1
|
Wu Q, Morrow EM, Gamsiz Uzun ED. A deep learning model for prediction of autism status using whole-exome sequencing data. PLoS Comput Biol 2024; 20:e1012468. [PMID: 39514604 DOI: 10.1371/journal.pcbi.1012468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/20/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
Autism is a developmental disability. Research demonstrated that children with autism benefit from early diagnosis and early intervention. Genetic factors are considered major contributors to the development of autism. Machine learning (ML), including deep learning (DL), has been evaluated in phenotype prediction, but this method has been limited in its application to autism. We developed a DL model, the Separate Translated Autism Research Neural Network (STAR-NN) model to predict autism status. The model was trained and tested using whole exome sequencing data from 43,203 individuals (16,809 individuals with autism and 26,394 non-autistic controls). Polygenic scores from common variants and the aggregated count of rare variants on genes were used as input. In STAR-NN, protein truncating variants, possibly damaging missense variants and mild effect missense variants on the same gene were separated at the input level and merged to one gene node. In this way, rare variants with different level of pathogenic effects were treated separately. We further validated the performance of STAR-NN using an independent dataset, including 13,827 individuals with autism and 14,052 non-autistic controls. STAR-NN achieved a modest ROC-AUC of 0.7319 on the testing dataset and 0.7302 on the independent dataset. STAR-NN outperformed other traditional ML models. Gene Ontology analysis on the selected gene features showed an enrichment for potentially informative pathways including calcium ion transport.
Collapse
Affiliation(s)
- Qing Wu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, United States of America
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Emma Pendleton Bradley Hospital, East Providence, Rhode Island, United States of America
| | - Ece D Gamsiz Uzun
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, United States of America
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, Rhode Island, United States of America
| |
Collapse
|
2
|
Xie H, Crawford L, Conard AM. Multioviz: an interactive platform for in silico perturbation and interrogation of gene regulatory networks. BMC Bioinformatics 2024; 25:249. [PMID: 39080561 PMCID: PMC11290168 DOI: 10.1186/s12859-024-05819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/23/2024] [Indexed: 08/02/2024] Open
Abstract
In this paper, we aim to build a platform that will help bridge the gap between high-dimensional computation and wet-lab experimentation by allowing users to interrogate genomic signatures at multiple molecular levels and identify best next actionable steps for downstream decision making. We introduce Multioviz: a publicly accessible R package and web application platform to easily perform in silico hypothesis testing of generated gene regulatory networks. We demonstrate the utility of Multioviz by conducting an end-to-end analysis in a statistical genetics application focused on measuring the effect of in silico perturbations of complex trait architecture. By using a real dataset from the Wellcome Trust Centre for Human Genetics, we both recapitulate previous findings and propose hypotheses about the genes involved in the percentage of immune CD8+ cells found in heterogeneous stocks of mice. Source code for the Multioviz R package is available at https://github.com/lcrawlab/multio-viz and an interactive version of the platform is available at https://multioviz.ccv.brown.edu/ .
Collapse
Affiliation(s)
- Helen Xie
- Department of Computer Science, Brown University, Providence, RI, USA
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
- Microsoft Research, Cambridge, MA, USA.
- Department of Biostatistics, Brown University, Providence, RI, USA.
| | - Ashley Mae Conard
- Department of Computer Science, Brown University, Providence, RI, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA.
- Microsoft Research, Cambridge, MA, USA.
| |
Collapse
|
3
|
van Hilten A, Katz S, Saccenti E, Niessen WJ, Roshchupkin GV. Designing interpretable deep learning applications for functional genomics: a quantitative analysis. Brief Bioinform 2024; 25:bbae449. [PMID: 39293804 PMCID: PMC11410376 DOI: 10.1093/bib/bbae449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Deep learning applications have had a profound impact on many scientific fields, including functional genomics. Deep learning models can learn complex interactions between and within omics data; however, interpreting and explaining these models can be challenging. Interpretability is essential not only to help progress our understanding of the biological mechanisms underlying traits and diseases but also for establishing trust in these model's efficacy for healthcare applications. Recognizing this importance, recent years have seen the development of numerous diverse interpretability strategies, making it increasingly difficult to navigate the field. In this review, we present a quantitative analysis of the challenges arising when designing interpretable deep learning solutions in functional genomics. We explore design choices related to the characteristics of genomics data, the neural network architectures applied, and strategies for interpretation. By quantifying the current state of the field with a predefined set of criteria, we find the most frequent solutions, highlight exceptional examples, and identify unexplored opportunities for developing interpretable deep learning models in genomics.
Collapse
Affiliation(s)
- Arno van Hilten
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Sonja Katz
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6700 HB Wageningen WE, The Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6700 HB Wageningen WE, The Netherlands
| | - Wiro J Niessen
- Department of Imaging Physics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Gennady V Roshchupkin
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
4
|
Wang X, Shi S, Ali Khan MY, Zhang Z, Zhang Y. Improving the accuracy of genomic prediction in dairy cattle using the biologically annotated neural networks framework. J Anim Sci Biotechnol 2024; 15:87. [PMID: 38945998 PMCID: PMC11215832 DOI: 10.1186/s40104-024-01044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/05/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Biologically annotated neural networks (BANNs) are feedforward Bayesian neural network models that utilize partially connected architectures based on SNP-set annotations. As an interpretable neural network, BANNs model SNP and SNP-set effects in their input and hidden layers, respectively. Furthermore, the weights and connections of the network are regarded as random variables with prior distributions reflecting the manifestation of genetic effects at various genomic scales. However, its application in genomic prediction has yet to be explored. RESULTS This study extended the BANNs framework to the area of genomic selection and explored the optimal SNP-set partitioning strategies by using dairy cattle datasets. The SNP-sets were partitioned based on two strategies-gene annotations and 100 kb windows, denoted as BANN_gene and BANN_100kb, respectively. The BANNs model was compared with GBLUP, random forest (RF), BayesB and BayesCπ through five replicates of five-fold cross-validation using genotypic and phenotypic data on milk production traits, type traits, and one health trait of 6,558, 6,210 and 5,962 Chinese Holsteins, respectively. Results showed that the BANNs framework achieves higher genomic prediction accuracy compared to GBLUP, RF and Bayesian methods. Specifically, the BANN_100kb demonstrated superior accuracy and the BANN_gene exhibited generally suboptimal accuracy compared to GBLUP, RF, BayesB and BayesCπ across all traits. The average accuracy improvements of BANN_100kb over GBLUP, RF, BayesB and BayesCπ were 4.86%, 3.95%, 3.84% and 1.92%, and the accuracy of BANN_gene was improved by 3.75%, 2.86%, 2.73% and 0.85% compared to GBLUP, RF, BayesB and BayesCπ, respectively across all seven traits. Meanwhile, both BANN_100kb and BANN_gene yielded lower overall mean square error values than GBLUP, RF and Bayesian methods. CONCLUSION Our findings demonstrated that the BANNs framework performed better than traditional genomic prediction methods in our tested scenarios, and might serve as a promising alternative approach for genomic prediction in dairy cattle.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shaolei Shi
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Md Yousuf Ali Khan
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Bangladesh Livestock Research Institute, Dhaka 1341, Bangladesh
| | - Zhe Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yi Zhang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Pattillo Smith S, Darnell G, Udwin D, Stamp J, Harpak A, Ramachandran S, Crawford L. Discovering non-additive heritability using additive GWAS summary statistics. eLife 2024; 13:e90459. [PMID: 38913556 PMCID: PMC11196113 DOI: 10.7554/elife.90459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 04/22/2024] [Indexed: 06/26/2024] Open
Abstract
LD score regression (LDSC) is a method to estimate narrow-sense heritability from genome-wide association study (GWAS) summary statistics alone, making it a fast and popular approach. In this work, we present interaction-LD score (i-LDSC) regression: an extension of the original LDSC framework that accounts for interactions between genetic variants. By studying a wide range of generative models in simulations, and by re-analyzing 25 well-studied quantitative phenotypes from 349,468 individuals in the UK Biobank and up to 159,095 individuals in BioBank Japan, we show that the inclusion of a cis-interaction score (i.e. interactions between a focal variant and proximal variants) recovers genetic variance that is not captured by LDSC. For each of the 25 traits analyzed in the UK Biobank and BioBank Japan, i-LDSC detects additional variation contributed by genetic interactions. The i-LDSC software and its application to these biobanks represent a step towards resolving further genetic contributions of sources of non-additive genetic effects to complex trait variation.
Collapse
Affiliation(s)
- Samuel Pattillo Smith
- Center for Computational Molecular Biology, Brown UniversityProvidenceUnited States
- Department of Ecology and Evolutionary Biology, Brown UniversityProvidenceUnited States
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
- Department of Population Health, The University of Texas at AustinAustinUnited States
| | - Gregory Darnell
- Center for Computational Molecular Biology, Brown UniversityProvidenceUnited States
- Institute for Computational and Experimental Research in Mathematics, Brown UniversityProvidenceUnited States
| | - Dana Udwin
- Department of Biostatistics, Brown UniversityProvidenceUnited States
| | - Julian Stamp
- Center for Computational Molecular Biology, Brown UniversityProvidenceUnited States
| | - Arbel Harpak
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
- Department of Population Health, The University of Texas at AustinAustinUnited States
| | - Sohini Ramachandran
- Center for Computational Molecular Biology, Brown UniversityProvidenceUnited States
- Department of Ecology and Evolutionary Biology, Brown UniversityProvidenceUnited States
- Data Science Institute, Brown UniversityProvidenceUnited States
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown UniversityProvidenceUnited States
- Department of Biostatistics, Brown UniversityProvidenceUnited States
- MicrosoftCambridgeUnited States
| |
Collapse
|
6
|
Nwizu C, Hughes M, Ramseier ML, Navia AW, Shalek AK, Fusi N, Raghavan S, Winter PS, Amini AP, Crawford L. Scalable nonparametric clustering with unified marker gene selection for single-cell RNA-seq data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579839. [PMID: 38405697 PMCID: PMC10888887 DOI: 10.1101/2024.02.11.579839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Clustering is commonly used in single-cell RNA-sequencing (scRNA-seq) pipelines to characterize cellular heterogeneity. However, current methods face two main limitations. First, they require user-specified heuristics which add time and complexity to bioinformatic workflows; second, they rely on post-selective differential expression analyses to identify marker genes driving cluster differences, which has been shown to be subject to inflated false discovery rates. We address these challenges by introducing nonparametric clustering of single-cell populations (NCLUSION): an infinite mixture model that leverages Bayesian sparse priors to identify marker genes while simultaneously performing clustering on single-cell expression data. NCLUSION uses a scalable variational inference algorithm to perform these analyses on datasets with up to millions of cells. By analyzing publicly available scRNA-seq studies, we demonstrate that NCLUSION (i) matches the performance of other state-of-the-art clustering techniques with significantly reduced runtime and (ii) provides statistically robust and biologically relevant transcriptomic signatures for each of the clusters it identifies. Overall, NCLUSION represents a reliable hypothesis-generating tool for understanding patterns of expression variation present in single-cell populations.
Collapse
Affiliation(s)
- Chibuikem Nwizu
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Michelle L. Ramseier
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew W. Navia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alex K. Shalek
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Srivatsan Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Peter S. Winter
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Microsoft Research, Cambridge, MA, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
| |
Collapse
|
7
|
Tang D, Freudenberg J, Dahl A. Factorizing polygenic epistasis improves prediction and uncovers biological pathways in complex traits. Am J Hum Genet 2023; 110:1875-1887. [PMID: 37922884 PMCID: PMC10645564 DOI: 10.1016/j.ajhg.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Epistasis is central in many domains of biology, but it has not yet been proven useful for understanding the etiology of complex traits. This is partly because complex-trait epistasis involves polygenic interactions that are poorly captured in current models. To address this gap, we developed a model called Epistasis Factor Analysis (EFA). EFA assumes that polygenic epistasis can be factorized into interactions between a few epistasis factors (EFs), which represent latent polygenic components of the observed complex trait. The statistical goals of EFA are to improve polygenic prediction and to increase power to detect epistasis, while the biological goal is to unravel genetic effects into more-homogeneous units. We mathematically characterize EFA and use simulations to show that EFA outperforms current epistasis models when its assumptions approximately hold. Applied to predicting yeast growth rates, EFA outperforms the additive model for several traits with large epistasis heritability and uniformly outperforms the standard epistasis model. We replicate these prediction improvements in a second dataset. We then apply EFA to four previously characterized traits in the UK Biobank and find statistically significant epistasis in all four, including two that are robust to scale transformation. Moreover, we find that the inferred EFs partly recover pre-defined biological pathways for two of the traits. Our results demonstrate that more realistic models can identify biologically and statistically meaningful epistasis in complex traits, indicating that epistasis has potential for precision medicine and characterizing the biology underlying GWAS results.
Collapse
Affiliation(s)
- David Tang
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA; Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA.
| | - Jerome Freudenberg
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA; Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, USA
| | - Andy Dahl
- Section of Genetic Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Zabad S, Gravel S, Li Y. Fast and accurate Bayesian polygenic risk modeling with variational inference. Am J Hum Genet 2023; 110:741-761. [PMID: 37030289 PMCID: PMC10183379 DOI: 10.1016/j.ajhg.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/13/2023] [Indexed: 04/10/2023] Open
Abstract
The advent of large-scale genome-wide association studies (GWASs) has motivated the development of statistical methods for phenotype prediction with single-nucleotide polymorphism (SNP) array data. These polygenic risk score (PRS) methods use a multiple linear regression framework to infer joint effect sizes of all genetic variants on the trait. Among the subset of PRS methods that operate on GWAS summary statistics, sparse Bayesian methods have shown competitive predictive ability. However, most existing Bayesian approaches employ Markov chain Monte Carlo (MCMC) algorithms, which are computationally inefficient and do not scale favorably to higher dimensions, for posterior inference. Here, we introduce variational inference of polygenic risk scores (VIPRS), a Bayesian summary statistics-based PRS method that utilizes variational inference techniques to approximate the posterior distribution for the effect sizes. Our experiments with 36 simulation configurations and 12 real phenotypes from the UK Biobank dataset demonstrated that VIPRS is consistently competitive with the state-of-the-art in prediction accuracy while being more than twice as fast as popular MCMC-based approaches. This performance advantage is robust across a variety of genetic architectures, SNP heritabilities, and independent GWAS cohorts. In addition to its competitive accuracy on the "White British" samples, VIPRS showed improved transferability when applied to other ethnic groups, with up to 1.7-fold increase in R2 among individuals of Nigerian ancestry for low-density lipoprotein (LDL) cholesterol. To illustrate its scalability, we applied VIPRS to a dataset of 9.6 million genetic markers, which conferred further improvements in prediction accuracy for highly polygenic traits, such as height.
Collapse
Affiliation(s)
- Shadi Zabad
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - Simon Gravel
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Yue Li
- School of Computer Science, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Janizek JD, Spiro A, Celik S, Blue BW, Russell JC, Lee TI, Kaeberlin M, Lee SI. PAUSE: principled feature attribution for unsupervised gene expression analysis. Genome Biol 2023; 24:81. [PMID: 37076856 PMCID: PMC10114348 DOI: 10.1186/s13059-023-02901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 03/17/2023] [Indexed: 04/21/2023] Open
Abstract
As interest in using unsupervised deep learning models to analyze gene expression data has grown, an increasing number of methods have been developed to make these models more interpretable. These methods can be separated into two groups: post hoc analyses of black box models through feature attribution methods and approaches to build inherently interpretable models through biologically-constrained architectures. We argue that these approaches are not mutually exclusive, but can in fact be usefully combined. We propose PAUSE ( https://github.com/suinleelab/PAUSE ), an unsupervised pathway attribution method that identifies major sources of transcriptomic variation when combined with biologically-constrained neural network models.
Collapse
Affiliation(s)
- Joseph D Janizek
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
- Medical Scientist Training Program, University of Washington, Seattle, USA
| | - Anna Spiro
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
| | | | - Ben W Blue
- Department of Pathology, University of Washington, Seattle, USA
| | - John C Russell
- Department of Pathology, University of Washington, Seattle, USA
| | - Ting-I Lee
- Department of Pathology, University of Washington, Seattle, USA
| | - Matt Kaeberlin
- Department of Pathology, University of Washington, Seattle, USA
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Su-In Lee
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA.
| |
Collapse
|
10
|
Cheng W, Ramachandran S, Crawford L. Uncertainty quantification in variable selection for genetic fine-mapping using bayesian neural networks. iScience 2022; 25:104553. [PMID: 35769876 PMCID: PMC9234235 DOI: 10.1016/j.isci.2022.104553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, we propose a new approach for variable selection using a collection of Bayesian neural networks with a focus on quantifying uncertainty over which variables are selected. Motivated by fine-mapping applications in statistical genetics, we refer to our framework as an "ensemble of single-effect neural networks" (ESNN) which generalizes the "sum of single effects" regression framework by both accounting for nonlinear structure in genotypic data (e.g., dominance effects) and having the capability to model discrete phenotypes (e.g., case-control studies). Through extensive simulations, we demonstrate our method's ability to produce calibrated posterior summaries such as credible sets and posterior inclusion probabilities, particularly for traits with genetic architectures that have significant proportions of non-additive variation driven by correlated variants. Lastly, we use real data to demonstrate that the ESNN framework improves upon the state of the art for identifying true effect variables underlying various complex traits.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Computer Science, Brown University, Providence, RI, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Sohini Ramachandran
- Department of Computer Science, Brown University, Providence, RI, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
- Microsoft Research New England, Cambridge, MA, USA
| |
Collapse
|
11
|
Washburn JD, Cimen E, Ramstein G, Reeves T, O'Briant P, McLean G, Cooper M, Hammer G, Buckler ES. Predicting phenotypes from genetic, environment, management, and historical data using CNNs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3997-4011. [PMID: 34448888 DOI: 10.1007/s00122-021-03943-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Convolutional Neural Networks (CNNs) can perform similarly or better than standard genomic prediction methods when sufficient genetic, environmental, and management data are provided. Predicting phenotypes from genetic (G), environmental (E), and management (M) conditions is a long-standing challenge with implications to agriculture, medicine, and conservation. Most methods reduce the factors in a dataset (feature engineering) in a subjective and potentially oversimplified manner. Deep neural networks such as Multilayer Perceptrons (MPL) and Convolutional Neural Networks (CNN) can overcome this by allowing the data itself to determine which factors are most important. CNN models were developed for predicting agronomic yield from a combination of replicated trials and historical yield survey data. The results were more accurate than standard methods when tested on held-out G, E, and M data (r = 0.50 vs. r = 0.43), and performed slightly worse than standard methods when only G was held out (r = 0.74 vs. r = 0.80). Pre-training on historical data increased accuracy compared to trial data alone. Saliency map analysis indicated the CNN has "learned" to prioritize many factors of known agricultural importance.
Collapse
Affiliation(s)
- Jacob D Washburn
- United States Department of Agriculture, Agricultural Research Service, Columbia, MO, 65211, USA.
| | - Emre Cimen
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
- Computational Intelligence and Optimization Laboratory, Industrial Engineering Department, Eskisehir Technical University, Eskisehir, Turkey
| | - Guillaume Ramstein
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark
| | - Timothy Reeves
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
| | - Patrick O'Briant
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
| | - Greg McLean
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, 14853, USA
- Department of Agriculture, Agricultural Research Service, Ithaca, NY, 14850, USA
| |
Collapse
|
12
|
Zhao T, Fernando R, Cheng H. Interpretable artificial neural networks incorporating Bayesian alphabet models for genome-wide prediction and association studies. G3 (BETHESDA, MD.) 2021; 11:jkab228. [PMID: 34499126 PMCID: PMC8496266 DOI: 10.1093/g3journal/jkab228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/22/2021] [Indexed: 01/05/2023]
Abstract
In conventional linear models for whole-genome prediction and genome-wide association studies (GWAS), it is usually assumed that the relationship between genotypes and phenotypes is linear. Bayesian neural networks have been used to account for non-linearity such as complex genetic architectures. Here, we introduce a method named NN-Bayes, where "NN" stands for neural networks, and "Bayes" stands for Bayesian Alphabet models, including a collection of Bayesian regression models such as BayesA, BayesB, BayesC, and Bayesian LASSO. NN-Bayes incorporates Bayesian Alphabet models into non-linear neural networks via hidden layers between single-nucleotide polymorphisms (SNPs) and observed traits. Thus, NN-Bayes attempts to improve the performance of genome-wide prediction and GWAS by accommodating non-linear relationships between the hidden nodes and the observed trait, while maintaining genomic interpretability through the Bayesian regression models that connect the SNPs to the hidden nodes. For genomic interpretability, the posterior distribution of marker effects in NN-Bayes is inferred by Markov chain Monte Carlo approaches and used for inference of association through posterior inclusion probabilities and window posterior probability of association. In simulation studies with dominance and epistatic effects, performance of NN-Bayes was significantly better than conventional linear models for both GWAS and whole-genome prediction, and the differences on prediction accuracy were substantial in magnitude. In real-data analyses, for the soy dataset, NN-Bayes achieved significantly higher prediction accuracies than conventional linear models, and results from other four different species showed that NN-Bayes had similar prediction performance to linear models, which is potentially due to the small sample size. Our NN-Bayes is optimized for high-dimensional genomic data and implemented in an open-source package called "JWAS." NN-Bayes can lead to greater use of Bayesian neural networks to account for non-linear relationships due to its interpretability and computational performance.
Collapse
Affiliation(s)
- Tianjing Zhao
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Rohan Fernando
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Hao Cheng
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|