1
|
Hodgins KA, Battlay P, Bock DG. The genomic secrets of invasive plants. THE NEW PHYTOLOGIST 2025. [PMID: 39748162 DOI: 10.1111/nph.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
Genomics has revolutionised the study of invasive species, allowing evolutionary biologists to dissect mechanisms of invasion in unprecedented detail. Botanical research has played an important role in these advances, driving much of what we currently know about key determinants of invasion success (e.g. hybridisation, whole-genome duplication). Despite this, a comprehensive review of plant invasion genomics has been lacking. Here, we aim to address this gap, highlighting recent discoveries that have helped progress the field. For example, by leveraging genomics in natural and experimental populations, botanical research has confirmed the importance of large-effect standing variation during adaptation in invasive species. Further, genomic investigations of plants are increasingly revealing that large structural variants, as well as genetic changes induced by whole-genome duplication such as genomic redundancy or the breakdown of dosage-sensitive reproductive barriers, can play an important role during adaptive evolution of invaders. However, numerous questions remain, including when chromosomal inversions might help or hinder invasions, whether adaptive gene reuse is common during invasions, and whether epigenetically induced mutations can underpin the adaptive evolution of plasticity in invasive populations. We conclude by highlighting these and other outstanding questions that genomic studies of invasive plants are poised to help answer.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Paul Battlay
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Dan G Bock
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Qld, 4111, Australia
| |
Collapse
|
2
|
Dominguez PG, Freilij D, Lia VV. A genomic journey across the past, present, and future of South American maize. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7006-7018. [PMID: 39252586 DOI: 10.1093/jxb/erae383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Maize (Zea mays ssp. mays) diverged from one of its wild relatives, the teosinte Zea mays ssp. parviglumis, in the lowlands of southwest Mexico ~9000 years ago. Following this divergence, maize rapidly expanded throughout the Americas becoming a staple food. This dispersal was accompanied by significant demographic and selective changes, leading to the development of numerous local varieties with a complex evolutionary history that remains incompletely understood. In recent years, genomic advances have challenged traditional models of maize domestication and spread to South America. At least three distinct genetic lineages associated with different migratory waves have been described: ancestral Andean, ancestral Lowland, and Pan-American. Additionally, the significant role of the teosinte Zea mays ssp. mexicana in the evolution of modern maize has been recently uncovered. Genomic studies have shed light on highland adaptation processes, revealing largely independent adaptation events in Meso and South America. As new evidence emerges, the regional complexity underlying maize diversity and the need for comprehensive, multiscale approaches have become evident. In the face of climate change and evolving agricultural landscapes, the conservation of native maize in South America is of growing interest, with genomics serving as an invaluable tool for identifying and preserving the genetic variability of locally adapted germplasm.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Damián Freilij
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina
| | - Verónica Viviana Lia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Peñalba JV, Runemark A, Meier JI, Singh P, Wogan GOU, Sánchez-Guillén R, Mallet J, Rometsch SJ, Menon M, Seehausen O, Kulmuni J, Pereira RJ. The Role of Hybridization in Species Formation and Persistence. Cold Spring Harb Perspect Biol 2024; 16:a041445. [PMID: 38438186 PMCID: PMC11610762 DOI: 10.1101/cshperspect.a041445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Hybridization, or interbreeding between different taxa, was traditionally considered to be rare and to have a largely detrimental impact on biodiversity, sometimes leading to the breakdown of reproductive isolation and even to the reversal of speciation. However, modern genomic and analytical methods have shown that hybridization is common in some of the most diverse clades across the tree of life, sometimes leading to rapid increase of phenotypic variability, to introgression of adaptive alleles, to the formation of hybrid species, and even to entire species radiations. In this review, we identify consensus among diverse research programs to show how the field has progressed. Hybridization is a multifaceted evolutionary process that can strongly influence species formation and facilitate adaptation and persistence of species in a rapidly changing world. Progress on testing this hypothesis will require cooperation among different subdisciplines.
Collapse
Affiliation(s)
- Joshua V Peñalba
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, 10115 Berlin, Germany
| | - Anna Runemark
- Department of Biology, Lund University, 22632 Lund, Sweden
| | - Joana I Meier
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
- Department of Zoology, University of Cambridge, Cambridgeshire CB2 3EJ, United Kingdom
| | - Pooja Singh
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), CH-8600 Kastanienbaum, Switzerland
| | - Guinevere O U Wogan
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | - James Mallet
- Organismal and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Sina J Rometsch
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06511, USA
- Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut 06511, USA
| | - Mitra Menon
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
| | - Ole Seehausen
- Department of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Center for Ecology, Evolution & Biogeochemistry, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), CH-8600 Kastanienbaum, Switzerland
| | - Jonna Kulmuni
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Biocenter 3, Helsinki, Finland
| | - Ricardo J Pereira
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart 70191, Germany
| |
Collapse
|
4
|
Dominguez PG, Gutierrez AV, Fass MI, Filippi CV, Vera P, Puebla A, Defacio RA, Paniego NB, Lia VV. Genome-Wide Diversity in Lowland and Highland Maize Landraces From Southern South America: Population Genetics Insights to Assist Conservation. Evol Appl 2024; 17:e70047. [PMID: 39628628 PMCID: PMC11609054 DOI: 10.1111/eva.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Maize (Zea mays ssp. mays L.) landraces are traditional American crops with high genetic variability that conform a source of original alleles for conventional maize breeding. Northern Argentina, one the southernmost regions of traditional maize cultivation in the Americas, harbours around 57 races traditionally grown in two regions with contrasting environmental conditions, namely, the Andean mountains in the Northwest and the tropical grasslands and Atlantic Forest in the Northeast. These races encounter diverse threats to their genetic diversity and persistence in their regions of origin, with climate change standing out as one of the major challenges. In this work, we use genome-wide SNPs derived from ddRADseq to study the genetic diversity of individuals representing the five groups previously described for this area. This allowed us to distinguish two clearly differentiated gene pools, the highland northwestern maize (HNWA) and the floury northeastern maize (FNEA). Subsequently, we employed essential biodiversity variables at the genetic level, as proposed by the Group on Earth Observations Biodiversity Observation Network (GEO BON), to evaluate the conservation status of these two groups. This assessment encompassed genetic diversity (Pi), inbreeding coefficient (F) and effective population size (Ne). FNEA showed low Ne values and high F values, while HNWA showed low Ne values and low Pi values, indicating that further genetic erosion is imminent for these landraces. Outlier detection methods allowed identification of putative adaptive genomic regions, consistent with previously reported flowering-time loci and chromosomal regions displaying introgression from the teosinte Zea mays ssp. mexicana. Finally, species distribution models were obtained for two future climate scenarios, showing a notable reduction in the potential planting area of HNWA and a shift in the cultivation areas of FNEA. These results suggest that maize landraces from Northern Argentina may be unable to cope with climate change. Therefore, active conservation policies are advisable.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Angela Veronica Gutierrez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Monica Irina Fass
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Carla Valeria Filippi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de AgronomíaUniversidad de la RepúblicaMontevideoUruguay
| | - Pablo Vera
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Andrea Puebla
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Raquel Alicia Defacio
- Instituto Nacional de Tecnología Agropecuaria (INTA)Estación Experimental Agropecuaria PergaminoBuenos AiresArgentina
| | - Norma Beatriz Paniego
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Veronica Viviana Lia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
- Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
5
|
Cui Y, Xiao X, Wang M, Zhu M, Yuyama N, Zheng J, Xiong C, Liu J, Wang S, Yang Y, Chen J, Cai H. The construction of a maize-teosinte introgression population and quantitative trait loci analysis of their 21 agronomic traits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112226. [PMID: 39153574 DOI: 10.1016/j.plantsci.2024.112226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Teosinte is a progenitor species of maize (Zea mays ssp. mays) that retains a significant reservoir of genetic resources unaltered via the domestication process. To harness and explore the genetic reservoirs inherent in teosinte, we used the cultivated publicly inbred line H95 and wild species PI566673 (Zea mays ssp. mexicana) to develop a set of introgression lines (ILs), including 366 BC2F5 lines. Using these lines, 12481 high-quality polymorphic homozygous single nucleotide polymorphisms were converted into 2358 bin markers based on Genotyping by Target Sequencing technology. The homozygous introgression ratio in the ILs was approximately 12.1 % and the heterozygous introgression ratio was approximately 5.7 %. Based on the population phenotypic data across 21 important agronomic traits collected in Sanya and Beijing, 185 and 156 quantitative trait loci (QTLs) were detected in Sanya and Beijing, respectively, with 64 stable QTLs detected in both locations. We detected 12 QTL clusters spanning 10 chromosomes consisting of diverse QTLs related to yield traits such as grain size and weight. In addition, we identified useful materials in the ILs for further gene cloning of related variations. For example, some heterogeneous inbred families with superior genetic purity, shorter target heterozygotes, and some ILs exhibit clear morphological variation associated with plant growth, development, and domestication, manifesting traits such as white stalks, sharp seeds, and cob shattering. In conclusion, our results provide a robust foundation for delving into the genetic reservoirs of teosinte, presenting a wealth of genetic resources and offering insight into the genetic architecture underlying maize agronomic traits.
Collapse
Affiliation(s)
- Yiping Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xin Xiao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Mumu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Mengjiao Zhu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Nana Yuyama
- Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi 329-2742, Japan
| | - Jingru Zheng
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Candong Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiangjiang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Sumeng Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuru Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jun Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Hongwei Cai
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Forage Crop Research Institute, Japan Grassland Agricultural and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi 329-2742, Japan.
| |
Collapse
|
6
|
Liao X, Xie D, Bao T, Hou M, Li C, Nie B, Sun S, Peng D, Hu H, Wang H, Tao Y, Zhang Y, Li W, Wang L. Inversions encounter relaxed genetic constraints and balance birth and death of TPS genes in Curcuma. Nat Commun 2024; 15:9349. [PMID: 39472560 PMCID: PMC11522489 DOI: 10.1038/s41467-024-53719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Evolutionary dynamics of inversion and its impact on biochemical traits are a puzzling question. Here, we show abundance of inversions in three Curcuma species (turmeric, hidden ginger and Siam tulip). Genes within inversions display higher long terminal repeat content and lower expression level compared with genomic background, suggesting inversions in Curcuma experience relaxed genetic constraints. It is corroborated by depletion of selected SNPs and enrichment of deleterious mutations in inversions detected among 56 Siam tulip cultivars. Functional verification of tandem duplicated terpene synthase (TPS) genes reveals that genes within inversions become pseudogenes, while genes outside retain catalytic function. Our findings suggest that inversions act as a counteracting force against tandem duplication in balancing birth and death of TPS genes and modulating terpenoid contents in Curcuma. This study provides an empirical example that inversions are likely not adaptive but affect biochemical traits.
Collapse
Affiliation(s)
- Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dejin Xie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Tingting Bao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Mengmeng Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Shichao Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Haixiao Hu
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yongfu Tao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yu Zhang
- School of Agriculture, Sun Yat-sen University, Shenzhen, 518107, China
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
7
|
Zhang Z, Zhang J, Kang L, Qiu X, Xu S, Xu J, Guo Y, Niu Z, Niu B, Bi A, Zhao X, Xu D, Wang J, Yin C, Lu F. Structural variation discovery in wheat using PacBio high-fidelity sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:687-698. [PMID: 39239888 DOI: 10.1111/tpj.17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Structural variations (SVs) pervade plant genomes and contribute substantially to the phenotypic diversity. However, most SVs were ineffectively assayed due to their complex nature and the limitations of early genomic technologies. By applying the PacBio high-fidelity (HiFi) sequencing for wheat genomes, we performed a comprehensive evaluation of mainstream long-read aligners and SV callers in SV detection. The results indicated that the accuracy of deletion discovery is markedly influenced by callers, accounting for 87.73% of the variance, whereas both aligners (38.25%) and callers (49.32%) contributed substantially to the accuracy variance for insertions. Among the aligners, Winnowmap2 and NGMLR excelled in detecting deletions and insertions, respectively. For SV callers, SVIM achieved the best performance. We demonstrated that combining the aligners and callers mentioned above is optimal for SV detection. Furthermore, we evaluated the effect of sequencing depth on the accuracy of SV detection, revealing that low-coverage HiFi sequencing is sufficiently robust for high-quality SV discovery. This study thoroughly evaluated SV discovery approaches and established optimal workflows for investigating structural variations using low-coverage HiFi sequencing in the wheat genome, which will advance SV discovery and decipher the biological functions of SVs in wheat and many other plants.
Collapse
Affiliation(s)
- Zhiliang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jijin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lipeng Kang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Qiu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yafei Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zelin Niu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Beirui Niu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuebo Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daxing Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Changbin Yin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Ou S, Scheben A, Collins T, Qiu Y, Seetharam AS, Menard CC, Manchanda N, Gent JI, Schatz MC, Anderson SN, Hufford MB, Hirsch CN. Differences in activity and stability drive transposable element variation in tropical and temperate maize. Genome Res 2024; 34:1140-1153. [PMID: 39251347 PMCID: PMC11444183 DOI: 10.1101/gr.278131.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
Much of the profound interspecific variation in genome content has been attributed to transposable elements (TEs). To explore the extent of TE variation within species, we developed an optimized open-source algorithm, panEDTA, to de novo annotate TEs in a pangenome context. We then generated a unified TE annotation for a maize pangenome derived from 26 reference-quality genomes, which reveals an excess of 35.1 Mb of TE sequences per genome in tropical maize relative to temperate maize. A small number (n = 216) of TE families, mainly LTR retrotransposons, drive these differences. Evidence from the methylome, transcriptome, LTR age distribution, and LTR insertional polymorphisms reveals that 64.7% of the variability is contributed by LTR families that are young, less methylated, and more expressed in tropical maize, whereas 18.5% is driven by LTR families with removal or loss in temperate maize. Additionally, we find enrichment for Young LTR families adjacent to nucleotide-binding and leucine-rich repeat (NLR) clusters of varying copy number across lines, suggesting TE activity may be associated with disease resistance in maize.
Collapse
Affiliation(s)
- Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Tyler Collins
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yinjie Qiu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Claire C Menard
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Nancy Manchanda
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sarah N Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA;
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA;
| |
Collapse
|
9
|
Chen XY, Zhou BF, Shi Y, Liu H, Liang YY, Ingvarsson PK, Wang B. Evolution of the Correlated Genomic Variation Landscape Across a Divergence Continuum in the Genus Castanopsis. Mol Biol Evol 2024; 41:msae191. [PMID: 39248185 PMCID: PMC11421576 DOI: 10.1093/molbev/msae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024] Open
Abstract
The heterogeneous landscape of genomic variation has been well documented in population genomic studies. However, disentangling the intricate interplay of evolutionary forces influencing the genetic variation landscape over time remains challenging. In this study, we assembled a chromosome-level genome for Castanopsis eyrei and sequenced the whole genomes of 276 individuals from 12 Castanopsis species, spanning a broad divergence continuum. We found highly correlated genomic variation landscapes across these species. Furthermore, variations in genetic diversity and differentiation along the genome were strongly associated with recombination rates and gene density. These results suggest that long-term linked selection and conserved genomic features have contributed to the formation of a common genomic variation landscape. By examining how correlations between population summary statistics change throughout the species divergence continuum, we determined that background selection alone does not fully explain the observed patterns of genomic variation; the effects of recurrent selective sweeps must be considered. We further revealed that extensive gene flow has significantly influenced patterns of genomic variation in Castanopsis species. The estimated admixture proportion correlated positively with recombination rate and negatively with gene density, supporting a scenario of selection against gene flow. Additionally, putative introgression regions exhibited strong signals of positive selection, an enrichment of functional genes, and reduced genetic burdens, indicating that adaptive introgression has played a role in shaping the genomes of hybridizing species. This study provides insights into how different evolutionary forces have interacted in driving the evolution of the genomic variation landscape.
Collapse
Affiliation(s)
- Xue-Yan Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Biao-Feng Zhou
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yong Shi
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Hui Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Yi-Ye Liang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Pär K Ingvarsson
- Linnean Center for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Baosheng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| |
Collapse
|
10
|
Glasenapp MR, Pogson GH. Selection Shapes the Genomic Landscape of Introgressed Ancestry in a Pair of Sympatric Sea Urchin Species. Genome Biol Evol 2024; 16:evae124. [PMID: 38874390 PMCID: PMC11212366 DOI: 10.1093/gbe/evae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/10/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
A growing number of recent studies have demonstrated that introgression is common across the tree of life. However, we still have a limited understanding of the fate and fitness consequence of introgressed variation at the whole-genome scale across diverse taxonomic groups. Here, we implemented a phylogenetic hidden Markov model to identify and characterize introgressed genomic regions in a pair of well-diverged, nonsister sea urchin species: Strongylocentrotus pallidus and Strongylocentrotus droebachiensis. Despite the old age of introgression, a sizable fraction of the genome (1% to 5%) exhibited introgressed ancestry, including numerous genes showing signals of historical positive selection that may represent cases of adaptive introgression. One striking result was the overrepresentation of hyalin genes in the identified introgressed regions despite observing considerable overall evidence of selection against introgression. There was a negative correlation between introgression and chromosome gene density, and two chromosomes were observed with considerably reduced introgression. Relative to the nonintrogressed genome-wide background, introgressed regions had significantly reduced nucleotide divergence (dXY) and overlapped fewer protein-coding genes, coding bases, and genes with a history of positive selection. Additionally, genes residing within introgressed regions showed slower rates of evolution (dN, dS, dN/dS) than random samples of genes without introgressed ancestry. Overall, our findings are consistent with widespread selection against introgressed ancestry across the genome and suggest that slowly evolving, low-divergence genomic regions are more likely to move between species and avoid negative selection following hybridization and introgression.
Collapse
Affiliation(s)
- Matthew R Glasenapp
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| | - Grant H Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| |
Collapse
|
11
|
Groh JS, Coop G. The temporal and genomic scale of selection following hybridization. Proc Natl Acad Sci U S A 2024; 121:e2309168121. [PMID: 38489387 PMCID: PMC10962946 DOI: 10.1073/pnas.2309168121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024] Open
Abstract
Genomic evidence supports an important role for selection in shaping patterns of introgression along the genome, but frameworks for understanding the evolutionary dynamics within hybrid populations that underlie these patterns have been lacking. Due to the clock-like effect of recombination in hybrids breaking up parental haplotypes, drift and selection produce predictable patterns of ancestry variation at varying spatial genomic scales through time. Here, we develop methods based on the Discrete Wavelet Transform to study the genomic scale of local ancestry variation and its association with recombination rates and show that these methods capture temporal dynamics of drift and genome-wide selection after hybridization. We apply these methods to published datasets from hybrid populations of swordtail fish (Xiphophorus) and baboons (Papio) and to inferred Neanderthal introgression in modern humans. Across systems, upward of 20% of variation in local ancestry at the broadest genomic scales can be attributed to systematic selection against introgressed alleles, consistent with strong selection acting on early-generation hybrids. Signatures of selection at fine genomic scales suggest selection over longer time scales; however, we suggest that our ability to confidently infer selection at fine scales is likely limited by inherent biases in current methods for estimating local ancestry from contiguous segments of genomic similarity. Wavelet approaches will become widely applicable as genomic data from systems with introgression become increasingly available and can help shed light on generalities of the genomic consequences of interspecific hybridization.
Collapse
Affiliation(s)
- Jeffrey S. Groh
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA95616
| | - Graham Coop
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA95616
| |
Collapse
|
12
|
González GE, Poggio L. Polyploid speciation in Zea (Poaceae): cytogenetic insights. PLANTA 2024; 259:67. [PMID: 38332313 DOI: 10.1007/s00425-024-04345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024]
Abstract
MAIN CONCLUSION The analysis of meiotic pairing affinities and genomic formulae in species and hybrids of Zea allowed us to speculate an evolutionary model to recreate the ancient polyploidization of maize and allied species. The meiotic pairing affinities and the genomic formulae analysis in Zea species and hybrids obtained in new and previous crosses, together with the molecular data known in the genus, allowed us to speculate an evolutionary model to attempt to recreate the ancient polyploidization process of Zea species. We propose that x = 5 semispecies are the ancestors of all modern species of the genus. The complex evolutionary process that originated the different taxa could be included hybridization between sympatric diploid ancestral semispecies (2n = 10) and recurrent duplication of the hybrid chromosome number, resulting in distinct auto- and allopolyploids. After the merger and doubling of independent genomes would have undergone cytological and genetical diploidization, implying revolutionary changes in genome organization and genic balance processes. Based on the meiotic behaviour of the 2n = 30 hybrids, that showed homoeology between the A subgenomes of all parental species, we propose that this subgenome A would be pivotal in all the species and would have conserved the rDNA sequences and the pairing regulator locus (PrZ). In the hypothetical model postulated here, the ancestral semispecies with the pivotal subgenome A would have had a wide geographic distribution, co-occurring and hybridizing with the semispecies harbouring B subgenomes, thus enabling sympatric speciation.
Collapse
Affiliation(s)
- Graciela Esther González
- Instituto de Ecología, Genética y Evolución (IEGEBA, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Lidia Poggio
- Instituto de Ecología, Genética y Evolución (IEGEBA, Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET), Laboratorio de Citogenética y Evolución (LaCyE), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
13
|
Thawornwattana Y, Seixas F, Yang Z, Mallet J. Major patterns in the introgression history of Heliconius butterflies. eLife 2023; 12:RP90656. [PMID: 38108819 PMCID: PMC10727504 DOI: 10.7554/elife.90656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Gene flow between species, although usually deleterious, is an important evolutionary process that can facilitate adaptation and lead to species diversification. It also makes estimation of species relationships difficult. Here, we use the full-likelihood multispecies coalescent (MSC) approach to estimate species phylogeny and major introgression events in Heliconius butterflies from whole-genome sequence data. We obtain a robust estimate of species branching order among major clades in the genus, including the 'melpomene-silvaniform' group, which shows extensive historical and ongoing gene flow. We obtain chromosome-level estimates of key parameters in the species phylogeny, including species divergence times, present-day and ancestral population sizes, as well as the direction, timing, and intensity of gene flow. Our analysis leads to a phylogeny with introgression events that differ from those obtained in previous studies. We find that Heliconius aoede most likely represents the earliest-branching lineage of the genus and that 'silvaniform' species are paraphyletic within the melpomene-silvaniform group. Our phylogeny provides new, parsimonious histories for the origins of key traits in Heliconius, including pollen feeding and an inversion involved in wing pattern mimicry. Our results demonstrate the power and feasibility of the full-likelihood MSC approach for estimating species phylogeny and key population parameters despite extensive gene flow. The methods used here should be useful for analysis of other difficult species groups with high rates of introgression.
Collapse
Affiliation(s)
| | - Fernando Seixas
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College LondonLondonUnited Kingdom
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
14
|
Friedrich J, Bailey RI, Talenti A, Chaudhry U, Ali Q, Obishakin EF, Ezeasor C, Powell J, Hanotte O, Tijjani A, Marshall K, Prendergast J, Wiener P. Mapping restricted introgression across the genomes of admixed indigenous African cattle breeds. Genet Sel Evol 2023; 55:91. [PMID: 38097935 PMCID: PMC10722721 DOI: 10.1186/s12711-023-00861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The genomes of indigenous African cattle are composed of components with Middle Eastern (taurine) and South Asian (indicine) origins, providing a valuable model to study hybridization and to identify genetic barriers to gene flow. In this study, we analysed indigenous African cattle breeds as models of hybrid zones, considering taurine and indicine samples as ancestors. In a genomic cline analysis of whole-genome sequence data, we considered over 8 million variants from 144 animals, which allows for fine-mapping of potential genomic incompatibilities at high resolution across the genome. RESULTS We identified several thousand variants that had significantly steep clines ('SCV') across the whole genome, indicating restricted introgression. Some of the SCV were clustered into extended regions, with the longest on chromosome 7, spanning 725 kb and including 27 genes. We found that variants with a high phenotypic impact (e.g. indels, intra-genic and missense variants) likely represent greater genetic barriers to gene flow. Furthermore, our findings provide evidence that a large proportion of breed differentiation in African cattle could be linked to genomic incompatibilities and reproductive isolation. Functional evaluation of genes with SCV suggest that mitonuclear incompatibilities and genes associated with fitness (e.g. resistance to paratuberculosis) could account for restricted gene flow in indigenous African cattle. CONCLUSIONS To our knowledge, this is the first time genomic cline analysis has been applied to identify restricted introgression in the genomes of indigenous African cattle and the results provide extended insights into mechanisms (e.g. genomic incompatibilities) contributing to hybrid differentiation. These results have important implications for our understanding of genetic incompatibilities and reproductive isolation and provide important insights into the impact of cross-breeding cattle with the aim of producing offspring that are both hardy and productive.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Richard I Bailey
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
| | - Andrea Talenti
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Umer Chaudhry
- School of Veterinary Medicine, St. George's University, St. George's, Caribbean, Grenada
| | - Qasim Ali
- Department of Parasitology, The University of Agriculture Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Emmanuel F Obishakin
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Chukwunonso Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Jessica Powell
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute, University of Edinburgh, Midlothian, UK
| | | | - Karen Marshall
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, Nairobi, Kenya
| | - James Prendergast
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pamela Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick), School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
15
|
Yang N, Wang Y, Liu X, Jin M, Vallebueno-Estrada M, Calfee E, Chen L, Dilkes BP, Gui S, Fan X, Harper TK, Kennett DJ, Li W, Lu Y, Ding J, Chen Z, Luo J, Mambakkam S, Menon M, Snodgrass S, Veller C, Wu S, Wu S, Zhuo L, Xiao Y, Yang X, Stitzer MC, Runcie D, Yan J, Ross-Ibarra J. Two teosintes made modern maize. Science 2023; 382:eadg8940. [PMID: 38033071 DOI: 10.1126/science.adg8940] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/02/2023] [Indexed: 12/02/2023]
Abstract
The origins of maize were the topic of vigorous debate for nearly a century, but neither the current genetic model nor earlier archaeological models account for the totality of available data, and recent work has highlighted the potential contribution of a wild relative, Zea mays ssp. mexicana. Our population genetic analysis reveals that the origin of modern maize can be traced to an admixture between ancient maize and Zea mays ssp. mexicana in the highlands of Mexico some 4000 years after domestication began. We show that variation in admixture is a key component of maize diversity, both at individual loci and for additive genetic variation underlying agronomic traits. Our results clarify the origin of modern maize and raise new questions about the anthropogenic mechanisms underlying dispersal throughout the Americas.
Collapse
Affiliation(s)
- Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Yuebin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Miguel Vallebueno-Estrada
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Irapuato, 36821 Guanajuato, México
| | - Erin Calfee
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Adaptive Biotechnologies, Seattle, WA 98109, USA
| | - Lu Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Brian P Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Songtao Gui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Thomas K Harper
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, CA 93106, USA
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China
| | - Junqiang Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Ziqi Chen
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sowmya Mambakkam
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Mitra Menon
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
- Center for Population Biology, University of California, Davis, CA 95616, USA
| | - Samantha Snodgrass
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Carl Veller
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Shenshen Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Siying Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Zhuo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Michelle C Stitzer
- Institute for Genomic Diversity and Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Daniel Runcie
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
- Center for Population Biology, University of California, Davis, CA 95616, USA
- Genome Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
16
|
Berube B, Ernst E, Cahn J, Roche B, de Santis Alves C, Lynn J, Scheben A, Siepel A, Ross-Ibarra J, Kermicle J, Martienssen R. Teosinte Pollen Drive guides maize diversification and domestication by RNAi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548689. [PMID: 37503269 PMCID: PMC10370002 DOI: 10.1101/2023.07.12.548689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Meiotic drivers subvert Mendelian expectations by manipulating reproductive development to bias their own transmission. Chromosomal drive typically functions in asymmetric female meiosis, while gene drive is normally postmeiotic and typically found in males. Using single molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp. mays) and teosinte mexicana (Zea mays ssp. mexicana), that depends on RNA interference (RNAi). 22nt small RNAs from a non-coding RNA hairpin in mexicana depend on Dicer-Like 2 (Dcl2) and target Teosinte Drive Responder 1 (Tdr1), which encodes a lipase required for pollen viability. Dcl2, Tdr1, and the hairpin are in tight pseudolinkage on chromosome 5, but only when transmitted through the male. Introgression of mexicana into early cultivated maize is thought to have been critical to its geographical dispersal throughout the Americas, and a tightly linked inversion in mexicana spans a major domestication sweep in modern maize. A survey of maize landraces and sympatric populations of teosinte mexicana reveals correlated patterns of admixture among unlinked genes required for RNAi on at least 4 chromosomes that are also subject to gene drive in pollen from synthetic hybrids. Teosinte Pollen Drive likely played a major role in maize domestication and diversification, and offers an explanation for the widespread abundance of "self" small RNAs in the germlines of plants and animals.
Collapse
Affiliation(s)
- Benjamin Berube
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Benjamin Roche
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | | | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| | - Jeffrey Ross-Ibarra
- Dept. of Evolution & Ecology, Center for Population Biology and Genome Center, University of California, Davis CA
| | - Jerry Kermicle
- Laboratory of Genetics, University of Wisconsin, Madison WI
| | - Rob Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor NY11724
| |
Collapse
|
17
|
Ayala NM, Genetti M, Corbett-Detig R. Inferring multi-locus selection in admixed populations. PLoS Genet 2023; 19:e1011062. [PMID: 38015992 PMCID: PMC10707604 DOI: 10.1371/journal.pgen.1011062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/08/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
Admixture, the exchange of genetic information between distinct source populations, is thought to be a major source of adaptive genetic variation. Unlike mutation events, which periodically generate single alleles, admixture can introduce many selected alleles simultaneously. As such, the effects of linkage between selected alleles may be especially pronounced in admixed populations. However, existing tools for identifying selected mutations within admixed populations only account for selection at a single site, overlooking phenomena such as linkage among proximal selected alleles. Here, we develop and extensively validate a method for identifying and quantifying the individual effects of multiple linked selected sites on a chromosome in admixed populations. Our approach numerically calculates the expected local ancestry landscape in an admixed population for a given multi-locus selection model, and then maximizes the likelihood of the model. After applying this method to admixed populations of Drosophila melanogaster and Passer italiae, we found that the impacts between linked sites may be an important contributor to natural selection in admixed populations. Furthermore, for the situations we considered, the selection coefficients and number of selected sites are overestimated in analyses that do not consider the effects of linkage among selected sites. Our results imply that linkage among selected sites may be an important evolutionary force in admixed populations. This tool provides a powerful generalized method to investigate these crucial phenomena in diverse populations.
Collapse
Affiliation(s)
- Nicolas M. Ayala
- Genomics Institute, University of California, Santa Cruz; Santa Cruz, California, United States of America
- Department of Biomolecular Engineering, University of California, Santa Cruz; Santa Cruz, California, United States of America
| | - Maximilian Genetti
- Genomics Institute, University of California, Santa Cruz; Santa Cruz, California, United States of America
- Department of Biomolecular Engineering, University of California, Santa Cruz; Santa Cruz, California, United States of America
| | - Russell Corbett-Detig
- Genomics Institute, University of California, Santa Cruz; Santa Cruz, California, United States of America
- Department of Biomolecular Engineering, University of California, Santa Cruz; Santa Cruz, California, United States of America
| |
Collapse
|
18
|
Martínez‐Ainsworth NE, Scheppler H, Moreno‐Letelier A, Bernau V, Kantar MB, Mercer KL, Jardón‐Barbolla L. Fluctuation of ecological niches and geographic range shifts along chile pepper's domestication gradient. Ecol Evol 2023; 13:e10731. [PMID: 38034338 PMCID: PMC10682905 DOI: 10.1002/ece3.10731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Domestication is an ongoing well-described process. However, while many have studied the changes domestication causes in plant genetics, few have explored its impact on the portion of the geographic landscape in which the plants exist. Therefore, the goal of this study was to understand how the process of domestication changed the geographic space suitable for chile pepper (Capsicum annuum) in its center of origin (domestication). C. annuum is a major crop species globally whose center of domestication, Mexico, has been well-studied. It provides a unique opportunity to explore the degree to which ranges of different domestication classes diverged and how these ranges might be altered by climate change. To this end, we created ecological niche models for four domestication classes (wild, semiwild, landrace, modern cultivar) based on present climate and future climate scenarios for 2050, 2070, and 2090. Considering present environment, we found substantial overlap in the geographic niches of all the domestication classes. Yet, environmental and geographic aspects of the current ranges did vary among classes. Wild and commercial varieties could grow in desert conditions, while landraces could not. With projections into the future, habitat was lost asymmetrically, with wild, semiwild, and landraces at greater risk of territorial declines than modern cultivars. Further, we identified areas where future suitability overlap between landraces and wilds is expected to be lost. While range expansion is widely associated with domestication, we found little support of a constant niche expansion (either in environmental or geographical space) throughout the domestication gradient in chile peppers in Mexico. Instead, particular domestication transitions resulted in loss, followed by capturing or recapturing environmental or geographic space. The differences in environmental characterization among domestication gradient classes and their future potential range shifts increase the need for conservation efforts to preserve landraces and semiwild genotypes.
Collapse
Affiliation(s)
- Natalia E. Martínez‐Ainsworth
- Centro de Investigaciones Interdisciplinarias en Ciencias y HumanidadesUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Hannah Scheppler
- Department of Horticulture and Crop ScienceOhio State UniversityColumbusOhioUSA
| | - Alejandra Moreno‐Letelier
- Jardín Botánico del Instituto de BiologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMexico
| | - Vivian Bernau
- Plant Introduction Research Unit, United States Department of Agriculture‐Agricultural Research Service (USDA‐ARS), and Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Michael B. Kantar
- Department of Tropical Plant and Soil SciencesUniversity of Hawai'iHonoluluHawaiiUSA
| | - Kristin L. Mercer
- Department of Horticulture and Crop ScienceOhio State UniversityColumbusOhioUSA
| | - Lev Jardón‐Barbolla
- Centro de Investigaciones Interdisciplinarias en Ciencias y HumanidadesUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Department of Horticulture and Crop ScienceOhio State UniversityColumbusOhioUSA
| |
Collapse
|
19
|
Gao L, Kantar MB, Moxley D, Ortiz-Barrientos D, Rieseberg LH. Crop adaptation to climate change: An evolutionary perspective. MOLECULAR PLANT 2023; 16:1518-1546. [PMID: 37515323 DOI: 10.1016/j.molp.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.
Collapse
Affiliation(s)
- Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dylan Moxley
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Flint-Garcia S, Feldmann MJ, Dempewolf H, Morrell PL, Ross-Ibarra J. Diamonds in the not-so-rough: Wild relative diversity hidden in crop genomes. PLoS Biol 2023; 21:e3002235. [PMID: 37440605 PMCID: PMC10368281 DOI: 10.1371/journal.pbio.3002235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/25/2023] [Indexed: 07/15/2023] Open
Abstract
Crop production is becoming an increasing challenge as the global population grows and the climate changes. Modern cultivated crop species are selected for productivity under optimal growth environments and have often lost genetic variants that could allow them to adapt to diverse, and now rapidly changing, environments. These genetic variants are often present in their closest wild relatives, but so are less desirable traits. How to preserve and effectively utilize the rich genetic resources that crop wild relatives offer while avoiding detrimental variants and maladaptive genetic contributions is a central challenge for ongoing crop improvement. This Essay explores this challenge and potential paths that could lead to a solution.
Collapse
Affiliation(s)
- Sherry Flint-Garcia
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, Missouri, United States of America
| | - Mitchell J. Feldmann
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | | | - Peter L. Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, Center for Population Biology, and Genome Center, University of California, Davis, California, United States of America
| |
Collapse
|
21
|
Galić V, Anđelković V, Kravić N, Grčić N, Ledenčan T, Jambrović A, Zdunić Z, Nicolas S, Charcosset A, Šatović Z, Šimić D. Genetic diversity and selection signatures in a gene bank panel of maize inbred lines from Southeast Europe compared with two West European panels. BMC PLANT BIOLOGY 2023; 23:315. [PMID: 37316827 PMCID: PMC10265872 DOI: 10.1186/s12870-023-04336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Southeast Europe (SEE) is a very important maize-growing region, comparable to the Corn belt region of the United States, with similar dent germplasm (dent by dent hybrids). Historically, this region has undergone several genetic material swaps, following the trends in the US, with one of the most significant swaps related to US aid programs after WWII. The imported accessions used to make double-cross hybrids were also mixed with previously adapted germplasm originating from several more distant OPVs, supporting the transition to single cross-breeding. Many of these materials were deposited at the Maize Gene Bank of the Maize Research Institute Zemun Polje (MRIZP) between the 1960s and 1980s. A part of this Gene Bank (572 inbreds) was genotyped with Affymetrix Axiom Maize Genotyping Array with 616,201 polymorphic variants. Data were merged with two other genotyping datasets with mostly European flint (TUM dataset) and dent (DROPS dataset) germplasm. The final pan-European dataset consisted of 974 inbreds and 460,243 markers. Admixture analysis showed seven ancestral populations representing European flint, B73/B14, Lancaster, B37, Wf9/Oh07, A374, and Iodent pools. Subpanel of inbreds with SEE origin showed a lack of Iodent germplasm, marking its historical context. Several signatures of selection were identified at chromosomes 1, 3, 6, 7, 8, 9, and 10. The regions under selection were mined for protein-coding genes and were used for gene ontology (GO) analysis, showing a highly significant overrepresentation of genes involved in response to stress. Our results suggest the accumulation of favorable allelic diversity, especially in the context of changing climate in the genetic resources of SEE.
Collapse
Affiliation(s)
- Vlatko Galić
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia.
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia.
| | - Violeta Anđelković
- Maize Research Institute Zemun Polje, Slobodana Bajića 1, Belgrade, 11185, Serbia
| | - Natalija Kravić
- Maize Research Institute Zemun Polje, Slobodana Bajića 1, Belgrade, 11185, Serbia
| | - Nikola Grčić
- Maize Research Institute Zemun Polje, Slobodana Bajića 1, Belgrade, 11185, Serbia
| | - Tatjana Ledenčan
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia
| | - Antun Jambrović
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia
| | - Zvonimir Zdunić
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia
| | - Stéphane Nicolas
- GQE ‑ Le Moulon, INRAE, Univ. Paris‑Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif‑sur‑Yvette, 91190, France
| | - Alain Charcosset
- GQE ‑ Le Moulon, INRAE, Univ. Paris‑Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif‑sur‑Yvette, 91190, France
| | - Zlatko Šatović
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, Zagreb, HR10000, Croatia
| | - Domagoj Šimić
- Agricultural Institute Osijek, Južno predgrađe 17, Osijek, HR31000, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska cesta 25, Zagreb, HR10000, Croatia
| |
Collapse
|
22
|
Groh J, Coop G. The temporal and genomic scale of selection following hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542345. [PMID: 37337589 PMCID: PMC10276902 DOI: 10.1101/2023.05.25.542345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Genomic evidence supports an important role for selection in shaping patterns of introgression along the genome, but frameworks for understanding the dynamics underlying these patterns within hybrid populations have been lacking. Here, we develop methods based on the Wavelet Transform to understand the spatial genomic scale of local ancestry variation and its association with recombination rates. We present theory and use simulations to show how wavelet-based decompositions of ancestry variance along the genome and the correlation between ancestry and recombination reflect the joint effects of recombination, genetic drift, and genome-wide selection against introgressed alleles. Due to the clock-like effect of recombination in hybrids breaking up parental haplotypes, drift and selection produce predictable patterns of local ancestry variation at varying spatial genomic scales through time. Using wavelet approaches to identify the genomic scale of variance in ancestry and its correlates, we show that these methods can detect temporally localized effects of drift and selection. We apply these methods to previously published datasets from hybrid populations of swordtail fish (Xiphophorus) and baboons (Papio), and to inferred Neanderthal introgression in modern humans. Across systems, we find that upwards of 20% of the variation in local ancestry at the broadest genomic scales can be attributed to systematic selection against introgressed alleles, consistent with strong selection acting on early-generation hybrids. We also see signals of selection at fine genomic scales and much longer time scales. However, we show that our ability to confidently infer selection at fine scales is likely limited by inherent biases in current methods for estimating local ancestry from genomic similarity. Wavelet approaches will become widely applicable as genomic data from systems with introgression become increasingly available, and can help shed light on generalities of the genomic consequences of interspecific hybridization.
Collapse
Affiliation(s)
- Jeffrey Groh
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616
| | - Graham Coop
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616
| |
Collapse
|
23
|
Liu J, Dawe RK. Large haplotypes highlight a complex age structure within the maize pan-genome. Genome Res 2023; 33:359-370. [PMID: 36854668 PMCID: PMC10078284 DOI: 10.1101/gr.276705.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
The genomes of maize and other eukaryotes contain stable haplotypes in regions of low recombination. These regions, including centromeres, long heterochromatic blocks, and rDNA arrays, have been difficult to analyze with respect to their diversity and origin. Greatly improved genome assemblies are now available that enable comparative genomics over these and other nongenic spaces. Using 26 complete maize genomes, we developed methods to align intergenic sequences while excluding genes and regulatory regions. The centromere haplotypes (cenhaps) extend for megabases on either side of the functional centromere regions and appear as evolutionary strata, with haplotype divergence/coalescence times dating as far back as 450 thousand years ago (kya). Application of the same methods to other low recombination regions (heterochromatic knobs and rDNA) and all intergenic spaces revealed that deep coalescence times are ubiquitous across the maize pan-genome. Divergence estimates vary over a broad timescale with peaks at ∼16 and 300 kya, reflecting a complex history of gene flow among diverging populations and changes in population size associated with domestication. Cenhaps and other long haplotypes provide vivid displays of this ancient diversity.
Collapse
Affiliation(s)
- Jianing Liu
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA;
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
24
|
Owens GL, Huang K, Todesco M, Rieseberg LH. Re-evaluating Homoploid Reticulate Evolution in Helianthus Sunflowers. Mol Biol Evol 2023; 40:6989481. [PMID: 36648104 PMCID: PMC9907532 DOI: 10.1093/molbev/msad013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Sunflowers of the genus Helianthus are models for hybridization research and contain three of the best-studied examples of homoploid hybrid speciation. To understand a broader picture of hybridization within the annual sunflowers, we used whole-genome resequencing to conduct a phylogenomic analysis and test for gene flow between lineages. We find that all annual sunflower species tested have evidence of admixture, suggesting hybridization was common during the radiation of the genus. Support for the major species tree decreases with increasing recombination rate, consistent with hybridization and introgression contributing to discordant topologies. Admixture graphs found hybridization to be associated with the origins of the three putative hybrid species (Helianthus anomalus, Helianthus deserticola, and Helianthus paradoxus). However, the hybridization events are more ancient than suggested by previous work. Furthermore, H. anomalus and H. deserticola appear to have arisen from a single hybridization event involving an unexpected donor, rather than through multiple independent events as previously proposed. This means our results are consistent with, but not definitive proof of, two ancient independent homoploid hybrid speciation events in the genus. Using a broader data set that covers the whole Helianthus genus, including perennial species, we find that signals of introgression span the genus and beyond, suggesting highly divergent introgression and/or the sorting of ancient haplotypes. Thus, Helianthus can be viewed as a syngameon in which largely reproductively isolated species are linked together by occasional or frequent gene flow.
Collapse
Affiliation(s)
| | - Kaichi Huang
- Department of Botany and Beaty Biodiversity Center, University of British Columbia, Vancouver, BC, Canada
| | - Marco Todesco
- Department of Botany and Beaty Biodiversity Center, University of British Columbia, Vancouver, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Beaty Biodiversity Center, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Nouhaud P, Martin SH, Portinha B, Sousa VC, Kulmuni J. Rapid and predictable genome evolution across three hybrid ant populations. PLoS Biol 2022; 20:e3001914. [PMID: 36538502 PMCID: PMC9767332 DOI: 10.1371/journal.pbio.3001914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hybridization is frequent in the wild but it is unclear when admixture events lead to predictable outcomes and if so, at what timescale. We show that selection led to correlated sorting of genetic variation rapidly after admixture in 3 hybrid Formica aquilonia × F. polyctena ant populations. Removal of ancestry from the species with the lowest effective population size happened in all populations, consistent with purging of deleterious load. This process was modulated by recombination rate variation and the density of functional sites. Moreover, haplotypes with signatures of positive selection in either species were more likely to fix in hybrids. These mechanisms led to mosaic genomes with comparable ancestry proportions. Our work demonstrates predictable evolution over short timescales after admixture in nature.
Collapse
Affiliation(s)
- Pierre Nouhaud
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Simon H. Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Beatriz Portinha
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Vitor C. Sousa
- cE3c, Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Jonna Kulmuni
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
26
|
Nikolakis ZL, Schield DR, Westfall AK, Perry BW, Ivey KN, Orton RW, Hales NR, Adams RH, Meik JM, Parker JM, Smith CF, Gompert Z, Mackessy SP, Castoe TA. Evidence that genomic incompatibilities and other multilocus processes impact hybrid fitness in a rattlesnake hybrid zone. Evolution 2022; 76:2513-2530. [PMID: 36111705 DOI: 10.1111/evo.14612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 01/22/2023]
Abstract
Hybrid zones provide valuable opportunities to understand the genomic mechanisms that promote speciation by providing insight into factors involved in intermediate stages of speciation. Here, we investigate introgression in a hybrid zone between two rattlesnake species (Crotalus viridis and Crotalus oreganus concolor) that have undergone historical allopatric divergence and recent range expansion and secondary contact. We use Bayesian genomic cline models to characterize genomic patterns of introgression between these lineages and identify loci potentially subject to selection in hybrids. We find evidence for a large number of genomic regions with biased ancestry that deviate from the genomic background in hybrids (i.e., excess ancestry loci), which tend to be associated with genomic regions with higher recombination rates. We also identify suites of excess ancestry loci that show highly correlated allele frequencies (including conspecific and heterospecific combinations) across physically unlinked genomic regions in hybrids. Our findings provide evidence for multiple multilocus evolutionary processes impacting hybrid fitness in this system.
Collapse
Affiliation(s)
- Zachary L Nikolakis
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309
| | - Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Kathleen N Ivey
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Richard W Orton
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Richard H Adams
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia, 31061
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, Texas, 76402
| | - Joshua M Parker
- Department of Life Sciences, Fresno City College, Fresno, California, 93741
| | - Cara F Smith
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, 80639
| | | | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, 80639
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
27
|
Chen L, Luo J, Jin M, Yang N, Liu X, Peng Y, Li W, Phillips A, Cameron B, Bernal JS, Rellán-Álvarez R, Sawers RJH, Liu Q, Yin Y, Ye X, Yan J, Zhang Q, Zhang X, Wu S, Gui S, Wei W, Wang Y, Luo Y, Jiang C, Deng M, Jin M, Jian L, Yu Y, Zhang M, Yang X, Hufford MB, Fernie AR, Warburton ML, Ross-Ibarra J, Yan J. Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nat Genet 2022; 54:1736-1745. [PMID: 36266506 DOI: 10.1038/s41588-022-01184-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Maize is a globally valuable commodity and one of the most extensively studied genetic model organisms. However, we know surprisingly little about the extent and potential utility of the genetic variation found in wild relatives of maize. Here, we characterize a high-density genomic variation map from 744 genomes encompassing maize and all wild taxa of the genus Zea, identifying over 70 million single-nucleotide polymorphisms. The variation map reveals evidence of selection within taxa displaying novel adaptations. We focus on adaptive alleles in highland teosinte and temperate maize, highlighting the key role of flowering-time-related pathways in their adaptation. To show the utility of variants in these data, we generate mutant alleles for two flowering-time candidate genes. This work provides an extensive sampling of the genetic diversity of Zea, resolving questions on evolution and identifying adaptive variants for direct use in modern breeding.
Collapse
Affiliation(s)
- Lu Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| | - Xiangguo Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenqiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Alyssa Phillips
- Center for Population Biology, University of California Davis, Davis, CA, USA.,Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Brenda Cameron
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Julio S Bernal
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Rubén Rellán-Álvarez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Ruairidh J H Sawers
- Department of Plant Science, The Pennsylvania State University, State College, PA, USA
| | - Qing Liu
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yuejia Yin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xinnan Ye
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jiali Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaoting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shenshen Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Songtao Gui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenjie Wei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yuebin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chenglin Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Min Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Liumei Jian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yanhui Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Maolin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiaohong Yang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Marilyn L Warburton
- United States Department of Agriculture-Agricultural Research Service: Western Regional Plant Introduction Station, Washington State University, Pullman, WA, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, Center for Population Biology, Genome Center, University of California Davis, Davis, CA, USA.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
28
|
Rushworth CA, Wardlaw AM, Ross-Ibarra J, Brandvain Y. Conflict over fertilization underlies the transient evolution of reinforcement. PLoS Biol 2022; 20:e3001814. [PMID: 36228022 PMCID: PMC9560609 DOI: 10.1371/journal.pbio.3001814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
When two species meet in secondary contact, the production of low fitness hybrids may be prevented by the adaptive evolution of increased prezygotic isolation, a process known as reinforcement. Theoretical challenges to the evolution of reinforcement are generally cast as a coordination problem, i.e., "how can statistical associations between traits and preferences be maintained in the face of recombination?" However, the evolution of reinforcement also poses a potential conflict between mates. For example, the opportunity costs to hybridization may differ between the sexes or species. This is particularly likely for reinforcement based on postmating prezygotic (PMPZ) incompatibilities, as the ability to fertilize both conspecific and heterospecific eggs is beneficial to male gametes, but heterospecific mating may incur a cost for female gametes. We develop a population genetic model of interspecific conflict over reinforcement inspired by "gametophytic factors", which act as PMPZ barriers among Zea mays subspecies. We demonstrate that this conflict results in the transient evolution of reinforcement-after females adaptively evolve to reject gametes lacking a signal common in conspecific gametes, this gamete signal adaptively introgresses into the other population. Ultimately, the male gamete signal fixes in both species, and isolation returns to pre-reinforcement levels. We interpret geographic patterns of isolation among Z. mays subspecies considering these findings and suggest when and how this conflict can be resolved. Our results suggest that sexual conflict over fertilization may pose an understudied obstacle to the evolution of reinforcement.
Collapse
Affiliation(s)
- Catherine A. Rushworth
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, United States of America
- Department of Biology, Utah State University, Logan, Utah, United States of America
| | - Alison M. Wardlaw
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
- Canada Revenue Agency—Agence du revenu du Canada, Ottawa, Ontario, Canada
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, United States of America
- Genome Center, University of California, Davis, California, United States of America
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
29
|
Yang R, Cao R, Gong X, Feng J. Cultivation has selected for a wider niche and large range shifts in maize. PeerJ 2022; 10:e14019. [PMID: 36168438 PMCID: PMC9509669 DOI: 10.7717/peerj.14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Background Maize (Zea mays L.) is a staple crop cultivated on a global scale. However, its ability to feed the rapidly growing human population may be impaired by climate change, especially if it has low climatic niche and range lability. One important question requiring clarification is therefore whether maize shows high niche and range lability. Methods We used the COUE scheme (a unified terminology representing niche centroid shift, overlap, unfilling and expansion) and species distribution models to study the niche and range changes between maize and its wild progenitors using occurrence records of maize, lowland teosinte (Zea mays ssp. parviglumis) and highland teosinte (Zea mays ssp. mexicana), respectively, as well as explore the mechanisms underlying the niche and range changes. Results In contrast to maize in Mexico, maize did not conserve its niche inherited from lowland and highland teosinte at the global scale. The niche breadth of maize at the global scale was wider than that of its wild progenitors (ca. 5.21 and 3.53 times wider compared with lowland and highland teosinte, respectively). Compared with its wild progenitors, maize at global scale can survive in regions with colder, wetter climatic conditions, as well as with wider ranges of climatic variables (ca. 4.51 and 2.40 times wider compared with lowland and highland teosinte, respectively). The niche changes of maize were largely driven by human introduction and cultivation, which have exposed maize to climatic conditions different from those experienced by its wild progenitors. Small changes in niche breadth had large effects on the magnitude of range shifts; changes in niche breadth thus merit increased attention. Discussion Our results demonstrate that maize shows wide climatic niche and range lability, and this substantially expanded its realized niche and potential range. Our findings also suggest that niche and range shifts probably triggered by natural and artificial selection in cultivation may enable maize to become a global staple crop to feed the growing population and adapting to changing climatic conditions. Future analyses are needed to determine the limits of the novel conditions that maize can tolerate, especially relative to projected climate change.
Collapse
|
30
|
Vilgalys TP, Fogel AS, Anderson JA, Mututua RS, Warutere JK, Siodi IL, Kim SY, Voyles TN, Robinson JA, Wall JD, Archie EA, Alberts SC, Tung J. Selection against admixture and gene regulatory divergence in a long-term primate field study. Science 2022; 377:635-641. [PMID: 35926022 PMCID: PMC9682493 DOI: 10.1126/science.abm4917] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic admixture is central to primate evolution. We combined 50 years of field observations of immigration and group demography with genomic data from ~9 generations of hybrid baboons to investigate the consequences of admixture in the wild. Despite no obvious fitness costs to hybrids, we found signatures of selection against admixture similar to those described for archaic hominins. These patterns were concentrated near genes where ancestry is strongly associated with gene expression. Our analyses also show that introgression is partially predictable across the genome. This study demonstrates the value of integrating genomic and field data for revealing how "genomic signatures of selection" (e.g., reduced introgression in low-recombination regions) manifest in nature; moreover, it underscores the importance of other primates as living models for human evolution.
Collapse
Affiliation(s)
- Tauras P. Vilgalys
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Arielle S. Fogel
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Jordan A. Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | | | | | - Sang Yoon Kim
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Tawni N. Voyles
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | - Jeffrey D. Wall
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,Department of Biology, Duke University, Durham, NC, USA,Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,Department of Biology, Duke University, Durham, NC, USA,Duke University Population Research Institute, Duke University, Durham, NC, USA,Canadian Institute for Advanced Research, Toronto, Canada,Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany,Corresponding author
| |
Collapse
|
31
|
Blanco Pastor JL. Alternative modes of introgression-mediated selection shaped crop adaptation to novel climates. Genome Biol Evol 2022; 14:6647590. [PMID: 35859297 PMCID: PMC9348624 DOI: 10.1093/gbe/evac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Recent plant genomic studies provide fine-grained details on the evolutionary consequences of adaptive introgression during crop domestication. Modern genomic approaches and analytical methods now make it possible to better separate the introgression signal from the demographic signal thus providing a more comprehensive and complex picture of the role of introgression in local adaptation. Adaptive introgression has been fundamental for crop expansion and has involved complex patterns of gene flow. In addition to providing new and more favorable alleles of large effect, introgression during the early stages of domestication also increased allelic diversity at adaptive loci. Previous studies have largely underestimated the effect of such increased diversity following introgression. Recent genomic studies in wheat, potato, maize, grapevine, and ryegrass show that introgression of multiple genes, of as yet unknown effect, increased the effectiveness of purifying selection, and promoted disruptive or fluctuating selection in early cultivars and landraces. Historical selection processes associated with introgression from crop wild relatives provide an instructive analog for adaptation to current climate change and offer new avenues for crop breeding research that are expected to be instrumental for strengthening food security in the coming years.
Collapse
|
32
|
An adaptive teosinte mexicana introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proc Natl Acad Sci U S A 2022; 119:e2100036119. [PMID: 35771940 PMCID: PMC9271162 DOI: 10.1073/pnas.2100036119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Native Americans domesticated maize (Zea mays ssp. mays) from lowland teosinte parviglumis (Zea mays ssp. parviglumis) in the warm Mexican southwest and brought it to the highlands of Mexico and South America where it was exposed to lower temperatures that imposed strong selection on flowering time. Phospholipids are important metabolites in plant responses to low-temperature and phosphorus availability and have been suggested to influence flowering time. Here, we combined linkage mapping with genome scans to identify High PhosphatidylCholine 1 (HPC1), a gene that encodes a phospholipase A1 enzyme, as a major driver of phospholipid variation in highland maize. Common garden experiments demonstrated strong genotype-by-environment interactions associated with variation at HPC1, with the highland HPC1 allele leading to higher fitness in highlands, possibly by hastening flowering. The highland maize HPC1 variant resulted in impaired function of the encoded protein due to a polymorphism in a highly conserved sequence. A meta-analysis across HPC1 orthologs indicated a strong association between the identity of the amino acid at this position and optimal growth in prokaryotes. Mutagenesis of HPC1 via genome editing validated its role in regulating phospholipid metabolism. Finally, we showed that the highland HPC1 allele entered cultivated maize by introgression from the wild highland teosinte Zea mays ssp. mexicana and has been maintained in maize breeding lines from the Northern United States, Canada, and Europe. Thus, HPC1 introgressed from teosinte mexicana underlies a large metabolic QTL that modulates phosphatidylcholine levels and has an adaptive effect at least in part via induction of early flowering time.
Collapse
|
33
|
Genome-wide analyses of introgression between two sympatric Asian oak species. Nat Ecol Evol 2022; 6:924-935. [PMID: 35513577 DOI: 10.1038/s41559-022-01754-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Introgression can be an important source of new alleles for adaption under rapidly changing environments, perhaps even more important than standing variation. Though introgression has been extensively studied in many plants and animals, key questions on the underlying mechanisms of introgression still remain unanswered. In particular, we are yet to determine the genomic distribution of introgressed regions along the genome; whether the extent and patterns of introgression are influenced by ecological factors; and when and how introgression contributes to adaptation. Here, we generated high-quality genomic resources for two sympatric widespread Asian oak species, Quercus acutissima and Q. variabilis, sampled in multiple forests to study introgression between them. We show that introgressed regions are broadly distributed across the genome. Introgression was affected by genetic divergence between pairs of populations and by the similarity of the environments in which they live-populations occupying similar ecological sites tended to share the same introgressed regions. Introgressed genomic footprints of adaptation were preferentially located in regions with suppressed recombination rate. Introgression probably confers adaptation in these oak populations by introducing allelic variation in cis-regulatory elements, in particular through transposable element insertions, thereby altering the regulation of genes related to stress. Our results provide new avenues of research for uncovering mechanisms of adaptation due to hybridization in sympatric species.
Collapse
|
34
|
Abrams MB, Brem RB. Temperature-dependent genetics of thermotolerance between yeast species. Front Ecol Evol 2022; 10:859904. [PMID: 36911365 PMCID: PMC10004143 DOI: 10.3389/fevo.2022.859904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many traits of industrial and basic biological interest arose long ago, and manifest now as fixed differences between a focal species and its reproductively isolated relatives. In these systems, extant individuals can hold clues to the mechanisms by which phenotypes evolved in their ancestors. We harnessed yeast thermotolerance as a test case for such molecular-genetic inferences. In viability experiments, we showed that extant Saccharomyces cerevisiae survived at temperatures where cultures of its sister species S. paradoxus died out. Then, focusing on loci that contribute to this difference, we found that the genetic mechanisms of high-temperature growth changed with temperature. We also uncovered an enrichment of low-frequency variants at thermotolerance loci in S. cerevisiae population sequences, suggestive of a history of non-neutral selective forces acting at these genes. We interpret these results in light of models of the evolutionary mechanisms by which the thermotolerance trait arose in the S. cerevisiae lineage. Together, our results and interpretation underscore the power of genetic approaches to explore how an ancient trait came to be.
Collapse
Affiliation(s)
- Melanie B. Abrams
- UC Berkeley, Department of Plant and Microbial Biology, Berkeley, CA, USA
| | - Rachel B. Brem
- UC Berkeley, Department of Plant and Microbial Biology, Berkeley, CA, USA
| |
Collapse
|
35
|
Devos Y, Aiassa E, Muñoz‐Guajardo I, Messéan A, Mullins E. Update of environmental risk assessment conclusions and risk management recommendations of EFSA (2016) on EU teosinte. EFSA J 2022; 20:e07228. [PMID: 35386925 PMCID: PMC8972220 DOI: 10.2903/j.efsa.2022.7228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Teosinte, wild maize relatives originating from Mexico and Central America, emerged as a noxious agricultural weed in France and Spain. In 2016, the European Food Safety Authority (EFSA) issued a technical report that assessed the available scientific information on teosinte for its relevance for the environmental risk assessment (ERA) and risk management (RM) of genetically modified (GM) maize MON810, Bt11, 1507 and GA21 for cultivation. It was concluded that the impact of insect resistance and/or herbicide tolerance in GM teosinte hybrid progeny (potentially acquired through hybridisation between GM maize and teosinte) on target and non-target organisms, the abiotic environment and biogeochemical cycles would be very low under EU conditions. Following a request of the European Commission, EFSA evaluated whether the ERA conclusions and RM recommendations of EFSA (2016) remain applicable, or require revision in light of new scientific evidence on teosinte that has become available since the publication of EFSA (2016). A protocol was developed to clarify the interpretation of the terms of reference of the mandate and make them operational. The assessment relied on evidence retrieved via an extensive literature search and from reports of the Competent Authorities of France and Spain, and on hearing expert testimonies. A limited collection of 18 publications of varying relevance and quality was retrieved and assessed. Based on this evidence, it is concluded that the ERA conclusions and RM recommendations of EFSA (2016) remain applicable, except those pertaining to the use of glyphosate-based herbicides on maize GA21 which should be considered under Regulation (EC) No 1107/2009. In infested agricultural areas (especially in regions where maize MON810 is widely grown), weed management measures implemented to monitor, control and/or eradicate teosinte must remain in place, as they will contribute to further reduce the low vertical gene flow potential between GM maize and EU teosinte.
Collapse
|
36
|
Perez-Limón S, Li M, Cintora-Martinez GC, Aguilar-Rangel MR, Salazar-Vidal MN, González-Segovia E, Blöcher-Juárez K, Guerrero-Zavala A, Barrales-Gamez B, Carcaño-Macias J, Costich DE, Nieto-Sotelo J, Martinez de la Vega O, Simpson J, Hufford MB, Ross-Ibarra J, Flint-Garcia S, Diaz-Garcia L, Rellán-Álvarez R, Sawers RJH. A B73×Palomero Toluqueño mapping population reveals local adaptation in Mexican highland maize. G3 (BETHESDA, MD.) 2022; 12:jkab447. [PMID: 35100386 PMCID: PMC8896015 DOI: 10.1093/g3journal/jkab447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 01/31/2023]
Abstract
Generations of farmer selection in the central Mexican highlands have produced unique maize varieties adapted to the challenges of the local environment. In addition to possessing great agronomic and cultural value, Mexican highland maize represents a good system for the study of local adaptation and acquisition of adaptive phenotypes under cultivation. In this study, we characterize a recombinant inbred line population derived from the B73 reference line and the Mexican highland maize variety Palomero Toluqueño. B73 and Palomero Toluqueño showed classic rank-changing differences in performance between lowland and highland field sites, indicative of local adaptation. Quantitative trait mapping identified genomic regions linked to effects on yield components that were conditionally expressed depending on the environment. For the principal genomic regions associated with ear weight and total kernel number, the Palomero Toluqueño allele conferred an advantage specifically in the highland site, consistent with local adaptation. We identified Palomero Toluqueño alleles associated with expression of characteristic highland traits, including reduced tassel branching, increased sheath pigmentation and the presence of sheath macrohairs. The oligogenic architecture of these three morphological traits supports their role in adaptation, suggesting they have arisen from consistent directional selection acting at distinct points across the genome. We discuss these results in the context of the origin of phenotypic novelty during selection, commenting on the role of de novo mutation and the acquisition of adaptive variation by gene flow from endemic wild relatives.
Collapse
Affiliation(s)
- Sergio Perez-Limón
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Plant Science, The Pennsylvania State University, State College, PA 16802, USA
| | - Meng Li
- Department of Plant Science, The Pennsylvania State University, State College, PA 16802, USA
| | - G Carolina Cintora-Martinez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - M Rocio Aguilar-Rangel
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - M Nancy Salazar-Vidal
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Evolution and Ecology, UC Davis, CA 95616 USA
| | - Eric González-Segovia
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karla Blöcher-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Alejandro Guerrero-Zavala
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Benjamin Barrales-Gamez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Jessica Carcaño-Macias
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Denise E Costich
- International Center for Maize and Wheat Improvement (CIMMyT), De México 56237, México
| | - Jorge Nieto-Sotelo
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Octavio Martinez de la Vega
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - June Simpson
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, UC Davis, CA 95616 USA
- Center for Population Biology, and Genome Center, UC Davis, Davis, CA 95616, USA
| | - Sherry Flint-Garcia
- U.S. Department of Agriculture, Agricultural Research Service Plant Genetics Research Unit, Columbia, MO 65211, USA
| | - Luis Diaz-Garcia
- Campo Experimental Pabellón-INIFAP. Carretera Aguascalientes-Zacatecas, Aguascalientes, CP 20660, México
| | - Rubén Rellán-Álvarez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Ruairidh J H Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Plant Science, The Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
37
|
Langdon QK, Powell DL, Kim B, Banerjee SM, Payne C, Dodge TO, Moran B, Fascinetto-Zago P, Schumer M. Predictability and parallelism in the contemporary evolution of hybrid genomes. PLoS Genet 2022; 18:e1009914. [PMID: 35085234 PMCID: PMC8794199 DOI: 10.1371/journal.pgen.1009914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 12/28/2022] Open
Abstract
Hybridization between species is widespread across the tree of life. As a result, many species, including our own, harbor regions of their genome derived from hybridization. Despite the recognition that this process is widespread, we understand little about how the genome stabilizes following hybridization, and whether the mechanisms driving this stabilization tend to be shared across species. Here, we dissect the drivers of variation in local ancestry across the genome in replicated hybridization events between two species pairs of swordtail fish: Xiphophorus birchmanni × X. cortezi and X. birchmanni × X. malinche. We find unexpectedly high levels of repeatability in local ancestry across the two types of hybrid populations. This repeatability is attributable in part to the fact that the recombination landscape and locations of functionally important elements play a major role in driving variation in local ancestry in both types of hybrid populations. Beyond these broad scale patterns, we identify dozens of regions of the genome where minor parent ancestry is unusually low or high across species pairs. Analysis of these regions points to shared sites under selection across species pairs, and in some cases, shared mechanisms of selection. We show that one such region is a previously unknown hybrid incompatibility that is shared across X. birchmanni × X. cortezi and X. birchmanni × X. malinche hybrid populations.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Daniel L. Powell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Bernard Kim
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Shreya M. Banerjee
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Cheyenne Payne
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Tristram O. Dodge
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Ben Moran
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
| | - Paola Fascinetto-Zago
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Mexico
- Hanna H. Gray Fellow, Howard Hughes Medical Institutes, Chevy Chase, Maryland, United States of America
| |
Collapse
|
38
|
Allaby RG, Stevens CJ, Kistler L, Fuller DQ. Emerging evidence of plant domestication as a landscape-level process. Trends Ecol Evol 2021; 37:268-279. [PMID: 34863580 DOI: 10.1016/j.tree.2021.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 01/03/2023]
Abstract
The evidence from ancient crops over the past decade challenges some of our most basic assumptions about the process of domestication. The emergence of crops has been viewed as a technologically progressive process in which single or multiple localized populations adapt to human environments in response to cultivation. By contrast, new genetic and archaeological evidence reveals a slow process that involved large populations over wide areas with unexpectedly sustained cultural connections in deep time. We review evidence that calls for a new landscape framework of crop origins. Evolutionary processes operate across vast distances of landscape and time, and the origins of domesticates are complex. The domestication bottleneck is a redundant concept and the progressive nature of domestication is in doubt.
Collapse
Affiliation(s)
- Robin G Allaby
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Chris J Stevens
- Institute of Archaeology, University College London (UCL), London, UK; School of Archaeology and Museology, Peking University, Beijing, China; McDonald Institute of Archaeology, University of Cambridge, Cambridge, UK
| | - Logan Kistler
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Dorian Q Fuller
- Institute of Archaeology, University College London (UCL), London, UK; School of Cultural Heritage, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|