1
|
Sessa G, Carabelli M, Sassi M. The Ins and Outs of Homeodomain-Leucine Zipper/Hormone Networks in the Regulation of Plant Development. Int J Mol Sci 2024; 25:5657. [PMID: 38891845 PMCID: PMC11171833 DOI: 10.3390/ijms25115657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The generation of complex plant architectures depends on the interactions among different molecular regulatory networks that control the growth of cells within tissues, ultimately shaping the final morphological features of each structure. The regulatory networks underlying tissue growth and overall plant shapes are composed of intricate webs of transcriptional regulators which synergize or compete to regulate the expression of downstream targets. Transcriptional regulation is intimately linked to phytohormone networks as transcription factors (TFs) might act as effectors or regulators of hormone signaling pathways, further enhancing the capacity and flexibility of molecular networks in shaping plant architectures. Here, we focus on homeodomain-leucine zipper (HD-ZIP) proteins, a class of plant-specific transcriptional regulators, and review their molecular connections with hormonal networks in different developmental contexts. We discuss how HD-ZIP proteins emerge as key regulators of hormone action in plants and further highlight the fundamental role that HD-ZIP/hormone networks play in the control of the body plan and plant growth.
Collapse
Affiliation(s)
| | | | - Massimiliano Sassi
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy; (G.S.); (M.C.)
| |
Collapse
|
2
|
Sinha S, Sahadevan S, Ohno C, Ram H, Heisler MG. Global gene regulatory network underlying miR165a in Arabidopsis shoot apical meristem. Sci Rep 2023; 13:22258. [PMID: 38097643 PMCID: PMC10721644 DOI: 10.1038/s41598-023-49093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Arabidopsis microRNA165a (miR165a) targets Class III Homeodomain Leucine-Zipper (HD-ZIPIII) transcription factors to regulate various aspects of plant development and stress response. Over-expression of miR165a mimics the loss-of-function phenotype of HD-ZIPIII genes and leading to ectopic organ formation, shoot apical meristem (SAM) termination, loss of leaf polarity, and defective vasculature development. However, the molecular mechanisms underlying these phenotypes remain unresolved. Here, we over-expressed miR165a in a dexamethasone inducible manner and identified differentially expressed genes in the SAM through RNA-Seq. Simultaneously, using multi-channel FACS combined with RNA-Seq approach, we characterized global transcriptome patterns in miR165a expressing cell-types compared to HD-ZIPIII expressing cell-types and other cell-types in SAM. By integrating our results we identified sets of genes which are up-regulated by miR165a as well have enriched expression in miR165a cell-types, and vice-versa. Known plant development related genes such as HD-ZIPIII and their targets LITTLE ZIPPERs, Like AUXIN RESISTANT 2, BEL1-like homeodomain 6, ROTUNDIFOLIA like 16 were found to be down-regulated. Among the up-regulated genes, GIBBERELLIN 2-OXIDASEs, various elemental transporters (YSL3, ZIFL1, SULTR), and other transporter genes were prominent. Thus, the genes identified in this study help to unravel the molecular mechanism of miR165a and HD-ZIPIII regulated plant development and stress response.
Collapse
Affiliation(s)
- Sonali Sinha
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | - Sudeep Sahadevan
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
| | - Carolyn Ohno
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India.
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.
| | - Marcus G Heisler
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, Germany.
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Dai Y, Luo L, Zhao Z. Genetic robustness control of auxin output in priming organ initiation. Proc Natl Acad Sci U S A 2023; 120:e2221606120. [PMID: 37399382 PMCID: PMC10334806 DOI: 10.1073/pnas.2221606120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/17/2023] [Indexed: 07/05/2023] Open
Abstract
Auxin signaling is essential for organ initiation in plants. How genetic robustness controls auxin output during organ initiation is largely unknown. Here, we identified DORNROSCHEN-LIKE (DRNL) as a target of MONOPTEROS (MP) that plays essential roles in organ initiation. We demonstrate that MP physically interacts with DRNL to inhibit cytokinin accumulation by directly activating ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 and CYTOKININ OXIDASE 6. DRN, the paralogous gene of DRNL, acts redundantly with DRNL but is not coexpressed with DRNL in the organ founder cells in which DRNL is expressed. We demonstrate that DRNL directly inhibits DRN expression in the peripheral zone, whereas DRN transcripts are ectopically activated in drnl mutants and fully restore the functional deficiency of drnl in organ initiation. Our results provide a mechanistic framework for the robust control of auxin signaling in organ initiation through paralogous gene-triggered spatial gene compensation effects.
Collapse
Affiliation(s)
- Yuqiu Dai
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Ministry of Education Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| | - Linjie Luo
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu241000, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu241000, China
| | - Zhong Zhao
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Ministry of Education Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230027, China
| |
Collapse
|
4
|
Hagelthorn L, Monfared MM, Talo A, Harmon FG, Fletcher JC. Unique and overlapping functions for the transcriptional regulators KANADI1 and ULTRAPETALA1 in Arabidopsis gynoecium and stamen gene regulation. PLANT DIRECT 2023; 7:e496. [PMID: 37168319 PMCID: PMC10165739 DOI: 10.1002/pld3.496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
Plants generate their reproductive organs, the stamens and the carpels, de novo within the flowers that form when the plant reaches maturity. The carpels comprise the female reproductive organ, the gynoecium, a complex organ that develops along several axes of polarity and is crucial for plant reproduction, fruit formation, and seed dispersal. The epigenetic trithorax group (trxG) protein ULTRAPETALA1 (ULT1) and the GARP domain transcription factor KANADI1 (KAN1) act cooperatively to regulate Arabidopsis thaliana gynoecium patterning along the apical-basal polarity axis; however, the molecular pathways through which this patterning activity is achieved remain to be explored. In this study, we used transcriptomics to identify genome-wide ULT1 and KAN1 target genes during reproductive development. We discovered 278 genes in developing flowers that are regulated by ULT1, KAN1, or both factors together. Genes involved in developmental and reproductive processes are overrepresented among ULT1 and/or KAN1 target genes, along with genes involved in biotic or abiotic stress responses. Consistent with their function in regulating gynoecium patterning, a number of the downstream target genes are expressed in the developing gynoecium, including a unique subset restricted to the stigmatic tissue. Further, we also uncovered a number of KAN1- and ULT1-induced genes that are transcribed predominantly or exclusively in developing stamens. These findings reveal a potential cooperative role for ULT1 and KAN1 in male as well as female reproductive development that can be investigated with future genetic and molecular experiments.
Collapse
Affiliation(s)
- Lynne Hagelthorn
- Plant Gene Expression CenterUnited States Department of Agriculture‐Agricultural Research ServiceAlbanyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Mona M. Monfared
- Present address:
Department of Molecular and Cellular BiologyUniversity of California, DavisDavisCaliforniaUSA
| | - Anthony Talo
- Biology DepartmentSt. Mary's College of CaliforniaMoragaCaliforniaUSA
| | - Frank G. Harmon
- Plant Gene Expression CenterUnited States Department of Agriculture‐Agricultural Research ServiceAlbanyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Jennifer C. Fletcher
- Plant Gene Expression CenterUnited States Department of Agriculture‐Agricultural Research ServiceAlbanyCaliforniaUSA
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
5
|
Chahtane H, Lai X, Tichtinsky G, Rieu P, Arnoux-Courseaux M, Cancé C, Marondedze C, Parcy F. Flower Development in Arabidopsis. Methods Mol Biol 2023; 2686:3-38. [PMID: 37540352 DOI: 10.1007/978-1-0716-3299-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Like in other angiosperms, the development of flowers in Arabidopsis starts right after the floral transition, when the shoot apical meristem (SAM) stops producing leaves and makes flowers instead. On the flanks of the SAM emerge the flower meristems (FM) that will soon differentiate into the four main floral organs, sepals, petals, stamens, and pistil, stereotypically arranged in concentric whorls. Each phase of flower development-floral transition, floral bud initiation, and floral organ development-is under the control of specific gene networks. In this chapter, we describe these different phases and the gene regulatory networks involved, from the floral transition to the floral termination.
Collapse
Affiliation(s)
- Hicham Chahtane
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Institut de Recherche Pierre Fabre, Green Mission Pierre Fabre, Conservatoire Botanique Pierre Fabre, Soual, France
| | - Xuelei Lai
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Wuhan, China
| | | | - Philippe Rieu
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Coralie Cancé
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
| | - Claudius Marondedze
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France
- Department of Biochemistry, Faculty of Medicine, Midlands State University, Senga, Gweru, Zimbabwe
| | - François Parcy
- CNRS, Université Grenoble Alpes, CEA, INRAE, IRIG, BIG-LPCV, Grenoble, France.
| |
Collapse
|
6
|
Venugopala Reddy G. Protoplasting and Fluorescence-Activated Cell Sorting of the Shoot Apical Meristem Cell Types. Methods Mol Biol 2023; 2686:293-300. [PMID: 37540364 DOI: 10.1007/978-1-0716-3299-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The shoot apical meristems (SAMs) are located at the tip of the shoot apex. The SAM harbors stem cells that divide continually to provide cells for developing above-ground organs. Several important developmental events occur in SAMs, such as stem cell maintenance, organ differentiation, and flowering commitment which are under genetic control. The SAM is a collection of specialized cells organized in specific spatial domains. Deciphering the gene regulatory networks, guided by the developmental and environmental signals, in these discrete cell types is essential to decoding the SAM function. Here, I provide updates to the previously published protocols for the protoplasting and subsequent purification through fluorescence-activated cell sorting (FACS) of SAM cell types (Reddy, Fluorescence activated cell sorting of shoot apical meristem cell types. In: Riechmann JL, Wellmer F (eds) Flower development. Methods in molecular biology, vol 1110. Humana, New York, pp 315-321, 2014), which has provided genome-wide gene expression patterns at a single cell-type resolution.
Collapse
Affiliation(s)
- G Venugopala Reddy
- Department of Botany and Plant Sciences, Center for Plant Cell Biology (CEPCEB), Institute of Integrative Genome Biology (IIGB), University of California, Riverside, CA, USA.
| |
Collapse
|
7
|
Alam I, Manghwar H, Zhang H, Yu Q, Ge L. Identification of GOLDEN2-like transcription factor genes in soybeans and their role in regulating plant development and metal ion stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1052659. [PMID: 36438095 PMCID: PMC9691782 DOI: 10.3389/fpls.2022.1052659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The Golden 2-Like (G2-like or GLK) transcription factors are essential for plant growth, development, and many stress responses as well as heavy metal stress. However, G2-like regulatory genes have not been studied in soybean. This study identified the genes for 130 G2-Like candidates' in the genome of Glycine max (soybean). These GLK genes were located on all 20 chromosomes, and several of them were segmentally duplicated. Most GLK family proteins are highly conserved in Arabidopsis and soybean and were classified into five major groups based on phylogenetic analysis. These GmGLK gene promoters share cis-acting elements involved in plant responses to abscisic acid, methyl jasmonate, auxin signaling, low temperature, and biotic and abiotic stresses. RNA-seq expression data revealed that the GLK genes were classified into 12 major groups and differentially expressed in different tissues or organs. The co-expression network complex revealed that the GmGLK genes encode proteins involved in the interaction of genes related to chlorophyll biosynthesis, circadian rhythms, and flowering regulation. Real-time quantitative PCR analysis confirmed the expression profiles of eight GLK genes in response to cadmium (Cd) and copper (Cu) stress, with some GLK genes significantly induced by both Cd and Cu stress treatments, implying a functional role in defense responsiveness. Thus, we present a comprehensive perspective of the GLK genes in soybean and emphasize their important role in crop development and metal ion stresses.
Collapse
Affiliation(s)
- Intikhab Alam
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
- College of Life Sciences, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
- Guangdong Subcenter of the National Center for Soybean Improvement, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
| | - Hakim Manghwar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
| | - Hanyin Zhang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
- Guangdong Subcenter of the National Center for Soybean Improvement, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
| | - Qianxia Yu
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
- Guangdong Subcenter of the National Center for Soybean Improvement, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
| | - Liangfa Ge
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
- Guangdong Subcenter of the National Center for Soybean Improvement, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Heisler MG, Jönsson H, Wenkel S, Kaufmann K. Context-specific functions of transcription factors controlling plant development: From leaves to flowers. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102262. [PMID: 35952407 DOI: 10.1016/j.pbi.2022.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Plant development is regulated by transcription factors that often act in more than one process and stage of development. Yet the molecular mechanisms that govern the functional diversity and specificity of these proteins remains far from understood. Flower development provides an ideal context to study these mechanisms since the development of distinct floral organs depends on similar but distinct combinations of transcriptional regulators. Recent work also highlights the importance of leaf polarity regulators as additional key factors in flower initiation, floral organ morphogenesis, and possibly floral organ positioning. A detailed understanding of how these factors work in combination will enable us to address outstanding questions in flower development including how distinct shapes and positions of floral organs are generated. Experimental approaches and computer-based modeling will be required to characterize gene-regulatory networks at the level of single cells.
Collapse
Affiliation(s)
- Marcus G Heisler
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, UK; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK; Computational Biology and Biological Physics, Lund University, Sweden
| | - Stephan Wenkel
- Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Kerstin Kaufmann
- Humboldt-Universität zu Berlin, Institute of Biology, Philippstr. 13, 10115, Berlin, Germany.
| |
Collapse
|
9
|
Yue C, Chen Q, Hu J, Li C, Luo L, Zeng L. Genome-Wide Identification and Characterization of GARP Transcription Factor Gene Family Members Reveal Their Diverse Functions in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:947072. [PMID: 35845671 PMCID: PMC9280663 DOI: 10.3389/fpls.2022.947072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Golden2, ARR-B, Psr1 (GARP) proteins are plant-specific transcription factors that play vital and diverse roles in plants. However, systematic research on the GARP gene family in plants, including tea plant (Camellia sinensis), is scarce. In this study, a total of 69 GARP genes were identified and characterized from the tea plant genome based on the B-motif sequence signature. The CsGARP genes were clustered into five subfamilies: PHR1/PHL1, KAN, NIGT1/HRS1/HHO, GLK and ARR-B subfamilies. The phylogenetic relationships, gene structures, chromosomal locations, conserved motifs and regulatory cis-acting elements of the CsGARP family members were comprehensively analyzed. The expansion of CsGARP genes occurred via whole-genome duplication/segmental duplication, proximal duplication, and dispersed duplication under purifying selective pressure. The expression patterns of the CsGARP genes were systematically explored from various perspectives: in different tissues during different seasons; in different leaf color stages of tea plant; under aluminum treatment and nitrogen treatment; and in response to abiotic stresses such as cold, drought and salt and to biotic stress caused by Acaphylla theae. The results demonstrate that CsGARP family genes are ubiquitously expressed and play crucial roles in the regulation of growth and development of tea plant and the responses to environmental stimuli. Collectively, these results not only provide valuable information for further functional investigations of CsGARPs in tea plant but also contribute to broadening our knowledge of the functional diversity of GARP family genes in plants.
Collapse
Affiliation(s)
- Chuan Yue
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| | - Qianqian Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juan Hu
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Congcong Li
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liyong Luo
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| | - Liang Zeng
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Zhao X, Yang J, Li X, Li G, Sun Z, Chen Y, Chen Y, Xia M, Li Y, Yao L, Hou H. Identification and expression analysis of GARP superfamily genes in response to nitrogen and phosphorus stress in Spirodela polyrhiza. BMC PLANT BIOLOGY 2022; 22:308. [PMID: 35751022 PMCID: PMC9233324 DOI: 10.1186/s12870-022-03696-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/13/2022] [Indexed: 06/12/2023]
Abstract
BACKGROUND GARP transcription factors perform critical roles in plant development and response to environmental stimulus, especially in the phosphorus (P) and nitrogen (N) sensing and uptake. Spirodela polyrhiza (giant duckweed) is widely used for phytoremediation and biomass production due to its rapid growth and efficient N and P removal capacities. However, there has not yet been a comprehensive analysis of the GRAP gene family in S. polyrhiza. RESULTS We conducted a comprehensive study of GRAP superfamily genes in S. polyrhiza. First, we investigated 35 SpGARP genes which have been classified into three groups based on their gene structures, conserved motifs, and phylogenetic relationship. Then, we identified the duplication events, performed the synteny analysis, and calculated the Ka/Ks ratio in these SpGARP genes. The regulatory and co-expression networks of SpGARPs were further constructed using cis-acting element analysis and weighted correlation network analysis (WGCNA). Finally, the expression pattern of SpGARP genes were analyzed using RNA-seq data and qRT-PCR, and several NIGT1 transcription factors were found to be involved in both N and P starvation responses. CONCLUSIONS The study provides insight into the evolution and function of GARP superfamily in S. polyrhiza, and lays the foundation for the further functional verification of SpGARP genes.
Collapse
Affiliation(s)
- Xuyao Zhao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingjing Yang
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaozhe Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaojie Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoliang Sun
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yimeng Chen
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Manli Xia
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yixian Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lunguang Yao
- Henan Key Laboratory of Ecological Security for Water Source Region of Mid-Line of South-to-North Diversion Project of Henan Province, Collaborative Innovation Center of Water Security for Water Source Region of Mid-Line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang, 473061, China
| | - Hongwei Hou
- The State Key Laboratory of Freshwater Ecology and Biotechnology, The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
11
|
Guan C, Qiao L, Xiong Y, Zhang L, Jiao Y. Coactivation of antagonistic genes stabilizes polarity patterning during shoot organogenesis. SCIENCE ADVANCES 2022; 8:eabn0368. [PMID: 35675392 PMCID: PMC9176745 DOI: 10.1126/sciadv.abn0368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Spatiotemporal patterns of gene expression are instrumental to morphogenesis. A stable pattern interface, often between reciprocal-inhibiting morphogens, must be robustly maintained after initial patterning cues diminish, organ growth, or organ geometry changes. In plants, floral and leaf primordia obtain the adaxial-abaxial pattern at the shoot apical meristem periphery. However, it is unknown how the pattern is maintained after primordia have left the shoot apex. Here, through a combination of computational simulations, time-lapse imaging, and genetic analysis, we propose a model in which auxin simultaneously promotes both adaxial and abaxial domains of expression. Furthermore, we identified multilevel feedback regulation of auxin signaling to refine the spatiotemporal patterns. Our results demonstrate that coactivation by auxin determines and stabilizes antagonistic adaxial-abaxial patterning during aerial organ formation.
Collapse
Affiliation(s)
- Chunmei Guan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingxia Qiao
- Beijing International Center for Mathematical Research, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuanyuan Xiong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Zhang
- Beijing International Center for Mathematical Research, Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Center for Quantitative Biology, Peking University, Beijing 100871, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Briginshaw LN, Flores‐Sandoval E, Dierschke T, Alvarez JP, Bowman JL. KANADI promotes thallus differentiation and FR-induced gametangiophore formation in the liverwort Marchantia. THE NEW PHYTOLOGIST 2022; 234:1377-1393. [PMID: 35181887 PMCID: PMC9311212 DOI: 10.1111/nph.18046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/07/2022] [Indexed: 05/26/2023]
Abstract
In angiosperms, KANADI transcription factors have roles in the sporophyte generation regulating tissue polarity, organogenesis and shade avoidance responses, but are not required during the gametophyte generation. Whether these roles are conserved in the gametophyte-dominant bryophyte lineages is unknown, which we examined by characterising the sole KANADI ortholog, MpKAN, in the liverwort Marchantia polymorpha. In contrast to angiosperm orthologs, MpKAN functions in the gametophyte generation in Marchantia, where it regulates apical branching and tissue differentiation, but does not influence tissue polarity in either generation. MpKAN can partially rescue the sporophyte polarity defects of kanadi mutants in Arabidopsis, indicating that MpKAN has conserved biochemical activity to its angiosperm counterparts. Mpkan loss-of-function plants display defects in far-red (FR) light responses. Mpkan plants have reduced FR-induced growth tropisms, have a delayed transition to sexual reproduction and fail to correctly form gametangiophores. Our results indicate that MpKAN is a modulator of FR responses, which may reflect a conserved role for KANADI across land plants. Under FR, MpKAN negatively regulates MpDELLA expression, suggesting that MpKAN and MpDELLA act in a pathway regulating FR responses, placing MpKAN in a gene regulatory network exhibiting similarities with those of angiosperms.
Collapse
Affiliation(s)
- Liam N. Briginshaw
- School of Biological SciencesMonash UniversityWellington RdClayton, MelbourneVic.3800Australia
- ARC Centre of Excellence for Plant Success in Nature and AgricultureMonash UniversityWellington RdMelbourneVic.3800Australia
| | - Eduardo Flores‐Sandoval
- School of Biological SciencesMonash UniversityWellington RdClayton, MelbourneVic.3800Australia
- ARC Centre of Excellence for Plant Success in Nature and AgricultureMonash UniversityWellington RdMelbourneVic.3800Australia
| | - Tom Dierschke
- School of Biological SciencesMonash UniversityWellington RdClayton, MelbourneVic.3800Australia
| | - John P. Alvarez
- School of Biological SciencesMonash UniversityWellington RdClayton, MelbourneVic.3800Australia
- ARC Centre of Excellence for Plant Success in Nature and AgricultureMonash UniversityWellington RdMelbourneVic.3800Australia
| | - John L. Bowman
- School of Biological SciencesMonash UniversityWellington RdClayton, MelbourneVic.3800Australia
- ARC Centre of Excellence for Plant Success in Nature and AgricultureMonash UniversityWellington RdMelbourneVic.3800Australia
| |
Collapse
|
13
|
Burian A, Paszkiewicz G, Nguyen KT, Meda S, Raczyńska-Szajgin M, Timmermans MCP. Specification of leaf dorsiventrality via a prepatterned binary readout of a uniform auxin input. NATURE PLANTS 2022; 8:269-280. [PMID: 35318449 DOI: 10.1038/s41477-022-01111-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Developmental boundaries play an important role in coordinating the growth and patterning of lateral organs. In plants, specification of dorsiventrality is critical to leaf morphogenesis. Despite its central importance, the mechanism by which leaf primordia acquire adaxial versus abaxial cell fates to establish dorsiventrality remains a topic of much debate. Here, by combining time-lapse confocal imaging, cell lineage tracing and molecular genetic analyses, we demonstrate that a stable boundary between adaxial and abaxial cell fates is specified several plastochrons before primordium emergence when high auxin levels accumulate on a meristem prepattern formed by the AS2 and KAN1 transcription factors. This occurrence triggers a transient induction of ARF3 and an auxin transcriptional response in AS2-marked progenitors that distinguishes adaxial from abaxial identity. As the primordium emerges, dynamic shifts in auxin distribution and auxin-related gene expression gradually resolve this initial polarity into the stable regulatory network known to maintain adaxial-abaxial polarity within the developing organ. Our data show that spatial information from an AS2-KAN1 meristem prepattern governs the conversion of a uniform auxin input into an ARF-dependent binary auxin response output to specify adaxial-abaxial polarity. Auxin thus serves as a single morphogenic signal that orchestrates distinct, spatially separated responses to coordinate the positioning and emergence of a new organ with its patterning.
Collapse
Affiliation(s)
- Agata Burian
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Gael Paszkiewicz
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Khoa Thi Nguyen
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Shreyas Meda
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Magdalena Raczyńska-Szajgin
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | | |
Collapse
|
14
|
Heisler MG. Integration of Core Mechanisms Underlying Plant Aerial Architecture. FRONTIERS IN PLANT SCIENCE 2021; 12:786338. [PMID: 34868186 PMCID: PMC8637408 DOI: 10.3389/fpls.2021.786338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 06/03/2023]
Abstract
Over the last decade or so important progress has been made in identifying and understanding a set of patterning mechanisms that have the potential to explain many aspects of plant morphology. These include the feedback loop between mechanical stresses and interphase microtubules, the regulation of plant cell polarity and the role of adaxial and abaxial cell type boundaries. What is perhaps most intriguing is how these mechanisms integrate in a combinatorial manner that provides a means to generate a large variety of commonly seen plant morphologies. Here, I review our current understanding of these mechanisms and discuss the links between them.
Collapse
Affiliation(s)
- Marcus G. Heisler
- School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
15
|
Lopez-Anido CB, Vatén A, Smoot NK, Sharma N, Guo V, Gong Y, Anleu Gil MX, Weimer AK, Bergmann DC. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf. Dev Cell 2021; 56:1043-1055.e4. [PMID: 33823130 DOI: 10.1101/2020.09.08.288498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 05/22/2023]
Abstract
Dynamic cell identities underlie flexible developmental programs. The stomatal lineage in the Arabidopsis leaf epidermis features asynchronous and indeterminate divisions that can be modulated by environmental cues. The products of the lineage, stomatal guard cells and pavement cells, regulate plant-atmosphere exchanges, and the epidermis as a whole influences overall leaf growth. How flexibility is encoded in development of the stomatal lineage and how cell fates are coordinated in the leaf are open questions. Here, by leveraging single-cell transcriptomics and molecular genetics, we uncovered models of cell differentiation within Arabidopsis leaf tissue. Profiles across leaf tissues identified points of regulatory congruence. In the stomatal lineage, single-cell resolution resolved underlying cell heterogeneity within early stages and provided a fine-grained profile of guard cell differentiation. Through integration of genome-scale datasets and spatiotemporally precise functional manipulations, we also identified an extended role for the transcriptional regulator SPEECHLESS in reinforcing cell fate commitment.
Collapse
Affiliation(s)
- Camila B Lopez-Anido
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Anne Vatén
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Nicole K Smoot
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Nidhi Sharma
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Victoria Guo
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Yan Gong
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - M Ximena Anleu Gil
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA
| | - Annika K Weimer
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
16
|
Manuela D, Xu M. Patterning a Leaf by Establishing Polarities. FRONTIERS IN PLANT SCIENCE 2020; 11:568730. [PMID: 33193497 PMCID: PMC7661387 DOI: 10.3389/fpls.2020.568730] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/30/2020] [Indexed: 05/14/2023]
Abstract
Leaves are the major organ for photosynthesis in most land plants, and leaf structure is optimized for the maximum capture of sunlight and gas exchange. Three polarity axes, the adaxial-abaxial axis, the proximal-distal axis, and the medial-lateral axis are established during leaf development to give rise to a flattened lamina with a large area for photosynthesis and blades that are extended on petioles for maximum sunlight. Adaxial cells are elongated, tightly packed cells with many chloroplasts, and their fate is specified by HD-ZIP III and related factors. Abaxial cells are rounder and loosely packed cells and their fate is established and maintained by YABBY family and KANADI family proteins. The activities of adaxial and abaxial regulators are coordinated by ASYMMETRIC LEAVES2 and auxin. Establishment of the proximodistal axis involves the BTB/POZ domain proteins BLADE-ON-PETIOLE1 and 2, whereas homeobox genes PRESSED FLOWER and WUSCHEL-RELATED HOMEOBOX1 mediate leaf development along the mediolateral axis. This review summarizes recent advances in leaf polarity establishment with a focus on the regulatory networks involved.
Collapse
Affiliation(s)
| | - Mingli Xu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|