1
|
Hasegawa Y, Okamura T, Ono Y, Ichikawa T, Saijo Y, Nakanishi N, Sasano R, Hamaguchi M, Takano H, Fukui M. Oral exposure to high concentrations of polystyrene microplastics alters the intestinal environment and metabolic outcomes in mice. Front Immunol 2024; 15:1407936. [PMID: 39600697 PMCID: PMC11588728 DOI: 10.3389/fimmu.2024.1407936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Oral exposure to microplastics (MPs) is a global health concern. In our previous study, MPs induced glucose intolerance and non-alcoholic fatty liver disease (NAFLD) under a high-fat diet-induced leaky gut syndrome (LGS). This study aims to evaluate the effects of high concentrations of MP on lipid metabolism under normal dietary conditions and to assess the changes in the intestinal tract resulting from MP exposure. Methods C57BL6/J mice were fed a normal diet (ND) without polystyrene MPs (PS-MPs) or with PS-MPs (1000 µg/L or 5000 µg/L) for six weeks. Subsequently, intestinal permeability, gut microbiota, and metabolite levels in the serum, feces, and liver were determined. Results Mice fed the ND showed no increase in intestinal permeability in either group. However, high MPs concentrations led to increased serum lipid levels and exacerbated fatty liver function. Oral exposure to MPs did not affect the number of innate lymphoid cells or short-chain fatty acids in the intestine. However, it increased the number of natural killer cells, altered the gut microbiota, induced inflammation, and modulated the expression of genes related to nutrient transport in the intestine. The severity of intestinal disturbance tended to worsen with dose. Discussion Despite the absence of LGS, high concentrations of MPs induced dyslipidemia and NAFLD. Oral exposure to MPs triggered intestinal inflammation via natural killer cells, altered the gut microbiota, and modulated nutrient metabolism. Our study highlights the need for environmental measures to reduce oral MPs exposure in the future.
Collapse
Affiliation(s)
- Yuka Hasegawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuriko Ono
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Ichikawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuto Saijo
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
- Institute for International Academic Research, Kyoto University of Advanced Science, Kyoto, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Liu Y, Wang F, Peng D, Zhang D, Liu L, Wei J, Yuan J, Zhao L, Jiang H, Zhang T, Li Y, Zhao C, He S, Wu J, Yan Y, Zhang P, Guo C, Zhang J, Li X, Gao H, Li K. Activation and antitumor immunity of CD8 + T cells are supported by the glucose transporter GLUT10 and disrupted by lactic acid. Sci Transl Med 2024; 16:eadk7399. [PMID: 39196962 DOI: 10.1126/scitranslmed.adk7399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/10/2024] [Accepted: 07/22/2024] [Indexed: 08/30/2024]
Abstract
CD8+ T cell activation leads to the rapid proliferation and differentiation of effector T cells (Teffs), which mediate antitumor immunity. Although aerobic glycolysis is preferentially activated in CD8+ Teffs, the mechanisms that regulate CD8+ T cell glucose uptake in the low-glucose and acidic tumor microenvironment (TME) remain poorly understood. Here, we report that the abundance of the glucose transporter GLUT10 is increased during CD8+ T cell activation and antitumor immunity. Specifically, GLUT10 deficiency inhibited glucose uptake, glycolysis, and antitumor efficiency of tumor-infiltrating CD8+ T cells. Supplementation with glucose alone was insufficient to rescue the antitumor function and glucose uptake of CD8+ T cells in the TME. By analyzing tumor environmental metabolites, we found that high concentrations of lactic acid reduced the glucose uptake, activation, and antitumor effects of CD8+ T cells by directly binding to GLUT10's intracellular motif. Disrupting the interaction of lactic acid and GLUT10 by the mimic peptide PG10.3 facilitated CD8+ T cell glucose utilization, proliferation, and antitumor functions. The combination of PG10.3 and GLUT1 inhibition or anti-programmed cell death 1 antibody treatment showed synergistic antitumor effects. Together, our data indicate that GLUT10 is selectively required for glucose uptake of CD8+ T cells and identify that TME accumulated lactic acid inhibits CD8+ T cell effector function by directly binding to GLUT10 and reducing its glucose transport capacity. Last, our study suggests disrupting lactate-GLUT10 binding as a promising therapeutic strategy to enhance CD8+ T cell-mediated antitumor effects.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Feng Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dongxue Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Luping Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Wei
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jian Yuan
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200120, China
| | - Luyao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Huimin Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yunxuan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chenxi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuhua He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yechao Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Peitao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chunyi Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiaming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xia Li
- Marine College, Shandong University, Weihai 264200, China
| | - Huan Gao
- Marine College, Shandong University, Weihai 264200, China
| | - Ke Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Wang Y, Wu W, Zhang P, Chen X, Feng Y, Yang H, Jin L, Huang H, Shi X, Wang S, Zhang Y. Vitamin C Alleviates the Risk of Gestational Diabetes Mellitus Associated With Exposure to Metals. J Diabetes Res 2024; 2024:1298122. [PMID: 39035682 PMCID: PMC11260216 DOI: 10.1155/2024/1298122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Background: Exposure to heavy metals has been suggested to increase the risk of gestational diabetes mellitus (GDM) through the oxidative stress pathway. The study is aimed at examining whether vitamin C could modify the association between exposure to heavy metals and risk of GDM. Methods: We conducted a case-control study in Taiyuan, China, with 776 GDM cases and 776 controls. Data on vitamin C intake from diet and supplements were collected through questionnaires. Concentrations of metals in participants' blood were measured using inductively coupled plasma-mass spectrometry (ICP-MS). Unconditional logistic regression models were applied to estimate effect modification of vitamin C on the association between heavy metals and GDM. Results: Women with higher blood levels of mercury (Hg) (odds ratio (OR) = 2.36, 95% confidence interval (CI): 1.43, 3.92 and 2.04, 95% CI: 1.20, 3.46 for the second and third vs. the first tertile) and arsenic (As) (OR = 2.46, 95% CI: 1.37, 4.43 and 2.16, 95% CI: 1.12, 4.17 for the second and third vs. the first tertile) exposure were associated with increased risk of GDM among women without vitamin C supplement use and having dietary vitamin C intake < 85 mg/day. We found no significant association with metals among women who took vitamin C supplements and/or dietary vitamin C ≥ 85 mg/day. Significant interactions were observed between vitamin C and exposures to metals (i.e., Hg and As) on the risk of GDM (P interaction = 0.048 and 0.045, respectively). Conclusions: Our study, for the first time, suggests that vitamin C supplement use or higher dietary vitamin C intake during preconception and early pregnancy could alleviate the risk of GDM associated with exposure to As and Hg. The results warrant further investigation.
Collapse
Affiliation(s)
- Ying Wang
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based MedicineShanxi Medical University, Taiyuan, China
| | - Weiwei Wu
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based MedicineShanxi Medical University, Taiyuan, China
| | - Ping Zhang
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
| | - Xi Chen
- National Institute of Environmental HealthChinese Center for Disease Control and Prevention, Beijing, China
| | - Yongliang Feng
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based MedicineShanxi Medical University, Taiyuan, China
| | - Hailan Yang
- Department of ObstetricsThe First Affiliated HospitalShanxi Medical University, Taiyuan, China
| | - Lan Jin
- Department of SurgeryYale School of Medicine, New Haven, Connecticut, USA
| | - Huang Huang
- Department of Cancer Prevention and ControlNational Cancer Center/National Clinical Research Center for Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoming Shi
- National Institute of Environmental HealthChinese Center for Disease Control and Prevention, Beijing, China
| | - Suping Wang
- Department of EpidemiologyShanxi Medical University School of Public Health, Taiyuan, China
- Center of Clinical Epidemiology and Evidence Based MedicineShanxi Medical University, Taiyuan, China
| | - Yawei Zhang
- Department of Cancer Prevention and ControlNational Cancer Center/National Clinical Research Center for Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Tao X, Rahimi M, Michaelis M, Görs S, Brenmoehl J, Vanselow J, Baddela VS. Saturated fatty acids inhibit unsaturated fatty acid induced glucose uptake involving GLUT10 and aerobic glycolysis in bovine granulosa cells. Sci Rep 2024; 14:9888. [PMID: 38688953 PMCID: PMC11061182 DOI: 10.1038/s41598-024-59883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Fatty acids have been shown to modulate glucose metabolism in vitro and in vivo. However, there is still a need for substantial evidence and mechanistic understanding in many cell types whether both saturated and unsaturated fatty acids (SFAs and UFAs) pose a similar effect and, if not, what determines the net effect of fatty acid mixes on glucose metabolism. In the present study, we asked these questions by treating granulosa cells (GCs) with the most abundant non-esterified fatty acid species in bovine follicular fluid. Results revealed that oleic and alpha-linolenic acids (UFAs) significantly increased glucose consumption compared to palmitic and stearic acids (SFAs). A significant increase in lactate production, extracellular acidification rate, and decreased mitochondrial activity indicate glucose channeling through aerobic glycolysis in UFA treated GCs. We show that insulin independent glucose transporter GLUT10 is essential for UFA driven glucose consumption, and the induction of AKT and ERK signaling pathways necessary for GLUT10 expression. To mimic the physiological conditions, we co-treated GCs with mixes of SFAs and UFAs. Interestingly, co-treatments abolished the UFA induced glucose uptake and metabolism by inhibiting AKT and ERK phosphorylation and GLUT10 expression. These data suggest that the net effect of fatty acid induced glucose uptake in GCs is determined by SFAs under physiological conditions.
Collapse
Affiliation(s)
- Xuelian Tao
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Maryam Rahimi
- Abteilung Biotechnologie und Reproduktion Landwirtschaftlicher Nutztiere, Georg-August-Universität Göttingen, 37037, Göttingen, Germany
| | - Marten Michaelis
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Solvig Görs
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Julia Brenmoehl
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Jens Vanselow
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Vijay Simha Baddela
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
5
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
6
|
Suzuki T, Komatsu T, Shibata H, Tanioka A, Vargas D, Kawabata-Iwakawa R, Miura F, Masuda S, Hayashi M, Tanimura-Inagaki K, Morita S, Kohmaru J, Adachi K, Tobo M, Obinata H, Hirayama T, Kimura H, Sakai J, Nagasawa H, Itabashi H, Hatada I, Ito T, Inagaki T. Crucial role of iron in epigenetic rewriting during adipocyte differentiation mediated by JMJD1A and TET2 activity. Nucleic Acids Res 2023; 51:6120-6142. [PMID: 37158274 PMCID: PMC10325906 DOI: 10.1093/nar/gkad342] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Iron metabolism is closely associated with the pathogenesis of obesity. However, the mechanism of the iron-dependent regulation of adipocyte differentiation remains unclear. Here, we show that iron is essential for rewriting of epigenetic marks during adipocyte differentiation. Iron supply through lysosome-mediated ferritinophagy was found to be crucial during the early stage of adipocyte differentiation, and iron deficiency during this period suppressed subsequent terminal differentiation. This was associated with demethylation of both repressive histone marks and DNA in the genomic regions of adipocyte differentiation-associated genes, including Pparg, which encodes PPARγ, the master regulator of adipocyte differentiation. In addition, we identified several epigenetic demethylases to be responsible for iron-dependent adipocyte differentiation, with the histone demethylase jumonji domain-containing 1A and the DNA demethylase ten-eleven translocation 2 as the major enzymes. The interrelationship between repressive histone marks and DNA methylation was indicated by an integrated genome-wide association analysis, and was also supported by the findings that both histone and DNA demethylation were suppressed by either the inhibition of lysosomal ferritin flux or the knockdown of iron chaperone poly(rC)-binding protein 2. In summary, epigenetic regulations through iron-dependent control of epigenetic enzyme activities play an important role in the organized gene expression mechanisms of adipogenesis.
Collapse
Affiliation(s)
- Tomohiro Suzuki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Hiroshi Shibata
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Akiko Tanioka
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Diana Vargas
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Gunma371-8511, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Shinnosuke Masuda
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Mayuko Hayashi
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Kyoko Tanimura-Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
- Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| | - Junki Kohmaru
- Institute for Molecular and Cellular Regulation Joint Usage/Research Support Center, Gunma University, Gunma371-8512, Japan
| | - Koji Adachi
- Kaihin Makuhari Laboratory, PerkinElmer Japan Co., Ltd., Chiba261-8501, Japan
| | - Masayuki Tobo
- Institute for Molecular and Cellular Regulation Joint Usage/Research Support Center, Gunma University, Gunma371-8512, Japan
| | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Gunma371-8511, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu501-1196, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Tokyo Institute of Technology, Kanagawa226-8503, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo153-8904, Japan
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu501-1196, Japan
| | - Hideyuki Itabashi
- Graduate School of Science and Technology, Gunma University, Gunma376-8515, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research, Gunma371-8511, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma371-8512, Japan
| |
Collapse
|
7
|
Vitamin C attenuates predisposition to high-fat diet-induced metabolic dysregulation in GLUT10-deficient mouse model. GENES & NUTRITION 2022; 17:10. [PMID: 35842612 PMCID: PMC9288715 DOI: 10.1186/s12263-022-00713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022]
Abstract
Background The development of type 2 diabetes mellitus (T2DM) is highly influenced by complex interactions between genetic and environmental (dietary and lifestyle) factors. While vitamin C (ascorbic acid, AA) has been suggested as a complementary nutritional treatment for T2DM, evidence for the significance and beneficial effects of AA in T2DM is thus far inconclusive. We suspect that clinical studies on the topic might need to account for combination of genetic and dietary factors that could influence AA effects on metabolism. In this study, we tested this general idea using a mouse model with genetic predisposition to diet-induced metabolic dysfunction. In particular, we utilized mice carrying a human orthologous GLUT10G128E variant (GLUT10G128E mice), which are highly sensitive to high-fat diet (HFD)-induced metabolic dysregulation. The genetic variant has high relevance to human populations, as genetic polymorphisms in glucose transporter 10 (GLUT10) are associated with a T2DM intermediate phenotype in nondiabetic population. Results We investigated the impacts of AA supplementation on metabolism in wild-type (WT) mice and GLUT10G128E mice fed with a normal diet or HFD. Overall, the beneficial effects of AA on metabolism were greater in HFD-fed GLUT10G128E mice than in HFD-fed WT mice. At early postnatal stages, AA improved the development of compromised epididymal white adipose tissue (eWAT) in GLUT10G128E mice. In adult animals, AA supplementation attenuated the predisposition of GLUT10G128E mice to HFD-triggered eWAT inflammation, adipokine dysregulation, ectopic fatty acid accumulation, metabolic dysregulation, and body weight gain, as compared with WT mice. Conclusions Taken together, our findings suggest that AA has greater beneficial effects on metabolism in HFD-fed GLUT10G128E mice than HFD-fed WT mice. As such, AA plays an important role in supporting eWAT development and attenuating HFD-induced metabolic dysregulation in GLUT10G128E mice. Our results suggest that proper WAT development is essential for metabolic regulation later in life. Furthermore, when considering the usage of AA as a complementary nutrition for prevention and treatment of T2DM, individual differences in genetics and dietary patterns should be taken into account. Supplementary Information The online version contains supplementary material available at 10.1186/s12263-022-00713-y.
Collapse
|
8
|
Zhang X, Lu JJ, Abudukeyoumu A, Hou DY, Dong J, Wu JN, Liu LB, Li MQ, Xie F. Glucose transporters: Important regulators of endometrial cancer therapy sensitivity. Front Oncol 2022; 12:933827. [PMID: 35992779 PMCID: PMC9389465 DOI: 10.3389/fonc.2022.933827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Glucose is of great importance in cancer cellular metabolism. Working together with several glucose transporters (GLUTs), it provides enough energy for biological growth. The main glucose transporters in endometrial cancer (EC) are Class 1 (GLUTs 1-4) and Class 3 (GLUTs 6 and 8), and the overexpression of these GLUTs has been observed. Apart from providing abundant glucose uptake, these highly expressed GLUTs also participate in the activation of many crucial signaling pathways concerning the proliferation, angiogenesis, and metastasis of EC. In addition, overexpressed GLUTs may also cause endometrial cancer cells (ECCs) to be insensitive to hormone therapy or even resistant to radiotherapy and chemoradiotherapy. Therefore, GLUT inhibitors may hopefully become a sensitizer for EC precision-targeted therapies. This review aims to summarize the expression regulation, function, and therapy sensitivity of GLUTs in ECCs, aiming to provide a new clue for better diagnosis and treatment of EC.
Collapse
Affiliation(s)
- Xing Zhang
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jia-Jing Lu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ayitila Abudukeyoumu
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ding-Yu Hou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
| | - Jing Dong
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiang-Nan Wu
- Clinical Epidemiology, Clinical Research Center, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Li-Bing Liu
- Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, China
- National Health Commission (NHC) Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Feng Xie
- Medical Center of Diagnosis and Treatment for Cervical and Intrauterine Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
9
|
Le J, Fu Y, Han Q, Wei X, Ji H, Chen Y, Wang Q, Pi P, Li J, Lin X, Zhang X, Zhang Y, Ye J. Restoration of mRNA Expression of Solute Carrier Proteins in Liver of Diet-Induced Obese Mice by Metformin. Front Endocrinol (Lausanne) 2021; 12:720784. [PMID: 34659115 PMCID: PMC8515182 DOI: 10.3389/fendo.2021.720784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/08/2021] [Indexed: 02/05/2023] Open
Abstract
Metformin (MET), the most common medicine for type 2 diabetes (T2DM), improves insulin sensitivity by targeting the liver, intestine and other organs. Its impact on expression of the solute carrier (Slc) transporter genes have not been reported in the mechanism of insulin sensitization. In this study, we examined Slc gene expression in the liver and colon of diet-induced obese (DIO) mice treated with MET by transcriptomic analysis. There were 939 differentially expressed genes (DEGs) in the liver of DIO mice vs lean mice, which included 34 Slc genes. MET altered 489 DEGs in the liver of DIO mice, in which 23 were Slc genes. Expression of 20 MET-responsive Slc DEGs was confirmed by qRT-PCR, in which 15 Slc genes were altered in DIO mice and their expressions were restored by MET, including Slc2a10, Slc2a13, Slc5a9, Slc6a14, Slc7a9, Slc9a2, Slc9a3, Slc13a2, Slc15a2, Slc26a3, Slc34a2, Slc37a1, Slc44a4, Slc51b and Slc52a3. While, there were only 97 DEGs in the colon of DIO mice with 5 Slc genes, whose expression was not restored by MET. The data suggest that more genes were altered in the liver over the colon by the high fat diet (HFD). There were 20 Slc genes with alteration confirmed in the liver of DIO mice and 15 of them were restored by MET, which was associated with improvement of insulin sensitivity and obesity. The restoration may improve the uptake of glucose, amino acids, mannose, fructose, 1,5-anhydro-D-glucitol and bumetanide in hepatocytes of the liver of DIO mice. The study provides new insight into the mechanism of metformin action in insulin sensitization and obesity.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yi Fu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qiuqin Han
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xindong Wei
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Surgical Oncology, Nanjing University of Chinese Medicin Affiliated 81st Hospital, Nanjing, China
| | - Houlin Ji
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Chen
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qiuying Wang
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Peixian Pi
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jilei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xinjie Lin
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaoying Zhang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou, China
- Shanghai Diabetes Institute, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Jianping Ye, ;
| |
Collapse
|