions and genes associated with orange spot formation, the regulation and involvement of these genetic elements in orange spot formation have not been elucidated. In this study, the expression patterns of genes specific to orange spots and certain color developmental stages were investigated using RNA-seq to reveal the genetic basis of orange spot formation. Results Comparing the gene expression levels of male guppy skin with orange spots (orange skin) with those without any color spots (dull skin) from the same individuals identified 1102 differentially expressed genes (DEGs), including 630 upregulated genes and 472 downregulated genes in the orange skin. Additionally, the gene expression levels of the whole trunk skin were compared among the three developmental stages and 2247 genes were identified as DEGs according to color development. These analyses indicated that secondary differentiation of xanthophores may affect orange spot formation. Conclusions The results suggested that orange spots might be formed by secondary differentiation, rather than de novo generation, of xanthophores, which is induced by Csf1 and thyroid hormone signaling pathways. Furthermore, we suggested candidate genes associated with the areas and saturation levels of orange spots, which are both believed to be important for female mate choice and independently regulated. This study provides insights into the genetic and cellular regulatory mechanisms underlying orange spot formation, which would help to elucidate how these processes are evolutionarily maintained as ornamental traits relevant to sexual selection. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01942-2.
Collapse
|
21
|
Tsunogai Y, Miyadai M, Nagao Y, Sugiwaka K, Kelsh RN, Hibi M, Hashimoto H. Contribution of sox9b to pigment cell formation in medaka fish. Dev Growth Differ 2021; 63:516-522. [PMID: 34807452 DOI: 10.1111/dgd.12760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
SoxE-type transcription factors, Sox10 and Sox9, are key regulators of the development of neural crest cells. Sox10 specifies pigment cell, glial, and neuronal lineages, whereas Sox9 is reportedly closely associated with skeletogenic lineages in the head, but its involvement in pigment cell formation has not been investigated genetically. Thus, it is not fully understood whether or how distinctly these genes as well as their paralogs in teleosts are subfunctionalized. We have previously shown using the medaka fish Oryzias latipes that pigment cell formation is severely affected by the loss of sox10a, yet unaffected by the loss of sox10b. Here we aimed to determine whether Sox9 is involved in the specification of pigment cell lineage. The sox9b homozygous mutation did not affect pigment cell formation, despite lethality at the early larval stages. By using sox10a, sox10b, and sox9b mutations, compound mutants were established for the sox9b and sox10 genes and pigment cell phenotypes were analyzed. Simultaneous loss of sox9b and sox10a resulted in the complete absence of melanophores and xanthophores from hatchlings and severely defective iridophore formation, as has been previously shown for sox10a-/- ; sox10b-/- double mutants, indicating that Sox9b as well as Sox10b functions redundantly with Sox10a in pigment cell development. Notably, leucophores were present in sox9b-/- ; sox10a-/- and sox10a-/- ; sox10b-/- double mutants, but their numbers were significantly reduced in the sox9b-/- ; sox10a-/- mutants. These findings highlight that Sox9b is involved in pigment cell formation, and plays a more critical role in leucophore development than Sox10b.
Collapse
Affiliation(s)
- Yuri Tsunogai
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Motohiro Miyadai
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yusuke Nagao
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Keisuke Sugiwaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Robert N Kelsh
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hisashi Hashimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
22
|
Kelsh RN, Camargo Sosa K, Farjami S, Makeev V, Dawes JHP, Rocco A. Cyclical fate restriction: a new view of neural crest cell fate specification. Development 2021; 148:273451. [PMID: 35020872 DOI: 10.1242/dev.176057] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural crest cells are crucial in development, not least because of their remarkable multipotency. Early findings stimulated two hypotheses for how fate specification and commitment from fully multipotent neural crest cells might occur, progressive fate restriction (PFR) and direct fate restriction, differing in whether partially restricted intermediates were involved. Initially hotly debated, they remain unreconciled, although PFR has become favoured. However, testing of a PFR hypothesis of zebrafish pigment cell development refutes this view. We propose a novel 'cyclical fate restriction' hypothesis, based upon a more dynamic view of transcriptional states, reconciling the experimental evidence underpinning the traditional hypotheses.
Collapse
Affiliation(s)
- Robert N Kelsh
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Karen Camargo Sosa
- Department of Biology & Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Saeed Farjami
- Department of Microbial Sciences, FHMS, University of Surrey, Guildford, GU2 7XH, UK
| | - Vsevolod Makeev
- Department of Computational Systems Biology, Vavilov Institute of General Genetics, Russian Academy of Sciences, Ul. Gubkina 3, Moscow, 119991, Russian Federation.,Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Jonathan H P Dawes
- Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
| | - Andrea Rocco
- Department of Microbial Sciences, FHMS, University of Surrey, Guildford, GU2 7XH, UK.,Department of Physics, FEPS, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
23
|
Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives. Int J Mol Sci 2021; 22:ijms222111321. [PMID: 34768751 PMCID: PMC8583549 DOI: 10.3390/ijms222111321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 01/16/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins (Cas) is an adaptive immune system in archaea and most bacteria. By repurposing these systems for use in eukaryote cells, a substantial revolution has arisen in the genome engineering field. In recent years, CRISPR-Cas technology was rapidly developed and different types of DNA or RNA sequence editors, gene activator or repressor, and epigenome modulators established. The versatility and feasibility of CRISPR-Cas technology has introduced this system as the most suitable tool for discovering and studying the mechanism of specific genes and also for generating appropriate cell and animal models. SOX genes play crucial roles in development processes and stemness. To elucidate the exact roles of SOX factors and their partners in tissue hemostasis and cell regeneration, generating appropriate in vitro and in vivo models is crucial. In line with these premises, CRISPR-Cas technology is a promising tool for studying different family members of SOX transcription factors. In this review, we aim to highlight the importance of CRISPR-Cas and summarize the applications of this novel, promising technology in studying and decoding the function of different members of the SOX gene family.
Collapse
|
24
|
Lu J, Fang W, Huang J, Li S. The application of genome editing technology in fish. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:326-346. [PMID: 37073287 PMCID: PMC10077250 DOI: 10.1007/s42995-021-00091-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
The advent and development of genome editing technology has opened up the possibility of directly targeting and modifying genomic sequences in the field of life sciences with rapid developments occurring in the last decade. As a powerful tool to decipher genome data at the molecular biology level, genome editing technology has made important contributions to elucidating many biological problems. Currently, the three most widely used genome editing technologies include: zinc finger nucleases (ZFN), transcription activator like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR). Researchers are still striving to create simpler, more efficient, and accurate techniques, such as engineered base editors and new CRISPR/Cas systems, to improve editing efficiency and reduce off-target rate, as well as a near-PAMless SpCas9 variants to expand the scope of genome editing. As one of the important animal protein sources, fish has significant economic value in aquaculture. In addition, fish is indispensable for research as it serves as the evolutionary link between invertebrates and higher vertebrates. Consequently, genome editing technologies were applied extensively in various fish species for basic functional studies as well as applied research in aquaculture. In this review, we focus on the application of genome editing technologies in fish species detailing growth, gender, and pigmentation traits. In addition, we have focused on the construction of a zebrafish (Danio rerio) disease model and high-throughput screening of functional genes. Finally, we provide some of the future perspectives of this technology.
Collapse
Affiliation(s)
- Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080 China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| |
Collapse
|
25
|
Andrade P, Carneiro M. Pterin-based pigmentation in animals. Biol Lett 2021; 17:20210221. [PMID: 34403644 PMCID: PMC8370806 DOI: 10.1098/rsbl.2021.0221] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Pterins are one of the major sources of bright coloration in animals. They are produced endogenously, participate in vital physiological processes and serve a variety of signalling functions. Despite their ubiquity in nature, pterin-based pigmentation has received little attention when compared to other major pigment classes. Here, we summarize major aspects relating to pterin pigmentation in animals, from its long history of research to recent genomic studies on the molecular mechanisms underlying its evolution. We argue that pterins have intermediate characteristics (endogenously produced, typically bright) between two well-studied pigment types, melanins (endogenously produced, typically cryptic) and carotenoids (dietary uptake, typically bright), providing unique opportunities to address general questions about the biology of coloration, from the mechanisms that determine how different types of pigmentation evolve to discussions on honest signalling hypotheses. Crucial gaps persist in our knowledge on the molecular basis underlying the production and deposition of pterins. We thus highlight the need for functional studies on systems amenable for laboratory manipulation, but also on systems that exhibit natural variation in pterin pigmentation. The wealth of potential model species, coupled with recent technological and analytical advances, make this a promising time to advance research on pterin-based pigmentation in animals.
Collapse
Affiliation(s)
- Pedro Andrade
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Miguel Carneiro
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
26
|
Wang C, Lu B, Li T, Liang G, Xu M, Liu X, Tao W, Zhou L, Kocher TD, Wang D. Nile Tilapia: A Model for Studying Teleost Color Patterns. J Hered 2021; 112:469-484. [PMID: 34027978 DOI: 10.1093/jhered/esab018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/08/2021] [Indexed: 11/12/2022] Open
Abstract
The diverse color patterns of cichlid fishes play an important role in mate choice and speciation. Here we develop the Nile tilapia (Oreochromis niloticus) as a model system for studying the developmental genetics of cichlid color patterns. We identified 4 types of pigment cells: melanophores, xanthophores, iridophores and erythrophores, and characterized their first appearance in wild-type fish. We mutated 25 genes involved in melanogenesis, pteridine metabolism, and the carotenoid absorption and cleavage pathways. Among the 25 mutated genes, 13 genes had a phenotype in both the F0 and F2 generations. None of F1 heterozygotes had phenotype. By comparing the color pattern of our mutants with that of red tilapia (Oreochromis spp), a natural mutant produced during hybridization of tilapia species, we found that the pigmentation of the body and eye is controlled by different genes. Previously studied genes like mitf, kita/kitlga, pmel, tyrb, hps4, gch2, csf1ra, pax7b, and bco2b were proved to be of great significance for color patterning in tilapia. Our results suggested that tilapia, a fish with 4 types of pigment cells and a vertically barred wild-type color pattern, together with various natural and artificially induced color gene mutants, can serve as an excellent model system for study color patterning in vertebrates.
Collapse
Affiliation(s)
- Chenxu Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Baoyue Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Tao Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Guangyuan Liang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Mengmeng Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- the Department of Biology, University of Maryland, College Park, MD
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
27
|
A complex genetic architecture in zebrafish relatives Danio quagga and D. kyathit underlies development of stripes and spots. PLoS Genet 2021; 17:e1009364. [PMID: 33901178 PMCID: PMC8102007 DOI: 10.1371/journal.pgen.1009364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/06/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Vertebrate pigmentation is a fundamentally important, multifaceted phenotype. Zebrafish, Danio rerio, has been a valuable model for understanding genetics and development of pigment pattern formation due to its genetic and experimental tractability, advantages that are shared across several Danio species having a striking array of pigment patterns. Here, we use the sister species D. quagga and D. kyathit, with stripes and spots, respectively, to understand how natural genetic variation impacts phenotypes at cellular and organismal levels. We first show that D. quagga and D. kyathit phenotypes resemble those of wild-type D. rerio and several single locus mutants of D. rerio, respectively, in a morphospace defined by pattern variation along dorsoventral and anteroposterior axes. We then identify differences in patterning at the cellular level between D. quagga and D. kyathit by repeated daily imaging during pattern development and quantitative comparisons of adult phenotypes, revealing that patterns are similar initially but diverge ontogenetically. To assess the genetic architecture of these differences, we employ reduced-representation sequencing of second-generation hybrids. Despite the similarity of D. quagga to D. rerio, and D. kyathit to some D. rerio mutants, our analyses reveal a complex genetic basis for differences between D. quagga and D. kyathit, with several quantitative trait loci contributing to variation in overall pattern and cellular phenotypes, epistatic interactions between loci, and abundant segregating variation within species. Our findings provide a window into the evolutionary genetics of pattern-forming mechanisms in Danio and highlight the complexity of differences that can arise even between sister species. Further studies of natural genetic diversity underlying pattern variation in D. quagga and D. kyathit should provide insights complementary to those from zebrafish mutant phenotypes and more distant species comparisons. Pigment patterns of fishes are diverse and function in a wide range of behaviors. Common pattern themes include stripes and spots, exemplified by the closely related minnows Danio quagga and D. kyathit, respectively. We show that these patterns arise late in development owing to alterations in the development and arrangements of pigment cells. In the closely related model organism zebrafish (D. rerio) single genes can switch the pattern from stripes to spots. Yet, we show that pattern differences between D. quagga and D. kyathit have a more complex genetic basis, depending on multiple genes and interactions between these genes. Our findings illustrate the importance of characterizing naturally occurring genetic variants, in addition to laboratory induced mutations, for a more complete understanding of pigment pattern development and evolution.
Collapse
|
28
|
Miyake M, Sekine M, Suzuki T, Yokoi H. Visualization of Sox10-positive chromatoblasts by GFP fluorescence in flounder larvae and juveniles using electroporation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:393-403. [PMID: 33900043 DOI: 10.1002/jez.b.23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 11/08/2022]
Abstract
Japanese flounder are left-right asymmetrical, with features, such as dark, ocular-side specific pigmentation. This pigmentation arises during metamorphic stages, along with the asymmetric differentiation of adult-type chromatophores. Additionally, among juveniles, tank-reared specimens commonly show ectopic pigmentation on their blind sides. In both cases, neural crest-derived Sox10-positive progenitor cells at the dorsal fin base are hypothesized to contribute to chromatophore development. Here, we developed a method to visualize Sox10-positive cells via green fluorescent protein (GFP) fluorescence to directly monitor their migration and differentiation into chromatophores in vivo. Electroporation was applied to introduce GFP reporter vectors into the dorsal fin base of larvae and juveniles. Cre-loxP system vectors were also tested to enable cell labeling even after a decrease in sox10 expression levels. In larvae, undifferentiated Sox10-positive progenitor cells were labeled in the dorsal fin base, whereas newly differentiated adult-type chromatophores were seen dispersed on the ocular side. In juveniles, Sox10-positive cells were identified in the connective tissue of the dorsal fin base and observed prominently in areas of ectopic pigmentation, including several labeled melanophores. Thus, it was suggested that during metamorphic stages, Sox10-positive cells at the dorsal fin base contribute to adult-type chromatophore development, whereas in juveniles, they persist as precursors in the connective tissue, which in response to stimuli migrate to generate ectopic pigmentation. These findings contribute to elucidating pigmentation mechanisms, as well as abnormalities seen in hatchery-reared flounders. The electroporation method may be adapted to diverse animals as an accessible gene transfer method in various research fields, including developmental and biomedical studies.
Collapse
Affiliation(s)
- Minato Miyake
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Michiharu Sekine
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Tohru Suzuki
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hayato Yokoi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
29
|
Andrade P, Gazda MA, Araújo PM, Afonso S, Rasmussen JA, Marques CI, Lopes RJ, Gilbert. MTP, Carneiro M. Molecular parallelisms between pigmentation in the avian iris and the integument of ectothermic vertebrates. PLoS Genet 2021; 17:e1009404. [PMID: 33621224 PMCID: PMC7935293 DOI: 10.1371/journal.pgen.1009404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/05/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023] Open
Abstract
Birds exhibit striking variation in eye color that arises from interactions between specialized pigment cells named chromatophores. The types of chromatophores present in the avian iris are lacking from the integument of birds or mammals, but are remarkably similar to those found in the skin of ectothermic vertebrates. To investigate molecular mechanisms associated with eye coloration in birds, we took advantage of a Mendelian mutation found in domestic pigeons that alters the deposition of yellow pterin pigments in the iris. Using a combination of genome-wide association analysis and linkage information in pedigrees, we mapped variation in eye coloration in pigeons to a small genomic region of ~8.5kb. This interval contained a single gene, SLC2A11B, which has been previously implicated in skin pigmentation and chromatophore differentiation in fish. Loss of yellow pigmentation is likely caused by a point mutation that introduces a premature STOP codon and leads to lower expression of SLC2A11B through nonsense-mediated mRNA decay. There were no substantial changes in overall gene expression profiles between both iris types as well as in genes directly associated with pterin metabolism and/or chromatophore differentiation. Our findings demonstrate that SLC2A11B is required for the expression of pterin-based pigmentation in the avian iris. They further highlight common molecular mechanisms underlying the production of coloration in the iris of birds and skin of ectothermic vertebrates.
Collapse
Affiliation(s)
- Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Małgorzata A. Gazda
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Pedro M. Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- MARE–Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Jacob. A. Rasmussen
- Center for Evolutionary Genomics, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cristiana I. Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ricardo J. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - M. Thomas P. Gilbert.
- Center for Evolutionary Genomics, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- The GLOBE Institute, Faculty of Health and Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Vissio PG, Darias MJ, Di Yorio MP, Pérez Sirkin DI, Delgadin TH. Fish skin pigmentation in aquaculture: The influence of rearing conditions and its neuroendocrine regulation. Gen Comp Endocrinol 2021; 301:113662. [PMID: 33220300 DOI: 10.1016/j.ygcen.2020.113662] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Skin pigmentation pattern is a species-specific characteristic that depends on the number and the spatial combination of several types of chromatophores. This feature can change during life, for example in the metamorphosis or reproductive cycle, or as a response to biotic and/or abiotic environmental cues (nutrition, UV incidence, surrounding luminosity, and social interactions). Fish skin pigmentation is one of the most important quality criteria dictating the market value of both aquaculture and ornamental species because it serves as an external signal to infer its welfare and the culture conditions used. For that reason, several studies have been conducted aiming to understand the mechanisms underlying fish pigmentation as well as the influence exerted by rearing conditions. In this context, the present review focuses on the current knowledge on endocrine regulation of fish pigmentation as well as on the aquaculture conditions affecting skin coloration. Available information on Iberoamerican fish species cultured is presented.
Collapse
Affiliation(s)
- Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina.
| | - Maria J Darias
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Tomás H Delgadin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
31
|
Stundl J, Pospisilova A, Matějková T, Psenicka M, Bronner ME, Cerny R. Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes. Dev Biol 2020; 467:14-29. [PMID: 32835652 DOI: 10.1016/j.ydbio.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes.
Collapse
Affiliation(s)
- Jan Stundl
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic.
| | - Anna Pospisilova
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Tereza Matějková
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Martin Psenicka
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert Cerny
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| |
Collapse
|
32
|
Volkening A. Linking genotype, cell behavior, and phenotype: multidisciplinary perspectives with a basis in zebrafish patterns. Curr Opin Genet Dev 2020; 63:78-85. [PMID: 32604031 DOI: 10.1016/j.gde.2020.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Zebrafish are characterized by dark and light stripes, but mutants display a rich variety of altered patterns. These patterns arise from the interactions of brightly colored pigment cells, making zebrafish a self-organization problem. The diversity of patterns present in zebrafish and other emerging fish models provides an excellent system for elucidating how genes, cell behavior, and visible animal characteristics are related. With the goal of highlighting how experimental and mathematical approaches can be used to link these scales, I overview current descriptions of zebrafish patterning, describe advances in the understanding of the mechanisms underlying cell communication, and discuss new work that moves beyond zebrafish to explore patterning in evolutionary relatives.
Collapse
Affiliation(s)
- Alexandria Volkening
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA; Department of Engineering Sciences and Applied Mathematics, Evanston, IL 60208, USA.
| |
Collapse
|
33
|
Ahi EP, Lecaudey LA, Ziegelbecker A, Steiner O, Glabonjat R, Goessler W, Hois V, Wagner C, Lass A, Sefc KM. Comparative transcriptomics reveals candidate carotenoid color genes in an East African cichlid fish. BMC Genomics 2020; 21:54. [PMID: 31948394 PMCID: PMC6966818 DOI: 10.1186/s12864-020-6473-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Carotenoids contribute significantly to animal body coloration, including the spectacular color pattern diversity among fishes. Fish, as other animals, derive carotenoids from their diet. Following uptake, transport and metabolic conversion, carotenoids allocated to body coloration are deposited in the chromatophore cells of the integument. The genes involved in these processes are largely unknown. Using RNA-Sequencing, we tested for differential gene expression between carotenoid-colored and white skin regions of a cichlid fish, Tropheus duboisi "Maswa", to identify genes associated with carotenoid-based integumentary coloration. To control for positional gene expression differences that were independent of the presence/absence of carotenoid coloration, we conducted the same analyses in a closely related population, in which both body regions are white. RESULTS A larger number of genes (n = 50) showed higher expression in the yellow compared to the white skin tissue than vice versa (n = 9). Of particular interest was the elevated expression level of bco2a in the white skin samples, as the enzyme encoded by this gene catalyzes the cleavage of carotenoids into colorless derivatives. The set of genes with higher expression levels in the yellow region included genes involved in xanthophore formation (e.g., pax7 and sox10), intracellular pigment mobilization (e.g., tubb, vim, kif5b), as well as uptake (e.g., scarb1) and storage (e.g., plin6) of carotenoids, and metabolic conversion of lipids and retinoids (e.g., dgat2, pnpla2, akr1b1, dhrs). Triglyceride concentrations were similar in the yellow and white skin regions. Extracts of integumentary carotenoids contained zeaxanthin, lutein and beta-cryptoxanthin as well as unidentified carotenoid structures. CONCLUSION Our results suggest a role of carotenoid cleavage by Bco2 in fish integumentary coloration, analogous to previous findings in birds. The elevated expression of genes in carotenoid-rich skin regions with functions in retinol and lipid metabolism supports hypotheses concerning analogies and shared mechanisms between these metabolic pathways. Overlaps in the sets of differentially expressed genes (including dgat2, bscl2, faxdc2 and retsatl) between the present study and previous, comparable studies in other fish species provide useful hints to potential carotenoid color candidate genes.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Department of Comparative Physiology, Uppsala University, Norbyvägen 18A, SE-75 236 Uppsala, Sweden
| | - Laurène A. Lecaudey
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Angelika Ziegelbecker
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Oliver Steiner
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010, Graz, Austria
| | - Ronald Glabonjat
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010, Graz, Austria
| | - Walter Goessler
- Institute of Chemistry, University of Graz, Universitätsplatz 1, A-8010, Graz, Austria
| | - Victoria Hois
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/II, 8010, Graz, Austria
| | - Carina Wagner
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/II, 8010, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/II, 8010, Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Kristina M. Sefc
- Institute of Biology, University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| |
Collapse
|
34
|
Gramann AK, Venkatesan AM, Guerin M, Ceol CJ. Regulation of zebrafish melanocyte development by ligand-dependent BMP signaling. eLife 2019; 8:50047. [PMID: 31868592 PMCID: PMC6968919 DOI: 10.7554/elife.50047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
Preventing terminal differentiation is important in the development and progression of many cancers including melanoma. Recent identification of the BMP ligand GDF6 as a novel melanoma oncogene showed GDF6-activated BMP signaling suppresses differentiation of melanoma cells. Previous studies have identified roles for GDF6 orthologs during early embryonic and neural crest development, but have not identified direct regulation of melanocyte development by GDF6. Here, we investigate the BMP ligand gdf6a, a zebrafish ortholog of human GDF6, during the development of melanocytes from the neural crest. We establish that the loss of gdf6a or inhibition of BMP signaling during neural crest development disrupts normal pigment cell development, leading to an increase in the number of melanocytes and a corresponding decrease in iridophores, another neural crest-derived pigment cell type in zebrafish. This shift occurs as pigment cells arise from the neural crest and depends on mitfa, an ortholog of MITF, a key regulator of melanocyte development that is also targeted by oncogenic BMP signaling. Together, these results indicate that the oncogenic role ligand-dependent BMP signaling plays in suppressing differentiation in melanoma is a reiteration of its physiological roles during melanocyte development.
Collapse
Affiliation(s)
- Alec K Gramann
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Arvind M Venkatesan
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Melissa Guerin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Craig J Ceol
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States.,Department of Molecular Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
35
|
Patterson LB, Parichy DM. Zebrafish Pigment Pattern Formation: Insights into the Development and Evolution of Adult Form. Annu Rev Genet 2019; 53:505-530. [DOI: 10.1146/annurev-genet-112618-043741] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vertebrate pigment patterns are diverse and fascinating adult traits that allow animals to recognize conspecifics, attract mates, and avoid predators. Pigment patterns in fish are among the most amenable traits for studying the cellular basis of adult form, as the cells that produce diverse patterns are readily visible in the skin during development. The genetic basis of pigment pattern development has been most studied in the zebrafish, Danio rerio. Zebrafish adults have alternating dark and light horizontal stripes, resulting from the precise arrangement of three main classes of pigment cells: black melanophores, yellow xanthophores, and iridescent iridophores. The coordination of adult pigment cell lineage specification and differentiation with specific cellular interactions and morphogenetic behaviors is necessary for stripe development. Besides providing a nice example of pattern formation responsible for an adult trait of zebrafish, stripe-forming mechanisms also provide a conceptual framework for posing testable hypotheses about pattern diversification more broadly. Here, we summarize what is known about lineages and molecular interactions required for pattern formation in zebrafish, we review some of what is known about pattern diversification in Danio, and we speculate on how patterns in more distant teleosts may have evolved to produce a stunningly diverse array of patterns in nature.
Collapse
Affiliation(s)
| | - David M. Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22903, USA
| |
Collapse
|
36
|
Saunders LM, Mishra AK, Aman AJ, Lewis VM, Toomey MB, Packer JS, Qiu X, McFaline-Figueroa JL, Corbo JC, Trapnell C, Parichy DM. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages. eLife 2019; 8:e45181. [PMID: 31140974 PMCID: PMC6588384 DOI: 10.7554/elife.45181] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Thyroid hormone (TH) regulates diverse developmental events and can drive disparate cellular outcomes. In zebrafish, TH has opposite effects on neural crest derived pigment cells of the adult stripe pattern, limiting melanophore population expansion, yet increasing yellow/orange xanthophore numbers. To learn how TH elicits seemingly opposite responses in cells having a common embryological origin, we analyzed individual transcriptomes from thousands of neural crest-derived cells, reconstructed developmental trajectories, identified pigment cell-lineage specific responses to TH, and assessed roles for TH receptors. We show that TH promotes maturation of both cell types but in distinct ways. In melanophores, TH drives terminal differentiation, limiting final cell numbers. In xanthophores, TH promotes accumulation of orange carotenoids, making the cells visible. TH receptors act primarily to repress these programs when TH is limiting. Our findings show how a single endocrine factor integrates very different cellular activities during the generation of adult form.
Collapse
Affiliation(s)
- Lauren M Saunders
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Abhishek K Mishra
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Andrew J Aman
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Victor M Lewis
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Matthew B Toomey
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Jonathan S Packer
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Xiaojie Qiu
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | | | - Joseph C Corbo
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Cole Trapnell
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - David M Parichy
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| |
Collapse
|
37
|
Magic Traits in Magic Fish: Understanding Color Pattern Evolution Using Reef Fish. Trends Genet 2019; 35:265-278. [DOI: 10.1016/j.tig.2019.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
|
38
|
Salis P, Lorin T, Lewis V, Rey C, Marcionetti A, Escande ML, Roux N, Besseau L, Salamin N, Sémon M, Parichy D, Volff JN, Laudet V. Developmental and comparative transcriptomic identification of iridophore contribution to white barring in clownfish. Pigment Cell Melanoma Res 2019; 32:391-402. [PMID: 30633441 DOI: 10.1111/pcmr.12766] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/11/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022]
Abstract
Actinopterygian fishes harbor at least eight distinct pigment cell types, leading to a fascinating diversity of colors. Among this diversity, the cellular origin of the white color appears to be linked to several pigment cell types such as iridophores or leucophores. We used the clownfish Amphiprion ocellaris, which has a color pattern consisting of white bars over a darker body, to characterize the pigment cells that underlie the white hue. We observe by electron microscopy that cells in white bars are similar to iridophores. In addition, the transcriptomic signature of clownfish white bars exhibits similarities with that of zebrafish iridophores. We further show by pharmacological treatments that these cells are necessary for the white color. Among the top differentially expressed genes in white skin, we identified several genes (fhl2a, fhl2b, saiyan, gpnmb, and apoD1a) and show that three of them are expressed in iridophores. Finally, we show by CRISPR/Cas9 mutagenesis that these genes are critical for iridophore development in zebrafish. Our analyses provide clues to the genomic underpinning of color diversity and allow identification of new iridophore genes in fish.
Collapse
Affiliation(s)
- Pauline Salis
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| | - Thibault Lorin
- IGFL, ENS de Lyon, UMR 5242 CNRS, Université Claude Bernard Lyon I, Lyon Cedex 07, France
| | - Victor Lewis
- Department of Biology, University of Washington, Seattle, Washington.,Department of Biology, Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Carine Rey
- ENS de Lyon, CNRS UMR 5239, INSERM U1210, LBMC, Université Claude Bernard, Lyon, France.,LBBE, CNRS, Université Lyon 1, Villeurbanne, France
| | - Anna Marcionetti
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marie-Line Escande
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| | - Natacha Roux
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| | - Laurence Besseau
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| | - Nicolas Salamin
- Department of Computational Biology, Biophore, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marie Sémon
- ENS de Lyon, CNRS UMR 5239, INSERM U1210, LBMC, Université Claude Bernard, Lyon, France
| | - David Parichy
- Department of Biology, Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Jean-Nicolas Volff
- IGFL, ENS de Lyon, UMR 5242 CNRS, Université Claude Bernard Lyon I, Lyon Cedex 07, France
| | - Vincent Laudet
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne Université, Banyuls-sur-Mer, France
| |
Collapse
|
39
|
Petratou K, Subkhankulova T, Lister JA, Rocco A, Schwetlick H, Kelsh RN. A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest. PLoS Genet 2018; 14:e1007402. [PMID: 30286071 PMCID: PMC6191144 DOI: 10.1371/journal.pgen.1007402] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/16/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10-dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a, a key differentiation gene. We also assess a candidate repressor of mitfa, a melanocyte-specific target of sox10. Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage.
Collapse
Affiliation(s)
- Kleio Petratou
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Tatiana Subkhankulova
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| | - James A. Lister
- Department of Human and Molecular Genetics and Massey Cancer Center, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrea Rocco
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Hartmut Schwetlick
- Department of Mathematical Sciences, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| |
Collapse
|
40
|
Erkenbrack EM, Maziarz JD, Griffith OW, Liang C, Chavan AR, Nnamani MC, Wagner GP. The mammalian decidual cell evolved from a cellular stress response. PLoS Biol 2018; 16:e2005594. [PMID: 30142145 PMCID: PMC6108454 DOI: 10.1371/journal.pbio.2005594] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/29/2018] [Indexed: 11/19/2022] Open
Abstract
Among animal species, cell types vary greatly in terms of number and kind. The number of cell types found within an organism differs considerably between species, and cell type diversity is a significant contributor to differences in organismal structure and function. These observations suggest that cell type origination is a significant source of evolutionary novelty. The molecular mechanisms that result in the evolution of novel cell types, however, are poorly understood. Here, we show that a novel cell type of eutherians mammals, the decidual stromal cell (DSC), evolved by rewiring an ancestral cellular stress response. We isolated the precursor cell type of DSCs, endometrial stromal fibroblasts (ESFs), from the opossum Monodelphis domestica. We show that, in opossum ESFs, the majority of decidual core regulatory genes respond to decidualizing signals but do not regulate decidual effector genes. Rather, in opossum ESFs, decidual transcription factors function in apoptotic and oxidative stress response. We propose that rewiring of cellular stress responses was an important mechanism for the evolution of the eutherian decidual cell type.
Collapse
Affiliation(s)
- Eric M. Erkenbrack
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Jamie D. Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Oliver W. Griffith
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
- School of Biosciences, University of Melbourne, Melbourne, Australia
| | - Cong Liang
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Arun R. Chavan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Mauris C. Nnamani
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Günter P. Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale University Medical School, New Haven, Connecticut, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|