1
|
Mertelsmann AM, Bowers SF, Wright D, Maganga JK, Mazigo HD, Ndhlovu LC, Changalucha JM, Downs JA. Effects of Schistosoma haematobium infection and treatment on the systemic and mucosal immune phenotype, gene expression and microbiome: A systematic review. PLoS Negl Trop Dis 2024; 18:e0012456. [PMID: 39250522 PMCID: PMC11412685 DOI: 10.1371/journal.pntd.0012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/19/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Urogenital schistosomiasis caused by Schistosoma haematobium affects approximately 110 million people globally, with the majority of cases in low- and middle-income countries. Schistosome infections have been shown to impact the host immune system, gene expression, and microbiome composition. Studies have demonstrated variations in pathology between schistosome subspecies. In the case of S. haematobium, infection has been associated with HIV acquisition and bladder cancer. However, the underlying pathophysiology has been understudied compared to other schistosome species. This systematic review comprehensively investigates and assimilates the effects of S. haematobium infection on systemic and local host mucosal immunity, cellular gene expression and microbiome. METHODS We conducted a systematic review assessing the reported effects of S. haematobium infections and anthelmintic treatment on the immune system, gene expression and microbiome in humans and animal models. This review followed PRISMA guidelines and was registered prospectively in PROSPERO (CRD42022372607). Randomized clinical trials, cohort, cross-sectional, case-control, experimental ex vivo, and animal studies were included. Two reviewers performed screening independently. RESULTS We screened 3,177 studies and included 94. S. haematobium was reported to lead to: (i) a mixed immune response with a predominant type 2 immune phenotype, increased T and B regulatory cells, and select pro-inflammatory cytokines; (ii) distinct molecular alterations that would compromise epithelial integrity, such as increased metalloproteinase expression, and promote immunological changes and cellular transformation, specifically upregulation of genes p53 and Bcl-2; and (iii) microbiome dysbiosis in the urinary, intestinal, and genital tracts. CONCLUSION S. haematobium induces distinct alterations in the host's immune system, molecular profile, and microbiome. This leads to a diverse range of inflammatory and anti-inflammatory responses and impaired integrity of the local mucosal epithelial barrier, elevating the risks of secondary infections. Further, S. haematobium promotes cellular transformation with oncogenic potential and disrupts the microbiome, further influencing the immune system and genetic makeup. Understanding the pathophysiology of these interactions can improve outcomes for the sequelae of this devastating parasitic infection.
Collapse
Affiliation(s)
- Anna M Mertelsmann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Sheridan F Bowers
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Drew Wright
- Samuel J. Wood Library & C.V. Starr Biomedical Information Center, Weill Cornell Medical College, New York, New York, United States of America
| | - Jane K Maganga
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Humphrey D Mazigo
- Department of Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - John M Changalucha
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Jennifer A Downs
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
- Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
2
|
Houlder EL, Costain AH, Nambuya I, Brown SL, Koopman JPR, Langenberg MCC, Janse JJ, Hoogerwerf MA, Ridley AJL, Forde-Thomas JE, Colombo SAP, Winkel BMF, Galdon AA, Hoffmann KF, Cook PC, Roestenberg M, Mpairwe H, MacDonald AS. Pulmonary inflammation promoted by type-2 dendritic cells is a feature of human and murine schistosomiasis. Nat Commun 2023; 14:1863. [PMID: 37012228 PMCID: PMC10070318 DOI: 10.1038/s41467-023-37502-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Schistosomiasis is a parasitic disease affecting over 200 million people in multiple organs, including the lungs. Despite this, there is little understanding of pulmonary immune responses during schistosomiasis. Here, we show type-2 dominated lung immune responses in both patent (egg producing) and pre-patent (larval lung migration) murine Schistosoma mansoni (S. mansoni) infection. Human pre-patent S. mansoni infection pulmonary (sputum) samples revealed a mixed type-1/type-2 inflammatory cytokine profile, whilst a case-control study showed no significant pulmonary cytokine changes in endemic patent infection. However, schistosomiasis induced expansion of pulmonary type-2 conventional dendritic cells (cDC2s) in human and murine hosts, at both infection stages. Further, cDC2s were required for type-2 pulmonary inflammation in murine pre-patent or patent infection. These data elevate our fundamental understanding of pulmonary immune responses during schistosomiasis, which may be important for future vaccine design, as well as for understanding links between schistosomiasis and other lung diseases.
Collapse
Affiliation(s)
- E L Houlder
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A H Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - I Nambuya
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - S L Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J P R Koopman
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - M C C Langenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - J J Janse
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - M A Hoogerwerf
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A J L Ridley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J E Forde-Thomas
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - S A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - B M F Winkel
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - A A Galdon
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - K F Hoffmann
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - P C Cook
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - M Roestenberg
- Leiden University Center for Infectious Diseases (LU-CID), Leiden University Medical Centre, Leiden, Netherlands
| | - H Mpairwe
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - A S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Abdel Aziz N, Musaigwa F, Mosala P, Berkiks I, Brombacher F. Type 2 immunity: a two-edged sword in schistosomiasis immunopathology. Trends Immunol 2022; 43:657-673. [PMID: 35835714 DOI: 10.1016/j.it.2022.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Schistosomiasis is the second most debilitating neglected tropical disease globally after malaria, with no available therapy to control disease-driven immunopathology. Although schistosomiasis induces a markedly heterogenous immune response, type 2 immunity is the dominating immune response following oviposition. While type 2 immunity has a crucial role in granuloma formation and host survival during the acute stage of disease, its chronic activation can result in tissue scarring, fibrosis, and organ impairment. Here, we discuss recent advances in schistosomiasis, demonstrating how different immune and non-immune cells and signaling pathways are involved in the induction, maintenance, and regulation of type 2 immunity. A better understanding of these immune responses during schistosomiasis is essential to inform the potential development of candidate therapeutic strategies that fine-tune type 2 immunity to ideally modulate schistosomiasis immunopathology.
Collapse
Affiliation(s)
- Nada Abdel Aziz
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Biotechnology/Biomolecular Chemistry Program, Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| | - Fungai Musaigwa
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Paballo Mosala
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Inssaf Berkiks
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Frank Brombacher
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|
4
|
Sharaf OF, Ahmed AA, Ibrahim AF, Shariq A, Alkhamiss AS, Alghsham R, Althwab SA, Alghaniam SA, Alhumaydhi FA, Alghamdi R, Alshomar A, Alabdullatif T, Alkhulayfi A, Alghunaim AA, Abdulmonem WA. Modulation of mice immune responses against Schistosoma mansoni infection with anti-schistosomiasis drugs: Role of interleukin-4 and interferon-gamma. Int J Health Sci (Qassim) 2022; 16:3-11. [PMID: 35300269 PMCID: PMC8905037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Schistosoma mansoni (S. mansoni) is endemic in Africa, the Middle East, South America, and the Caribbean. This study investigated the modulation of immune response against S. mansoni through estimation of interleukin-4 (IL-4) (Th2 cytokine) and interferon-gamma (INF-γ) (Th1 cytokine) under the effect of anti-schistosomal drugs. METHODS Laboratory bred female albino mice (n = 120) were divided into the following groups: untreated mice, S. mansoni infected mice, S. mansoni infected mice treated with artemisinin (ART), arachidonic acid (ARA), nifedipine or praziquantel (PZQ). Levels of IL-4 and INF-γ cytokines in the serum samples of treated and untreated mice were determined by enzyme-linked immunosorbent assay and the results were further validated by measuring the mRNA levels IL-4 and INF-γ using quantitative real-time polymerase chain reaction. RESULTS Anti-schistosomiasis drugs ART and ARA increased the levels of Th2 cytokine IL-4 (P < 0.05), whereas PZQ drug decreased the response of IL-4 (P < 0.05). However, nifedipine was found to be ineffective in modulating the response of IL-4 (P > 0.05). As far as Th-1 cytokine IFN γ was concerned, only PZQ increased its levels (P < 0.05), whereas other tested anti-schistosomiasis drugs; ART, ARA, and nifedipine were found to be infective (P > 0.05). CONCLUSIONS These findings indicated that anti-schistosomiasis drugs ART, ARA, and PZQ play a role in the modulation of expression of Th2 cytokines. Whereas, only PZQ may play a role in the modulation of Th1 cytokines. These findings provide a scope for the formulation of novel anti-schistosomal drugs as well as in the therapeutic management of patients infected with S. mansoni.
Collapse
Affiliation(s)
- Osama F. Sharaf
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shibin Al kom, Al Menoufia, Egypt
| | - Ahmed A. Ahmed
- Research Center, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Asmaa F. Ibrahim
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shibin Al kom, Al Menoufia, Egypt
| | - Ali Shariq
- Department of Microbiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S. Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ruqaih Alghsham
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Sami A. Althwab
- Department of Clinical Nutrition, Qassim Health Affairs, Ministry of Health, Buraidah, Saudi Arabia
| | - Sultan A. Alghaniam
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Rana Alghamdi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Alshomar
- Department of Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Tasleem Alabdullatif
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | | | | | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia,Address for correspondence: Dr. Waleed Al Abdulmonem, Department of Pathology, College of Medicine, Qassim University, Qassim, Saudi Arabia. E-mail:
| |
Collapse
|
5
|
Labuda LA, Adegnika AA, Rosa BA, Martin J, Ateba-Ngoa U, Amoah AS, Lima HM, Meurs L, Mbow M, Manurung MD, Zinsou JF, Smits HH, Kremsner PG, Mitreva M, Yazdanbakhsh M. A Praziquantel Treatment Study of Immune and Transcriptome Profiles in Schistosoma haematobium-Infected Gabonese Schoolchildren. J Infect Dis 2021; 222:2103-2113. [PMID: 31844885 PMCID: PMC7661769 DOI: 10.1093/infdis/jiz641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Although Schistosoma haematobium infection has been reported to be associated with alterations in immune function, in particular immune hyporesponsiveness, there have been only few studies that have used the approach of removing infection by drug treatment to establish this and to understand the underlying molecular mechanisms. Methods Schistosoma haematobium-infected schoolchildren were studied before and after praziquantel treatment and compared with uninfected controls. Cellular responses were characterized by cytokine production and flow cytometry, and in a subset of children RNA sequencing (RNA-Seq) transcriptome profiling was performed. Results Removal of S haematobium infection resulted in increased schistosome-specific cytokine responses that were negatively associated with CD4+CD25+FOXP3+ T-cells and accompanied by increased frequency of effector memory T-cells. Innate responses to Toll like receptor (TLR) ligation decreased with treatment and showed positive association with CD4+CD25+FOXP3+ T-cells. At the transcriptome level, schistosome infection was associated with enrichment in cell adhesion, whereas parasite removal was associated with a more quiescent profile. Further analysis indicated that alteration in cellular energy metabolism was associated with S haematobium infection and that the early growth response genes 2 and 3 (EGR 2 and EGR3), transcription factors that negatively regulate T-cell activation, may play a role in adaptive immune hyporesponsiveness. Conclusions Using a longitudinal study design, we found contrasting effects of schistosome infection on innate and adaptive immune responses. Whereas the innate immune system appears more activated, the adaptive immunity is in a hyporesponsive state reflected in alterations in CD4+CD25+FOXP3+ T-cells, cellular metabolism, and transcription factors involved in anergy.
Collapse
Affiliation(s)
- Lucja A Labuda
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Ayola A Adegnika
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Bruce A Rosa
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA
| | - John Martin
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ulysse Ateba-Ngoa
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Abena Serwaa Amoah
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Honorine Mbenkep Lima
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Lynn Meurs
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Moustapha Mbow
- Service d'Immunologie du Département de Pharmacie, FMPO, Université Cheikh Anta Diop, Fann- Dakar, Sénégal
| | - Mikhael D Manurung
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeannot F Zinsou
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA.,Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Obieglo K, Schuijs MJ, Ozir-Fazalalikhan A, Otto F, van Wijck Y, Boon L, Lambrecht BN, Taube C, Smits HH. Isolated Schistosoma mansoni eggs prevent allergic airway inflammation. Parasite Immunol 2018; 40:e12579. [PMID: 30107039 PMCID: PMC6175163 DOI: 10.1111/pim.12579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022]
Abstract
Chronic helminth infection with Schistosoma (S.) mansoni protects against allergic airway inflammation (AAI) in mice and is associated with reduced Th2 responses to inhaled allergens in humans, despite the presence of schistosome‐specific Th2 immunity. Schistosome eggs strongly induce type 2 immunity and allow to study the dynamics of Th2 versus regulatory responses in the absence of worms. Treatment with isolated S. mansoni eggs by i.p. injection prior to induction of AAI to ovalbumin (OVA)/alum led to significantly reduced AAI as assessed by less BAL and lung eosinophilia, less cellular influx into lung tissue, less OVA‐specific Th2 cytokines in lungs and lung‐draining mediastinal lymph nodes and less circulating allergen‐specific IgG1 and IgE antibodies. While OVA‐specific Th2 responses were inhibited, treatment induced a strong systemic Th2 response to the eggs. The protective effect of S. mansoni eggs was unaltered in μMT mice lacking mature (B2) B cells and unaffected by Treg cell depletion using anti‐CD25 blocking antibodies during egg treatment and allergic sensitization. Notably, prophylactic egg treatment resulted in a reduced influx of pro‐inflammatory, monocyte‐derived dendritic cells into lung tissue of allergic mice following challenge. Altogether, S. mansoni eggs can protect against the development of AAI, despite strong egg‐specific Th2 responses.
Collapse
Affiliation(s)
- Katja Obieglo
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J Schuijs
- Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | | | - Frank Otto
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yolanda van Wijck
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Bart N Lambrecht
- Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
McSorley HJ, Chayé MAM, Smits HH. Worms: Pernicious parasites or allies against allergies? Parasite Immunol 2018; 41:e12574. [PMID: 30043455 PMCID: PMC6585781 DOI: 10.1111/pim.12574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/14/2022]
Abstract
Type 2 immune responses are most commonly associated with allergy and helminth parasite infections. Since the discovery of Th1 and Th2 immune responses more than 30 years ago, models of both allergic disease and helminth infections have been useful in characterizing the development, effector mechanisms and pathological consequences of type 2 immune responses. The observation that some helminth infections negatively correlate with allergic and inflammatory disease led to a large field of research into parasite immunomodulation. However, it is worth noting that helminth parasites are not always benign infections, and that helminth immunomodulation can have stimulatory as well as suppressive effects on allergic responses. In this review, we will discuss how parasitic infections change host responses, the consequences for bystander immunity and how this interaction influences clinical symptoms of allergy.
Collapse
Affiliation(s)
- Henry J McSorley
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mathilde A M Chayé
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden Immunology of Parasitic Infections Group, Leiden University Medical Centre, ZA Leiden, The Netherlands
| |
Collapse
|
8
|
Kaisar MMM, Ritter M, del Fresno C, Jónasdóttir HS, van der Ham AJ, Pelgrom LR, Schramm G, Layland LE, Sancho D, Prazeres da Costa C, Giera M, Yazdanbakhsh M, Everts B. Dectin-1/2-induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses. PLoS Biol 2018; 16:e2005504. [PMID: 29668708 PMCID: PMC5927467 DOI: 10.1371/journal.pbio.2005504] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023] Open
Abstract
The molecular mechanisms through which dendritic cells (DCs) prime T helper 2 (Th2) responses, including those elicited by parasitic helminths, remain incompletely understood. Here, we report that soluble egg antigen (SEA) from Schistosoma mansoni, which is well known to drive potent Th2 responses, triggers DCs to produce prostaglandin E2 (PGE2), which subsequently—in an autocrine manner—induces OX40 ligand (OX40L) expression to license these DCs to drive Th2 responses. Mechanistically, SEA was found to promote PGE2 synthesis through Dectin-1 and Dectin-2, and via a downstream signaling cascade involving spleen tyrosine kinase (Syk), extracellular signal-regulated kinase (ERK), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase 1 and 2 (COX-1 and COX-2). In addition, this pathway was activated independently of the actions of omega-1 (ω-1), a previously described Th2-priming glycoprotein present in SEA. These findings were supported by in vivo murine data showing that ω-1–independent Th2 priming by SEA was mediated by Dectin-2 and Syk signaling in DCs. Finally, we found that Dectin-2−/−, and to a lesser extent Dectin-1−/− mice, displayed impaired Th2 responses and reduced egg-driven granuloma formation following S. mansoni infection, highlighting the physiological importance of this pathway in Th2 polarization during a helminth infection. In summary, we identified a novel pathway in DCs involving Dectin-1/2-Syk-PGE2-OX40L through which Th2 immune responses are induced. T helper 2 (Th2) responses, which are initiated by dendritic cells (DCs), can cause allergic diseases, but they can also provide protection against metabolic disorders and parasitic helminth infections. As such, there is great interest in better understanding how their activity is induced and regulated by DCs. Parasitic helminths can potently induce Th2 responses. However, how helminths condition DCs for priming of Th2 responses remains incompletely understood. Here, we find that egg antigens from the parasitic helminth Schistosoma mansoni bind to pattern-recognition receptors (PRRs) Dectin-1 and Dectin-2 on DCs. This binding triggers a signaling cascade in DCs that results in synthesis of eicosanoid prostaglandin E2 (PGE2). PGE2 is sensed by the DCs themselves, resulting in expression of OX40 ligand (OX40L), which subsequently enables the DCs to promote Th2 differentiation. We show that this pathway is activated independently of omega-1 (ω-1), which is a glycoprotein secreted by the eggs and previously shown to condition DCs for priming of Th2 responses. Moreover, we demonstrate that this ω-1–independent pathway is crucial for Th2 induction and egg-driven immunopathology following S. mansoni infection in vivo. In summary, we identified a novel pathway in DCs involving Dectin-1/2–induced autocrine PGE2 signaling through which Th2 responses are induced.
Collapse
Affiliation(s)
- Maria M. M. Kaisar
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Germany
| | - Carlos del Fresno
- Centro Nacional de Investigaciones Cardiovasculares “Carlos III”, Madrid, Spain
| | - Hulda S. Jónasdóttir
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alwin J. van der Ham
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Leonard R. Pelgrom
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Laura E. Layland
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Germany & German Centre for Infection Research, partner site, Bonn-Cologne, Bonn, Germany
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares “Carlos III”, Madrid, Spain
| | | | - Martin Giera
- Center of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
9
|
Sharma A, Sharma P, Ganga L, Satoeya N, Mishra S, Vishwakarma AL, Srivastava M. Infective Larvae of Brugia malayi Induce Polarization of Host Macrophages that Helps in Immune Evasion. Front Immunol 2018; 9:194. [PMID: 29483912 PMCID: PMC5816041 DOI: 10.3389/fimmu.2018.00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
Filarial parasites suppress, divert, or polarize the host immune response to aid their survival. However, mechanisms that govern the polarization of host MΦs during early filarial infection are not completely understood. In this study, we infected BALB/c mice with infective larvae stage-3 of Brugia malayi (Bm-L3) and studied their effect on the polarization of splenic MΦs. Results showed that MΦs displayed M2-phenotype by day 3 p.i. characterized by upregulated IL-4, but reduced IL-12 and Prostaglandin-D2 secretion. Increased arginase activity, higher arginase-1 but reduced NOS2 expression and poor phagocytic and antigen processing capacity was also observed. M2 MΦs supported T-cell proliferation and characteristically upregulated p-ERK but downregulated NF-κB-p65 and NF-κB-p50/105. Notably, Bm-L3 synergized with host regulatory T-cells (Tregs) and polarized M2 MΦs to regulatory MΦs (Mregs) by day 7 p.i., which secreted copious amounts of IL-10 and prostaglandin-E2. Mregs also showed upregulated expression levels of MHC-II, CD80, and CD86 and exhibited increased antigen-processing capacity but displayed impaired activation of NF-κB-p65 and NF-κB-p50/105. Neutralization of Tregs by anti-GITR + anti-CD25 antibodies checked the polarization of M2 MΦs to Mregs, decreased accumulation of regulatory B cells and inflammatory monocytes, and reduced secretion of IL-10, but enhanced IL-4 production and percentages of eosinophils, which led to Bm-L3 killing. In summary, we report hitherto undocumented effects of early Bm-L3 infection on the polarization of splenic MΦs and show how infective larvae deftly utilize the functional plasticity of host MΦs to establish themselves inside the host.
Collapse
Affiliation(s)
- Aditi Sharma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Pankaj Sharma
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Laxmi Ganga
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Neha Satoeya
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shikha Mishra
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Achchhe Lal Vishwakarma
- Sophisticated Analytical Instrument Facility (SAIF), CSIR-Central Drug Research Institute, Lucknow, India
| | - Mrigank Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
10
|
Lopes DM, de Almeida TVVS, de Souza RDP, Ribeiro LEV, Page B, Fernandes JDS, Carvalho EM, Cardoso LS. Susceptibility of dendritic cells from individuals with schistosomiasis to infection by Leishmania braziliensis. Mol Immunol 2017; 93:173-183. [PMID: 29197260 DOI: 10.1016/j.molimm.2017.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/09/2017] [Accepted: 11/18/2017] [Indexed: 12/18/2022]
Abstract
Coinfection with leishmaniasis and schistosomiasis has been associated with increased time to healing of cutaneous lesions of leishmaniasis. The objective of this study was to evaluate the effect of Leishmania braziliensis infection on co-cultures of monocyte-derived dendritic cells (MoDCs) with autologous lymphocytes from patients with schistosomiasis and patients with cutaneous leishmaniasis. MoDCs were differentiated from peripheral blood monocytes, isolated by magnetic beads, infected with L. braziliensis, and co-cultured with autologous lymphocytes. Expression of HLA-DR, CD1a, CD83, CD80, CD86, CD40, and the IL-10 receptor (IL-10R) on MoDCs as well as CD28, CD40L, CD25, and CTLA-4 on lymphocytes were evaluated by flow cytometry. The production of the cytokines IL-10, TNF, IL-12p40, and IFN-γ were evaluated by sandwich ELISA of the culture supernatant. The infectivity evaluation was performed by light microscopy after concentration of cells by cytospin and Giemsa staining. It was observed that the frequency of MoDCs expressing CD83, CD80, and CD86 as well as the MFI of HLA-DR were smaller in the group of patients with schistosomiasis compared to the group of patients with leishmaniasis. On the other hand, the frequency of IL-10R on MoDCs was higher in patients with schistosomiasis than in patients with leishmaniasis. CD4+ and CD8+ T lymphocytes from patients with schistosomiasis presented a lower frequency of CD28 and a higher frequency of CTLA-4 compared to lymphocytes from patients with leishmaniasis. Levels of IL-10 were higher in the supernatants of co-cultures from individuals with schistosomiasis compared to those with leishmaniasis. However, levels of TNF, IL-12p40, and IFN-γ were lower in the group of individuals with schistosomiasis. Regarding the frequency of MoDCs infected by L. braziliensis after 72h in culture, it was observed that higher frequencies of cells from patients with schistosomiasis were infected compared to cells from patients with leishmaniasis. It was concluded that MoDCs from patients with schistosomiasis are more likely to be infected by L. braziliensis, possibly due to a lower degree of activation and a regulatory profile.
Collapse
Affiliation(s)
- Diego Mota Lopes
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT- DT) -CNPQ/MCT, Brazil
| | - Tarcísio Vila Verde S de Almeida
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brazil
| | - Robson da Paixão de Souza
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Luís Eduardo Viana Ribeiro
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Brady Page
- Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Edgar M Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT- DT) -CNPQ/MCT, Brazil; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
| | - Luciana Santos Cardoso
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT- DT) -CNPQ/MCT, Brazil; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, UFBA, Salvador, Bahia, Brazil.
| |
Collapse
|
11
|
Midttun HLE, Acevedo N, Skallerup P, Almeida S, Skovgaard K, Andresen L, Skov S, Caraballo L, van Die I, Jørgensen CB, Fredholm M, Thamsborg SM, Nejsum P, Williams AR. Ascaris Suum Infection Downregulates Inflammatory Pathways in the Pig Intestine In Vivo and in Human Dendritic Cells In Vitro. J Infect Dis 2017; 217:310-319. [DOI: 10.1093/infdis/jix585] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/07/2017] [Indexed: 11/15/2022] Open
|
12
|
The role of rare innate immune cells in Type 2 immune activation against parasitic helminths. Parasitology 2017; 144:1288-1301. [PMID: 28583216 DOI: 10.1017/s0031182017000488] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The complexity of helminth macroparasites is reflected in the intricate network of host cell types that participate in the Type 2 immune response needed to battle these organisms. In this context, adaptive T helper 2 cells and the Type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have been the focus of research for years, but recent work has demonstrated that the innate immune system plays an essential role. Some innate immune cells that promote Type 2 immunity are relatively abundant, such as macrophages and eosinophils. However, we now appreciate that more rare cell types including group 2 innate lymphoid cells, basophils, mast cells and dendritic cells make significant contributions to these responses. These cells are found at low frequency but they are specialized to their roles - located at sites such as the skin, lung and gut, where the host combats helminth parasites. These cells respond rapidly and robustly to worm antigens and worm-induced damage to produce essential cytokines, chemokines, eicosanoids and histamine to activate damaged epithelium and to recruit other effectors. Thus, a greater understanding of how these cells operate is essential to understand how the host protects itself during helminth infection.
Collapse
|
13
|
Early Immune Regulatory Changes in a Primary Controlled Human Plasmodium vivax Infection: CD1c + Myeloid Dendritic Cell Maturation Arrest, Induction of the Kynurenine Pathway, and Regulatory T Cell Activation. Infect Immun 2017; 85:IAI.00986-16. [PMID: 28320838 DOI: 10.1128/iai.00986-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/15/2017] [Indexed: 01/03/2023] Open
Abstract
Plasmodium vivax malaria remains a major public health problem. The requirements for acquisition of protective immunity to the species are not clear. Dendritic cells (DC) are essential for immune cell priming but also perform immune regulatory functions, along with regulatory T cells (Treg). An important function of DC involves activation of the kynurenine pathway via indoleamine 2,3-dioxygenase (IDO). Using a controlled human experimental infection study with blood-stage P. vivax, we characterized plasmacytoid DC (pDC) and myeloid DC (mDC) subset maturation, CD4+ CD25+ CD127lo Treg activation, and IDO activity. Blood samples were collected from six healthy adults preinoculation, at peak parasitemia (day 14; ∼31,400 parasites/ml), and 24 and 48 h after antimalarial treatment. CD1c+ and CD141+ mDC and pDC numbers markedly declined at peak parasitemia, while CD16+ mDC numbers appeared less affected. HLA-DR expression was selectively reduced on CD1c+ mDC, increased on CD16+ mDC, and was unaltered on pDC. Plasma IFN-γ increased significantly and was correlated with an increased kynurenine/tryptophan (KT) ratio, a measure of IDO activity. At peak parasitemia, Treg presented an activated CD4+ CD25+ CD127lo CD45RA- phenotype and upregulated TNFR2 expression. In a mixed-effects model, the KT ratio was positively associated with an increase in activated Treg. Our data demonstrate that a primary P. vivax infection exerts immune modulatory effects by impairing HLA-DR expression on CD1c+ mDC while activating CD16+ mDC. Induction of the kynurenine pathway and increased Treg activation, together with skewed mDC maturation, suggest P. vivax promotes an immunosuppressive environment, likely impairing the development of a protective host immune response.
Collapse
|
14
|
Rowe RK, Pyle DM, Tomlinson AR, Lv T, Hu Z, Gill MA. IgE cross-linking impairs monocyte antiviral responses and inhibits influenza-driven T H1 differentiation. J Allergy Clin Immunol 2017; 140:294-298.e8. [PMID: 28087327 DOI: 10.1016/j.jaci.2016.11.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 10/08/2016] [Accepted: 11/10/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Regina K Rowe
- Department of Pediatrics, University of Texas Southwestern, Dallas, Tex
| | - David M Pyle
- Department of Pediatrics, University of Texas Southwestern, Dallas, Tex; Department of Immunology, University of Texas Southwestern, Dallas, Texas
| | - Andrew R Tomlinson
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas
| | - Tinghong Lv
- Department of Pediatrics, University of Texas Southwestern, Dallas, Tex
| | - Zheng Hu
- Department of Pediatrics, University of Texas Southwestern, Dallas, Tex
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern, Dallas, Tex; Department of Immunology, University of Texas Southwestern, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas.
| |
Collapse
|
15
|
Functional Impairment of Murine Dendritic Cell Subsets following Infection with Infective Larval Stage 3 of Brugia malayi. Infect Immun 2016; 85:IAI.00818-16. [PMID: 27799335 DOI: 10.1128/iai.00818-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 01/18/2023] Open
Abstract
Filarial parasites cause functional impairment of host dendritic cells (DCs). However, the effects of early infection on individual DC subsets are not known. In this study, we infected BALB/c mice with infective stage 3 larvae of the lymphatic filarial parasite Brugia malayi (Bm-L3) and studied the effect on fluorescence-activated cell sorter (FACS)-sorted DC subsets. While myeloid DCs (mDCs) accumulated by day 3 postinfection (p.i.), lymphoid DCs (LDCs) and CD8+ plasmacytoid DCs (pDCs) peaked at day 7 p.i. in the spleens and mesenteric lymph nodes (mLNs) of infected mice. Increased tumor necrosis factor alpha (TNF-α) but reduced interleukin 12 (IL-12) and Toll-like receptor 4 (TLR4), -6, and -9 and reciprocal secretion of IL-4 and IL-10 were also observed across all DC subsets. Interestingly, Bm-L3 increased the expression of CD80 and CD86 across all DC subsets but decreased that of major histocompatibility complex class II (MHC-II) on mDCs and pDCs, resulting in their impaired antigen uptake and presentation capacities, but maximally attenuated the T-cell proliferation capacity of only mDCs. Furthermore, Bm-L3 increased phosphorylated p38 (p-p38), but not p-ERK, in mDCs and LDCs but downregulated them in pDCs, along with differential modulation of protein tyrosine phosphatases SHP-1, TCPTP, PTEN, and PTP1B across all DC subsets. Taken together, we report hitherto undocumented effects of early Bm-L3 infection on purified host DC subsets that lead to their functional impairment and attenuated host T-cell response.
Collapse
|
16
|
Wang X, Li L, Wang J, Dong L, Shu Y, Liang Y, Shi L, Xu C, Zhou Y, Wang Y, Chen D, Mao C. Inhibition of cytokine response to TLR stimulation and alleviation of collagen-induced arthritis in mice by Schistosoma japonicum peptide SJMHE1. J Cell Mol Med 2016; 21:475-486. [PMID: 27677654 PMCID: PMC5323857 DOI: 10.1111/jcmm.12991] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/18/2016] [Indexed: 12/28/2022] Open
Abstract
Helminth‐derived products have recently been shown to prevent the development of inflammatory diseases in mouse models. However, most identified immunomodulators from helminthes are mixtures or macromolecules with potentially immunogenic side effects. We previously identified an immunomodulatory peptide called SJMHE1 from the HSP60 protein of Schistosoma japonicum. In this study, we assessed the ability of SJMHE1 to affect murine splenocytes and human peripheral blood mononuclear cells (PBMCs) stimulated by toll‐like receptor (TLR) ligands in vitro and its treatment effect on mice with collagen‐induced arthritis (CIA). We show that SJMHE1 not only modulates the cytokine production of murine macrophage (MΦ) and dendritic cell but also affects cytokine production upon coculturing with allogeneic CD4+ T cell. SJMHE1 potently inhibits the cytokine response to TLR ligands lipopolysaccharide (LPS), CpG oligodeoxynucleotides (CpG) or resiquimod (R848) from mouse splenocytes, and human PBMCs stimulated by LPS. Furthermore, SJMHE1 suppressed clinical signs of CIA in mice and blocked joint erosion progression. This effect was mediated by downregulation of key cytokines involved in the pathogenesis of CIA, such as interferon‐γ (IFN‐γ), tumour necrosis factor‐α (TNF‐α), interleukin (IL)‐6, IL‐17, and IL‐22 and up‐regulation of the inhibitory cytokine IL‐10, Tgf‐β1 mRNA, and CD4+CD25+Foxp3+ Tregs. This study provides new evidence that the peptide from S. japonicum, which is the ‘safe’ selective generation of small molecule peptide that has evolved during host–parasite interactions, is of great value in the search for novel anti‐inflammatory agents and therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Wang
- Department of Nuclear Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liyang Dong
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yang Shu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yong Liang
- Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical College, Huaian, Jiangsu, China
| | - Liang Shi
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chengcheng Xu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuepeng Zhou
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chaoming Mao
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Méndez-Samperio P. Molecular events by which dendritic cells promote Th2 immune protection in helmith infection. Infect Dis (Lond) 2016; 48:715-20. [PMID: 27348757 DOI: 10.1080/23744235.2016.1194529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Helminth parasites are a major cause of global infectious diseases, affecting nearly one quarter of the world's population. The common feature of helminth infections is to skew the immune system towards a T-helper 2 (Th2) response that helps to control disease. Dendritic cells (DCs), which are professional antigen-presenting cells, play a critical role for Th2 skewing against helminth parasites. However, the molecular mechanisms by which helminth antigens activate DCs for Th2 polarization have not yet been clearly defined. This review provides a focused update on the major role of DCs for inducing and/or enhancing Th2 immune responses in helminthic infection and will discuss the main signalling-dependent and independent mechanisms by which helminth antigens activate DCs for Th2 skewing.
Collapse
Affiliation(s)
- Patricia Méndez-Samperio
- a Departamento de Inmunología, Escuela Nacional de Ciencias Biologicas, IPN , Prol. Carpio y Plan de Ayala , CDMéxico , México
| |
Collapse
|
18
|
Profoundly Reduced CD1c+ Myeloid Dendritic Cell HLA-DR and CD86 Expression and Increased Tumor Necrosis Factor Production in Experimental Human Blood-Stage Malaria Infection. Infect Immun 2016; 84:1403-1412. [PMID: 26902728 DOI: 10.1128/iai.01522-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/13/2016] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are sentinels of the immune system that uniquely prime naive cells and initiate adaptive immune responses. CD1c (BDCA-1) myeloid DCs (CD1c(+) mDCs) highly express HLA-DR, have a broad Toll-like receptor (TLR) repertoire, and secrete immune modulatory cytokines. To better understand immune responses to malaria, CD1c(+) mDC maturation and cytokine production were examined in healthy volunteers before and after experimental intravenous Plasmodium falciparum infection with 150- or 1,800-parasite-infected red blood cells (pRBCs). After either dose, CD1c(+) mDCs significantly reduced HLA-DR expression in prepatent infections. Circulating CD1c(+) mDCs did not upregulate HLA-DR after pRBC or TLR ligand stimulation and exhibited reduced CD86 expression. At peak parasitemia, CD1c(+) mDCs produced significantly more tumor necrosis factor (TNF), whereas interleukin-12 (IL-12) production was unchanged. Interestingly, only the 1,800-pRBC dose caused a reduction in the circulating CD1c(+) mDC count with evidence of apoptosis. The 1,800-pRBC dose produced no change in T cell IFN-γ or IL-2 production at peak parasitemia or at 3 weeks posttreatment. Overall, CD1c(+) mDCs are compromised by P. falciparum exposure, with impaired HLA-DR and CD86 expression, and have an increased capacity for TNF but not IL-12 production. A first prepatent P. falciparum infection is sufficient to modulate CD1c(+) mDC responsiveness, likely contributing to hampered effector T cell cytokine responses and assisting parasite immune evasion.
Collapse
|
19
|
Nutman TB. Looking beyond the induction of Th2 responses to explain immunomodulation by helminths. Parasite Immunol 2015; 37:304-13. [PMID: 25869527 DOI: 10.1111/pim.12194] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 01/01/2023]
Abstract
Although helminth infections are characteristically associated with Th2-mediated responses that include the production of the prototypical cytokines IL-4, IL-5 and IL-13 by CD4(+) cells, the production of IgE, peripheral blood eosinophilia and mucus production in localized sites, these responses are largely attenuated when helminth infections become less acute. This modulation of the immune response that occurs with chronic helminth infection is often induced by molecules secreted by helminth parasites, by non-Th2 regulatory CD4(+) cells, and by nonclassical B cells, macrophages and dendritic cells. This review will focus on those parasite- and host-mediated mechanisms underlying the modulated T-cell response that occurs as the default in chronic helminth infections.
Collapse
Affiliation(s)
- T B Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Khan AR, Amu S, Saunders SP, Hams E, Blackshields G, Leonard MO, Weaver CT, Sparwasser T, Sheils O, Fallon PG. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells. Eur J Immunol 2015; 45:1842-54. [PMID: 25763771 DOI: 10.1002/eji.201445211] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/27/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023]
Abstract
B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells.
Collapse
Affiliation(s)
- Adnan R Khan
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sylvie Amu
- Institute of Molecular Medicine, School of Medicine, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sean P Saunders
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Emily Hams
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Gordon Blackshields
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James's Hospital, Dublin, Ireland
| | - Martin O Leonard
- School of Medicine and Medical Sciences, The Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Casey T Weaver
- Department of Pathology, University of Alabama, Birmingham, AL, USA
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hanover, Germany
| | - Orla Sheils
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James's Hospital, Dublin, Ireland
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Institute of Molecular Medicine, School of Medicine, St James's Hospital, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
21
|
Borhis G, Richard Y. Subversion of the B-cell compartment during parasitic, bacterial, and viral infections. BMC Immunol 2015; 16:15. [PMID: 25884828 PMCID: PMC4374497 DOI: 10.1186/s12865-015-0079-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
Recent studies on HIV infection have identified new human B-cell subsets with a potentially important impact on anti-viral immunity. Current work highlights the occurrence of similar B-cell alterations in other viral, bacterial, and parasitic infections, suggesting that common strategies have been developed by pathogens to counteract protective immunity. For this review, we have selected key examples of human infections for which B-cell alterations have been described, to highlight the similarities and differences in the immune responses to a variety of pathogens. We believe that further comparisons between these models will lead to critical progress in the understanding of B-cell mechanisms and will open new target avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Gwenoline Borhis
- INSERM u1016, Cochin Institute, Department of Infection, Immunity and Inflammation, 27 rue du Faubourg St-Jacques, Roussy Bldg., Paris, 75014, France. .,CNRS, Paris, UMR8104, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014, France.
| | - Yolande Richard
- INSERM u1016, Cochin Institute, Department of Infection, Immunity and Inflammation, 27 rue du Faubourg St-Jacques, Roussy Bldg., Paris, 75014, France. .,CNRS, Paris, UMR8104, France. .,Université Paris Descartes, Sorbonne Paris Cité, Paris, 75014, France.
| |
Collapse
|
22
|
Ateba-Ngoa U, Adegnika AA, Zinsou JF, Kassa Kassa RF, Smits H, Massinga-Loembe M, Mordmüller B, Kremsner PG, Yazdanbakhsh M. Cytokine and chemokine profile of the innate and adaptive immune response of Schistosoma haematobium and Plasmodium falciparum single and co-infected school-aged children from an endemic area of Lambaréné, Gabon. Malar J 2015; 14:94. [PMID: 25890010 PMCID: PMC4365807 DOI: 10.1186/s12936-015-0608-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/09/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Helminths and malaria are among the most prevalent infectious diseases in the world. They both occur in tropical area where they often affect the same populations. There are studies suggesting an effect of helminths on malariometric indices. For example, malaria attacks as well as disease severity has been shown to be influenced by a concurrent chronic helminth infection. However, there are also studies that show no effect of concurrent helminth infections on malarial outcomes. To start addressing this issue, the effect of chronic Schistosoma haematobium infection on both the innate and adaptive immune response of Plasmodium falciparum-infected subjects was assessed in an area endemic for both these infections in Gabon. METHOD Subjects infected with S. haematobium and or P. falciparum, as well as a control group with neither of these infections, were recruited. For innate immune response, heparinized blood was obtained and cultured for 24 hours with a panel of TLR ligands. For adaptive immune response, PBMC was isolated and stimulated with SEB for 72 hours. Cytokines and chemokines were measured in supernatants using a multiplex beads array immunoassay. Principal Component analysis was used to assess pattern of cytokine and chemokine responses representing the innate and adaptive components of the immune system. RESULTS Overall it was observed that the presence of P. falciparum infection was marked by an increase in innate and adaptive immune responsiveness while S. haematobium infection was characterized by an increased chemokine profile, with at the same time, lower pro inflammatory markers. When the study subjects were split into single infected and co-infected groups no effect of S. haematobium on the immune response of P. falciparum infected subjects was observed, neither for the innate nor for the adaptive component of the immune response. CONCLUSION This study provides original information on the cellular immune response of S. haematobium and/or P. falciparum in infected subjects. It rules out an effect of S. haematobium on the cytokine profile of subjects co-infected with P. falciparum.
Collapse
Affiliation(s)
- Ulysse Ateba-Ngoa
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands. .,Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Ayola Akim Adegnika
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands. .,Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Jeannot F Zinsou
- Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | | | - Hermelijn Smits
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands.
| | - Marguerite Massinga-Loembe
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Peter G Kremsner
- Institut für Tropenmedizin, Universität Tübingen, Wilhelmstraβe 27, D-72074, Tübingen, Germany. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333, Leiden, ZA, The Netherlands. .,Centre de Recherches Médicales de Lambaréné, BP: 118, Lambaréné, Gabon.
| |
Collapse
|
23
|
Appleby LJ, Nausch N, Heard F, Erskine L, Bourke CD, Midzi N, Mduluza T, Allen JE, Mutapi F. Down Regulation of the TCR Complex CD3ζ-Chain on CD3+ T Cells: A Potential Mechanism for Helminth-Mediated Immune Modulation. Front Immunol 2015; 6:51. [PMID: 25741337 PMCID: PMC4332365 DOI: 10.3389/fimmu.2015.00051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/27/2015] [Indexed: 01/30/2023] Open
Abstract
The CD3ζ forms part of the T cell receptor (TCR) where it plays an important role in coupling antigen recognition to several intracellular signal-transduction pathways leading to T cell effector functions. Down regulation of CD3ζ leads to impairment of immune responses including reduced cell proliferation and cytokine production. In experimental models, helminth parasites have been shown to modulate immune responses directed against them and unrelated antigens, so called bystander antigens, but there is a lack of studies validating these observations in humans. This study investigated the relationship between expression levels of the TCR CD3ζ chain with lymphocyte cell proliferation during human infection with the helminth parasite, Schistosoma haematobium, which causes uro-genital schistosomiasis. Using flow cytometry, peripheral blood mononuclear cells (PBMCs) from individuals naturally exposed to S. haematobium in rural Zimbabwe were phenotyped, and expression levels of CD3ζ on T cells were related to intensity of infection. In this population, parasite infection intensity was inversely related to CD3ζ expression levels (p < 0.05), consistent with downregulation of CD3ζ expression during helminth infection. Furthermore, PBMC proliferation was positively related to expression levels of CD3ζ (p < 0.05) after allowing for confounding variables (host age, sex, and infection level). CD3ζ expression levels had a differing relationship between immune correlates of susceptibility and immunity, measured by antibody responses, indicating a complex relationship between immune activation status and immunity. The relationships between the CD3ζ chain of the TCR and schistosome infection, PBMC proliferation and schistosome-specific antibody responses have not previously been reported, and these results may indicate a mechanism for the impaired T cell proliferative responses observed during human schistosome infection.
Collapse
Affiliation(s)
- Laura J Appleby
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Norman Nausch
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Francesca Heard
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Louise Erskine
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Claire D Bourke
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Nicholas Midzi
- National Institutes of Health Research , Harare , Zimbabwe
| | - Takafira Mduluza
- Department of Biochemistry, University of Zimbabwe , Harare , Zimbabwe
| | - Judith E Allen
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| | - Francisca Mutapi
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
24
|
Wang Y, Han X. B Cells with Regulatory Function in Human Diseases. AUTOIMMUNE DISEASES AND THERAPEUTIC APPROACHES : OPEN ACCESS 2014; 1:107. [PMID: 26973880 PMCID: PMC4788385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Yuhua Wang
- The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, MA, USA
| | - Xiaozhe Han
- Corresponding Author: Xiaozhe Han, The Forsyth Institute, Department of Immunology and Infectious Diseases, Cambridge, USA; Tel: 617-892-8447; Fax: 617-892-8612;
| |
Collapse
|
25
|
Thomé R, Issayama LK, Alves da Costa T, Gangi RD, Ferreira IT, Rapôso C, Lopes SCP, da Cruz Höfling MA, Costa FTM, Verinaud L. Dendritic cells treated with crude Plasmodium berghei extracts acquire immune-modulatory properties and suppress the development of autoimmune neuroinflammation. Immunology 2014; 143:164-73. [PMID: 24689455 DOI: 10.1111/imm.12298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 01/02/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells specifically targeted during Plasmodium infection. Upon infection, DCs show impaired antigen presentation and T-cell activation abilities. In this study, we aimed to evaluate whether cellular extracts obtained from Plasmodium berghei-infected erythrocytes (PbX) modulate DCs phenotypically and functionally and the potential therapeutic usage of PbX-modulated DCs in the control of experimental autoimmune encephalomyelitis (EAE, the mouse model for human multiple sclerosis). We found that PbX-treated DCs have impaired maturation and stimulated the generation of regulatory T cells when cultured with naive T lymphocytes in vitro. When adoptively transferred to C57BL/6 mice the EAE severity was reduced. Disease amelioration correlated with a diminished infiltration of cytokine-producing T cells in the central nervous system as well as the suppression of encephalitogenic T cells. Our study shows that extracts obtained from P. berghei-infected erythrocytes modulate DCs towards an immunosuppressive phenotype. In addition, the adoptive transfer of PbX-modulated DCs was able to ameliorate EAE development through the suppression of specific cellular immune responses towards neuro-antigens. To our knowledge, this is the first study to present evidence that DCs treated with P. berghei extracts are able to control autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Rodolfo Thomé
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Labuda LA, de Jong SE, Meurs L, Amoah AS, Mbow M, Ateba-Ngoa U, van der Ham AJ, Knulst AC, Yazdanbakhsh M, Adegnika AA. Differences in innate cytokine responses between European and African children. PLoS One 2014; 9:e95241. [PMID: 24743542 PMCID: PMC3990610 DOI: 10.1371/journal.pone.0095241] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/24/2014] [Indexed: 01/22/2023] Open
Abstract
Although differences in immunological responses between populations have been found in terms of vaccine efficacy, immune responses to infections and prevalence of chronic inflammatory diseases, the mechanisms responsible for these differences are not well understood. Therefore, innate cytokine responses mediated by various classes of pattern-recognition receptors including Toll-like receptors (TLR), C-type lectin receptors (CLRs) and nucleotide-binding oligomerisation domain-like receptors (NLRs) were compared between Dutch (European), semi-urban and rural Gabonese (African) children. Whole blood was stimulated for 24 hours and the pro-inflammatory tumor necrosis factor (TNF) and the anti-inflammatory/regulatory interleukin-10 (IL-10) cytokines in culture supernatant were measured by enzyme-linked immunosorbent assay (ELISA). Gabonese children had a lower pro-inflammatory response to poly(I:C) (TLR3 ligand), but a higher pro-inflammatory response to FSL-1 (TLR2/6 ligand), Pam3 (TLR2/1 ligand) and LPS (TLR4 ligand) compared to Dutch children. Anti-inflammatory responses to Pam3 were also higher in Gabonese children. Non-TLR ligands did not induce substantial cytokine production on their own. Interaction between various TLR and non-TLR receptors was further assessed, but no differences were found between the three populations. In conclusion, using a field applicable assay, significant differences were observed in cytokine responses between European and African children to TLR ligands, but not to non-TLR ligands.
Collapse
Affiliation(s)
- Lucja A. Labuda
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Sanne E. de Jong
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Lynn Meurs
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Abena S. Amoah
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Moustapha Mbow
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Immunology Department of the Laboratory of Bacteriology and Virology of Aristide Le Dantec University Hospital, Dakar, Senegal
| | - Ulysse Ateba-Ngoa
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Alwin J. van der Ham
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - André C. Knulst
- Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ayola A. Adegnika
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Ashour DS. Trichinella spiralisimmunomodulation: an interactive multifactorial process. Expert Rev Clin Immunol 2014; 9:669-75. [DOI: 10.1586/1744666x.2013.811187] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Wilson S, Jones FM, Kenty LC, Mwatha JK, Kimani G, Kariuki HC, Dunne DW. Posttreatment changes in cytokines induced by Schistosoma mansoni egg and worm antigens: dissociation of immunity- and morbidity-associated type 2 responses. J Infect Dis 2013; 209:1792-800. [PMID: 24357629 PMCID: PMC4017363 DOI: 10.1093/infdis/jit826] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background. Human type 2 cytokine responsiveness to schistosome antigens increases after treatment; due either to removal of the immunosuppressive effects of active infection or immunological boosting by antigens released from dying parasites. We determined the responsiveness to Schistosoma mansoni over a 2-year period, when reinfection was restricted by interrupting transmission. Methods. The proinflammatory and type 2 responses of Kenyan schoolchildren were measured before, and 1 year and 2 years posttreatment in whole blood cultures stimulated with soluble egg antigen (SEA) or soluble worm antigen (SWA). The site of S. mansoni transmission was molluscicided throughout. Results. Pretreatment proinflammatory responses to SEA were high but reduced 1 and 2 years posttreatment, whereas type 2 responses were low pretreatment and increased 1 and 2 years posttreatment. Type 2 responses to SWA were high pretreatment and increased at 1 year, with no further increases at 2 years posttreatment. Children infected at follow-up had lower SEA, but not SWA, posttreatment type 2 responsiveness. Increases at 1 year in type 2 SWA, but not SEA, responsiveness correlated with pretreatment egg counts. Conclusions. Removal of immunosuppressive effects of active infection increases SEA type 2 responsiveness; long-term SWA type 2 responsiveness is due to treatment-induced immunological boosting. Dissociation of type 2 responses potentially protects against severe egg-associated immunopathology during infection, while allowing worm-antigen derived immunity to develop.
Collapse
Affiliation(s)
- Shona Wilson
- Department of Pathology, University of Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Ferragine CE, Walls CD, Davies SJ. Modulation of innate antigen-presenting cell function by pre-patent schistosome infection. PLoS Negl Trop Dis 2013; 7:e2136. [PMID: 23556020 PMCID: PMC3605154 DOI: 10.1371/journal.pntd.0002136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 02/11/2013] [Indexed: 01/10/2023] Open
Abstract
Schistosomes are intravascular helminths that infect over 200 million people worldwide. Deposition of eggs by adult schistosomes stimulates Th2 responses to egg antigens and induces granulomatous pathology that is a hallmark of schistosome infection. Paradoxically, schistosomes require host immune function for their development and reproduction and for egress of parasite eggs from the host. To identify potential mechanisms by which immune cells might influence parasite development prior to the onset of egg production, we assessed immune function in mice infected with developing schistosomes. We found that pre-patent schistosome infection is associated with a loss of T cell responsiveness to other antigens and is due to a diminution in the ability of innate antigen-presenting cells to stimulate T cells. Diminution of stimulatory capacity by schistosome worms specifically affected CD11b+ cells and did not require concomitant adaptive responses. We could not find evidence for production of a diffusible inhibitor of T cells by innate cells from infected mice. Rather, inhibition of T cell responsiveness by accessory cells required cell contact and only occurred when cells from infected mice outnumbered competent APCs by more than 3∶1. Finally, we show that loss of T cell stimulatory capacity may in part be due to suppression of IL-12 expression during pre-patent schistosome infection. Modulation of CD4+ T cell and APC function may be an aspect of host immune exploitation by schistosomes, as both cell types influence parasite development during pre-patent schistosome infection. The disease schistosomiasis is caused by a parasitic blood fluke found mainly in the tropics and subtropics and affects over 200 million people worldwide. Using mice to model human schistosome infection, our previous studies showed that schistosome development in the infected host is linked to host immune function, such that parasite development is impaired in hosts with immunological deficiencies. CD4+ T cells and cells of the monocyte/macrophage lineage are two types of immune cells that are involved in modulating schistosome development. In this study, we examined immune function in mice infected with developing schistosomes, to gain insights into how immune cells might influence parasite development. We found evidence of broad-spectrum suppression of CD4+ T cell responses during early schistosome infection. We also show that the loss of T cell responsiveness is due to impairment of T cell stimulation by CD11b+ cells. These findings suggest that exploitation of CD4+ T cells and monocytes/macrophages by schistosomes may involve parasite modification of the function of these cells.
Collapse
Affiliation(s)
- Christine E. Ferragine
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Colleen D. Walls
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Stephen J. Davies
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Labuda LA, Ateba-Ngoa U, Feugap EN, Heeringa JJ, van der Vlugt LEPM, Pires RBA, Mewono L, Kremsner PG, van Zelm MC, Adegnika AA, Yazdanbakhsh M, Smits HH. Alterations in peripheral blood B cell subsets and dynamics of B cell responses during human schistosomiasis. PLoS Negl Trop Dis 2013; 7:e2094. [PMID: 23505586 PMCID: PMC3591311 DOI: 10.1371/journal.pntd.0002094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 01/23/2013] [Indexed: 11/19/2022] Open
Abstract
Antibody responses are thought to play an important role in control of Schistosoma infections, yet little is known about the phenotype and function of B cells in human schistosomiasis. We set out to characterize B cell subsets and B cell responses to B cell receptor and Toll-like receptor 9 stimulation in Gabonese schoolchildren with Schistosoma haematobium infection. Frequencies of memory B cell (MBC) subsets were increased, whereas naive B cell frequencies were reduced in the schistosome-infected group. At the functional level, isolated B cells from schistosome-infected children showed higher expression of the activation marker CD23 upon stimulation, but lower proliferation and TNF-α production. Importantly, 6-months after 3 rounds of praziquantel treatment, frequencies of naive B cells were increased, MBC frequencies were decreased and with the exception of TNF-α production, B cell responsiveness was restored to what was seen in uninfected children. These data show that S. haematobium infection leads to significant changes in the B cell compartment, both at the phenotypic and functional level. Schistosomiasis affects over 200 million people and especially children in developing countries. It causes general hyporesponsiveness of the immune system, which until now has predominantly been described for various T cell subsets as well as dendritic cells. B cells in this context have not yet been investigated. To address this question, we phenotyped B cell subsets present in peripheral blood from S. haematobium infected and uninfected schoolchildren living in an endemic area in Lambaréné, Gabon. Children with schistosomiasis had an increased frequency of various memory B cell subsets, including subsets associated with B cell exhaustion, and a concomitant decrease in naive B cells. To study the effect of Schistosoma infection on B cells in more detail we isolated peripheral blood B cells and found that B cells from infected children had a reduced capacity to proliferate and produce TNF-α in response to both B cell receptor and Toll-like receptor stimulation. These results provide new insights into the role of B cells in the host immune response to schistosomiasis and may provide a novel target for therapeutic strategies.
Collapse
Affiliation(s)
- Lucja A. Labuda
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Ulysse Ateba-Ngoa
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Eliane Ngoune Feugap
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Jorn J. Heeringa
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Regina B. A. Pires
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Ludovic Mewono
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | | | - Ayola A. Adegnika
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
31
|
Vukman KV, Adams PN, Metz M, Maurer M, O’Neill SM. Fasciola hepaticaTegumental Coat Impairs Mast Cells’ Ability To Drive Th1 Immune Responses. THE JOURNAL OF IMMUNOLOGY 2013; 190:2873-9. [DOI: 10.4049/jimmunol.1203011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
32
|
Nausch N, Louis D, Lantz O, Peguillet I, Trottein F, Chen IYD, Appleby LJ, Bourke CD, Midzi N, Mduluza T, Mutapi F. Age-related patterns in human myeloid dendritic cell populations in people exposed to Schistosoma haematobium infection. PLoS Negl Trop Dis 2012; 6:e1824. [PMID: 23029585 PMCID: PMC3459871 DOI: 10.1371/journal.pntd.0001824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 08/06/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Urogenital schistosomiasis is caused by the helminth parasite Schistosoma haematobium. In high transmission areas, children acquire schistosome infection early in life with infection levels peaking in early childhood and subsequently declining in late childhood. This age-related infection profile is thought to result from the gradual development of protective acquired immunity. Age-related differences in schistosome-specific humoral and cellular responses have been reported from several field studies. However there has not yet been a systematic study of the age-related changes in human dendritic cells, the drivers of T cell polarisation. METHODS Peripheral blood mononuclear cells were obtained from a cohort of 61 Zimbabwean aged 5-45 years with a S. haematobium prevalence of 47.5%. Two subsets of dendritic cells, myeloid and plasmacytoid dendritic cells (mDCs and pDCs), were analyzed by flow cytometry. FINDINGS In this population, schistosome infection levels peaked in the youngest age group (5-9 years), and declined in late childhood and adulthood (10+ years). The proportions of both mDCs and pDCs varied with age. However, for mDCs the age profile depended on host infection status. In the youngest age group infected people had enhanced proportions of mDCs as well as lower levels of HLA-DR on mDCs than un-infected people. In the older age groups (10-13 and 14-45 years) infected people had lower proportions of mDCs compared to un-infected individuals, but no infection status-related differences were observed in their levels of HLA-DR. Moreover mDC proportions correlated with levels of schistosome-specific IgG, which can be associated with protective immunity. In contrast proportions of pDCs varied with host age, but not with infection status. CONCLUSIONS Our results show that dendritic cell proportions and activation in a human population living in schistosome-endemic areas vary with host age reflecting differences in cumulative history of exposure to schistosome infection.
Collapse
Affiliation(s)
- Norman Nausch
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Parasitic infections and immune function: effect of helminth infections in a malaria endemic area. Immunobiology 2012; 218:706-11. [PMID: 22999162 DOI: 10.1016/j.imbio.2012.08.273] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/10/2012] [Indexed: 11/24/2022]
Abstract
According to the hygiene hypothesis, reduced exposure to infections could explain the rise of atopic diseases in high-income countries. Helminths are hypothesised to alter the host's immune response in order to avoid elimination and, as a consequence, also reduce the host responsiveness to potential allergens. To elucidate the effect of current helminth infections on immune responsiveness in humans, we measured cytokine production in a rural Ghanaian population in an area with multiple endemic parasites including malaria, intestinal helminths and protozoa. Multiplex real-time PCR in stool samples was used for the detection of four gastrointestinal helminths, of which only Necator americanus was commonly present. A similar assay was used to test for Giardia lamblia in stool samples and malaria infection in venous blood samples. Levels of the cytokines interleukin (IL)-10, tumour necrosis factor (TNF)-α, IL-17, IL-6, IL-13, and interferon (IFN)-γ were determined in whole-blood samples ex vivo-stimulated either with lipopolysaccharide (LPS) and zymosan (for innate cytokine production) or the T-cell mitogen phytohaemagglutinin (PHA). There were no significant differences in either innate or PHA-stimulated cytokine production dependent on current N. americanus infection. Plasmodium falciparum malarial infection was associated with a pro-inflammatory response indicated by increased innate production of TNF-α, IL-17 and IL-6. There was no clear pattern in cytokine responses dependent on G. lamblia-infection. In conclusion, in this rural Ghanaian population current N. americanus infections are not associated with altered immune function, while infection with P. falciparum is associated with pro-inflammatory innate immune responses.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Helminths and HIV-1 use multiple mechanisms to avoid or deviate immune responses, and these mechanisms may interact with important consequences for the epidemiology of each infection. In this review, we summarize recent immunological and epidemiological advances in the understanding of HIV-1-helminth co-infections. RECENT FINDINGS Considering the extent of geographical overlap of these chronic infections, there has been so far surprisingly limited and inconsistent evidence of important interactive effects, either from epidemiological studies examining associations between helminth infection indicators and HIV disease parameters, or from studies that have dissected the immune mechanisms triggered by each pathogen in isolation and investigated their interaction. Systematic reviews have found inconsistent evidence for a beneficial effect of anthelmintic treatment of helminth-HIV-1 co-infected individuals on viral load or CD4 cell counts. It is not certain that co-infection with HIV-1 and helminths will always be more detrimental to the host than either single infection alone, or that intervening against co-infections will have only beneficial effects. SUMMARY A consensus on the implications of co-infection on de-worming and vaccination policies has not yet emerged. Well powered randomized trials in HIV-1-infected individuals with defined helminth infections are required to determine the benefits of anthelmintic interventions.
Collapse
|
35
|
Proportions of CD4+ memory T cells are altered in individuals chronically infected with Schistosoma haematobium. Sci Rep 2012; 2:472. [PMID: 22737405 PMCID: PMC3382734 DOI: 10.1038/srep00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/08/2012] [Indexed: 11/21/2022] Open
Abstract
Characterisation of protective helminth acquired immunity in humans or experimental models has focused on effector responses with little work conducted on memory responses. Here we show for the first time, that human helminth infection is associated with altered proportions of the CD4+ memory T cells, with an associated alteration of TH1 responses. The reduced CD4+ memory T cell proportions are associated with a significantly lower ratio of schistosome-specific IgE/IgG4 (marker for resistance to infection/re-infection) in uninfected older people. Helminth infection does not affect the CD8+ memory T cell pool. Furthermore, we show for the first time in a helminth infection that the CD4+ memory T cell proportions decline following curative anti-helminthic treatment despite increased CD4+ memory cell replication. Reduced accumulation of the CD4+ memory T cells in schistosome-infected people has implications for the development of natural or vaccine induced schistosome-specific protective immunity as well as for unrelated pathogens.
Collapse
|
36
|
Jourdan PM, Holmen SD, Gundersen SG, Roald B, Kjetland EF. HIV target cells in Schistosoma haematobium-infected female genital mucosa. Am J Trop Med Hyg 2012; 85:1060-4. [PMID: 22144444 DOI: 10.4269/ajtmh.2011.11-0135] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The parasite Schistosoma haematobium frequently causes genital lesions in women and could increase the risk of human immunodeficiency virus (HIV) transmission. This study quantifies the HIV target cells in schistosome-infected female genital mucosa. Cervicovaginal biopsies with and without schistosomiasis were immunostained for quantification of CD4(+) T lymphocytes (CD3, CD8), macrophages (CD68), and dendritic Langerhans cells (S100 protein). We found significantly higher densities of genital mucosal CD4(+) T lymphocytes and macrophages surrounding schistosome ova compared with cervicovaginal mucosa without ova (P = 0.034 and P = 0.018, respectively). We found no increased density of Langerhans cells (P = 0.25). This study indicates that S. haematobium may significantly increase the density of HIV target cells (CD4(+) T lymphocytes and macrophages) in the female genitals, creating a beneficial setting for HIV transmission. Further studies are needed to confirm these findings and to evaluate the effect of anti-schistosomal treatment on female genital schistosomiasis.
Collapse
Affiliation(s)
- Peter Mark Jourdan
- Centre for Imported and Tropical Diseases, Department of Infectious Diseases, Oslo University Hospital Ulleval, Oslo, Norway.
| | | | | | | | | |
Collapse
|
37
|
Hussaarts L, van der Vlugt LEPM, Yazdanbakhsh M, Smits HH. Regulatory B-cell induction by helminths: implications for allergic disease. J Allergy Clin Immunol 2011; 128:733-9. [PMID: 21684587 DOI: 10.1016/j.jaci.2011.05.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 05/01/2011] [Accepted: 05/11/2011] [Indexed: 12/20/2022]
Abstract
Chronic helminth infections are often associated with a reduced prevalence of inflammatory disorders, including allergic diseases. Helminths influence the host immune system by downregulating T-cell responses; the cytokine IL-10 appears to play a central role in this process. Over the last decade, evidence has emerged toward a new regulatory cell type: IL-10-producing B cells, capable of regulating immunity and therefore termed regulatory B cells. Initially, regulatory B cells have been described in autoimmunity models where they dampen inflammation, but recently they were also found in several helminth infection models. Importantly, regulatory B cells have recently been identified in humans, and it has been suggested that patients suffering from autoimmunity have an impaired regulatory B-cell function. As such, it is of therapeutic interest to study the conditions in which IL-10-producing B cells can be induced. Chronic helminth infections appear to hold promise in this context as emerging evidence suggests that helminth-induced regulatory B cells strongly suppress allergic inflammation. In this review, we will discuss the conditions under which regulatory B cells are present, leading to a state of tolerance, as well as the conditions where their absence or functional impairment leads to exacerbated disease. We will summarize their phenotypic characteristics and their mechanisms of action and elaborate on possible mechanisms whereby regulatory B cells can be induced or expanded, as this may open novel avenues for the treatment of inflammatory diseases, such as allergic asthma.
Collapse
Affiliation(s)
- Leonie Hussaarts
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
38
|
Onguru D, Liang Y, Griffith Q, Nikolajczyk B, Mwinzi P, Ganley-Leal L. Human schistosomiasis is associated with endotoxemia and Toll-like receptor 2- and 4-bearing B cells. Am J Trop Med Hyg 2011; 84:321-4. [PMID: 21292908 DOI: 10.4269/ajtmh.2011.10-0397] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Schistosomiasis is caused by parasitic trematodes. Individuals can accumulate hundreds of intravascular worms, which secrete a myriad of antigenic molecules into the bloodstream. Some of these molecules suppress immunity to microbial Toll-like receptor (TLR) ligands, such as lipopolysaccharides, which may increase host susceptibility to coinfecting pathogens. We show that schistosomiasis is associated with extremely high levels of endotoxemia as well as high mobility group 1, an endogenous inflammatory TLR ligand, in the absence of other coinfected pathogens. Circulating B cells express surface TLR2 and TLR4, reflecting systemic exposure to microbial ligands. Bacterial translocation may occur with schistosomal egg movement from the vascular to the gut and other routes, such as the skin during infection. Our report suggests that immunosuppressive schistosome antigens may have evolved to curb inflammatory responses to the high antigenic burden of translocated bacteria products and endogenous TLR ligands that arise during parasite exposure and inflammation.
Collapse
Affiliation(s)
- Daniel Onguru
- Vector Biology and Control Research Centre, Kenya Medical Research Institute, Kisian, Kenya.
| | | | | | | | | | | |
Collapse
|
39
|
Nausch N, Midzi N, Mduluza T, Maizels RM, Mutapi F. Regulatory and activated T cells in human Schistosoma haematobium infections. PLoS One 2011; 6:e16860. [PMID: 21347311 PMCID: PMC3037381 DOI: 10.1371/journal.pone.0016860] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 01/14/2011] [Indexed: 11/19/2022] Open
Abstract
Acquired immunity against helminths is characterised by a complex interplay between the effector Th1 and Th2 immune responses and it slowly manifests with age as a result of cumulative exposure to parasite antigens. Data from experimental models suggest that immunity is also influenced by regulatory T cells (Treg), but as yet studies on Treg in human schistosome infections are limited. This study investigated the relationship between schistosome infection intensity and the two cell populations regulatory T cells (TREG: CD4(+(dim))CD25(+(high))FOXP3(+)CD127(low)), and activated (Tact: CD4(+)CD25(+)FOXP3(-)) T cells in Zimbabweans exposed to Schistosoma haematobium parasites. Participants were partitioned into two age groups, young children (8-13 years) in whom schistosome infection levels were rising to peak and older people (14+ years) with declining infection levels. The relationship between Tact proportions and schistosome infection intensity remained unchanged with age. However Treg proportions rose significantly with increasing infection in the younger age group. In contrast Treg were negatively correlated to infection intensity in the older age group. The relative proportions of regulatory T cells differ significantly between young individuals in whom high infection is associated with an enhanced regulatory phenotype and older infected patients in whom the regulatory response is attenuated. This may influence or reflect different stages of the development of protective schistosome acquired immunity and immunopathogenesis.
Collapse
Affiliation(s)
- Norman Nausch
- Ashworth Laboratories, School of Biological Sciences, Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|