1
|
Zhang X, Sun D, Wong K, Salkini A, Najafi H, Kim WJ. The astrocyte-enriched gene deathstar plays a crucial role in the development, locomotion, and lifespan of D. melanogaster. Fly (Austin) 2024; 18:2368336. [PMID: 38884422 PMCID: PMC11185185 DOI: 10.1080/19336934.2024.2368336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/11/2024] [Indexed: 06/18/2024] Open
Abstract
The Drosophila melanogaster brain is a complex organ with various cell types, orchestrating the development, physiology, and behaviors of the fly. While each cell type in Drosophila brain is known to express a unique gene set, their complete genetic profile is still unknown. Advances in the RNA sequencing techniques at single-cell resolution facilitate identifying novel cell type markers and/or re-examining the specificity of the available ones. In this study, exploiting a single-cell RNA sequencing data of Drosophila optic lobe, we categorized the cells based on their expression pattern for known markers, then the genes with enriched expression in astrocytes were identified. CG11000 was identified as a gene with a comparable expression profile to the Eaat1 gene, an astrocyte marker, in every individual cell inside the Drosophila optic lobe and midbrain, as well as in the entire Drosophila brain throughout its development. Consistent with our bioinformatics data, immunostaining of the brains dissected from transgenic adult flies showed co-expression of CG11000 with Eaat1 in a set of single cells corresponding to the astrocytes in the Drosophila brain. Physiologically, inhibiting CG11000 through RNA interference disrupted the normal development of male D. melanogaster, while having no impact on females. Expression suppression of CG11000 in adult flies led to decreased locomotion activity and also shortened lifespan specifically in astrocytes, indicating the gene's significance in astrocytes. We designated this gene as 'deathstar' due to its crucial role in maintaining the star-like shape of glial cells, astrocytes, throughout their development into adult stage.
Collapse
Affiliation(s)
- Xiaoli Zhang
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Dongyu Sun
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
| | - Kyle Wong
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ammar Salkini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hadi Najafi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, China
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Purice MD, Lago-Baldaia I, Fernandes VM, Singhvi A. Molecular profiling of invertebrate glia. Glia 2024. [PMID: 39415317 DOI: 10.1002/glia.24623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
Caenorhabditis elegans and Drosophila melanogaster are powerful experimental models for uncovering fundamental tenets of nervous system organization and function. Findings over the last two decades show that molecular and cellular features are broadly conserved between invertebrates and vertebrates, indicating that insights derived from invertebrate models can broadly inform our understanding of glial operating principles across diverse species. In recent years, these model systems have led to exciting discoveries in glial biology and mechanisms of glia-neuron interactions. Here, we summarize studies that have applied current state-of-the-art "-omics" techniques to C. elegans and D. melanogaster glia. Coupled with the remarkable acceleration in the pace of mechanistic studies of glia biology in recent years, these indicate that invertebrate glia also exhibit striking molecular complexity, specificity, and heterogeneity. We provide an overview of these studies and discuss their implications as well as emerging questions where C. elegans and D. melanogaster are well-poised to fill critical knowledge gaps in our understanding of glial biology.
Collapse
Affiliation(s)
- Maria D Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
O’Hara MK, Saul C, Handa A, Cho B, Zheng X, Sehgal A, Williams JA. The NFκB Dif is required for behavioral and molecular correlates of sleep homeostasis in Drosophila. Sleep 2024; 47:zsae096. [PMID: 38629438 PMCID: PMC11321855 DOI: 10.1093/sleep/zsae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Indexed: 05/07/2024] Open
Abstract
The nuclear factor binding the κ light chain in B-cells (NFκB) is involved in a wide range of cellular processes including development, growth, innate immunity, and sleep. However, genetic studies of the role of specific NFκB transcription factors in sleep have been limited. Drosophila fruit flies carry three genes encoding NFκB transcription factors, Dorsal, Dorsal Immunity Factor (Dif), and Relish. We previously found that loss of the Relish gene from fat body suppressed daily nighttime sleep, and abolished infection-induced sleep. Here we show that Dif regulates daily sleep and recovery sleep following prolonged wakefulness. Mutants of Dif showed reduced daily sleep and suppressed recovery in response to sleep deprivation. Pan-neuronal knockdown of Dif strongly suppressed daily sleep, indicating that in contrast to Relish, Dif functions from the central nervous system to regulate sleep. Based on the unique expression pattern of a Dif- GAL4 driver, we hypothesized that its effects on sleep were mediated by the pars intercerebralis (PI). While RNAi knock-down of Dif in the PI reduced daily sleep, it had no effect on the recovery response to sleep deprivation. However, recovery sleep was suppressed when RNAi knock-down of Dif was distributed across a wider range of neurons. Induction of the nemuri (nur) antimicrobial peptide by sleep deprivation was reduced in Dif mutants and pan-neuronal overexpression of nur also suppressed the Dif mutant phenotype by significantly increasing sleep and reducing nighttime arousability. Together, these findings indicate that Dif functions from brain to target nemuri and to promote deep sleep.
Collapse
Affiliation(s)
- Michael K O’Hara
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | - Bumsik Cho
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Amita Sehgal
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julie A Williams
- Department of Neuroscience, Chronobiology and Sleep Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
Ichinose T, Kondo S, Kanno M, Shichino Y, Mito M, Iwasaki S, Tanimoto H. Translational regulation enhances distinction of cell types in the nervous system. eLife 2024; 12:RP90713. [PMID: 39010741 PMCID: PMC11251722 DOI: 10.7554/elife.90713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5' leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5' leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.
Collapse
Grants
- 21K06369 Ministry of Education, Culture, Sports, Science and Technology
- 21H05713 Ministry of Education, Culture, Sports, Science and Technology
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology
- JP21K15023 Ministry of Education, Culture, Sports, Science and Technology
- 22H05481 Ministry of Education, Culture, Sports, Science and Technology
- 22KK0106 Ministry of Education, Culture, Sports, Science and Technology
- 20H00519 Ministry of Education, Culture, Sports, Science and Technology
- JP20gm1410001 Japan Agency for Medical Research and Development
- Biology of Intracellular Environments RIKEN
- Special Postdoctoral Researchers RIKEN
- Incentive Research Projects RIKEN
- Takeda Science Foundation
- Tohoku University Research Program "Frontier Research in Duo"
- The Uehara Memorial Foundation
Collapse
Affiliation(s)
- Toshiharu Ichinose
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku UniversitySendaiJapan
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Shu Kondo
- Faculty of Advanced Engineering, Tokyo University of SciencesTokyoJapan
| | - Mai Kanno
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku UniversitySendaiJapan
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, WakoSaitamaJapan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, WakoSaitamaJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, WakoSaitamaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| |
Collapse
|
5
|
Sheehan PW, Fass S, Sapkota D, Kang S, Hollis HC, Lawrence JH, Anafi RC, Dougherty JD, Fryer JD, Musiek ES. A glial circadian gene expression atlas reveals cell type and disease-specific reprogramming in response to amyloid pathology or aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596297. [PMID: 38853870 PMCID: PMC11160685 DOI: 10.1101/2024.05.28.596297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
While circadian rhythm disruption may promote neurodegenerative disease, how aging and neurodegenerative pathology impact circadian gene expression patterns in different brain cell types is unknown. Here, we used translating ribosome affinity purification methods to define the circadian translatomes of astrocytes, microglia, and bulk cerebral cortex, in healthy mouse brain and in the settings of amyloid-beta plaque pathology or aging. Our data reveal that glial circadian translatomes are highly cell type-specific and exhibit profound, context-dependent reprogramming of rhythmic transcripts in response to amyloid pathology or aging. Transcripts involved in glial activation, immunometabolism, and proteostasis, as well as nearly half of all Alzheimer Disease (AD)-associated risk genes, displayed circadian oscillations, many of which were altered by pathology. Amyloid-related differential gene expression was also dependent on time of day. Thus, circadian rhythms in gene expression are cell- and context dependent and provide important insights into glial gene regulation in health, AD, and aging.
Collapse
Affiliation(s)
- Patrick W. Sheehan
- Department of Neurology, Washington University School of Medicine, Saint Louis MO, USA
| | - Stuart Fass
- Department of Genetics, Washington University School of Medicine, Saint Louis MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis MO, USA
| | - Darshan Sapkota
- Department of Genetics, Washington University School of Medicine, Saint Louis MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis MO, USA
- Department of Biological Sciences and Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Sylvia Kang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Henry C. Hollis
- School of Biomedical Engineering and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Jennifer H. Lawrence
- Department of Neurology, Washington University School of Medicine, Saint Louis MO, USA
| | - Ron C. Anafi
- Department of Medicine, Chronobiology, and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis MO, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis MO, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jon D. Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ, USA
| | - Erik S. Musiek
- Department of Neurology, Washington University School of Medicine, Saint Louis MO, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine, St. Louis, MO, USA
- Lead contact
| |
Collapse
|
6
|
Li W, Tiedt S, Lawrence JH, Harrington ME, Musiek ES, Lo EH. Circadian Biology and the Neurovascular Unit. Circ Res 2024; 134:748-769. [PMID: 38484026 DOI: 10.1161/circresaha.124.323514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Mammalian physiology and cellular function are subject to significant oscillations over the course of every 24-hour day. It is likely that these daily rhythms will affect function as well as mechanisms of disease in the central nervous system. In this review, we attempt to survey and synthesize emerging studies that investigate how circadian biology may influence the neurovascular unit. We examine how circadian clocks may operate in neural, glial, and vascular compartments, review how circadian mechanisms regulate cell-cell signaling, assess interactions with aging and vascular comorbidities, and finally ask whether and how circadian effects and disruptions in rhythms may influence the risk and progression of pathophysiology in cerebrovascular disease. Overcoming identified challenges and leveraging opportunities for future research might support the development of novel circadian-based treatments for stroke.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| | - Steffen Tiedt
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany (S.T.)
| | - Jennifer H Lawrence
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Mary E Harrington
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Neuroscience Program, Smith College, Northampton, MA (M.E.H.)
| | - Erik S Musiek
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| |
Collapse
|
7
|
Eiman MN, Kumar S, Serrano Negron YL, Tansey TR, Harbison ST. Genome-wide association in Drosophila identifies a role for Piezo and Proc-R in sleep latency. Sci Rep 2024; 14:260. [PMID: 38168575 PMCID: PMC10761942 DOI: 10.1038/s41598-023-50552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Sleep latency, the amount of time that it takes an individual to fall asleep, is a key indicator of sleep need. Sleep latency varies considerably both among and within species and is heritable, but lacks a comprehensive description of its underlying genetic network. Here we conduct a genome-wide association study of sleep latency. Using previously collected sleep and activity data on a wild-derived population of flies, we calculate sleep latency, confirming significant, heritable genetic variation for this complex trait. We identify 520 polymorphisms in 248 genes contributing to variability in sleep latency. Tests of mutations in 23 candidate genes and additional putative pan-neuronal knockdown of 9 of them implicated CG44153, Piezo, Proc-R and Rbp6 in sleep latency. Two large-effect mutations in the genes Proc-R and Piezo were further confirmed via genetic rescue. This work greatly enhances our understanding of the genetic factors that influence variation in sleep latency.
Collapse
Affiliation(s)
- Matthew N Eiman
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Shailesh Kumar
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Neuroscience and Behavior, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yazmin L Serrano Negron
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terry R Tansey
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Susan T Harbison
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Li Y, Que M, Wang X, Zhan G, Zhou Z, Luo X, Li S. Exploring Astrocyte-Mediated Mechanisms in Sleep Disorders and Comorbidity. Biomedicines 2023; 11:2476. [PMID: 37760916 PMCID: PMC10525869 DOI: 10.3390/biomedicines11092476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes, the most abundant cells in the brain, are integral to sleep regulation. In the context of a healthy neural environment, these glial cells exert a profound influence on the sleep-wake cycle, modulating both rapid eye movement (REM) and non-REM sleep phases. However, emerging literature underscores perturbations in astrocytic function as potential etiological factors in sleep disorders, either as protopathy or comorbidity. As known, sleep disorders significantly increase the risk of neurodegenerative, cardiovascular, metabolic, or psychiatric diseases. Meanwhile, sleep disorders are commonly screened as comorbidities in various neurodegenerative diseases, epilepsy, and others. Building on existing research that examines the role of astrocytes in sleep disorders, this review aims to elucidate the potential mechanisms by which astrocytes influence sleep regulation and contribute to sleep disorders in the varied settings of brain diseases. The review emphasizes the significance of astrocyte-mediated mechanisms in sleep disorders and their associated comorbidities, highlighting the need for further research.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Mengxin Que
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xuan Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Gaofeng Zhan
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Zhiqiang Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shiyong Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.L.); (M.Q.); (X.W.); (G.Z.); (Z.Z.)
| |
Collapse
|
9
|
Patop IL, Anduaga AM, Bussi IL, Ceriani MF, Kadener S. Organismal landscape of clock cells and circadian gene expression in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.542009. [PMID: 37292867 PMCID: PMC10245886 DOI: 10.1101/2023.05.23.542009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Circadian rhythms time physiological and behavioral processes to 24-hour cycles. It is generally assumed that most cells contain self-sustained circadian clocks that drive circadian rhythms in gene expression that ultimately generating circadian rhythms in physiology. While those clocks supposedly act cell autonomously, current work suggests that in Drosophila some of them can be adjusted by the brain circadian pacemaker through neuropeptides, like the Pigment Dispersing Factor (PDF). Despite these findings and the ample knowledge of the molecular clockwork, it is still unknown how circadian gene expression in Drosophila is achieved across the body. Results Here, we used single-cell and bulk RNAseq data to identify cells within the fly that express core-clock components. Surprisingly, we found that less than a third of the cell types in the fly express core-clock genes. Moreover, we identified Lamina wild field (Lawf) and Ponx-neuro positive (Poxn) neurons as putative new circadian neurons. In addition, we found several cell types that do not express core clock components but are highly enriched for cyclically expressed mRNAs. Strikingly, these cell types express the PDF receptor (Pdfr), suggesting that PDF drives rhythmic gene expression in many cell types in flies. Other cell types express both core circadian clock components and Pdfr, suggesting that in these cells, PDF regulates the phase of rhythmic gene expression. Conclusions Together, our data suggest three different mechanisms generate cyclic daily gene expression in cells and tissues: canonical endogenous canonical molecular clock, PDF signaling-driven expression, or a combination of both.
Collapse
Affiliation(s)
- Ines L. Patop
- Biology Department, Brandeis University, Waltham, MA, 02454, USA
| | | | - Ivana L. Bussi
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA CONICET), Buenos Aires, Argentina
| | - M. Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
10
|
Ingiosi AM, Frank MG. Goodnight, astrocyte: waking up to astroglial mechanisms in sleep. FEBS J 2023; 290:2553-2564. [PMID: 35271767 PMCID: PMC9463397 DOI: 10.1111/febs.16424] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 01/03/2023]
Abstract
Astrocytes mediate many important aspects of neural homeostasis, but until recently, their role in sleep was largely unknown. The situation has dramatically changed in the last decade. The use of transgenic animals, optogenetics, chemogenetics, brain imaging and sophisticated molecular assays has led to exciting discoveries. Astrocytes dynamically change their activity across the sleep-wake cycle and may encode sleep need via changes in intracellular signalling pathways. Astrocytes also exocytose/secrete sleep-inducing molecules which modulate brain activity, sleep architecture and sleep regulation. Many of these observations have been made in mice and Drosophila melanogaster, indicating that astroglial sleep mechanisms are evolutionarily conserved. We review recent findings and discuss future directions.
Collapse
Affiliation(s)
- Ashley M Ingiosi
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Marcos G Frank
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| |
Collapse
|
11
|
Tabuloc CA, Cai YD, Kwok RS, Chan EC, Hidalgo S, Chiu JC. CLOCK and TIMELESS regulate rhythmic occupancy of the BRAHMA chromatin-remodeling protein at clock gene promoters. PLoS Genet 2023; 19:e1010649. [PMID: 36809369 PMCID: PMC9983840 DOI: 10.1371/journal.pgen.1010649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/03/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Circadian clock and chromatin-remodeling complexes are tightly intertwined systems that regulate rhythmic gene expression. The circadian clock promotes rhythmic expression, timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers regulate accessibility of clock transcription factors to the DNA to influence expression of clock genes. We previously reported that the BRAHMA (BRM) chromatin-remodeling complex promotes the repression of circadian gene expression in Drosophila. In this study, we investigated the mechanisms by which the circadian clock feeds back to modulate daily BRM activity. Using chromatin immunoprecipitation, we observed rhythmic BRM binding to clock gene promoters despite constitutive BRM protein expression, suggesting that factors other than protein abundance are responsible for rhythmic BRM occupancy at clock-controlled loci. Since we previously reported that BRM interacts with two key clock proteins, CLOCK (CLK) and TIMELESS (TIM), we examined their effect on BRM occupancy to the period (per) promoter. We observed reduced BRM binding to the DNA in clk null flies, suggesting that CLK is involved in enhancing BRM occupancy to initiate transcriptional repression at the conclusion of the activation phase. Additionally, we observed reduced BRM binding to the per promoter in flies overexpressing TIM, suggesting that TIM promotes BRM removal from DNA. These conclusions are further supported by elevated BRM binding to the per promoter in flies subjected to constant light and experiments in Drosophila tissue culture in which the levels of CLK and TIM are manipulated. In summary, this study provides new insights into the reciprocal regulation between the circadian clock and the BRM chromatin-remodeling complex.
Collapse
Affiliation(s)
- Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Rosanna S. Kwok
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Elizabeth C. Chan
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
12
|
Yildirim E, Curtis R, Hwangbo DS. Roles of peripheral clocks: lessons from the fly. FEBS Lett 2022; 596:263-293. [PMID: 34862983 PMCID: PMC8844272 DOI: 10.1002/1873-3468.14251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
To adapt to and anticipate rhythmic changes in the environment such as daily light-dark and temperature cycles, internal timekeeping mechanisms called biological clocks evolved in a diverse set of organisms, from unicellular bacteria to humans. These biological clocks play critical roles in organisms' fitness and survival by temporally aligning physiological and behavioral processes to the external cues. The central clock is located in a small subset of neurons in the brain and drives daily activity rhythms, whereas most peripheral tissues harbor their own clock systems, which generate metabolic and physiological rhythms. Since the discovery of Drosophila melanogaster clock mutants in the early 1970s, the fruit fly has become an extensively studied model organism to investigate the mechanism and functions of circadian clocks. In this review, we primarily focus on D. melanogaster to survey key discoveries and progresses made over the past two decades in our understanding of peripheral clocks. We discuss physiological roles and molecular mechanisms of peripheral clocks in several different peripheral tissues of the fly.
Collapse
Affiliation(s)
| | - Rachel Curtis
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
13
|
Astiz M, Delgado-García LM, López-Mascaraque L. Astrocytes as essential time-keepers of the central pacemaker. Glia 2021; 70:808-819. [PMID: 34816453 DOI: 10.1002/glia.24121] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Since the early observations made by Santiago Ramon y Cajal more than a century ago till now, astrocytes have gradually gained protagonism as essential partners of neurons in building brain circuits that regulate complex behavior. In mammals, processes such as sleep-wake cycle, locomotor activity, cognition and memory consolidation, homeostatic and hedonic appetite and stress response (among others), are synchronized in 24-h rhythms by the circadian system. In such a way, physiology efficiently anticipates and adapts to daily recurring changes in the environment. The hypothalamic suprachiasmatic nucleus (SCN) is considered the central pacemaker, it has been traditionally described as a nucleus of around 10,000 neurons nearly all GABAergic able to be entrained by light and to convey time information through multiple neuronal and hormonal pathways. Only recently, this neuro-centered view was challenged by breakthrough discoveries implicating astrocytes as essential time-keepers. In the present review, we will describe the current view on the SCN circuit and discuss whether astrocytic functions described in other brain regions and state-of-the-art experimental approaches, could help explaining better those well- and not so well-known features of the central pacemaker.
Collapse
Affiliation(s)
- Mariana Astiz
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | | | | |
Collapse
|