1
|
Yamamoto KK, Wan M, Penkar RS, Savage-Dunn C. BMP-Dependent Mobilization of Fatty Acid Metabolism Promotes Caenorhabditis elegans Survival on a Bacterial Pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643118. [PMID: 40161651 PMCID: PMC11952492 DOI: 10.1101/2025.03.13.643118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The Bone Morphogenetic Proteins (BMPs) are secreted peptide ligands of the Transforming Growth Factor beta (TGF-β) family, initially identified for their roles in development and differentiation across animal species. They are now increasingly recognized for their roles in physiology and infectious disease. In the nematode Caenorhabditis elegans, the BMP ligand DBL-1 controls fat metabolism and immune response, in addition to its roles in body size regulation and development. DBL-1 regulates classical aspects of innate immunity, including the induction of anti-microbial peptides. We theorized that BMP-dependent regulation of fat metabolism could also promote resilience against microbial pathogens. We found that exposure to a bacterial pathogen alters total fat stores, lipid droplet dynamics, and lipid metabolism gene expression in a BMP-dependent manner. We further showed that fatty acid desaturation plays a major role in survival on a bacterial pathogen, while fatty acid β-oxidation plays a more minor role. We conclude that C. elegans mobilizes fatty acid metabolism in response to pathogen exposure to promote survival. Our investigation provides a framework to study potential metabolic interventions that could support therapeutics that are complementary to antibiotic strategies.
Collapse
Affiliation(s)
- Katerina K Yamamoto
- Department of Biology, Queens College, CUNY, NY, USA
- PhD Program in Biology, the Graduate Center, CUNY, NY, USA
| | - Margaret Wan
- Department of Biology, Queens College, CUNY, NY, USA
| | | | - Cathy Savage-Dunn
- Department of Biology, Queens College, CUNY, NY, USA
- PhD Program in Biology, the Graduate Center, CUNY, NY, USA
| |
Collapse
|
2
|
Shi W, Liu Y, Liu Y, Bai X, Liang Y, Yang Y, Wu F, Liu M, Xu N. The unique activity of the bone morphogenetic protein TGH4 affects the embryonic development of Trichinella spiralis and the establishment of vaccine protection. Vet Res 2025; 56:31. [PMID: 39915830 PMCID: PMC11803935 DOI: 10.1186/s13567-025-01473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
In recent years, animal outbreaks of trichinellosis have been reported in Mexico, China, Algeria, Croatia and others, which is a challenge to meat safety and public health. Vaccination is an important means to control trichinellosis, but one of the main challenges in vaccine development is screening for protective candidate antigens. Bone morphogenetic proteins (BMP)), which are potential vaccine research targets, play key roles in the growth and development of metazoans. The BMP homologue TGH4 was identified from Trichinella spiralis (T. spiralis), and recombinant C-terminal mature rTGH4-m had BMP activity and exerted regulatory effects on both mouse fibroblast and T. spiralis embryonic development. The construction of a protein mutant without activation potential confirmed that BMP activity had a negative regulatory effect on the establishment of immune protection by affecting the innate, adaptive, and humoral immunity of mice. Stripping protein activity can enhance immune protection and host resistance to T. spiralis. Our findings demonstrate that the TGH4 mutant is an important vaccine candidate antigen that blocks embryonic development, kills larvae, and provides insight into parasite vaccine research.
Collapse
Affiliation(s)
- Wenjie Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yi Liu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yan Liu
- College of Public Health, Jilin Medical University, Jilin, 132013, China
| | - Xue Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yue Liang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Yaming Yang
- Department of Helminth, Yunnan Institute of Parasitic Diseases, Puer, China
| | - Fangwei Wu
- Department of Helminth, Yunnan Institute of Parasitic Diseases, Puer, China
| | - Mingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Serrano MV, Cottier S, Wang L, Moreira-Antepara S, Nzessi A, Liu Z, Williams B, Lee M, Schneiter R, Liu J. The C. elegans LON-1 protein requires its CAP domain for function in regulating body size and BMP signaling. Genetics 2025; 229:iyae202. [PMID: 39657262 PMCID: PMC11796460 DOI: 10.1093/genetics/iyae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
The CAP (cysteine-rich secretory proteins, antigen-5, and pathogenesis-related) proteins are widely expressed and have been implicated to play diverse roles ranging from mammalian reproduction to plant immune response. Increasing evidence supports a role of CAP proteins in lipid binding. The Caenorhabditis elegans CAP protein LON-1 is known to regulate body size and bone morphogenetic protein (BMP) signaling. LON-1 is a secreted protein with a conserved CAP domain and a C-terminal unstructured domain with no homology to other proteins. In this study, we report that the C-terminal domain of LON-1 is dispensable for its function. Instead, key conserved residues located in the CAP domain are critical for LON-1 function in vivo. We further showed that LON-1 is capable of binding sterol, but not fatty acid, in vitro, and that certain key residues implicated in LON-1 function in vivo are also important for LON-1 sterol binding in vitro. These findings suggest a role of LON-1 in regulating body size and BMP signaling via sterol binding.
Collapse
Affiliation(s)
| | - Stéphanie Cottier
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Lianzijun Wang
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | | | - Anthony Nzessi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Zhiyu Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Byron Williams
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Myeongwoo Lee
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Vora M, Dietz J, Wing Z, George K, Kelly Liu J, Rongo C, Savage-Dunn C. Genome-wide analysis of Smad and Schnurri transcription factors in C. elegans demonstrates widespread interaction and a function in collagen secretion. eLife 2025; 13:RP99394. [PMID: 39887187 PMCID: PMC11785376 DOI: 10.7554/elife.99394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.
Collapse
Affiliation(s)
- Mehul Vora
- Waksman Institute, Department of Genetics, Rutgers UniversityNew BrunswickUnited States
- ModOmics LtdSouthamptonUnited Kingdom
| | - Jonathan Dietz
- Waksman Institute, Department of Genetics, Rutgers UniversityNew BrunswickUnited States
| | - Zachary Wing
- Department of Biology, Queens College, CUNYNew YorkUnited States
| | - Karen George
- Waksman Institute, Department of Genetics, Rutgers UniversityNew BrunswickUnited States
| | - Jun Kelly Liu
- Department of Molecular Biology and Genetics, Cornell UniversityIthacaUnited States
| | - Christopher Rongo
- Waksman Institute, Department of Genetics, Rutgers UniversityNew BrunswickUnited States
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, CUNYNew YorkUnited States
- PhD Program in Biology, The Graduate Center, CUNYNew YorkUnited States
| |
Collapse
|
5
|
Zhu J, Huang L, Zhang W, Li H, Yang Y, Lin Y, Zhang C, Du Z, Xiang H, Wang Y. Single-nucleus transcriptional profiling reveals TCF7L2 as a key regulator in adipogenesis in goat skeletal muscle development. Int J Biol Macromol 2024; 281:136326. [PMID: 39389483 DOI: 10.1016/j.ijbiomac.2024.136326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Intramuscular adipogenesis plays an important role in muscle development, which determines the quality of goat meat. However, its underlying cellular and molecular mechanisms remain poorly understood. In this study, we provided detailed cellular atlases of goat longissimus dorsi during muscle development at single-nucleus resolution, and identified the subpopulations of fibroblasts/fibro-adipogenic progenitors (FAPs) and muscle satellite cell (MuSC), as well as the differentiation trajectory of FAPs subpopulations. Cellular ligand-receptor interaction analysis revealed enriched BMP and IGF pathways implicated in within-tissue crosstalk centered around FAPs. Through single-nucleus gene regulatory network analysis and in vitro interference verification, we found that TCF7L2 was a critical transcriptional factor (TF) in early adipogenesis in skeletal muscle. Overall, our work reveals the cellular intricacies and diversity of goat longissimus dorsi during muscle development, implementing insights into the critical roles of BMP, IGF pathways and TCF7L2 TF in intramuscular adipogenesis.
Collapse
Affiliation(s)
- Jiangjiang Zhu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Lian Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Wenyang Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Haiyang Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yuling Yang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Changhui Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Zhanyu Du
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Hua Xiang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, China; Sichuan Qinghai Tibet Plateau Herbivore Livestock Engineering Technology Center, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
6
|
Ciccarelli EJ, Bendelstein M, Yamamoto KK, Reich H, Savage-Dunn C. BMP signaling to pharyngeal muscle in the C. elegans response to a bacterial pathogen regulates anti-microbial peptide expression and pharyngeal pumping. Mol Biol Cell 2024; 35:ar52. [PMID: 38381557 PMCID: PMC11064665 DOI: 10.1091/mbc.e23-05-0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024] Open
Abstract
Host response to pathogens recruits multiple tissues in part through conserved cell signaling pathways. In Caenorhabditis elegans, the bone morphogenetic protein (BMP) like DBL-1 signaling pathway has a role in the response to infection in addition to other roles in development and postdevelopmental functions. In the regulation of body size, the DBL-1 pathway acts through cell autonomous signal activation in the epidermis (hypodermis). We have now elucidated the tissues that respond to DBL-1 signaling upon exposure to two bacterial pathogens. The receptors and Smad signal transducers for DBL-1 are expressed in pharyngeal muscle, intestine, and epidermis. We demonstrate that expression of receptor-regulated Smad (R-Smad) gene sma-3 in the pharynx is sufficient to improve the impaired survival phenotype of sma-3 mutants and that expression of sma-3 in the intestine has no effect when exposing worms to bacterial infection of the intestine. We also show that two antimicrobial peptide genes - abf-2 and cnc-2 - are regulated by DBL-1 signaling through R-Smad SMA-3 activity in the pharynx. Finally, we show that pharyngeal pumping activity is reduced in sma-3 mutants and that other pharynx-defective mutants also have reduced survival on a bacterial pathogen. Our results identify the pharynx as a tissue that responds to BMP signaling to coordinate a systemic response to bacterial pathogens.
Collapse
Affiliation(s)
- Emma Jo Ciccarelli
- Department of Biology, Queens College, CUNY, Flushing, NY 11367
- PhD Program in Biology, The Graduate Center, CUNY, New York, NY 10016
| | | | - Katerina K. Yamamoto
- Department of Biology, Queens College, CUNY, Flushing, NY 11367
- PhD Program in Biology, The Graduate Center, CUNY, New York, NY 10016
| | - Hannah Reich
- Department of Biology, Queens College, CUNY, Flushing, NY 11367
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, CUNY, Flushing, NY 11367
- PhD Program in Biology, The Graduate Center, CUNY, New York, NY 10016
| |
Collapse
|
7
|
Yang J, Zhu L, Pan H, Ueharu H, Toda M, Yang Q, Hallett SA, Olson LE, Mishina Y. A BMP-controlled metabolic/epigenetic signaling cascade directs midfacial morphogenesis. J Clin Invest 2024; 134:e165787. [PMID: 38466355 PMCID: PMC11014657 DOI: 10.1172/jci165787] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/24/2024] [Indexed: 03/13/2024] Open
Abstract
Craniofacial anomalies, especially midline facial defects, are among the most common birth defects in patients and are associated with increased mortality or require lifelong treatment. During mammalian embryogenesis, specific instructions arising at genetic, signaling, and metabolic levels are important for stem cell behaviors and fate determination, but how these functionally relevant mechanisms are coordinated to regulate craniofacial morphogenesis remain unknown. Here, we report that bone morphogenetic protein (BMP) signaling in cranial neural crest cells (CNCCs) is critical for glycolytic lactate production and subsequent epigenetic histone lactylation, thereby dictating craniofacial morphogenesis. Elevated BMP signaling in CNCCs through constitutively activated ACVR1 (ca-ACVR1) suppressed glycolytic activity and blocked lactate production via a p53-dependent process that resulted in severe midline facial defects. By modulating epigenetic remodeling, BMP signaling-dependent lactate generation drove histone lactylation levels to alter essential genes of Pdgfra, thus regulating CNCC behavior in vitro as well as in vivo. These findings define an axis wherein BMP signaling controls a metabolic/epigenetic cascade to direct craniofacial morphogenesis, thus providing a conceptual framework for understanding the interaction between genetic and metabolic cues operative during embryonic development. These findings indicate potential preventive strategies of congenital craniofacial birth defects via modulating metabolic-driven histone lactylation.
Collapse
Affiliation(s)
- Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Department of Biologic and Materials Sciences, School of Dentistry, and
| | - Lingxin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Haichun Pan
- Department of Biologic and Materials Sciences, School of Dentistry, and
| | - Hiroki Ueharu
- Department of Biologic and Materials Sciences, School of Dentistry, and
| | - Masako Toda
- Department of Biologic and Materials Sciences, School of Dentistry, and
| | - Qian Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Shawn A. Hallett
- Department of Biologic and Materials Sciences, School of Dentistry, and
| | - Lorin E. Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, and
| |
Collapse
|
8
|
Bakopoulos D, Golenkina S, Dark C, Christie EL, Sánchez-Sánchez BJ, Stramer BM, Cheng LY. Convergent insulin and TGF-β signalling drives cancer cachexia by promoting aberrant fat body ECM accumulation in a Drosophila tumour model. EMBO Rep 2023; 24:e57695. [PMID: 38014610 DOI: 10.15252/embr.202357695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/29/2023] Open
Abstract
In this study, we found that in the adipose tissue of wildtype animals, insulin and TGF-β signalling converge via a BMP antagonist short gastrulation (sog) to regulate ECM remodelling. In tumour bearing animals, Sog also modulates TGF-β signalling to regulate ECM accumulation in the fat body. TGF-β signalling causes ECM retention in the fat body and subsequently depletes muscles of fat body-derived ECM proteins. Activation of insulin signalling, inhibition of TGF-β signalling, or modulation of ECM levels via SPARC, Rab10 or Collagen IV in the fat body, is able to rescue tissue wasting in the presence of tumour. Together, our study highlights the importance of adipose ECM remodelling in the context of cancer cachexia.
Collapse
Affiliation(s)
- Daniel Bakopoulos
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
| | | | - Callum Dark
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
| | - Elizabeth L Christie
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
| | | | - Brian M Stramer
- Kings College London, Randall Centre for Cell & Molecular Biophysics, London, UK
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, Vic, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Vic, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
9
|
Godoy LF, Hochbaum D. Transcriptional and spatiotemporal regulation of the dauer program. Transcription 2023; 14:27-48. [PMID: 36951297 PMCID: PMC10353326 DOI: 10.1080/21541264.2023.2190295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/24/2023] Open
Abstract
Caenorhabditis elegans can enter a diapause stage called "dauer" when it senses that the environment is not suitable for development. This implies a detour from the typical developmental trajectory and requires a tight control of the developmental clock and a massive tissue remodeling. In the last decades, core components of the signaling pathways that govern the dauer development decision have been identified, but the tissues where they function for the acquisition of dauer-specific traits are still under intense study. Growing evidence demonstrates that these pathways engage in complex cross-talk and feedback loops. In this review, we summarize the current knowledge regarding the transcriptional regulation of the dauer program and the relevant tissues for its achievement. A better understanding of this process will provide insight on how developmental plasticity is achieved and how development decisions are under a robust regulation to ensure an all-or-nothing response. Furthermore, this developmental decision can also serve as a simplified model for relevant developmental disorders.Abbreviations: AID Auxin Induced Degron DA dafachronic acid Daf-c dauer formation constitutive Daf-d dauer formation defective DTC Distal Tip Cells ECM modified extracellular matrix GPCRs G protein-coupled receptors IIS insulin/IGF-1 signaling ILPs insulin-like peptides LBD Ligand Binding Domain PDL4 Post Dauer L4 TGF-β transforming growth factor beta WT wild-type.
Collapse
Affiliation(s)
- Luciana F Godoy
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD) Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
Reich H, Savage-Dunn C. Signaling circuits and the apical extracellular matrix in aging: connections identified in the nematode Caenorhabditis elegans. Am J Physiol Cell Physiol 2023; 325:C1201-C1211. [PMID: 37721005 PMCID: PMC10861026 DOI: 10.1152/ajpcell.00195.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Numerous conserved signaling pathways play critical roles in aging, including insulin/IGF-1, TGF-β, and Wnt pathways. Some of these pathways also play prominent roles in the formation and maintenance of the extracellular matrix. The nematode Caenorhabditis elegans has been an enduringly productive system for the identification of conserved mechanisms of biological aging. Recent studies in C. elegans highlight the regulatory circuits between conserved signaling pathways and the extracellular matrix, revealing a bidirectional relationship between these factors and providing a platform to address how regulation of and by the extracellular matrix can impact lifespan and organismal health during aging. These discoveries provide new opportunities for clinical advances and novel therapeutic strategies.
Collapse
Affiliation(s)
- Hannah Reich
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
- PhD Program in Biology, The Graduate Center, City University of New York, New York, New York, United States
| |
Collapse
|
11
|
Yamamoto KK, Savage-Dunn C. TGF-β pathways in aging and immunity: lessons from Caenorhabditis elegans. Front Genet 2023; 14:1220068. [PMID: 37732316 PMCID: PMC10507863 DOI: 10.3389/fgene.2023.1220068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
The Transforming Growth Factor-β (TGF-β) superfamily of signaling molecules plays critical roles in development, differentiation, homeostasis, and disease. Due to the conservation of these ligands and their signaling pathways, genetic studies in invertebrate systems including the nematode Caenorhabditis elegans have been instrumental in identifying signaling mechanisms. C. elegans is also a premier organism for research in longevity and healthy aging. Here we summarize current knowledge on the roles of TGF-β signaling in aging and immunity.
Collapse
Affiliation(s)
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, and PhD Program in Biology, The Graduate Center, City University of New York, New York City, NY, United States
| |
Collapse
|
12
|
Núñez S, Moliner C, Valero MS, Mustafa AM, Maggi F, Gómez-Rincón C, López V. Antidiabetic and anti-obesity properties of a polyphenol-rich flower extract from Tagetes erecta L. and its effects on Caenorhabditis elegans fat storages. J Physiol Biochem 2023:10.1007/s13105-023-00953-5. [PMID: 36961724 DOI: 10.1007/s13105-023-00953-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by a high blood sugar level that can cause severe complications to the organism or even death when not treated. However, certain dietary habits and foods may have beneficial effects on this condition. A polyphenolic-rich extract (containing hyperoside, isoquercitrin, quercetin, ellagic acid, and vanillic acid) of Tageres erecta L. (T. erecta) was obtained from yellow and orange flowers using an ethanolic Soxhlet extraction. These extracts were screened for antidiabetic and anti-obesity properties using in vitro and in vivo procedures. The capacity to inhibit the enzymes lipase and α-glucosidase, as well as the inhibition of advance glycation end-products (AGEs) was tested in vitro. Caenorhabditis elegans (C. elegans) was used as an obesity in vivo model to assess extracts effects on fat accumulation using the wild-type strain N2 and a mutant with no N3 fatty acid desaturase activity BX24. Extracts from both cultivars (yellow and orange) T. erecta presented in vitro inhibitory activity against the enzymes lipase and α-glucosidase, showing lower IC50 values than acarbose (control). They also showed important activity in preventing AGEs formation. The polyphenol-rich matrices reduced the fat content of obese worms in the wild-type strain (N2) down to levels of untreated C. elegans, with no significant differences found between negative control (100% reduction) and both tested samples (p < 0.05). Meanwhile, the fat reduction was considerably lower in the BX24 mutants (fat-1(wa-9)), suggesting that N3 fatty acid desaturase activity could be partially involved in the T. erecta flower effect. Our findings suggested that polyphenols from T. erecta can be considered candidate bioactive compounds in the prevention and improvement of metabolic chronic diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Sonia Núñez
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
| | - Cristina Moliner
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
| | - Marta Sofía Valero
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Ahmed M Mustafa
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Carlota Gómez-Rincón
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain.
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain.
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
- Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| |
Collapse
|
13
|
Application of Caenorhabditis elegans in Lipid Metabolism Research. Int J Mol Sci 2023; 24:ijms24021173. [PMID: 36674689 PMCID: PMC9860639 DOI: 10.3390/ijms24021173] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases.
Collapse
|
14
|
Arneaud SLB, McClendon J, Tatge L, Watterson A, Zuurbier KR, Madhu B, Gumienny TL, Douglas PM. Reduced bone morphogenic protein signaling along the gut-neuron axis by heat shock factor promotes longevity. Aging Cell 2022; 21:e13693. [PMID: 35977034 PMCID: PMC9470895 DOI: 10.1111/acel.13693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 01/25/2023] Open
Abstract
Aging is a complex and highly regulated process of interwoven signaling mechanisms. As an ancient transcriptional regulator of thermal adaptation and protein homeostasis, the Heat Shock Factor, HSF-1, has evolved functions within the nervous system to control age progression; however, the molecular details and signaling dynamics by which HSF-1 modulates age across tissues remain unclear. Herein, we report a nonautonomous mode of age regulation by HSF-1 in the Caenorhabditis elegans nervous system that works through the bone morphogenic protein, BMP, signaling pathway to modulate membrane trafficking in peripheral tissues. In particular, HSF-1 represses the expression of the neuron-specific BMP ligand, DBL-1, and initiates a complementary negative feedback loop within the intestine. By reducing receipt of DBL-1 in the periphery, the SMAD transcriptional coactivator, SMA-3, represses the expression of critical membrane trafficking regulators including Rab GTPases involved in early (RAB-5), late (RAB-7), and recycling (RAB-11.1) endosomal dynamics and the BMP receptor binding protein, SMA-10. This reduces cell surface residency and steady-state levels of the type I BMP receptor, SMA-6, in the intestine and further dampens signal transmission to the periphery. Thus, the ability of HSF-1 to coordinate BMP signaling along the gut-brain axis is an important determinate in age progression.
Collapse
Affiliation(s)
| | - Jacob McClendon
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Lexus Tatge
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Abigail Watterson
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Kielen R. Zuurbier
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA
| | - Bhoomi Madhu
- Department of BiologyTexas Woman's UniversityDentonTexasUSA
| | | | - Peter M. Douglas
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTexasUSA,Hamon Center for Regenerative Science and MedicineUT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
15
|
Song C, Broadie K. Dysregulation of BMP, Wnt, and Insulin Signaling in Fragile X Syndrome. Front Cell Dev Biol 2022; 10:934662. [PMID: 35880195 PMCID: PMC9307498 DOI: 10.3389/fcell.2022.934662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 01/21/2023] Open
Abstract
Drosophila models of neurological disease contribute tremendously to research progress due to the high conservation of human disease genes, the powerful and sophisticated genetic toolkit, and the rapid generation time. Fragile X syndrome (FXS) is the most prevalent heritable cause of intellectual disability and autism spectrum disorders, and the Drosophila FXS disease model has been critical for the genetic screening discovery of new intercellular secretion mechanisms. Here, we focus on the roles of three major signaling pathways: BMP, Wnt, and insulin-like peptides. We present Drosophila FXS model defects compared to mouse models in stem cells/embryos, the glutamatergic neuromuscular junction (NMJ) synapse model, and the developing adult brain. All three of these secreted signaling pathways are strikingly altered in FXS disease models, giving new mechanistic insights into impaired cellular outcomes and neurological phenotypes. Drosophila provides a powerful genetic screening platform to expand understanding of these secretory mechanisms and to test cellular roles in both peripheral and central nervous systems. The studies demonstrate the importance of exploring broad genetic interactions and unexpected regulatory mechanisms. We discuss a number of research avenues to pursue BMP, Wnt, and insulin signaling in future FXS investigations and the development of potential therapeutics.
Collapse
Affiliation(s)
- Chunzhu Song
- Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Kendal Broadie
- Department of Biological Sciences, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
- Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, TN, United States
- Kennedy Center for Research on Human Development, Nashville, TN, United States
- Vanderbilt Brain Institute, School of Medicine, Vanderbilt University and Medical Center, Nashville, TN, United States
| |
Collapse
|
16
|
Chomyshen SC, Tabarraei H, Wu CW. Translational suppression via IFG-1/eIF4G inhibits stress-induced RNA alternative splicing in Caenorhabditis elegans. Genetics 2022; 221:iyac075. [PMID: 35536193 PMCID: PMC9252287 DOI: 10.1093/genetics/iyac075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Splicing of precursor mRNA is an essential process for dividing cells, and splicing defects have been linked to aging and various chronic diseases. Environmental stress has recently been shown to modify alternative splicing, and molecular mechanisms that influence stress-induced alternative splicing remain unclear. Using an in vivo RNA splicing reporter, we performed a genome-wide RNAi screen in Caenorhabditis elegans and found that protein translation suppression via silencing of the conserved eukaryotic initiation factor 4G (IFG-1/eIF4G) inhibits cadmium-induced alternative splicing. Transcriptome analysis of an ifg-1-deficient mutant revealed an overall decrease in intronic and intergenic reads and prevented cadmium-induced alternative splicing compared to the wild type. We found that the ifg-1 mutant up-regulates >80 RNA splicing regulatory genes controlled by the TGF-β transcription factor SMA-2. The extended lifespan of the ifg-1 mutant is partially reduced upon sma-2 depletion and completely nullified when core spliceosome genes including snr-1, snr-2, and uaf-2 are knocked down. Depletion of snr-1 and snr-2 also diminished the enhanced cadmium resistance of the ifg-1 mutant. Together, these data describe a molecular mechanism through which translation suppression inhibits stress-induced alternative splicing and demonstrate an essential role for RNA splicing in promoting longevity and stress resistance in a translation-compromised mutant.
Collapse
Affiliation(s)
- Samantha C Chomyshen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Hadi Tabarraei
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Cheng-Wei Wu
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|