1
|
Kück U, Pöggeler S. STRIPAK, a fundamental signaling hub of eukaryotic development. Microbiol Mol Biol Rev 2024; 88:e0020523. [PMID: 39526753 DOI: 10.1128/mmbr.00205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
SUMMARYThe striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine & Molekulare Botanik, Ruhr-University, Bochum, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| |
Collapse
|
2
|
Peterson PP, Choi JT, Fu C, Cowen LE, Sun S, Bahn YS, Heitman J. The Cryptococcus neoformans STRIPAK complex controls genome stability, sexual development, and virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606879. [PMID: 39149236 PMCID: PMC11326274 DOI: 10.1101/2024.08.06.606879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The eukaryotic serine/threonine protein phosphatase PP2A is a heterotrimeric enzyme composed of a scaffold A subunit, a regulatory B subunit, and a catalytic C subunit. Of the four known B subunits, the B"' subunit (known as striatin) interacts with the multi-protein striatin-interacting phosphatase and kinase (STRIPAK) complex. Orthologs of STRIPAK components were identified in Cryptococcus neoformans, namely PP2AA/Tpd3, PP2AC/Pph22, PP2AB/Far8, STRIP/Far11, SLMAP/Far9, and Mob3. Structural modeling, protein domain analysis, and detected protein-protein interactions suggest C. neoformans STRIPAK is assembled similarly to the human and fungal orthologs. Here, STRIPAK components Pph22, Far8, and Mob3 were functionally characterized. Whole-genome sequencing revealed that mutations in STRIPAK complex subunits lead to increased segmental and chromosomal aneuploidy, suggesting STRIPAK functions in maintaining genome stability. We demonstrate that PPH22 is a haploinsufficient gene: heterozygous PPH22/pph22Δ mutant diploid strains exhibit defects in hyphal growth and sporulation and have a significant fitness disadvantage when grown in competition against a wild-type diploid. Deletion mutants pph22Δ, far8Δ, and mob3Δ exhibit defects in mating and sexual differentiation, including impaired hyphae, basidia, and basidiospore production. Loss of either PPH22 or FAR8 in a haploid background leads to growth defects at 30°C, severely reduced growth at elevated temperature, abnormal cell morphology, and impaired virulence. Additionally, pph22Δ strains frequently accumulate suppressor mutations that result in overexpression of another putative PP2A catalytic subunit, PPG1. The pph22Δ and far8Δ mutants are also unable to grow in the presence of the calcineurin inhibitors cyclosporine A or FK506, and thus these mutations are synthetically lethal with loss of calcineurin activity. Conversely, mob3Δ mutants display increased thermotolerance, capsule production, and melanization, and are hypervirulent in a murine infection model. Taken together, these findings reveal that the C. neoformans STRIPAK complex plays an important role in genome stability, vegetative growth, sexual development, and virulence in this prominent human fungal pathogen.
Collapse
Affiliation(s)
- Patricia P. Peterson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jin-Tae Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ci Fu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Peterson PP, Choi JT, Fu C, Cowen LE, Sun S, Bahn YS, Heitman J. The Cryptococcus neoformans STRIPAK complex controls genome stability, sexual development, and virulence. PLoS Pathog 2024; 20:e1012735. [PMID: 39561188 PMCID: PMC11614259 DOI: 10.1371/journal.ppat.1012735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/03/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
The eukaryotic serine/threonine protein phosphatase PP2A is a heterotrimeric enzyme composed of a scaffold A subunit, a regulatory B subunit, and a catalytic C subunit. Of the four known B subunits, the B"' subunit (known as striatin) interacts with the multi-protein striatin-interacting phosphatase and kinase (STRIPAK) complex. Orthologs of STRIPAK components were identified in Cryptococcus neoformans, namely PP2AA/Tpd3, PP2AC/Pph22, PP2AB/Far8, STRIP/Far11, SLMAP/Far9, and Mob3. Structural modeling, protein domain analysis, and detected protein-protein interactions suggest C. neoformans STRIPAK is assembled similarly to the human and fungal orthologs. Here, STRIPAK components Pph22, Far8, and Mob3 were functionally characterized. Whole-genome sequencing revealed that mutations in STRIPAK complex subunits lead to increased segmental and chromosomal aneuploidy, suggesting STRIPAK functions in maintaining genome stability. We demonstrate that PPH22 is a haploinsufficient gene: heterozygous PPH22/pph22Δ mutant diploid strains exhibit defects in hyphal growth and sporulation and have a significant fitness disadvantage when grown in competition against a wild-type diploid. Deletion mutants pph22Δ, far8Δ, and mob3Δ exhibit defects in mating and sexual differentiation, including impaired hyphae, basidia, and basidiospore production. Loss of either PPH22 or FAR8 in a haploid background leads to growth defects at 30°C, severely reduced growth at elevated temperature, abnormal cell morphology, and impaired virulence. Additionally, pph22Δ strains frequently accumulate suppressor mutations that result in overexpression of another putative PP2A catalytic subunit, PPG1. The pph22Δ and far8Δ mutants are also unable to grow in the presence of the calcineurin inhibitors cyclosporine A or FK506, and thus these mutations are synthetically lethal with loss of calcineurin activity. Conversely, mob3Δ mutants display increased thermotolerance, capsule production, and melanization, and are hypervirulent in a murine infection model. Taken together, these findings reveal that the C. neoformans STRIPAK complex plays an important role in genome stability, vegetative growth, sexual development, and virulence in this prominent human fungal pathogen.
Collapse
Affiliation(s)
- Patricia P. Peterson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jin-Tae Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ci Fu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
4
|
Cea-Sánchez S, Martín-Villanueva S, Gutiérrez G, Cánovas D, Corrochano LM. VE-1 regulation of MAPK signaling controls sexual development in Neurospora crassa. mBio 2024; 15:e0226424. [PMID: 39283084 PMCID: PMC11481897 DOI: 10.1128/mbio.02264-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 10/19/2024] Open
Abstract
Sexual reproduction in fungi allows genetic recombination and increases genetic diversity, allowing adaptation and survival. The velvet complex is a fungal-specific protein assembly that regulates development, pathogenesis, and secondary metabolism in response to environmental cues, such as light. In Neurospora crassa, this complex comprises VE-1, VE-2, and LAE-1. Deletion of ve-1 or ve-2, but not lae-1, leads to increased conidiation (asexual spore formation) and reduced sexual development. Mutants lacking ve-1 and/or ve-2 are female sterile and male fertile, indicating that a VE-1/VE-2 complex regulates the development of female structures. During sexual development, we observed differential regulation of 2,117 genes in dark and 4,364 genes in light between the wild type and the ∆ve-1 strain. The pheromone response and cell wall integrity pathways were downregulated in the ∆ve-1 mutant, especially in light. Additionally, we found reduced levels of both total and phosphorylated MAK-1 and MAK-2 kinases. In vitro experiments demonstrated the binding of VE-1 and VE-2 to the promoters of mak-1 and mak-2, suggesting a direct regulatory role of VE-1/VE-2 in the transcriptional control of MAPK genes to regulate sexual development. Deletion of the photosensor gene white-collar 1 prevented the light-dependent inhibition of sexual development in the ∆ve-1 mutant by increasing transcription of the pheromone response and cell wall integrity pathway genes to the levels in the dark. Our results support the proposal that the regulation of the MAP kinase pathways by the VE-1/VE-2 complex is a key element in transcriptional regulation that occurs during sexual development. IMPORTANCE Sexual reproduction generates new gene combinations and novel phenotypic traits and facilitates evolution. Induction of sexual development in fungi is often regulated by environmental conditions, such as the presence of light and nutrients. The velvet protein complex coordinates internal cues and environmental signals to regulate development. We have found that VE-1, a component of the velvet complex, regulates transcription during sexual development in the fungus Neurospora crassa. VE-1 regulates the transcription of many genes, including those involved in mitogen-activated protein kinase (MAPK) signaling pathways that are essential in the regulation of sexual development, and regulates the activity of the MAPK pathway. Our findings provide valuable insights into how fungi respond to environmental signals and integrate them into their reproductive processes.
Collapse
Affiliation(s)
- Sara Cea-Sánchez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Martín-Villanueva
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
5
|
Thorn HI, Guruceaga X, Martin-Vicente A, Nywening AV, Xie J, Ge W, Fortwendel JR. MOB-mediated regulation of septation initiation network (SIN) signaling is required for echinocandin-induced hyperseptation in Aspergillus fumigatus. mSphere 2024; 9:e0069523. [PMID: 38349166 DOI: 10.1128/msphere.00695-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/17/2024] [Indexed: 03/27/2024] Open
Abstract
Aspergillus fumigatus is a major invasive mold pathogen and the most frequent etiologic agent of invasive aspergillosis. The currently available treatments for invasive aspergillosis are limited in both number and efficacy. Our recent work has uncovered that the β-glucan synthase inhibitors, the echinocandins, are fungicidal against strains of A. fumigatus with defects in septation initiation network (SIN) kinase activity. These drugs are known to be fungistatic against strains with normal septation. Surprisingly, SIN kinase mutant strains also failed to invade lung tissue and were significantly less virulent in immunosuppressed mouse models. Inhibiting septation in filamentous fungi is therefore an exciting therapeutic prospect to both reduce virulence and improve current antifungal therapy. However, the SIN remains understudied in pathogenic fungi. To address this knowledge gap, we characterized the putative regulatory components of the A. fumigatus SIN. These included the GTPase, SpgA, it's two-component GTPase-activating protein, ByrA/BubA, and the kinase activators, SepM and MobA. Deletion of spgA, byrA, or bubA resulted in no overt septation or echinocandin susceptibility phenotypes. In contrast, our data show that deletion of sepM or mobA largely phenocopies disruption of their SIN kinase binding partners, sepL and sidB, respectively. Reduced septum formation, echinocandin hypersusceptibility, and reduced virulence were generated by loss of either gene. These findings provide strong supporting evidence that septa are essential not only for withstanding the cell wall disrupting effects of echinocandins but are also critical for the establishment of invasive disease. Therefore, pharmacological SIN inhibition may be an exciting strategy for future antifungal drug development.IMPORTANCESepta are important structural determinants of echinocandin susceptibility and tissue invasive growth for the ubiquitous fungal pathogen Aspergillus fumigatus. Components of the septation machinery therefore represent promising novel antifungal targets to improve echinocandin activity and reduce virulence. However, little is known about septation regulation in A. fumigatus. Here, we characterize the predicted regulatory components of the A. fumigatus septation initiation network. We show that the kinase activators SepM and MobA are vital for proper septation and echinocandin resistance, with MobA playing an essential role. Null mutants of mobA displayed significantly reduced virulence in a mouse model, underscoring the importance of this pathway for A. fumigatus pathogenesis.
Collapse
Affiliation(s)
- Harrison I Thorn
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xabier Guruceaga
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ashley V Nywening
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jinhong Xie
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Wenbo Ge
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Niphadkar S, Karinje L, Laxman S. The PP2A-like phosphatase Ppg1 mediates assembly of the Far complex to balance gluconeogenic outputs and enables adaptation to glucose depletion. PLoS Genet 2024; 20:e1011202. [PMID: 38452140 PMCID: PMC10950219 DOI: 10.1371/journal.pgen.1011202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/19/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
To sustain growth in changing nutrient conditions, cells reorganize outputs of metabolic networks and appropriately reallocate resources. Signaling by reversible protein phosphorylation can control such metabolic adaptations. In contrast to kinases, the functions of phosphatases that enable metabolic adaptation as glucose depletes are poorly studied. Using a Saccharomyces cerevisiae deletion screen, we identified the PP2A-like phosphatase Ppg1 as required for appropriate carbon allocations towards gluconeogenic outputs-trehalose, glycogen, UDP-glucose, UDP-GlcNAc-after glucose depletion. This Ppg1 function is mediated via regulation of the assembly of the Far complex-a multi-subunit complex that tethers to the ER and mitochondrial outer membranes forming localized signaling hubs. The Far complex assembly is Ppg1 catalytic activity-dependent. Ppg1 regulates the phosphorylation status of multiple ser/thr residues on Far11 to enable the proper assembly of the Far complex. The assembled Far complex is required to maintain gluconeogenic outputs after glucose depletion. Glucose in turn regulates Far complex amounts. This Ppg1-mediated Far complex assembly, and Ppg1-Far complex dependent control of gluconeogenic outputs enables adaptive growth under glucose depletion. Our study illustrates how protein dephosphorylation is required for the assembly of a multi-protein scaffold present in localized cytosolic pools, to thereby alter gluconeogenic flux and enable cells to metabolically adapt to nutrient fluctuations.
Collapse
Affiliation(s)
- Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lavanya Karinje
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bangalore, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) Bangalore, India
| |
Collapse
|
7
|
Zhu Z, Yang C, Keyhani NO, Liu S, Pu H, Jia P, Wu D, Stevenson PC, Fernández-Grandon GM, Pan J, Chen Y, Guan X, Qiu J. Characterization of Terpenoids from the Ambrosia Beetle Symbiont and Laurel Wilt Pathogen Harringtonia lauricola. J Fungi (Basel) 2023; 9:1175. [PMID: 38132776 PMCID: PMC10744799 DOI: 10.3390/jof9121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1-6) and three hopane triterpenes (7-9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54-26.06 μM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 μg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 μg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2-), with IC50 values of compounds 2, 4, and 6 ~3.45-14.04 μg/mL and 22.87-53.31 μg/mL towards DPPH and O2-, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Chenjie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA;
| | - Sen Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Huili Pu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Peisong Jia
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Philip C. Stevenson
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (P.C.S.); (G.M.F.-G.)
| | | | - Jieming Pan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Yuxi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junzhi Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| |
Collapse
|
8
|
Karahoda B, Pfannenstiel BT, Sarikaya-Bayram Ö, Dong Z, Ho Wong K, Fleming AB, Keller NP, Bayram Ö. The KdmB-EcoA-RpdA-SntB (KERS) chromatin regulatory complex controls development, secondary metabolism and pathogenicity in Aspergillus flavus. Fungal Genet Biol 2023; 169:103836. [PMID: 37666447 PMCID: PMC10841535 DOI: 10.1016/j.fgb.2023.103836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The filamentous fungus Aspergillus flavus is a plant and human pathogen predominantly found in the soil as spores or sclerotia and is capable of producing various secondary metabolites (SM) such as the carcinogenic mycotoxin aflatoxin. Recently, we have discovered a novel nuclear chromatin binding complex (KERS) that contains the JARID1-type histone demethylase KdmB, a putative cohesion acetyl transferase EcoA, a class I type histone deacetylase RpdA and the PHD ring finger reader protein SntB in the model filamentous fungus Aspergillus nidulans. Here, we show the presence of the KERS complex in A. flavus by immunoprecipitation-coupled mass spectrometry and constructed kdmBΔ and rpdAΔ strains to study their roles in fungal development, SM production and histone post-translational modifications (HPTMs). We found that KdmB and RpdA couple the regulation of SM gene clusters with fungal light-responses and HPTMs. KdmB and RpdA have opposing roles in light-induced asexual conidiation, while both factors are positive regulators of sclerotia development through the nsdC and nsdD pathway. KdmB and RpdA are essential for the productions of aflatoxin (similar to findings for SntB) as well as cyclopiazonic acid, ditryptophenaline and leporin B through controlling the respective SM biosynthetic gene clusters. We further show that both KdmB and RpdA regulate H3K4me3 and H3K9me3 levels, while RpdA also acts on H3K14ac levels in nuclear extracts. Therefore, the chromatin modifiers KdmB and RpdA of the KERS complex are key regulators for fungal development and SM metabolism in A. flavus.
Collapse
Affiliation(s)
- Betim Karahoda
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Brandon T Pfannenstiel
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
| | | | - Zhiqiang Dong
- Faculty of Health Sciences, University of Macau, Macau
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau; Institute of Translational Medicine, University of Macau, Macau; Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Alastair B Fleming
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
9
|
Bisoyi P, Ratna D, Kumar G, Mallick BN, Goswami SK. In the Rat Midbrain, SG2NA and DJ-1 have Common Interactome, Including Mitochondrial Electron Transporters that are Comodulated Under Oxidative Stress. Cell Mol Neurobiol 2023; 43:3061-3080. [PMID: 37165139 DOI: 10.1007/s10571-023-01356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Scaffold proteins Striatin and SG2NA assemble kinases and phosphatases into the signalling complexes called STRIPAK. Dysfunctional STRIPAKs cause cancer, cerebral cavernous malformations, etc. DJ-1, a sensor for oxidative stress, has long been associated with the Parkinson's disease, cancer, and immune disorders. SG2NA interacts with DJ-1 and Akt providing neuroprotection under oxidative stress. To dissect the role of SG2NA and DJ-1 in neuronal pathobiology, rat midbrain extracts were immunoprecipitated with SG2NA and sixty-three interacting proteins were identified. BN-PAGE followed by the LC-MS/MS showed 1030 comigrating proteins as the potential constituents of the multimeric complexes formed by SG2NA. Forty-three proteins were common between those identified by co-immunoprecipitation and the BN-PAGE. Co-immunoprecipitation with DJ-1 identified 179 interacting partners, of which forty-one also interact with SG2NA. Among those forty-one proteins immunoprecipitated with both SG2NA and DJ-1, thirty-nine comigrated with SG2NA in the BN-PAGE, and thus are bonafide constituents of the supramolecular assemblies comprising both DJ-1 and SG2NA. Among those thirty-nine proteins, seven are involved in mitochondrial oxidative phosphorylation. In rotenone-treated rats having Parkinson's like symptoms, the levels of both SG2NA and DJ-1 increased in the mitochondria; and the association of SG2NA with the electron transport complexes enhanced. In the hemi-Parkinson's model, where the rats were injected with 6-OHDA into the midbrain, the occupancy of SG2NA and DJ-1 in the mitochondrial complexes also increased. Our study thus reveals a new family of potential STRIPAK assemblies involving both SG2NA and DJ-1, with key roles in protecting midbrain from the oxidative stress.
Collapse
Affiliation(s)
- Padmini Bisoyi
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Deshdeepak Ratna
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Gaurav Kumar
- Department of Life Sciences and Biotechnology, CSJM University, Kanpur, Uttar Pradesh, 208024, India
| | - Birendra Nath Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, 201313, India
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
10
|
Bauer I, Sarikaya Bayram Ö, Bayram Ö. The use of immunoaffinity purification approaches coupled with LC-MS/MS offers a powerful strategy to identify protein complexes in filamentous fungi. Essays Biochem 2023; 67:877-892. [PMID: 37681641 DOI: 10.1042/ebc20220253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
Fungi are a diverse group of organisms that can be both beneficial and harmful to mankind. They have advantages such as producing food processing enzymes and antibiotics, but they can also be pathogens and produce mycotoxins that contaminate food. Over the past two decades, there have been significant advancements in methods for studying fungal molecular biology. These advancements have led to important discoveries in fungal development, physiology, pathogenicity, biotechnology, and natural product research. Protein complexes and protein-protein interactions (PPIs) play crucial roles in fungal biology. Various methods, including yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC), are used to investigate PPIs. However, affinity-based PPI methods like co-immunoprecipitation (Co-IP) are highly preferred because they represent the natural conditions of PPIs. In recent years, the integration of liquid chromatography coupled with mass spectrometry (LC-MS/MS) has been used to analyse Co-IPs, leading to the discovery of important protein complexes in filamentous fungi. In this review, we discuss the tandem affinity purification (TAP) method and single affinity purification methods such as GFP, HA, FLAG, and MYC tag purifications. These techniques are used to identify PPIs and protein complexes in filamentous fungi. Additionally, we compare the efficiency, time requirements, and material usage of Sepharose™ and magnetic-based purification systems. Overall, the advancements in fungal molecular biology techniques have provided valuable insights into the complex interactions and functions of proteins in fungi. The methods discussed in this review offer powerful tools for studying fungal biology and will contribute to further discoveries in this field.
Collapse
Affiliation(s)
- Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
11
|
Chen A, Liu N, Xu C, Wu S, Liu C, Qi H, Ren Y, Han X, Yang K, Liu X, Ma Z, Chen Y. The STRIPAK complex orchestrates cell wall integrity signalling to govern the fungal development and virulence of Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2023; 24:1139-1153. [PMID: 37278525 PMCID: PMC10423325 DOI: 10.1111/mpp.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Striatin-interacting phosphatases and kinases (STRIPAKs) are evolutionarily conserved supramolecular complexes that control various important cellular processes such as signal transduction and development. However, the role of the STRIPAK complex in pathogenic fungi remains elusive. In this study, the components and function of the STRIPAK complex were investigated in Fusarium graminearum, an important plant-pathogenic fungus. The results obtained from bioinformatic analyses and the protein-protein interactome suggested that the fungal STRIPAK complex consisted of six proteins: Ham2, Ham3, Ham4, PP2Aa, Ppg1, and Mob3. Deletion mutations of individual components of the STRIPAK complex were created, and observed to cause a significant reduction in fungal vegetative growth and sexual development, and dramatically attenuae virulence, excluding the essential gene PP2Aa. Further results revealed that the STRIPAK complex interacted with the mitogen-activated protein kinase Mgv1, a key component in the cell wall integrity pathway, subsequently regulating the phosphorylation level and nuclear accumulation of Mgv1 to control the fungal stress response and virulence. Our results also suggested that the STRIPAK complex was interconnected with the target of rapamycin pathway through Tap42-PP2A cascade. Taken together, our findings revealed that the STRIPAK complex orchestrates cell wall integrity signalling to govern the fungal development and virulence of F. graminearum and highlighted the importance of the STRIPAK complex in fungal virulence.
Collapse
Affiliation(s)
- Ahai Chen
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Na Liu
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhouChina
- College of Plant Health and MedicineQingdao Agricultural UniversityQingdaoChina
| | - Chenghui Xu
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Siqi Wu
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Chao Liu
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Hao Qi
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Yiyi Ren
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Xingmin Han
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Kunlong Yang
- Department of Biomedicine and Food Science, School of Life ScienceJiangsu Normal UniversityXuzhouChina
| | - Xiao Liu
- State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Yun Chen
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of BiotechnologyZhejiang UniversityHangzhouChina
| |
Collapse
|
12
|
Yu W, Pei R, Zhang Y, Tu Y, He B. Light regulation of secondary metabolism in fungi. J Biol Eng 2023; 17:57. [PMID: 37653453 PMCID: PMC10472637 DOI: 10.1186/s13036-023-00374-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Fungi have evolved unique metabolic regulation mechanisms for adapting to the changing environments. One of the key features of fungal adaptation is the production of secondary metabolites (SMs), which are essential for survival and beneficial to the organism. Many of these SMs are produced in response to the environmental cues, such as light. In all fungal species studied, the Velvet complex transcription factor VeA is a central player of the light regulatory network. In addition to growth and development, the intensity and wavelength of light affects the formation of a broad range of secondary metabolites. Recent studies, mainly on species of the genus Aspergillus, revealed that the dimer of VeA-VelB and LaeA does not only regulate gene expression in response to light, but can also be involved in regulating production of SMs. Furthermore, the complexes have a wide regulatory effect on different types of secondary metabolites. In this review, we discussed the role of light in the regulation of fungal secondary metabolism. In addition, we reviewed the photoreceptors, transcription factors, and signaling pathways that are involved in light-dependent regulation of secondary metabolism. The effects of transcription factors on the production of secondary metabolites, as well as the potential applications of light regulation for the production of pharmaceuticals and other products were discussed. Finally, we provided an overview of the current research in this field and suggested potential areas for future research.
Collapse
Affiliation(s)
- Wenbin Yu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Rongqiang Pei
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yufei Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, 330013, Jiangxi, China.
| |
Collapse
|
13
|
Zhang Y, Wang X, Ran Y, Zhang KQ, Li GH. AfLaeA, a Global Regulator of Mycelial Growth, Chlamydospore Production, Pathogenicity, Secondary Metabolism, and Energy Metabolism in the Nematode-Trapping Fungus Arthrobotrys flagrans. Microbiol Spectr 2023; 11:e0018623. [PMID: 37358432 PMCID: PMC10434191 DOI: 10.1128/spectrum.00186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/15/2023] [Indexed: 06/27/2023] Open
Abstract
Arthrobotrys flagrans (Duddingtonia flagrans) is a typical nematode-trapping fungus which has been used for nematode biocontrol. The global regulator LaeA is widely distributed in filamentous fungi and plays a crucial role in secondary metabolism and development in addition to pathogenicity in fungal pathogens. In this study, the chromosome-level genome of A. flagrans CBS 565.50 was sequenced and homologous sequences of LaeA were identified in A. flagrans. A. flagrans LaeA (AfLaeA) knockout resulted in slower hyphal growth and a smoother hyphal surface. Importantly, deletion of AfLaeA resulted in the absence of chlamydospores and attenuated glycogen and lipid accumulation in hyphae. Similarly, disruption of the AfLaeA gene led to fewer traps and electron-dense bodies, lower protease activity, and a delay in capturing nematodes. The AfLaeA gene had a large effect on the secondary metabolism of A. flagrans, and both the deletion and overexpression of AfLaeA could yield new compounds, whereas some compounds were lost due to the absence of the AfLaeA. Protein-protein interactions between AfLaeA and another eight proteins were detected. Furthermore, transcriptome data analysis showed that 17.77% and 35.51% of the genes were influenced by the AfLaeA gene on days 3 and 7, respectively. AfLaeA gene deletion resulted in the higher expression level of the artA gene cluster, and multiple differentially expressed genes involved in glycogen and lipid synthesis and metabolism showed opposite expression patterns in wild-type and ΔAfLaeA strains. In summary, our results provide novel insights into the functions of AfLaeA in mycelial growth, chlamydospore production, pathogenicity, secondary metabolism, and energy metabolism in A. flagrans. IMPORTANCE The regulation of biological functions, such as the secondary metabolism, development, and pathogenicity of LaeA, has been reported in multiple fungi. But to date, no study on LaeA in nematode-trapping fungi has been reported. Moreover, it has not been investigated whether or not LaeA is involved in energy metabolism and chlamydospore formation has not been investigated. Especially in the formation mechanism of chlamydospores, several transcription factors and signaling pathways are involved in the production of chlamydospores, but the mechanism of chlamydospore formation from an epigenetic perspective has not been revealed. Concurrently, an understanding of protein-protein interactions will provide a broader perspective on the regulatory mechanism of AfLaeA in A. flagrans. This finding is critical for understanding the regulatory role of AfLaeA in the biocontrol fungus A. flagrans and establishes a foundation for developing high-efficiency nematode biocontrol agents.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuan Ran
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
14
|
Bayram ÖS, Bayram Ö. An Anatomy of Fungal Eye: Fungal Photoreceptors and Signalling Mechanisms. J Fungi (Basel) 2023; 9:jof9050591. [PMID: 37233302 DOI: 10.3390/jof9050591] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Organisms have developed different features to capture or sense sunlight. Vertebrates have evolved specialized organs (eyes) which contain a variety of photosensor cells that help them to see the light to aid orientation. Opsins are major photoreceptors found in the vertebrate eye. Fungi, with more than five million estimated members, represent an important clade of living organisms which have important functions for the sustainability of life on our planet. Light signalling regulates a range of developmental and metabolic processes including asexual sporulation, sexual fruit body formation, pigment and carotenoid production and even production of secondary metabolites. Fungi have adopted three groups of photoreceptors: (I) blue light receptors, White Collars, vivid, cryptochromes, blue F proteins and DNA photolyases, (II) red light sensors, phytochromes and (III) green light sensors and microbial rhodopsins. Most mechanistic data were elucidated on the roles of the White Collar Complex (WCC) and the phytochromes in the fungal kingdom. The WCC acts as both photoreceptor and transcription factor by binding to target genes, whereas the phytochrome initiates a cascade of signalling by using mitogen-activated protein kinases to elicit its cellular responses. Although the mechanism of photoreception has been studied in great detail, fungal photoreception has not been compared with vertebrate vision. Therefore, this review will mainly focus on mechanistic findings derived from two model organisms, namely Aspergillus nidulans and Neurospora crassa and comparison of some mechanisms with vertebrate vision. Our focus will be on the way light signalling is translated into changes in gene expression, which influences morphogenesis and metabolism in fungi.
Collapse
Affiliation(s)
| | - Özgür Bayram
- Biology Department, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
15
|
Traynor AM, Sarikaya-Bayram Ö, Bayram Ö, Antonio Calera J, Doyle S. Proteomic dissection of the role of GliZ in gliotoxin biosynthesis in Aspergillus fumigatus. Fungal Genet Biol 2023; 166:103795. [PMID: 37023941 DOI: 10.1016/j.fgb.2023.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Gliotoxin (GT) biosynthesis in fungi is encoded by the gli biosynthetic gene cluster. While GT addition autoinduces biosynthesis, Zn2+ has been shown to attenuate cluster activity, and it was speculated that identification of Zn2Cys6 binuclear transcription factor GliZ binding partners might provide insight into this observation. Using the Tet-ON induction system, doxycycline (DOX) presence induced GliZ fusion protein expression in, and recovery of GT biosynthesis by, A. fumigatus ΔgliZ::HA-gliZ and ΔgliZ::TAP-gliZ strains, respectively. Quantitative RT-PCR confirmed that DOX induces gli cluster gene expression (n = 5) in both A. fumigatus HA-GliZ and TAP-GliZ strains. GT biosynthesis was evident in Czapek-Dox and in Sabouraud media, however tagged GliZ protein expression was more readily detected in Sabouraud media. Unexpectedly, Zn2+ was essential for GliZ fusion protein expression in vivo, following 3 h DOX induction. Moreover, HA-GliZ abundance was significantly higher in either DOX/GT or DOX/Zn2+, compared to DOX-only. This suggests that while GT induction is still intact, Zn2+ inhibition of HA-GliZ production in vivo is lost. Co-immunoprecipitation revealed that GT oxidoreductase GliT associates with GliZ in the presence of GT, suggesting a potential protective role. Additional putative HA-GliZ interacting proteins included cystathionine gamma lyase, ribosomal protein L15 and serine hydroxymethyltransferase (SHMT). Total mycelial quantitative proteomic data revealed that GliT and GtmA, as well as several other gli cluster proteins, are increased in abundance or uniquely expressed with GT addition. Proteins involved in sulphur metabolism are also differentially expressed with GT or Zn2+ presence. Overall, we disclose that under DOX induction GliZ functionality is unexpectedly evident in zinc-replete media, subject to GT induction and that GliT appears to associate with GliZ, potentially to prevent DTG-mediated GliZ inactivation by zinc ejection.
Collapse
Affiliation(s)
- Aimee M Traynor
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - José Antonio Calera
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Salamanca, Spain, Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
16
|
Wilson AM, Wingfield MJ, Wingfield BD. Truncation of MAT1-2-7 Deregulates Developmental Pathways Associated with Sexual Reproduction in Huntiella omanensis. Microbiol Spectr 2022; 10:e0142522. [PMID: 36154282 PMCID: PMC9602353 DOI: 10.1128/spectrum.01425-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/07/2022] [Indexed: 12/30/2022] Open
Abstract
The MAT1-1-1 and MAT1-2-1 genes are thought to be the master regulators of sexual development in most ascomycete fungi, and they are often essential for this process. In contrast, it has been suggested that the secondary mating-type genes act to calibrate the sexual cycle and can be dispensable. Recent functional characterization of genes such as Aspergillus fumigatus MAT1-2-4, Huntiella omanensis MAT1-2-7, and Botrytis cinerea MAT1-1-5 has, however, shown that these secondary genes may play more central roles in the sexual pathway and are essential for the production of mature fruiting structures. We used a comparative transcriptome sequencing (RNA-seq) experiment to show that the truncation of MAT1-2-7 in the wood inhabiting H. omanensis residing in the Ceratocystidaceae is associated with the differential expression of approximately 25% of all the genes present in the genome, including the transcriptional regulators ste12, wc-2, sub1, VeA, HMG8, and pro1. This suggests that MAT1-2-7 may act as a transcription factor and that ΔMAT1-2-7 mutant sterility is the result of layered deregulation of a variety of signaling and developmental pathways. This study is one of only a few that details the functional characterization of a secondary MAT gene in a nonmodel species. Given that this gene is present in other Ceratocystidaceae species and that there are diverse secondary MAT genes present throughout the Pezizomycotina, further investigation into this gene and others like it will provide a clearer understanding of sexual development in these eukaryotes. IMPORTANCE Secondary mating-type genes are being described almost as quickly as new fungal genomes are being sequenced. Understanding the functions of these genes has lagged behind their description, in part due to limited taxonomic distribution, lack of conserved functional domains, and difficulties with regard to genetic manipulation protocols. This study aimed to address this by investigating a novel mating-type gene, MAT1-2-7, for which two independent mutant strains were generated in a previous study. We characterized the molecular response to the truncation of this gene in a nonmodel, wood-infecting fungus and showed that it resulted in widespread differential expression throughout the transcriptome of this fungus. This suggests that secondary MAT genes may play a more important role than previously thought. This study also emphasizes the need for further research into the life cycles of nonmodel fungi, which often exhibit unique features that are very different from the systems understood from model species.
Collapse
Affiliation(s)
- A. M. Wilson
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| | - M. J. Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| | - B. D. Wingfield
- Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics & Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Establishment of in vivo proximity labeling with biotin using TurboID in the filamentous fungus Sordaria macrospora. Sci Rep 2022; 12:17727. [PMID: 36272986 PMCID: PMC9588061 DOI: 10.1038/s41598-022-22545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/17/2022] [Indexed: 01/18/2023] Open
Abstract
Proximity-dependent biotin identification (BioID) has emerged as a powerful methodology to identify proteins co-localizing with a given bait protein in vivo. The approach has been established in animal cells, plants and yeast but not yet in filamentous fungi. BioID relies on promiscuous biotin ligases fused to bait proteins to covalently label neighboring proteins with biotin. Biotinylated proteins are specifically enriched through biotin affinity capture from denatured cell lysates and subsequently identified and quantified with liquid chromatography-mass spectrometry (LC-MS). In contrast to many other affinity capture approaches for studying protein-protein interactions, BioID does not rely on physical protein-protein binding within native cell lysates. This feature allows the identification of protein proximities of weak or transient and dynamic nature. Here, we demonstrate the application of BioID for the fungal model organism Sordaria macrospora (Sm) using the example of the STRIPAK complex interactor 1 (SCI1) of the well-characterized striatin-interacting phosphatase and kinase (SmSTRIPAK) complex as proof of concept. For the establishment of BioID in S. macrospora, a codon-optimized TurboID biotin ligase was fused to SCI1. Biotin capture of the known SmSTRIPAK components PRO11, SmMOB3, PRO22 and SmPP2Ac1 demonstrates the successful BioID application in S. macrospora. BioID proximity labeling approaches will provide a powerful proteomics tool for fungal biologists.
Collapse
|
18
|
Lu T, Smit RB, Soueid H, Mains PE. STRIPAK regulation of katanin microtubule severing in the Caenorhabditis elegans embryo. Genetics 2022; 221:iyac043. [PMID: 35298637 PMCID: PMC9071564 DOI: 10.1093/genetics/iyac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
Microtubule severing plays important role in cell structure and cell division. The microtubule severing protein katanin, composed of the MEI-1/MEI-2 subunits in Caenorhabditis elegans, is required for oocyte meiotic spindle formation; however, it must be inactivated for mitosis to proceed as continued katanin expression is lethal. Katanin activity is regulated by 2 ubiquitin-based protein degradation pathways. Another ubiquitin ligase, HECD-1, the homolog of human HECTD1/HECT domain E3 ubiquitin protein ligase 1, regulates katanin activity without affecting katanin levels. In other organisms, HECD-1 is a component of the striatin-interacting kinase phosphatase complex, which affects cell proliferation and a variety of signaling pathways. Here we conducted a systematic screen of how mutations in striatin-interacting kinase phosphatase components affect katanin function in C. elegans. Striatin-interacting kinase phosphatase core components (FARL-11, CASH-1, LET-92, and GCK-1) were katanin inhibitors in mitosis and activators in meiosis, much like HECD-1. By contrast, variable components (SLMP-1, OTUB-2) functioned as activators of katanin activity in mitosis, indicating they may function to alter striatin-interacting kinase phosphatase core function. The core component CCM-3 acted as an inhibitor at both divisions, while other components (MOB-4, C49H3.6) showed weak interactions with katanin mutants. Additional experiments indicate that katanin may be involved with the centralspindlin complex and a tubulin chaperone. HECD-1 shows ubiquitous expression in the cytoplasm throughout meiosis and early development. The differing functions of the different subunits could contribute to the diverse functions of the striatin-interacting kinase phosphatase complex in C. elegans and other organisms.
Collapse
Affiliation(s)
- Tammy Lu
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Ryan B Smit
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Hanifa Soueid
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| | - Paul E Mains
- Department of Biochemistry and Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AL T2N 4N1, Canada
| |
Collapse
|
19
|
Tang L, Chu T, Shang J, Yang R, Song C, Bao D, Tan Q, Jian H. Oxidative Stress and Autophagy Are Important Processes in Post Ripeness and Brown Film Formation in Mycelium of Lentinula edodes. Front Microbiol 2022; 13:811673. [PMID: 35283832 PMCID: PMC8908433 DOI: 10.3389/fmicb.2022.811673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Lentinula edodes (Berk.) Pegler, the shiitake mushroom, is one of the most important mushrooms in the global mushroom industry. Although mycelium post ripeness and brown film (BF) formation are crucial for fruiting body initiation, the underlying molecular mechanisms of BF formation are largely unknown. In this study, proteomic quantification (relative and absolute) and metabolomic profiling of L. edodes were performed using isobaric tags and gas chromatography-mass spectroscopy, respectively. A total of 2,474 proteins were identified, which included 239 differentially expressed proteins. Notably, several proteins associated with autophagy were upregulated, including RPD3, TOR1, VAC8, VPS1, and VPS27. Transmission electron microscopy also indicated that autophagy occurred in post ripeness and BF formation. In time-dependent analysis of the metabolome, metabolites associated with oxidative stress and autophagy changed significantly, including mannitol, trehalose, myo-inositol, glucose, leucine, valine, glutamine, and 4-aminobutyric acid. Thus, oxidative stress and autophagy were important processes in post ripeness and BF formation in L. edodes, and new insights were gained into molecular mechanisms at proteome and metabolome levels.
Collapse
Affiliation(s)
- Lihua Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Ting Chu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China.,School of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Junjun Shang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Ruiheng Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Chunyan Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Qi Tan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture and Rural Affairs (China), National Engineering Research Center of Edible Fungi, Shanghai, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Wernet V, Wäckerle J, Fischer R. The STRIPAK component SipC is involved in morphology and cell-fate determination in the nematode-trapping fungus Duddingtonia flagrans. Genetics 2022; 220:iyab153. [PMID: 34849851 PMCID: PMC8733638 DOI: 10.1093/genetics/iyab153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) complex is a highly conserved eukaryotic signaling hub involved in the regulation of many cellular processes. In filamentous fungi, STRIPAK controls multicellular development, hyphal fusion, septation, and pathogenicity. In this study, we analyzed the role of the STRIPAK complex in the nematode-trapping fungus Duddingtonia flagrans which forms three-dimensional, adhesive trapping networks to capture Caenorhabditis elegans. Trap networks consist of several hyphal loops which are morphologically and functionally different from vegetative hyphae. We show that lack of the STRIPAK component SipC (STRIP1/2/HAM-2/PRO22) results in incomplete loop formation and column-like trap structures with elongated compartments. The misshapen or incomplete traps lost their trap identity and continued growth as vegetative hyphae. The same effect was observed in the presence of the actin cytoskeleton drug cytochalasin A. These results could suggest a link between actin and STRIPAK complex functions.
Collapse
Affiliation(s)
- Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| | - Jan Wäckerle
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT)—South Campus, D-76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Carrasco-Navarro U, Aguirre J. H 2O 2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans. J Fungi (Basel) 2021; 7:624. [PMID: 34436163 PMCID: PMC8399174 DOI: 10.3390/jof7080624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.
Collapse
Affiliation(s)
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, Ciudad de México 04510, Mexico;
| |
Collapse
|
22
|
STRIPAK, a Key Regulator of Fungal Development, Operates as a Multifunctional Signaling Hub. J Fungi (Basel) 2021; 7:jof7060443. [PMID: 34206073 PMCID: PMC8226480 DOI: 10.3390/jof7060443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 01/26/2023] Open
Abstract
The striatin-interacting phosphatases and kinases (STRIPAK) multi subunit complex is a highly conserved signaling complex that controls diverse developmental processes in higher and lower eukaryotes. In this perspective article, we summarize how STRIPAK controls diverse developmental processes in euascomycetes, such as fruiting body formation, cell fusion, sexual and vegetative development, pathogenicity, symbiosis, as well as secondary metabolism. Recent structural investigations revealed information about the assembly and stoichiometry of the complex enabling it to act as a signaling hub. Multiple organellar targeting of STRIPAK subunits suggests how this complex connects several signaling transduction pathways involved in diverse cellular developmental processes. Furthermore, recent phosphoproteomic analysis shows that STRIPAK controls the dephosphorylation of subunits from several signaling complexes. We also refer to recent findings in yeast, where the STRIPAK homologue connects conserved signaling pathways, and based on this we suggest how so far non-characterized proteins may functions as receptors connecting mitophagy with the STRIPAK signaling complex. Such lines of investigation should contribute to the overall mechanistic understanding of how STRIPAK controls development in euascomycetes and beyond.
Collapse
|
23
|
Targeted Quantification of Phosphorylation Sites Identifies STRIPAK-Dependent Phosphorylation of the Hippo Pathway-Related Kinase SmKIN3. mBio 2021; 12:mBio.00658-21. [PMID: 33947760 PMCID: PMC8262875 DOI: 10.1128/mbio.00658-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We showed recently that the germinal center kinase III (GCKIII) SmKIN3 from the fungus Sordaria macrospora is involved in sexual development and hyphal septation. Our recent extensive global proteome and phosphoproteome analysis revealed that SmKIN3 is a target of the striatin-interacting phosphatase and kinase (STRIPAK) multisubunit complex. Here, using protein samples from the wild type and three STRIPAK mutants, we applied absolute quantification by parallel-reaction monitoring (PRM) to analyze phosphorylation site occupancy in SmKIN3 and other septation initiation network (SIN) components, such as CDC7 and DBF2, as well as BUD4, acting downstream of SIN. For SmKIN3, we show that phosphorylation of S668 and S686 is decreased in mutants lacking distinct subunits of STRIPAK, while a third phosphorylation site, S589, was not affected. We constructed SmKIN3 mutants carrying phospho-mimetic and phospho-deficient codons for phosphorylation sites S589, S668, and S686. Investigation of hyphae in a ΔSmkin3 strain complemented by the S668 and S686 mutants showed a hyper-septation phenotype, which was absent in the wild type, the ΔSmkin3 strain complemented with the wild-type gene, and the S589 mutant. Furthermore, localization studies with SmKIN3 phosphorylation variants and STRIPAK mutants showed that SmKIN3 preferentially localizes at the terminal septa, which is distinctly different from the localization of the wild-type strains. We conclude that STRIPAK-dependent phosphorylation of SmKIN3 has an impact on controlled septum formation and on the time-dependent localization of SmKIN3 on septa at the hyphal tip. Thus, STRIPAK seems to regulate SmKIN3, as well as DBF2 and BUD4 phosphorylation, affecting septum formation.
Collapse
|
24
|
Zhang S, Dong Y, Qiang R, Zhang Y, Zhang X, Chen Y, Jiang P, Ma X, Wu L, Ai J, Gao X, Wang P, Chen J, Chai R. Characterization of Strip1 Expression in Mouse Cochlear Hair Cells. Front Genet 2021; 12:625867. [PMID: 33889175 PMCID: PMC8056008 DOI: 10.3389/fgene.2021.625867] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/12/2021] [Indexed: 12/13/2022] Open
Abstract
Striatin-interacting protein 1 (Strip1) is a core component of the striatin interacting phosphatase and kinase (STRIPAK) complex, which is involved in embryogenesis and development, circadian rhythms, type 2 diabetes, and cancer progression. However, the expression and role of Strip1 in the mammalian cochlea remains unclear. Here we studied the expression and function of Strip1 in the mouse cochlea by using Strip1 knockout mice. We first found that the mRNA and protein expression of Strip1 increases as mice age starting from postnatal day (P) 3 and reaches its highest expression level at P30 and that the expression of Strip1 can be detected by immunofluorescent staining starting from P14 only in cochlear HCs, and not in supporting cells (SCs). Next, we crossed Strip1 heterozygous knockout (Strip +/-) mice to obtain Strip1 homozygous knockout (Strip1-/-) mice for studying the role of Strip1 in cochlear HCs. However, no Strip1-/- mice were obtained and the ratio of Strip +/- to Strip1+/+ mice per litter was about 2:1, which suggested that homozygous Strip1 knockout is embryonic lethal. We measured hearing function and counted the HC number in P30 and P60 Strip +/- mice and found that they had normal hearing ability and HC numbers compared to Strip1+/+ mice. Our study suggested that Strip1 probably play important roles in HC development and maturation, which needs further study in the future.
Collapse
Affiliation(s)
- Shasha Zhang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ying Dong
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ruiying Qiang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiaoli Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Pengjun Wang
- Department of Otorhinolaryngology, Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
De Jamblinne CV, Decelle B, Dehghani M, Joseph M, Sriskandarajah N, Leguay K, Rambaud B, Lemieux S, Roux PP, Hipfner DR, Carréno S. STRIPAK regulates Slik localization to control mitotic morphogenesis and epithelial integrity. J Cell Biol 2021; 219:152107. [PMID: 32960945 PMCID: PMC7594492 DOI: 10.1083/jcb.201911035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 07/17/2020] [Accepted: 08/20/2020] [Indexed: 02/01/2023] Open
Abstract
Proteins of the ezrin, radixin, and moesin (ERM) family control cell and tissue morphogenesis. We previously reported that moesin, the only ERM in Drosophila, controls mitotic morphogenesis and epithelial integrity. We also found that the Pp1-87B phosphatase dephosphorylates moesin, counteracting its activation by the Ste20-like kinase Slik. To understand how this signaling pathway is itself regulated, we conducted a genome-wide RNAi screen, looking for new regulators of moesin activity. We identified that Slik is a new member of the striatin-interacting phosphatase and kinase complex (STRIPAK). We discovered that the phosphatase activity of STRIPAK reduces Slik phosphorylation to promote its cortical association and proper activation of moesin. Consistent with this finding, inhibition of STRIPAK phosphatase activity causes cell morphology defects in mitosis and impairs epithelial tissue integrity. Our results implicate the Slik–STRIPAK complex in the control of multiple morphogenetic processes.
Collapse
Affiliation(s)
- Camille Valérie De Jamblinne
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Barbara Decelle
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada
| | - Mehrnoush Dehghani
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Mathieu Joseph
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Neera Sriskandarajah
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Kévin Leguay
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Basile Rambaud
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Département de Biochimie, Université de Montréal, Montréal, Quebec, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada.,Département de Pathologie et de Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada
| | - David R Hipfner
- Institut de recherches cliniques de Montréal, Montréal, Quebec, Canada.,Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada.,Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Sébastien Carréno
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada.,Programmes de biologie moléculaire, Université de Montréal, Montréal, Quebec, Canada.,Département de Pathologie et de Biologie Cellulaire, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
26
|
Innokentev A, Furukawa K, Fukuda T, Saigusa T, Inoue K, Yamashita SI, Kanki T. Association and dissociation between the mitochondrial Far complex and Atg32 regulate mitophagy. eLife 2020; 9:63694. [PMID: 33317697 PMCID: PMC7738187 DOI: 10.7554/elife.63694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022] Open
Abstract
Mitophagy plays an important role in mitochondrial homeostasis. In yeast, the phosphorylation of the mitophagy receptor Atg32 by casein kinase 2 is essential for mitophagy. This phosphorylation is counteracted by the yeast equivalent of the STRIPAK complex consisting of the PP2A-like protein phosphatase Ppg1 and Far3-7-8-9-10-11 (Far complex), but the underlying mechanism remains elusive. Here we show that two subpopulations of the Far complex reside in the mitochondria and endoplasmic reticulum, respectively, and play distinct roles; the former inhibits mitophagy via Atg32 dephosphorylation, and the latter regulates TORC2 signaling. Ppg1 and Far11 form a subcomplex, and Ppg1 activity is required for the assembling integrity of Ppg1-Far11-Far8. The Far complex preferentially interacts with phosphorylated Atg32, and this interaction is weakened by mitophagy induction. Furthermore, the artificial tethering of Far8 to Atg32 prevents mitophagy. Taken together, the Ppg1-mediated Far complex formation and its dissociation from Atg32 are crucial for mitophagy regulation.
Collapse
Affiliation(s)
- Aleksei Innokentev
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kentaro Furukawa
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tetsu Saigusa
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keiichi Inoue
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
27
|
Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Delgado ILS, Carmona B, Nolasco S, Santos D, Leitão A, Soares H. MOB: Pivotal Conserved Proteins in Cytokinesis, Cell Architecture and Tissue Homeostasis. BIOLOGY 2020; 9:biology9120413. [PMID: 33255245 PMCID: PMC7761452 DOI: 10.3390/biology9120413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/08/2023]
Abstract
The MOB family proteins are constituted by highly conserved eukaryote kinase signal adaptors that are often essential both for cell and organism survival. Historically, MOB family proteins have been described as kinase activators participating in Hippo and Mitotic Exit Network/ Septation Initiation Network (MEN/SIN) signaling pathways that have central roles in regulating cytokinesis, cell polarity, cell proliferation and cell fate to control organ growth and regeneration. In metazoans, MOB proteins act as central signal adaptors of the core kinase module MST1/2, LATS1/2, and NDR1/2 kinases that phosphorylate the YAP/TAZ transcriptional co-activators, effectors of the Hippo signaling pathway. More recently, MOBs have been shown to also have non-kinase partners and to be involved in cilia biology, indicating that its activity and regulation is more diverse than expected. In this review, we explore the possible ancestral role of MEN/SIN pathways on the built-in nature of a more complex and functionally expanded Hippo pathway, by focusing on the most conserved components of these pathways, the MOB proteins. We discuss the current knowledge of MOBs-regulated signaling, with emphasis on its evolutionary history and role in morphogenesis, cytokinesis, and cell polarity from unicellular to multicellular organisms.
Collapse
Affiliation(s)
- Inês L. S. Delgado
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
| | - Bruno Carmona
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
| | - Dulce Santos
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Alexandre Leitão
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: or
| |
Collapse
|
29
|
Gupta R, Kumar G, Jain BP, Chandra S, Goswami SK. Ectopic expression of 35 kDa and knocking down of 78 kDa SG2NAs induce cytoskeletal reorganization, alter membrane sialylation, and modulate the markers of EMT. Mol Cell Biochem 2020; 476:633-648. [PMID: 33083950 DOI: 10.1007/s11010-020-03932-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/07/2020] [Indexed: 12/01/2022]
Abstract
SG2NA is a protein of the striatin family that organizes STRIPAK complexes. It has splice variants expressing differentially in tissues. Its 78 kDa isoform regulates cell cycle, maintains homeostasis in the endoplasmic reticulum, and prevents oxidative injuries. The 35 kDa variant is devoid of the signature WD-40 repeats in the carboxy terminal, and its function is unknown. We expressed it in NIH 3T3 cells that otherwise express 78 kDa variant only. These cells (35 EE) have altered morphology, faster rate of migration, and enhanced growth as measured by the MTT assay. Similar phenotypes were also seen in cells where the endogenous 78 kDa isoform was downregulated by siRNA (78 KD). Proteomic analyses showed that several cancer-associated proteins are modulated in both 35 EE and 78 KD cells. The 35 EE cells have diffused actin fibers, distinctive ultrastructure, reduced sialylation, and increased expression of MMP2 & 9. The 78 KD cells also had diffused actin fibers and an upregulated expression of MMP2. In both cells, markers epithelial to mesenchymal transition (EMT) viz, E- & N-cadherins, β-catenin, slug, vimentin, and ZO-1 were modulated partially in tune with the EMT process. Since NIH 3T3 cells are mesenchymal, we also expressed 35 kDa SG2NA in MCF-7 cells of epithelial origin. In these cells (MCF-7-35), the actin fibers were also diffused and the modulation of the markers was more in tune with the EMT process. However, unlike in 35 EE cells, in MCF-7-35 cells, membrane sialylation rather increased. We infer that ectopic expression of 35 kDa and downregulation of 78 kDa SG2NAs partially induce transformed phenotypes.
Collapse
Affiliation(s)
- Richa Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Gaurav Kumar
- Peptide and Proteomics Division, Defense Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110054, India
| | - Buddhi Prakash Jain
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India
| | - Sunandini Chandra
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
30
|
Frawley D, Bayram Ö. The pheromone response module, a mitogen-activated protein kinase pathway implicated in the regulation of fungal development, secondary metabolism and pathogenicity. Fungal Genet Biol 2020; 144:103469. [PMID: 32950720 DOI: 10.1016/j.fgb.2020.103469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are highly conserved from yeast to human and are required for the regulation of a multitude of biological processes in eukaryotes. A pentameric MAPK pathway known as the Fus3 pheromone module was initially characterised in Saccharomyces cerevisiae and was shown to regulate cell fusion and sexual development. Individual orthologous pheromone module genes have since been found to be highly conserved in fungal genomes and have been shown to regulate a diverse array of cellular responses, such as cell growth, asexual and sexual development, secondary metabolite production and pathogenicity. However, information regarding the assembly and structure of orthologous pheromone modules, as well as the mechanisms of signalling and their biological significance is limited, specifically in filamentous fungal species. Recent studies have provided insight on the utilization of the pheromone module as a central signalling hub for the co-ordinated regulation of fungal development and secondary metabolite production. Various proteins of this pathway are also known to regulate reproduction and virulence in a range of plant pathogenic fungi. In this review, we discuss recent findings that help elucidate the structure of the pheromone module pathway in a myriad of fungal species and its implications in the control of fungal growth, development, secondary metabolism and pathogenicity.
Collapse
Affiliation(s)
- Dean Frawley
- Biology Department, Callan Building, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Özgür Bayram
- Biology Department, Callan Building, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
31
|
Stein V, Blank-Landeshammer B, Müntjes K, Märker R, Teichert I, Feldbrügge M, Sickmann A, Kück U. The STRIPAK signaling complex regulates dephosphorylation of GUL1, an RNA-binding protein that shuttles on endosomes. PLoS Genet 2020; 16:e1008819. [PMID: 32997654 PMCID: PMC7550108 DOI: 10.1371/journal.pgen.1008819] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/12/2020] [Accepted: 08/17/2020] [Indexed: 12/03/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) multi-subunit signaling complex is highly conserved within eukaryotes. In fungi, STRIPAK controls multicellular development, morphogenesis, pathogenicity, and cell-cell recognition, while in humans, certain diseases are related to this signaling complex. To date, phosphorylation and dephosphorylation targets of STRIPAK are still widely unknown in microbial as well as animal systems. Here, we provide an extended global proteome and phosphoproteome study using the wild type as well as STRIPAK single and double deletion mutants (Δpro11, Δpro11Δpro22, Δpp2Ac1Δpro22) from the filamentous fungus Sordaria macrospora. Notably, in the deletion mutants, we identified the differential phosphorylation of 129 proteins, of which 70 phosphorylation sites were previously unknown. Included in the list of STRIPAK targets are eight proteins with RNA recognition motifs (RRMs) including GUL1. Knockout mutants and complemented transformants clearly show that GUL1 affects hyphal growth and sexual development. To assess the role of GUL1 phosphorylation on fungal development, we constructed phospho-mimetic and -deficient mutants of GUL1 residues. While S180 was dephosphorylated in a STRIPAK-dependent manner, S216, and S1343 served as non-regulated phosphorylation sites. While the S1343 mutants were indistinguishable from wild type, phospho-deficiency of S180 and S216 resulted in a drastic reduction in hyphal growth, and phospho-deficiency of S216 also affects sexual fertility. These results thus suggest that differential phosphorylation of GUL1 regulates developmental processes such as fruiting body maturation and hyphal morphogenesis. Moreover, genetic interaction studies provide strong evidence that GUL1 is not an integral subunit of STRIPAK. Finally, fluorescence microscopy revealed that GUL1 co-localizes with endosomal marker proteins and shuttles on endosomes. Here, we provide a new mechanistic model that explains how STRIPAK-dependent and -independent phosphorylation of GUL1 regulates sexual development and asexual growth.
Collapse
Affiliation(s)
- Valentina Stein
- Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | | | - Kira Müntjes
- Institut für Mikrobiologie, Cluster of Excellence on Plant Sciences, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Ramona Märker
- Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | - Ines Teichert
- Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | - Michael Feldbrügge
- Institut für Mikrobiologie, Cluster of Excellence on Plant Sciences, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| |
Collapse
|
32
|
Frawley D, Stroe MC, Oakley BR, Heinekamp T, Straßburger M, Fleming AB, Brakhage AA, Bayram Ö. The Pheromone Module SteC-MkkB-MpkB-SteD-HamE Regulates Development, Stress Responses and Secondary Metabolism in Aspergillus fumigatus. Front Microbiol 2020; 11:811. [PMID: 32457716 PMCID: PMC7223695 DOI: 10.3389/fmicb.2020.00811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
In order for eukaryotes to efficiently detect and respond to environmental stimuli, a myriad of protein signaling pathways are utilized. An example of highly conserved signaling pathways in eukaryotes are the mitogen-activated protein kinase (MAPK) pathways. In fungi, MAPK pathways have been shown to regulate a diverse array of biological processes, such as asexual and sexual development, stress responses and the production of secondary metabolites (SMs). In the model fungus Aspergillus nidulans, a MAPK pathway known as the pheromone module is utilized to regulate both development and SM production. This signaling cascade consists of the three kinases SteC, MkkB, and MpkB, as well as the SteD adaptor protein and the HamE scaffold. In this study, homologs of each of these proteins have been identified in the opportunistic human pathogen A. fumigatus. By performing epitope tagging and mass spectrometry experiments, we have shown that these proteins form a pentameric complex, similar to what is observed in A. nidulans. This complex has been shown to assemble in the cytoplasm and MpkB enters the nucleus, where it would presumably interact with various transcription factors. Pheromone module mutant strains exhibit drastic reductions in asexual sporulation, vegetative growth rate and production of SMs, such as gliotoxin. Mutants also display increased sensitivity to cell wall and oxidative stress agents. Overall, these data provide evidence of the existence of a conserved MAP kinase signaling pathway in Aspergillus species and suggest that this pathway is critical for the regulation of fungal development and secondary metabolism.
Collapse
Affiliation(s)
- Dean Frawley
- Department of Biology, Fungal Genetics and Secondary Metabolism Laboratory, Maynooth University, Maynooth, Ireland
| | - Maria C Stroe
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Maria Straßburger
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Alastair B Fleming
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Hans Knöll Institute (HKI), Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Özgür Bayram
- Department of Biology, Fungal Genetics and Secondary Metabolism Laboratory, Maynooth University, Maynooth, Ireland
| |
Collapse
|
33
|
Frawley D, Bayram Ö. Identification of SkpA-CulA-F-box E3 ligase complexes in pathogenic Aspergilli. Fungal Genet Biol 2020; 140:103396. [PMID: 32325169 DOI: 10.1016/j.fgb.2020.103396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/29/2022]
Abstract
The ubiquitin proteasome system is critical for the regulation of protein turnover, which is implicated in the modulation of a wide array of biological processes in eukaryotes, ranging from cell senescence to virulence in plant and human hosts. Proteins to be marked for ubiquitination and subsequent degradation are bound by F-box proteins, which are interchangeable substrate-recognising receptors. These F-box proteins bind a wide range of substrates and associate with the adaptor protein Skp1 and the scaffold Cul1 to form Skp1-Cul1-F-box (SCF) complexes. SCF complex components are highly conserved in eukaryotes, ranging from yeast to humans. However, information regarding the composition of these complexes and the biological roles of F-box proteins is limited, specifically in filamentous fungal species like the genus Aspergillus. In this study, we have identified 51 and 55 fbx-encoding genes in the genomes of two pathogenic fungi, A. fumigatus and A. flavus, respectively. Immunoprecipitations of the HA-tagged SkpA adaptor protein revealed that 26 F-box proteins in A. fumigatus and 30 F-box proteins in A. flavus are involved in SCF complex formation during vegetative growth. These interactome data also revealed that a diverse array of SCF complex conformations exist in response to various exogenous stressors. Lastly, we have provided evidence that the F-box protein Fbx45 interacts with SkpA in both species in response to Amphotericin B. Orthologs of the fbx45 gene are highly conserved in Aspergillus species, but are not present within the genomes of organisms such as yeast, plants or humans. This suggests that Fbx45 could potentially be a novel F-box protein that is unique to specific filamentous fungi such as Aspergillus species.
Collapse
Affiliation(s)
- Dean Frawley
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Özgür Bayram
- Biology Department, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
34
|
Kück U, Radchenko D, Teichert I. STRIPAK, a highly conserved signaling complex, controls multiple eukaryotic cellular and developmental processes and is linked with human diseases. Biol Chem 2019; 400:1005-1022. [PMID: 31042639 DOI: 10.1515/hsz-2019-0173] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/28/2019] [Indexed: 01/17/2023]
Abstract
The striatin-interacting phosphatases and kinases (STRIPAK) complex is evolutionary highly conserved and has been structurally and functionally described in diverse lower and higher eukaryotes. In recent years, this complex has been biochemically characterized better and further analyses in different model systems have shown that it is also involved in numerous cellular and developmental processes in eukaryotic organisms. Further recent results have shown that the STRIPAK complex functions as a macromolecular assembly communicating through physical interaction with other conserved signaling protein complexes to constitute larger dynamic protein networks. Here, we will provide a comprehensive and up-to-date overview of the architecture, function and regulation of the STRIPAK complex and discuss key issues and future perspectives, linked with human diseases, which may form the basis of further research endeavors in this area. In particular, the investigation of bi-directional interactions between STRIPAK and other signaling pathways should elucidate upstream regulators and downstream targets as fundamental parts of a complex cellular network.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Daria Radchenko
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Ines Teichert
- Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| |
Collapse
|