1
|
Boland A, Kamenz J. Racing through C. elegans mitosis using cyclin B3. J Cell Biol 2024; 223:e202410007. [PMID: 39466173 PMCID: PMC11519320 DOI: 10.1083/jcb.202410007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Racecar drivers use left-foot braking, i.e., simultaneously engaging brake and throttle, to carefully balance acceleration and traction when navigating chicanes. In this issue, Lara-Gonzalez et al. (https://doi.org/10.1083/jcb.202308034) show that C. elegans embryos employ the molecular equivalent of left-foot braking to faithfully speed through mitosis.
Collapse
Affiliation(s)
- Andreas Boland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Julia Kamenz
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Lara-Gonzalez P, Variyar S, Moghareh S, Nguyen ACN, Kizhedathu A, Budrewicz J, Schlientz A, Varshney N, Bellaart A, Oegema K, Bardwell L, Desai A. Cyclin B3 is a dominant fast-acting cyclin that drives rapid early embryonic mitoses. J Cell Biol 2024; 223:e202308034. [PMID: 39105756 PMCID: PMC11303871 DOI: 10.1083/jcb.202308034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Mitosis in early embryos often proceeds at a rapid pace, but how this pace is achieved is not understood. Here, we show that cyclin B3 is the dominant driver of rapid embryonic mitoses in the C. elegans embryo. Cyclins B1 and B2 support slow mitosis (NEBD to anaphase ∼600 s), but the presence of cyclin B3 dominantly drives the approximately threefold faster mitosis observed in wildtype. Multiple mitotic events are slowed down in cyclin B1 and B2-driven mitosis, and cyclin B3-associated Cdk1 H1 kinase activity is ∼25-fold more active than cyclin B1-associated Cdk1. Addition of cyclin B1 to fast cyclin B3-only mitosis introduces an ∼60-s delay between completion of chromosome alignment and anaphase onset; this delay, which is important for segregation fidelity, is dependent on inhibitory phosphorylation of the anaphase activator Cdc20. Thus, cyclin B3 dominance, coupled to a cyclin B1-dependent delay that acts via Cdc20 phosphorylation, sets the rapid pace and ensures mitotic fidelity in the early C. elegans embryo.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- Ludwig Institute for Cancer Research , La Jolla, CA, USA
| | - Smriti Variyar
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Shabnam Moghareh
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Anh Cao Ngoc Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Amrutha Kizhedathu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | | | - Aleesa Schlientz
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Neha Varshney
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Andrew Bellaart
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Karen Oegema
- Ludwig Institute for Cancer Research , La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Arshad Desai
- Ludwig Institute for Cancer Research , La Jolla, CA, USA
- Department of Cell and Developmental Biology, University of California, San Diego, San Diego, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
3
|
Benzhen L, Shucheng S, Chenchang B, Zhaoxia C, Yanan Y. Transcriptome analysis elucidates mating affects the expression of intra-/extra-ovarian factors, thereby influencing ovarian development in the mud crab Scylla paramamosain. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101334. [PMID: 39378790 DOI: 10.1016/j.cbd.2024.101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Prior to the pubertal molt and mating, the ovarian development of the mud crab Scylla paramamosain was primarily at stage II. However, immediately after mating, female crabs initiate vitellogenesis, and their ovaries quickly develop. The aim of this study was to identify differentially expressed genes associated with ovarian development in the mud crab before and after mating, in order to elucidate the influence of mating on ovarian development using comparative transcriptomics. The KEGG pathway analysis results indicated that ribosome and ribosome-related pathways were highly associated with ovarian development at stage II across both transcriptomes, likely to support the subsequent vitellogenesis by providing the necessary materials. Additionally, the neurodegeneration, MAPK, cAMP and PLD pathways were active in regulating oogonia differentiation, oocyte proliferation and vitellogenesis after mating. Meanwhile, certain intra-ovarian factors, such as the cell cycle-related genes cyclin B and APC, the forkhead box family genes Foxl2 and slp1, the SOX family gene SOX5-like, the hormone-related genes SULT1E1 and Eip74EF-like, the growth factor-related genes VEGFD-like and CUBE1-like, as well as HPS10 and tra1-like, have essential functions in regulating ovarian development after mating. Furthermore, the receptors of extra-ovarian hormones, such as RPCHR, HR4, and ILR1, as well as the neurotransmitter receptor 5-HTR4, were involved in ovarian development. It is believed that ovarian development is controlled by the coordinated action of both intrinsic and extrinsic endocrine factors, and these factors are influenced by mating. Finally, the analysis of epigenic modification-related genes, transcription factors, and target genes revealed the regulation of gene expression. Our study indicated that, those genes work in a coordinated manner to regulate the complex processes of follicle cell development, oogonia differentiation, oocyte proliferation, and vitellogenesis during ovarian development.
Collapse
Affiliation(s)
- Li Benzhen
- School of Marine Science, Ningbo University, Ningbo, China
| | - Shao Shucheng
- School of Marine Science, Ningbo University, Ningbo, China
| | - Bao Chenchang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Cui Zhaoxia
- School of Marine Science, Ningbo University, Ningbo, China
| | - Yang Yanan
- School of Marine Science, Ningbo University, Ningbo, China.
| |
Collapse
|
4
|
van Gemert F, Drakaki A, Lozano IM, de Groot D, Uiterkamp M, Proost N, Lieftink C, van de Ven M, Beijersbergen R, Jacobs H, te Riele H. ADARp150 counteracts whole genome duplication. Nucleic Acids Res 2024; 52:10370-10384. [PMID: 39189458 PMCID: PMC11417406 DOI: 10.1093/nar/gkae700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/10/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Impaired control of the G1/S checkpoint allows initiation of DNA replication under non-permissive conditions. Unscheduled S-phase entry is associated with DNA replication stress, demanding for other checkpoints or cellular pathways to maintain proliferation. Here, we uncovered a requirement for ADARp150 to sustain proliferation of G1/S-checkpoint-defective cells under growth-restricting conditions. Besides its well-established mRNA editing function in inversely oriented short interspersed nuclear elements (SINEs), we found ADARp150 to exert a critical function in mitosis. ADARp150 depletion resulted in tetraploidization, impeding cell proliferation in mitogen-deprived conditions. Mechanistically we show that ADAR1 depletion induced aberrant expression of Cyclin B3, which was causative for mitotic failure and whole-genome duplication. Finally, we find that also in vivo ADAR1-depletion-provoked tetraploidization hampers tumor outgrowth.
Collapse
Affiliation(s)
- Frank van Gemert
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alexandra Drakaki
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Isabel Morales Lozano
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniël de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maud Schoot Uiterkamp
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalie Proost
- Mouse Clinic for Cancer and Aging Research, Preclinical Intervention Unit, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging Research, Preclinical Intervention Unit, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, NKI Robotics and Screening Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hein te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Yu Y, Zhang M, Wang D, Xiang Z, Zhao Z, Cui W, Ye S, Fazhan H, Waiho K, Ikhwanuddin M, Ma H. Whole transcriptome RNA sequencing provides novel insights into the molecular dynamics of ovarian development in mud crab, Scylla paramamosain after mating. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101247. [PMID: 38788625 DOI: 10.1016/j.cbd.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Ovarian development in animals is a complicated biological process, requiring the simultaneous coordination among various genes and pathways. To understand the dynamic changes and molecular regulatory mechanisms of ovarian development in mud crab (Scylla paramamosain), both histological observation and whole transcriptome sequencing of ovarian tissues at different mating stages were implemented in this study. The histological results revealed that ovarian development was delayed in unmated females (60 days after courtship behavior but not mating), who exhibited an oocyte diameter of 56.38 ± 15.17 μm. Conversely, mated females exhibited accelerated the ovarian maturation process, with females reaching ovarian stage III (proliferative stage) 23 days after mating and attained an average oocyte diameter of 132.19 ± 15.07 μm. Thus, mating process is essential in promoting the rapid ovarian development in mud crab. Based on the whole transcriptome sequencing analysis, a total of 518 mRNAs, 1502 lncRNAs, 18 circRNAs and 151 miRNAs were identified to be differentially expressed between ovarian tissues at different mating stages. Notably, six differentially expressed genes (DEGs) associated with ovarian development were identified, including ovary development-related protein, red pigment concentrating hormone receptor, G2/mitotic-specific cyclin-B3-like, lutropin-chorio gonadotropic hormone receptor, renin receptor, and SoxB2. More importantly, both DEGs and targets of differentially expressed non-coding RNAs (DEncRNAs) were enriched in renin-angiotensin system, TGF-β signaling, cell adhesion molecules, MAPK signaling pathway, and ECM-receptor interaction, suggesting that these pathways may play significant roles in the ovarian development of mud crabs. Moreover, competition endogenous RNA (ceRNA) networks were constructed while mRNAs were differentially expressed between mating stages were involved in Gene Ontology (GO) biological processes such as developmental process, reproduction, and growth. These findings could provide solid foundations for the future development of female mud crab maturation enhancement strategy, and improve the understanding of the ovarian maturation process in crustaceans.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Mengqian Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Dahe Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Zifei Xiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Zilin Zhao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Wenxiao Cui
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shaopan Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hanafiah Fazhan
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Khor Waiho
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Mhd Ikhwanuddin
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
6
|
Li J, Jordana L, Mehsen H, Wang X, Archambault V. Nuclear reassembly defects after mitosis trigger apoptotic and p53-dependent safeguard mechanisms in Drosophila. PLoS Biol 2024; 22:e3002780. [PMID: 39186808 PMCID: PMC11379398 DOI: 10.1371/journal.pbio.3002780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/06/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
In animals, mitosis involves the breakdown of the nuclear envelope and the sorting of individualized, condensed chromosomes. During mitotic exit, emerging nuclei reassemble a nuclear envelope around a single mass of interconnecting chromosomes. The molecular mechanisms of nuclear reassembly are incompletely understood. Moreover, the cellular and physiological consequences of defects in this process are largely unexplored. Here, we have characterized a mechanism essential for nuclear reassembly in Drosophila. We show that Ankle2 promotes the PP2A-dependent recruitment of BAF and Lamin at reassembling nuclei, and that failures in this mechanism result in severe nuclear defects after mitosis. We then took advantage of perturbations in this mechanism to investigate the physiological responses to nuclear reassembly defects during tissue development in vivo. Partial depletion of Ankle2, BAF, or Lamin in imaginal wing discs results in wing development defects accompanied by apoptosis. We found that blocking apoptosis strongly enhances developmental defects. Blocking p53 does not prevent apoptosis but enhances defects due to the loss of a cell cycle checkpoint. Our results suggest that apoptotic and p53-dependent responses play a crucial role in safeguarding tissue development in response to sporadic nuclear reassembly defects.
Collapse
Affiliation(s)
- Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Laia Jordana
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Haytham Mehsen
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Xinyue Wang
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| |
Collapse
|
7
|
Bourouh M, Dhaliwal R, Rai R, Qureshi H, Swan A. Analysis of nondegradable cyclins reveals distinct roles of the mitotic cyclins in Drosophila meiosis. G3 (BETHESDA, MD.) 2024; 14:jkae066. [PMID: 38551147 DOI: 10.1093/g3journal/jkae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/13/2024] [Indexed: 06/06/2024]
Abstract
Meiosis is a complex variant of the mitotic cell cycle, and as such relies on many of the same proteins involved in mitosis, but utilizes these in novel ways. As in mitosis, Cdk1 and its cyclin partners, Cyclin A, B, and B3 are required at multiple steps in meiosis. Here, we study the effect of stabilized forms of the three mitotic cyclins to study the consequences of failure to degrade the cyclins in meiosis. We find that stabilized Cyclin B3 promotes ectopic microtubule polymerization throughout the egg, dependent on APC/C activity and apparently due to the consequent destruction of Cyclin A and Cyclin B. We present data that suggests CycB, and possibly CycA, can also promote APC/C activity at specific stages of meiosis. We also present evidence that in meiosis APC/CCort and APC/CFzy are able to target Cyclin B via a novel degron. Overall, our findings highlight the distinct functions of the three mitotic Cdk-cyclin complexes in meiosis.
Collapse
Affiliation(s)
- Mohammed Bourouh
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Rajdeep Dhaliwal
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Rajni Rai
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Hafsah Qureshi
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Andrew Swan
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
8
|
Durkan A, Koup A, Bell SE, Lyczak R. Loss of the puromycin-sensitive aminopeptidase, PAM-1, triggers the spindle assembly checkpoint during the first mitotic division in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001167. [PMID: 38633870 PMCID: PMC11022077 DOI: 10.17912/micropub.biology.001167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024]
Abstract
Puromycin-sensitive aminopeptidases have long been implicated in cell-cycle regulation, but the mechanism remains unknown. Here we show that mutations in the gene encoding the C. elegans puromycin-sensitive aminopeptidase, PAM-1 , cause chromosome segregation defects and an elongated mitosis in the one-cell embryo. Depleting a known regulator of the spindle assembly checkpoint (SAC), MDF-2 (MAD2 in humans), restores normal mitotic timing to pam-1 mutants but exacerbates the chromosome segregation defects. Thus, PAM-1 is required for proper attachment of chromosomes to the mitotic spindle and its absence triggers the SAC.
Collapse
Affiliation(s)
- Aidan Durkan
- Biology, Ursinus College, Collegeville, Pennsylvania, United States
| | - Annalise Koup
- Biology, Ursinus College, Collegeville, Pennsylvania, United States
| | - Sarah E. Bell
- Biology, Ursinus College, Collegeville, Pennsylvania, United States
| | - Rebecca Lyczak
- Biology, Ursinus College, Collegeville, Pennsylvania, United States
| |
Collapse
|
9
|
Hu H, Tan D, Luo T, Tong X, Han M, Shen J, Dai F. Cyclin B3 plays pleiotropic roles in female reproductive organogenesis and early embryogenesis in the silkworm, Bombyx mori. PEST MANAGEMENT SCIENCE 2024; 80:376-387. [PMID: 37698372 DOI: 10.1002/ps.7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND The reproductive system plays a crucial role in insect survival, reproduction and species specificity. Understanding the molecular mechanisms underlying reproductive organogenesis contributes to improving the efficiency of sterile insect technique marked by an eco-friendly pest management strategy. Lepidoptera is one of the largest orders of insects, most of which are major pests in agriculture and forestry. Our study aimed to screen the genes responsible for reproductive organogenesis and unravel the mechanism underlying female reproductive organ defects. RESULTS Morphological investigation of female reproductive organs showed a defective connection between oviductus geminus and oviductus communis on the second day of pupa (P2) in Speckled mutant silkworm. RNA_Seq identified a total of 18 049 transcripts that were expressed in the P2 female internal reproductive organs without ovary in Spc/+ compared to +Spc /+Spc . Differential expression analysis identified 312 up-regulated genes and 221 down-regulated genes in Spc/+. KEGG analysis identified 44 significantly enriched pathways. The results of qRT-PCR performed on 33 genes significantly matched the outcomes of the RNA_Seq. Dysfunction of Cyclin B3 resulted in a defective connection of the oviductus communis with the ovariole, dysfunction of oogenesis, and a petite body. Moreover, homozygous recessive lethality of Cyclin B3/Cyclin B3 occurred during early embryogenesis. CONCLUSION Our results suggest that Cyclin B3 is a pleiotropic functional gene that regulates early embryogenesis, oogenesis, development, and female reproductive organogenesis. These results showed that Cyclin B3 has significant effects on lepidopteran mortality, growth, and reproductive physiology, which might be considered a novel and potentially eco-friendly target for lepidopteran pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hai Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Duan Tan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Tianfu Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minjin Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Jianghong Shen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Lara-Gonzalez P, Variyar S, Budrewicz J, Schlientz A, Varshney N, Bellaart A, Moghareh S, Nguyen ACN, Oegema K, Desai A. Cyclin B3 is a dominant fast-acting cyclin that drives rapid early embryonic mitoses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553011. [PMID: 37609212 PMCID: PMC10441424 DOI: 10.1101/2023.08.11.553011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In many species, early embryonic mitoses proceed at a very rapid pace, but how this pace is achieved is not understood. Here we show that in the early C. elegans embryo, cyclin B3 is the dominant driver of rapid embryonic mitoses. Metazoans typically have three cyclin B isoforms that associate with and activate Cdk1 kinase to orchestrate mitotic events: the related cyclins B1 and B2 and the more divergent cyclin B3. We show that whereas embryos expressing cyclins B1 and B2 support slow mitosis (NEBD to Anaphase ~ 600s), the presence of cyclin B3 dominantly drives the ~3-fold faster mitosis observed in wildtype embryos. CYB-1/2-driven mitosis is longer than CYB-3-driven mitosis primarily because the progression of mitotic events itself is slower, rather than delayed anaphase onset due to activation of the spindle checkpoint or inhibitory phosphorylation of the anaphase activator CDC-20. Addition of cyclin B1 to cyclin B3-only mitosis introduces an ~60s delay between the completion of chromosome alignment and anaphase onset, which likely ensures segregation fidelity; this delay is mediated by inhibitory phosphorylation on CDC-20. Thus, the dominance of cyclin B3 in driving mitotic events, coupled to introduction of a short cyclin B1-dependent delay in anaphase onset, sets the rapid pace and ensures fidelity of mitoses in the early C. elegans embryo.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Department of Developmental and Cell Biology, University of California Irvine, CA 92697
- Ludwig Institute for Cancer Research, La Jolla CA 92093
| | - Smriti Variyar
- Department of Cell & Developmental Biology, University of California San Diego, CA 92093
- Department of Cellular & Molecular Medicine, University of California San Diego, CA 92093
| | - Jacqueline Budrewicz
- Ludwig Institute for Cancer Research, La Jolla CA 92093
- Current address: Department of Molecular and Medical Genetics, Oregon Health & Science University (OHSU), OR 97239
- Current address: Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center (ONPRC), Beaverton, Oregon
| | - Aleesa Schlientz
- Department of Cell & Developmental Biology, University of California San Diego, CA 92093
- Department of Cellular & Molecular Medicine, University of California San Diego, CA 92093
| | - Neha Varshney
- Department of Cell & Developmental Biology, University of California San Diego, CA 92093
- Department of Cellular & Molecular Medicine, University of California San Diego, CA 92093
| | - Andrew Bellaart
- Department of Cell & Developmental Biology, University of California San Diego, CA 92093
- Department of Cellular & Molecular Medicine, University of California San Diego, CA 92093
| | - Shabnam Moghareh
- Department of Developmental and Cell Biology, University of California Irvine, CA 92697
| | - Anh Cao Ngoc Nguyen
- Department of Developmental and Cell Biology, University of California Irvine, CA 92697
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla CA 92093
- Department of Cell & Developmental Biology, University of California San Diego, CA 92093
- Department of Cellular & Molecular Medicine, University of California San Diego, CA 92093
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla CA 92093
- Department of Cell & Developmental Biology, University of California San Diego, CA 92093
- Department of Cellular & Molecular Medicine, University of California San Diego, CA 92093
| |
Collapse
|
11
|
Emond-Fraser V, Larouche M, Kubiniok P, Bonneil É, Li J, Bourouh M, Frizzi L, Thibault P, Archambault V. Identification of PP2A-B55 targets uncovers regulation of emerin during nuclear envelope reassembly in Drosophila. Open Biol 2023; 13:230104. [PMID: 37463656 PMCID: PMC10353892 DOI: 10.1098/rsob.230104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/21/2023] [Indexed: 07/20/2023] Open
Abstract
Mitotic exit requires the dephosphorylation of many proteins whose phosphorylation was needed for mitosis. Protein phosphatase 2A with its B55 regulatory subunit (PP2A-B55) promotes this transition. However, the events and substrates that it regulates are incompletely understood. We used proteomic approaches in Drosophila to identify proteins that interact with and are dephosphorylated by PP2A-B55. Among several candidates, we identified emerin (otefin in Drosophila). Emerin resides in the inner nuclear membrane and interacts with the DNA-binding protein barrier-to-autointegration factor (BAF) via a LEM domain. We found that the phosphorylation of emerin at Ser50 and Ser54 near its LEM domain negatively regulates its association with BAF, lamin and additional emerin in mitosis. We show that dephosphorylation of emerin at these sites by PP2A-B55 determines the timing of nuclear envelope reformation. Genetic experiments indicate that this regulation is required during embryonic development. Phosphoregulation of the emerin-BAF complex formation by PP2A-B55 appears as a key event of mitotic exit that is likely conserved across species.
Collapse
Affiliation(s)
- Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Peter Kubiniok
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Éric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Laura Frizzi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de chimie, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, H3T 1J4, Quebec, Canada
| |
Collapse
|
12
|
Hirai K, Inoue YH, Matsuda M. Mitotic progression and dual spindle formation caused by spindle association of de novo-formed microtubule-organizing centers in parthenogenetic embryos of Drosophila ananassae. Genetics 2022; 223:6896485. [PMID: 36516293 PMCID: PMC9910410 DOI: 10.1093/genetics/iyac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/17/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Facultative parthenogenesis occurs in many animal species that typically undergo sexual reproduction. In Drosophila, such development from unfertilized eggs involves diploidization after completion of meiosis, but the exact mechanism remains unclear. Here we used a laboratory stock of Drosophila ananassae that has been maintained parthenogenetically to cytologically examine the initial events of parthenogenesis. Specifically, we determined whether the requirements for centrosomes and diploidization that are essential for developmental success can be overcome. As a primal deviation from sexually reproducing (i.e. sexual) strains of the same species, free asters emerged from the de novo formation of centrosome-like structures in the cytosol of unfertilized eggs. Those microtubule-organizing centers had distinct roles in the earliest cycles of parthenogenetic embryos with respect to mitotic progression and arrangement of mitotic spindles. In the first cycle, an anastral bipolar spindle self-assembled around a haploid set of replicated chromosomes. Participation of at least one microtubule-organizing center in the spindle was necessary for mitotic progression into anaphase. In particular, the first mitosis involving a monastral bipolar spindle resulted in haploid daughter nuclei, one of which was associated with a microtubule-organizing center whereas the other was not. Remarkably, in the following cycle, biastral and anastral bipolar spindles formed that were frequently arranged in tandem by sharing an aster with bidirectional connections at their central poles. We propose that, for diploidization of haploid nuclei, unfertilized parthenogenetic embryos utilize dual spindles during the second mitosis, as occurs for the first mitosis in normal fertilized eggs.
Collapse
Affiliation(s)
| | - Yoshihiro H Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Kyoto 606-8585, Japan
| | - Muneo Matsuda
- Department of Biology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
13
|
Bruno S, Ghelli Luserna di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G. CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Cancer Res 2022; 41:159. [PMID: 35490245 PMCID: PMC9055704 DOI: 10.1186/s13046-022-02363-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Cell division cycle 20 homologue (CDC20) is a well-known regulator of cell cycle, as it controls the correct segregation of chromosomes during mitosis. Many studies have focused on the biological role of CDC20 in cancer development, as alterations of its functionality have been linked to genomic instability and evidence demonstrated that high CDC20 expression levels are associated with poor overall survival in solid cancers. More recently, novel CDC20 functions have been demonstrated or suggested, including the regulation of apoptosis and stemness properties and a correlation with immune cell infiltration. Here, we here summarize and discuss the role of CDC20 inside and outside mitosis, starting from its network of interacting proteins. In the last years, CDC20 has also attracted more interest in the blood cancer field, being overexpressed and showing an association with prognosis both in myeloid and lymphoid malignancies. Preclinical findings showed that selective CDC20 and APC/CCDC20/APC/CCDH1 inhibitors, namely Apcin and proTAME, are effective against lymphoma and multiple myeloma cells, resulting in mitotic arrest and apoptosis and synergizing with clinically-relevant drugs. The evidence and hypothesis presented in this review provide the input for further biological and chemical studies aiming to dissect novel potential CDC20 roles and targeting strategies in hematological malignancies.
Collapse
Affiliation(s)
- Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
14
|
Thomas C, Wetherall B, Levasseur MD, Harris RJ, Kerridge ST, Higgins JMG, Davies OR, Madgwick S. A prometaphase mechanism of securin destruction is essential for meiotic progression in mouse oocytes. Nat Commun 2021; 12:4322. [PMID: 34262048 PMCID: PMC8280194 DOI: 10.1038/s41467-021-24554-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Successful cell division relies on the timely removal of key cell cycle proteins such as securin. Securin inhibits separase, which cleaves the cohesin rings holding chromosomes together. Securin must be depleted before anaphase to ensure chromosome segregation occurs with anaphase. Here we find that in meiosis I, mouse oocytes contain an excess of securin over separase. We reveal a mechanism that promotes excess securin destruction in prometaphase I. Importantly, this mechanism relies on two phenylalanine residues within the separase-interacting segment (SIS) of securin that are only exposed when securin is not bound to separase. We suggest that these residues facilitate the removal of non-separase-bound securin ahead of metaphase, as inhibiting this period of destruction by mutating both residues causes the majority of oocytes to arrest in meiosis I. We further propose that cellular securin levels exceed the amount an oocyte is capable of removing in metaphase alone, such that the prometaphase destruction mechanism identified here is essential for correct meiotic progression in mouse oocytes.
Collapse
Affiliation(s)
- Christopher Thomas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK. .,Max Planck Institute for Biophysical Chemistry, Gottingen, Germany.
| | - Benjamin Wetherall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mark D Levasseur
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Rebecca J Harris
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Scott T Kerridge
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jonathan M G Higgins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Owen R Davies
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK
| | - Suzanne Madgwick
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
15
|
Kobayashi Y, Masuda T, Fujii A, Shimizu D, Sato K, Kitagawa A, Tobo T, Ozato Y, Saito H, Kuramitsu S, Noda M, Otsu H, Mizushima T, Doki Y, Eguchi H, Mori M, Mimori K. Mitotic checkpoint regulator RAE1 promotes tumor growth in colorectal cancer. Cancer Sci 2021; 112:3173-3189. [PMID: 34008277 PMCID: PMC8353924 DOI: 10.1111/cas.14969] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Microtubules are among the most successful targets for anticancer therapy because they play important roles in cell proliferation as they constitute the mitotic spindle, which is critical for chromosome segregation during mitosis. Hence, identifying new therapeutic targets encoding proteins that regulate microtubule assembly and function specifically in cancer cells is critical. In the present study, we identified a candidate gene that promotes tumor progression, ribonucleic acid export 1 (RAE1), a mitotic checkpoint regulator, on chromosome 20q through a bioinformatics approach using datasets of colorectal cancer (CRC), including The Cancer Genome Atlas (TCGA). RAE1 was ubiquitously amplified and overexpressed in tumor cells. High expression of RAE1 in tumor tissues was positively associated with distant metastasis and was an independent poor prognostic factor in CRC. In vitro and in vivo analysis showed that RAE1 promoted tumor growth, inhibited apoptosis, and promoted cell cycle progression, possibly with a decreased proportion of multipolar spindle cells in CRC. Furthermore, RAE1 induced chemoresistance through its anti-apoptotic effect. In addition, overexpression of RAE1 and significant effects on survival were observed in various types of cancer, including CRC. In conclusion, we identified RAE1 as a novel gene that facilitates tumor growth in part by inhibiting apoptosis and promoting cell cycle progression through stabilizing spindle bipolarity and facilitating tumor growth. We suggest that it is a potential therapeutic target to overcome therapeutic resistance of CRC.
Collapse
Affiliation(s)
- Yuta Kobayashi
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Atsushi Fujii
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Dai Shimizu
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Akihiro Kitagawa
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Shotaro Kuramitsu
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Miwa Noda
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Hajime Otsu
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| |
Collapse
|
16
|
Coelho VL, de Brito TF, de Abreu Brito IA, Cardoso MA, Berni MA, Araujo HMM, Sammeth M, Pane A. Analysis of ovarian transcriptomes reveals thousands of novel genes in the insect vector Rhodnius prolixus. Sci Rep 2021; 11:1918. [PMID: 33479356 PMCID: PMC7820597 DOI: 10.1038/s41598-021-81387-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/30/2020] [Indexed: 01/29/2023] Open
Abstract
Rhodnius prolixus is a Triatominae insect species and a primary vector of Chagas disease. The genome of R. prolixus has been recently sequenced and partially assembled, but few transcriptome analyses have been performed to date. In this study, we describe the stage-specific transcriptomes obtained from previtellogenic stages of oogenesis and from mature eggs. By analyzing ~ 228 million paired-end RNA-Seq reads, we significantly improved the current genome annotations for 9206 genes. We provide extended 5' and 3' UTRs, complete Open Reading Frames, and alternative transcript variants. Strikingly, using a combination of genome-guided and de novo transcriptome assembly we found more than two thousand novel genes, thus increasing the number of genes in R. prolixus from 15,738 to 17,864. We used the improved transcriptome to investigate stage-specific gene expression profiles during R. prolixus oogenesis. Our data reveal that 11,127 genes are expressed in the early previtellogenic stage of oogenesis and their transcripts are deposited in the developing egg including key factors regulating germline development, genome integrity, and the maternal-zygotic transition. In addition, GO term analyses show that transcripts encoding components of the steroid hormone receptor pathway, cytoskeleton, and intracellular signaling are abundant in the mature eggs, where they likely control early embryonic development upon fertilization. Our results significantly improve the R. prolixus genome and transcriptome and provide novel insight into oogenesis and early embryogenesis in this medically relevant insect.
Collapse
Affiliation(s)
- Vitor Lima Coelho
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Maira Arruda Cardoso
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mateus Antonio Berni
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Maria Marcolla Araujo
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Michael Sammeth
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Applied Sciences, Institute of Bioanalysis, Coburg University, Coburg, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences (ICB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|