1
|
Moronuki Y, Kasahara R, Naka H, Suzuki MG. Identification and functional analysis of sex-determining genes in the spongy moth, Lymantria dispar (lepidoptera: Erebidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 177:104219. [PMID: 39579798 DOI: 10.1016/j.ibmb.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
The spongy moth (Lymantria dispar) employs a female heterogametic sex-determination system, where the female sex-determining factor (F factor) is located on the W chromosome, and the male sex-determining factor (M factor) is located on the Z chromosome. The sex-determining capabilities of the F factor and M factor vary among subspecies. Consequently, L. dispar serves as an excellent model for studying the mechanisms underlying the evolution and diversity of sex-determining genes. However, the genes encoding the F and M factors, as well as the molecular functions of their translation products, remain unidentified. In this study, we identified a L. dispar Masculinizer ortholog (LdMasc) and found that this gene is highly expressed in male embryos during the sex-determination stage. When LdMasc expression was silenced using embryonic RNA interference (RNAi), the expression pattern of L. dispar doublesex (Lddsx), the master regulatory gene for sex differentiation, shifted from the male-specific form to the female-specific form in male embryos. To identify potential F factors, we screened for genes that were exclusively expressed in females across multiple tissues and located only within the female genome. This screening yielded four unigenes with sequences displaying high homology to each other. These unigenes formed a tandem repeat, comprising approximately 100 copies within a 200 kbp region of the W chromosome-derived contig. We designated these unigenes as Fet-W (female-specifically expressed transcript from the W chromosome). RT-PCR analysis revealed that Fet-W was expressed in a female-specific manner during the sex-determination stage. Suppression of Fet-W expression by embryonic RNAi led to an increase in LdMasc expression in females and a corresponding shift in dsx expression patterns from the female-specific to the male-specific form. These findings strongly suggest that the F factor in L. dispar is Fet-W, whereas the M factor is LdMasc.
Collapse
Affiliation(s)
- Yuto Moronuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 277-8562, Chiba, Japan
| | - Ryota Kasahara
- Department of Research for Parkinson's Disease & Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 113-8421, Tokyo, Japan
| | - Hideshi Naka
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 680-8550, Tottori, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 277-8562, Chiba, Japan.
| |
Collapse
|
2
|
Kalita AI, Keller Valsecchi CI. Dosage compensation in non-model insects - progress and perspectives. Trends Genet 2024:S0168-9525(24)00207-5. [PMID: 39341686 DOI: 10.1016/j.tig.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
In many multicellular eukaryotes, heteromorphic sex chromosomes are responsible for determining the sexual characteristics and reproductive functions of individuals. Sex chromosomes can cause a dosage imbalance between sexes, which in some species is re-equilibrated by dosage compensation (DC). Recent genomic advances have extended our understanding of DC mechanisms in insects beyond model organisms such as Drosophila melanogaster. We review current knowledge of insect DC, focusing on its conservation and divergence across orders, the evolutionary dynamics of neo-sex chromosomes, and the diversity of molecular mechanisms. We propose a framework to uncover DC regulators in non-model insects that relies on integrating evolutionary, genomic, and functional approaches. This comprehensive approach will facilitate a deeper understanding of the evolution and essentiality of gene regulatory mechanisms.
Collapse
|
3
|
Wu BCH, Zabelina V, Zurovcova M, Zurovec M. Characterization and comparative analysis of sericin protein 150 in Bombyx mori. Sci Rep 2024; 14:20990. [PMID: 39251726 PMCID: PMC11385562 DOI: 10.1038/s41598-024-71503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Lepidopteran silk is a complex mixture of proteins, consisting mainly of fibroins and sericins. Sericins are a small family of highly divergent proteins that serve as adhesives and coatings for silk fibers. So far, five genes encoding sericin proteins have been identified in Bombyx mori. Having previously identified sericin protein 150 (SP150) as a major sericin-like protein in the cocoons of the pyralid moths Galleria mellonella and Ephestia kuehniella, we describe the identification of its homolog in B. mori. Our refined gene model shows that it consists of four exons and a long open reading frame with a conserved motif, CXCXCX, at the C-terminus, reminiscent of the structure observed in a class of mucin proteins. Notably, despite a similar expression pattern, both mRNA and protein levels of B. mori SP150 were significantly lower than those of its pyralid counterpart. We also discuss the synteny of homologous genes on corresponding chromosomes in different moth species and the possible phylogenetic relationships between SP150 and certain mucin-like proteins. Our results improve our understanding of silk structure and the evolutionary relationships between adhesion proteins in the silk of different lepidopteran species.
Collapse
Affiliation(s)
- Bulah Chia-Hsiang Wu
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Valeriya Zabelina
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic
| | - Martina Zurovcova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
4
|
Li X, Visser S, Son JH, Geuverink E, Kıvanç EN, Wu Y, Schmeing S, Pippel M, Anvar SY, Schenkel MA, Marec F, Robinson MD, Meisel RP, Wimmer EA, van de Zande L, Bopp D, Beukeboom LW. Divergent evolution of male-determining loci on proto-Y chromosomes of the housefly. Nat Commun 2024; 15:5984. [PMID: 39013946 PMCID: PMC11252125 DOI: 10.1038/s41467-024-50390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Houseflies provide a good experimental model to study the initial evolutionary stages of a primary sex-determining locus because they possess different recently evolved proto-Y chromosomes that contain male-determining loci (M) with the same male-determining gene, Mdmd. We investigate M-loci genomically and cytogenetically revealing distinct molecular architectures among M-loci. M on chromosome V (MV) has two intact Mdmd copies in a palindrome. M on chromosome III (MIII) has tandem duplications containing 88 Mdmd copies (only one intact) and various repeats, including repeats that are XY-prevalent. M on chromosome II (MII) and the Y (MY) share MIII-like architecture, but with fewer repeats. MY additionally shares MV-specific sequence arrangements. Based on these data and karyograms using two probes, one derives from MIII and one Mdmd-specific, we infer evolutionary histories of polymorphic M-loci, which have arisen from unique translocations of Mdmd, embedded in larger DNA fragments, and diverged independently into regions of varying complexity.
Collapse
Affiliation(s)
- Xuan Li
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | - Sander Visser
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jae Hak Son
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ece Naz Kıvanç
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Yanli Wu
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Stephan Schmeing
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Martin Pippel
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Seyed Yahya Anvar
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn A Schenkel
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Biology, Georgetown University, Washington, DC, USA
| | - František Marec
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Daniel Bopp
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Li X, Liu H, Bi H, Wang Y, Xu J, Zhang S, Zhang Z, Zhang Z, Huang Y. Masculinizer gene controls sexual differentiation in Hyphantria cunea. INSECT SCIENCE 2024; 31:405-416. [PMID: 37464965 DOI: 10.1111/1744-7917.13247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023]
Abstract
The Masculinizer gene, Masc, encodes a lepidopteran-specific novel CCCH-type zinc finger protein, which controls sex determination and dosage compensation in Bombyx mori. Considering the potential application of it in pest control, it is necessary to investigate the function of Masc gene in Hyphantria cunea, a globally invasive forest pest. In the present study, we identified and functionally characterized the Masc gene, HcMasc, in H. cunea. Sequence analysis revealed that HcMASC contained the conserved CCCH-type zinc finger domain, nuclear localization signal, and male determining domain, in which the last was confirmed to be required for its masculinization in BmN cell line. However, expression data showed that unlike male-biased expression in B. mori, HcMasc gene expresses in main all developmental stages or tissues in both sexes. Clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-based disruption of the common exons 1 and 3 of the HcMasc gene resulted in imbalanced sex ratio and abnormal external genitalia of both sexes. Our results suggest that the HcMasc gene is required for both male and female sexual differentiation and dosage compensation in H. cunea and provide a foundation for developing better strategies to control this pest.
Collapse
Affiliation(s)
- Xiaowei Li
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Huihui Liu
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Honglun Bi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Yaohui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| | - Sufang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, China
| |
Collapse
|
6
|
Fukui T, Kiuchi T, Tomihara K, Muro T, Matsuda-Imai N, Katsuma S. Expression of the Wolbachia male-killing factor Oscar impairs dosage compensation in lepidopteran embryos. FEBS Lett 2024; 598:331-337. [PMID: 37985236 DOI: 10.1002/1873-3468.14777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
Wolbachia are intracellular bacteria in insects that can manipulate the sexual development and reproduction by male killing or other methods. We have recently identified a Wolbachia protein named Oscar that acts as a male-killing factor for lepidopteran insects. Oscar interacts with the Masculinizer (Masc) protein, which is required for both masculinization and dosage compensation (DC) in lepidopteran insects. Embryonic expression of Oscar inhibits masculinization and causes male killing in two lepidopteran species, Ostrinia furnacalis and Bombyx mori. However, it remains unknown whether Oscar-induced male killing is caused by a failure of DC. Here, we performed a transcriptome analysis of Oscar complementary RNA-injected O. furnacalis and B. mori embryos, and found that Oscar primarily targets the Masc protein, resulting in male killing by interfering with DC in lepidopteran insects.
Collapse
Affiliation(s)
- Takahiro Fukui
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Kenta Tomihara
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Tomohiro Muro
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Noriko Matsuda-Imai
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
7
|
Pospíšilová K, Van't Hof AE, Yoshido A, Kružíková R, Visser S, Zrzavá M, Bobryshava K, Dalíková M, Marec F. Masculinizer gene controls male sex determination in the codling moth, Cydia pomonella. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 160:103991. [PMID: 37536576 DOI: 10.1016/j.ibmb.2023.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
The molecular mechanisms of sex determination in moths and butterflies (Lepidoptera) with female heterogamety (WZ/ZZ) are poorly understood, except in the silkworm Bombyx mori. However, the Masculinizer (Masc) gene that controls male development and dosage compensation in B. mori, appears to be conserved in Lepidoptera, as its masculinizing function was recently confirmed in several moth species. In this work, we investigated the role of the Masc gene in sex determination of the codling moth Cydia pomonella (Tortricidae), a globally important pest of pome fruits and walnuts. The gene structure of the C. pomonella Masc ortholog, CpMasc, is similar to B. mori Masc. However, unlike B. mori, we identified 14 splice variants of CpMasc in the available transcriptomes. Subsequent screening for sex specificity and genetic variation using publicly available data and RT-PCR revealed three male-specific splice variants. Then qPCR analysis of these variants revealed sex-biased expression showing a peak only in early male embryos. Knockdown of CpMasc by RNAi during early embryogenesis resulted in a shift from male-to female-specific splicing of the C. pomonella doublesex (Cpdsx) gene, its downstream effector, in ZZ embryos, leading to a strongly female-biased sex ratio. These data clearly demonstrate that CpMasc functions as a masculinizing gene in the sex-determining cascade of C. pomonella. Our study also showed that CpMasc transcripts are provided maternally, as they were detected in unfertilized eggs after oviposition and in mature eggs dissected from virgin females. This finding is unique, as maternal provision of mRNA has rarely been studied in Lepidoptera.
Collapse
Affiliation(s)
- Kristýna Pospíšilová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Arjen E Van't Hof
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic.
| | - Atsuo Yoshido
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic.
| | - Renata Kružíková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Sander Visser
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; School of Science and Engineering, University of Groningen, 9700 CC, Groningen, the Netherlands.
| | - Magda Zrzavá
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Kseniya Bobryshava
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic.
| | - Martina Dalíková
- Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
8
|
Fukui T, Shoji K, Kiuchi T, Suzuki Y, Katsuma S. Masculinizer is not post-transcriptionally regulated by female-specific piRNAs during sex determination in the Asian corn borer, Ostrinia furnacalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103946. [PMID: 37075905 DOI: 10.1016/j.ibmb.2023.103946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Lepidopteran insects are heterogametic in females, although most insect species are heterogametic in males. In a lepidopteran model species, the silkworm Bombyx mori (Bombycoidea), the uppermost sex determinant Feminizer (Fem) has been identified on the female-specific W chromosome. Fem is a precursor of PIWI-interacting small RNA (piRNA). Fem piRNA forms a complex with Siwi, one of the two B. mori PIWI-clade Argonaute proteins. In female embryos, Fem piRNA-Siwi complex cleaves the mRNA of the male-determining gene Masculinizer (Masc), directing the female-determining pathway. In male embryos, Masc activates the male-determining pathway in the absence of Fem piRNA. Recently, W chromosome-derived piRNAs complementary to Masc mRNA have also been identified in the diamondback moth Plutella xylostella (Yponomeutoidea), indicating the convergent evolution of piRNA-dependent sex determination in Lepidoptera. Here, we show that this is not the case in the Asian corn borer, Ostrinia furnacalis (Pyraloidea). Although our previous studies demonstrated that O. furnacalis Masc (OfMasc) has a masculinizing function in the embryonic stage, the expression level of OfMasc was indistinguishable between the sexes at the timing of sex determination. Deep sequencing analysis identified no female-specific small RNAs mapped onto OfMasc mRNA. Embryonic knockdown of two PIWI genes did not affect the expression level of OfMasc in either sex. These results demonstrated that piRNA-dependent reduction of Masc mRNA in female embryos is not a common strategy of sex determination, which suggests the possibility of divergent evolution of sex determinants across the order Lepidoptera.
Collapse
Affiliation(s)
- Takahiro Fukui
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keisuke Shoji
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
9
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
10
|
Wu BCH, Sauman I, Maaroufi HO, Zaloudikova A, Zurovcova M, Kludkiewicz B, Hradilova M, Zurovec M. Characterization of silk genes in Ephestia kuehniella and Galleria mellonella revealed duplication of sericin genes and highly divergent sequences encoding fibroin heavy chains. Front Mol Biosci 2022; 9:1023381. [DOI: 10.3389/fmolb.2022.1023381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Silk is a secretory product of numerous arthropods with remarkable mechanical properties. In this work, we present the complete sequences of the putative major silk proteins of E. kuehniella and compare them with those of G. mellonella, which belongs to the same moth family Pyralidae. To identify the silk genes of both species, we combined proteomic analysis of cocoon silk with a homology search in transcriptomes and genomic sequences to complement the information on both species. We analyzed structure of the candidate genes obtained, their expression specificity and their evolutionary relationships. We demonstrate that the silks of E. kuehniella and G. mellonella differ in their hydrophobicity and that the silk of E. kuehniella is highly hygroscopic. In our experiments, we show that the number of genes encoding sericins is higher in G. mellonella than in E. kuehniella. By analyzing the synteny of the chromosomal segment encoding sericin genes in both moth species, we found that the region encoding sericins is duplicated in G. mellonella. Finally, we present the complete primary structures of nine fibH genes and proteins from both families of the suborder Pyraloidea and discuss their specific and conserved features. This study provides a foundation for future research on the evolution of silk proteins and lays the groundwork for future detailed functional studies.
Collapse
|
11
|
Harvey-Samuel T, Xu X, Anderson MAE, Carabajal Paladino LZ, Purusothaman D, Norman VC, Reitmayer CM, You M, Alphey L. Silencing RNAs expressed from W-linked PxyMasc "retrocopies" target that gene during female sex determination in Plutella xylostella. Proc Natl Acad Sci U S A 2022; 119:e2206025119. [PMID: 36343250 PMCID: PMC9674220 DOI: 10.1073/pnas.2206025119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/29/2022] [Indexed: 07/27/2023] Open
Abstract
The Lepidoptera are an insect order of cultural, economic, and environmental importance, representing ∼10% of all described living species. Yet, for all but one of these species (silkmoth, Bombyx mori), the molecular genetics of how sexual fate is determined remains unknown. We investigated this in the diamondback moth (Plutella xylostella), a globally important, highly invasive, and economically damaging pest of cruciferous crops. Our previous work uncovered a regulator of male sex determination in P. xylostella-PxyMasc, a homolog of B. mori Masculinizer-which, although initially expressed in embryos of both sexes, is then reduced in female embryos, leading to female-specific splicing of doublesex. Here, through sequencing small RNA libraries generated from early embryos and sexed larval pools, we identified a variety of small silencing RNAs (predominantly Piwi-interacting RNAs [piRNAs]) complementary to PxyMasc, whose temporal expression correlated with the reduction in PxyMasc transcript observed previously in females. Analysis of these small RNAs showed that they are expressed from tandemly arranged, multicopy arrays found exclusively on the W (female-specific) chromosome, which we term "Pxyfem". Analysis of the Pxyfem sequences showed that they are partial complementary DNAs (cDNAs) of PxyMasc messenger RNA (mRNA) transcripts, likely integrated into transposable element graveyards by the noncanonical action of retrotransposons (retrocopies), and that their apparent similarity to B. mori feminizer more probably represents convergent evolution. Our study helps elucidate the sex determination cascade in this globally important pest and highlights the "shortcuts" that retrotransposition events can facilitate in the evolution of complex molecular cascades, including sex determination.
Collapse
Affiliation(s)
- Tim Harvey-Samuel
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright GU24 0NF, United Kingdom
| | - Xuejiao Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | | - Deepak Purusothaman
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright GU24 0NF, United Kingdom
| | - Victoria. C. Norman
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright GU24 0NF, United Kingdom
| | - Christine. M. Reitmayer
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright GU24 0NF, United Kingdom
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Luke Alphey
- Arthropod Genetics Group, The Pirbright Institute, Woking, Pirbright GU24 0NF, United Kingdom
| |
Collapse
|
12
|
Künstner A, Busch H, Hartmann E, Traut W. Data on draft genomes and transcriptomes from females and males of the flour moth, Ephestia kuehniella. Data Brief 2022; 42:108140. [PMID: 35479422 PMCID: PMC9035648 DOI: 10.1016/j.dib.2022.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/01/2022] Open
Abstract
We present genomes and pupal transcriptomes of the Mediterranean flour moth, Ephestia kuehniella. The moth is a world-wide storage pest as well as a laboratory species with a considerable background in developmental biology, genetics, and cytogenetics. The sequence data were derived from a highly inbred laboratory strain and, hence, display very little heterozygosity. Female and male genomes and transcriptomes are represented separately in two sets each of raw and assembled sequence data. They are designed as a basis to develop new strategies in pest control, to elucidate the molecular adaptation for its peculiar lifestyle, and for research on sex chromosome structure, sex determination and sex-specific gene activity. For a test, all genes known or suspected to have a role in sex determination were extracted from the data. Raw sequencing data and assemblies are available at European Nucleotide Archive under accession number PRJEB49052.
Collapse
Affiliation(s)
- Axel Künstner
- Medical Systems Biology Group, Lübeck Institute for Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
- Corresponding author. @knstnr
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute for Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Enno Hartmann
- Institut für Biologie, Zentrum für Medizinische Struktur- und Zellbiologie, Universität zu Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Walther Traut
- Institut für Biologie, Zentrum für Medizinische Struktur- und Zellbiologie, Universität zu Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| |
Collapse
|
13
|
Siddall A, Harvey-Samuel T, Chapman T, Leftwich PT. Manipulating Insect Sex Determination Pathways for Genetic Pest Management: Opportunities and Challenges. Front Bioeng Biotechnol 2022; 10:867851. [PMID: 35837548 PMCID: PMC9274970 DOI: 10.3389/fbioe.2022.867851] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Sex determination pathways in insects are generally characterised by an upstream primary signal, which is highly variable across species, and that regulates the splicing of a suite of downstream but highly-conserved genes (transformer, doublesex and fruitless). In turn, these downstream genes then regulate the expression of sex-specific characteristics in males and females. Identification of sex determination pathways has and continues to be, a critical component of insect population suppression technologies. For example, "first-generation" transgenic technologies such as fsRIDL (Female-Specific Release of Insects carrying Dominant Lethals) enabled efficient selective removal of females from a target population as a significant improvement on the sterile insect technique (SIT). Second-generation technologies such as CRISPR/Cas9 homing gene drives and precision-guided SIT (pgSIT) have used gene editing technologies to manipulate sex determination genes in vivo. The development of future, third-generation control technologies, such as Y-linked drives, (female to male) sex-reversal, or X-shredding, will require additional knowledge of aspects of sexual development, including a deeper understanding of the nature of primary signals and dosage compensation. This review shows how knowledge of sex determination in target pest species is fundamental to all phases of the development of control technologies.
Collapse
Affiliation(s)
- Alex Siddall
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Tim Harvey-Samuel
- Arthropod Genetics, The Pirbright Institute, Pirbright, United Kingdom
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|