1
|
Guo YA, Si FL, Han BZ, Qiao L, Chen B. Identification and functional validation of P450 genes associated with pyrethroid resistance in the malaria vector Anopheles sinensis (Diptera Culicidae). Acta Trop 2024; 260:107413. [PMID: 39343287 DOI: 10.1016/j.actatropica.2024.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Cytochrome P450 monooxygenases (P450s), a multifunctional protein superfamily, are one of three major classes of detoxification enzymes. However, the diversity and functions of P450 genes from pyrethroid-resistant populations of Anopheles sinensis have not been fully explored. In this study, P450 genes associated with pyrethroid resistance were systematically screened using RNA-seq in three field pyrethroid-resistant populations (AH-FR, CQ-FR, YN-FR) and one laboratory resistant strain (WX-LR) at developmental stages, tissues, and post blood-meal in comparison to the laboratory susceptible strain (WX-LS) in An. sinensis. Importantly, the expression of significantly upregulated P450s was verified using RT-qPCR, and the function of selected P450s in pyrethroid detoxification was determined with RNA interference using four laboratory pyrethroid-resistant strains (WX-LR, AH-LR, CQ-LR, YN-LR). Sixteen P450 genes were significantly upregulated in at least one field-resistant population, and 44 were significantly upregulated in different developmental stages, tissues or post blood-meal. A total of 19 P450s were selected to verify their association with pyrethroid resistance, and four of them (AsCYP6P3v1, AsCYP6P3v2, AsCYP9J10, and AsCYP9K1) demonstrated significant upregulation in laboratory pyrethroid-resistant strains using RT-qPCR. Knockdown of these four genes all significantly reduced pyrethroid resistance and increased the mortality by 57.19% (AsCYP6P3v1 and AsCYP6P3v2 knockdown group), 38.39% (AsCYP9K1 knockdown group) and 48.87% (AsCYP9J10 knockdown group) in An. sinensis by RNAi, which determined the pyrethroid detoxification function of these four genes. This study revealed the diversity of P450 genes and provided functional evidence for four P450s in pyrethroid detoxification in An. sinensis for the first time, which increases our understanding of the pyrethroid resistance mechanism, and is of potential value for pyrethroid resistance detection and surveillance.
Collapse
Affiliation(s)
- Ying-Ao Guo
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Bao-Zhu Han
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Bin Chen
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
2
|
Dennis TPW, Pescod P, Barasa S, Cerdeira LT, Lucas ER, Clarkson CS, Miles A, Asidi A, Manzambi EZ, Metelo E, Zanga J, Nsalambi S, Irish SR, Donnelly MJ, Agossa F, Weetman D, Tezzo FW. Cryptic population structure and insecticide resistance in Anopheles gambiae from the southern Democratic Republic of Congo. Sci Rep 2024; 14:21782. [PMID: 39294180 PMCID: PMC11410927 DOI: 10.1038/s41598-024-70885-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/22/2024] [Indexed: 09/20/2024] Open
Abstract
The Democratic Republic of Congo (DRC) suffers from one of the highest malaria burdens worldwide, but information on its Anopheles vector populations is relatively limited. Preventative malaria control in DRC is reliant on pyrethroid-treated nets, raising concerns over the potential impacts of insecticide resistance. We sampled Anopheles gambiae from three geographically distinct populations (Kimpese, Kapolowe and Mikalayi) in southern DRC, collecting from three sub-sites per population and characterising mosquito collections from each for resistance to pyrethroids using WHO tube bioassays. Resistance to each of three different pyrethroids was generally high in An. gambiae with < 92% mortality in all tests, but varied between collections, with mosquitoes from Kimpese being the most resistant. Whole genome sequencing of 165 An. gambiae revealed evidence for genetic differentiation between Kimpese and Kapolowe/Mikalayi, but not between the latter two sample sites despite separation of approximately 800 km. Surprisingly, there was evidence of population structure at a small spatial scale between collection subsites in Kimpese, despite separation of just tens of kilometres. Intra-population (H12) and inter-population (FST) genome scans identified multiple peaks corresponding to genes associated with insecticide resistance such as the voltage gated sodium channel (Vgsc) target site on chromosome 2L, a Cyp6 cytochrome P450 cluster on chromosome arm 2R, and the Cyp9k1 P450 gene on chromosome X. In addition, in the Kimpese subsites, the P450 redox partner gene Cpr showed evidence for contemporary selection (H12) and population differentiation (FST) meriting further exploration as a potential resistance associated marker.
Collapse
Affiliation(s)
- Tristan P W Dennis
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Poppy Pescod
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Sonia Barasa
- Pan-African Mosquito Control Association (PAMCA), Nairobi, Kenya
| | - Louise T Cerdeira
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Alex Asidi
- University Hospitals of Derby and Burton NHS Foundation Trust, Uttoxeter Road, Derby, DE22 3NA, UK
- Unit of Entomology, Department of Parasitology, Institut National de Recherche Biomédicale, 5345 Avenue De La Démocratie, Gombe, Kinshasa, République Démocratique du Congo
| | - Emile Z Manzambi
- Unit of Entomology, Department of Parasitology, Institut National de Recherche Biomédicale, 5345 Avenue De La Démocratie, Gombe, Kinshasa, République Démocratique du Congo
| | - Emery Metelo
- Unit of Entomology, Department of Parasitology, Institut National de Recherche Biomédicale, 5345 Avenue De La Démocratie, Gombe, Kinshasa, République Démocratique du Congo
- Faculty of Science and Technology, University of Kinshasa, Kinshasa, République Démocratique du Congo
| | - Josue Zanga
- Faculty of Medicine, University of Kinshasa, B.P. 834 KIN XI, Kinshasa, République Démocratique du Congo
| | - Steve Nsalambi
- Unit of Entomology, Department of Parasitology, Institut National de Recherche Biomédicale, 5345 Avenue De La Démocratie, Gombe, Kinshasa, République Démocratique du Congo
- Faculty of Veterinary Medicine, National University of Education, B.P 8815 Kinshasa, Kinshasa, République Démocratique du Congo
| | - Seth R Irish
- Swiss Tropical and Public Health Institute (Swiss TPH), Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Martin James Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Fiacre Agossa
- Unit of Entomology, Department of Parasitology, Institut National de Recherche Biomédicale, 5345 Avenue De La Démocratie, Gombe, Kinshasa, République Démocratique du Congo
- Faculty of Medicine, University of Kinshasa, B.P. 834 KIN XI, Kinshasa, République Démocratique du Congo
- U.S. President's Malaria Initiative (PMI) Evolve Project, Abt Associates, 6130 Executive Boulevard, Rockville, MD, USA
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Francis Wat'senga Tezzo
- Unit of Entomology, Department of Parasitology, Institut National de Recherche Biomédicale, 5345 Avenue De La Démocratie, Gombe, Kinshasa, République Démocratique du Congo
| |
Collapse
|
3
|
AnnaDurai KS, Chandrasekaran N, Velraja S, Hikku GS, Parvathi VD. Essential oil nanoemulsion: An emerging eco-friendly strategy towards mosquito control. Acta Trop 2024; 257:107290. [PMID: 38909722 DOI: 10.1016/j.actatropica.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Mosquito borne diseases are impeding to human health due to their uncontrolled proliferation. Various commercial insecticides currently used become ineffective due to the resistance acquired by mosquitoes. It is necessary and a priority to combat mosquito population. Plant-based products are gaining interest over the past few decades due to their environment friendliness and their effectiveness in controlling mosquitoes along with their lack of toxicity. Essential oil nanoemulsions are found to be highly effective when compared to their bulk counterparts. Due to their nano size, they can effectively interact and yield 100 % mortality with the mosquito larvae and encounter with minimal concentrations. This is the main advantage of the nano-sized particles due to which they find application in various disciplines and have also received the attention of researchers globally. There are various components present in essential oils that have been analysed using GC-MS. These findings reflect the challenge to mosquitoes to gain resistance against each component and therefore it requires time. Commercially used repellants are synthesised using materials like DEET are not advisable for topical application on human skin and essential oil nanoemulsions could be an ideal non toxic candidate that can be used against mosquito adults and larvae. However, there are other synthesis, optimisation parameters, and toxicity towards non-target organisms that have to be taken into account when essential oil nanoemulsions are considered for commercial applications. Here we review the strategies used by the nanoemulsions against the mosquito population. Apart from the positive effects, their minor drawbacks also have to be scrutinised in the future.
Collapse
Affiliation(s)
- Kavitha Sri AnnaDurai
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai-600116, Tamil Nadu, India
| | | | - Supriya Velraja
- Department of Clinical Nutrition, Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai 600116, Tamil Nadu, India
| | - Gnanadhas Sobhin Hikku
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamilnadu, India; Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Chennai-600116, Tamil Nadu, India.
| |
Collapse
|
4
|
Das P, Das S, Saha A, Raha D, Saha D. Effects of deltamethrin exposure on the cytochrome P450 monooxygenases of Aedes albopictus (Skuse) larvae from a dengue-endemic region of northern part of West Bengal, India. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:269-279. [PMID: 38478926 DOI: 10.1111/mve.12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/01/2024] [Indexed: 08/07/2024]
Abstract
Aedes albopictus is highly prevalent in the northern part of West Bengal and is considered to be responsible for the recent dengue outbreaks in this region. Control of this vector is largely relied on the use of synthetic pyrethroids, which can lead to the development of resistance. In the present study, larvae of three wild Ae. albopictus populations from the dengue-endemic regions were screened for deltamethrin resistance, and the role of cytochrome P450 monooxygenases (CYPs) was investigated in deltamethrin exposed and unexposed larvae. Two populations were incipient resistant, and one population was completely resistant against deltamethrin. Monooxygenase titration assay revealed the involvement of CYPs in deltamethrin resistance along with an induction effect of deltamethrin exposure. Gene expression studies revealed differential expression of five CYP6 family genes, CYP6A8, CYP6P12, CYP6A14, CYP6N3 and CYP6N6, with high constitutive expression of CYP6A8 and CYP6P12 in all the populations before and after deltamethrin exposure. From these findings, it was evident that CYPs play an important role in the development of deltamethrin resistance in the Ae. albopictus populations in this region.
Collapse
Affiliation(s)
- Prapti Das
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | - Subhajit Das
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | - Abhirup Saha
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | - Debayan Raha
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| | - Dhiraj Saha
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Siliguri, India
| |
Collapse
|
5
|
Yunta C, Ooi JMF, Oladepo F, Grafanaki S, Pergantis SA, Tsakireli D, Ismail HM, Paine MJI. Chlorfenapyr metabolism by mosquito P450s associated with pyrethroid resistance identifies potential activation markers. Sci Rep 2023; 13:14124. [PMID: 37644079 PMCID: PMC10465574 DOI: 10.1038/s41598-023-41364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Chlorfenapyr is a pro-insecticide increasingly used in combination with pyrethroids such as a-cypermethrin or deltamethrin in insecticide treated bednets (ITNs) to control malaria transmitted by pyrethroid-resistant mosquito populations. Chlorfenapyr requires P450 activation to produce tralopyril and other bioactive metabolites. Pyrethroid resistance is often associated with elevated levels of chemoprotective P450s with broad substrate specificity, which could influence chlorfenapyr activity. Here, we have investigated chlorfenapyr metabolism by a panel of eight P450s commonly associated with pyrethroid resistance in An. gambiae and Ae. aegypti, the major vectors of malaria and arboviruses. Chlorfenapyr was activated to tralopyril by An. gambiae CYP6P3, CYP9J5, CYP9K1 and Ae. aegypti, CYP9J32. The Kcat/KM value of 0.66 μM-1 min-1 for CYP9K1 was, 6.7 fold higher than CYP6P3 and CYP9J32 (both 0.1 μM-1 min-1) and 22-fold higher than CYP9J5 (0.03 μM-1 min-1). Further investigation of the effect of -cypermethrin equivalent to the ratios used with chlorfenapyr in bed nets (~ 1:2 molar ratio) resulted in a reduction in chlorfenapyr metabolism by CYP6P3 and CYP6K1 of 76.8% and 56.8% respectively. This research provides valuable insights into the metabolism of chlorfenapyr by mosquito P450s and highlights the need for continued investigation into effective vector control strategies.
Collapse
Affiliation(s)
- Cristina Yunta
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Jocelyn M F Ooi
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | - Sofia Grafanaki
- Department of Chemistry, University of Crete, Voutes Campus, Heraklion, 700 13, Greece
| | - Spiros A Pergantis
- Department of Chemistry, University of Crete, Voutes Campus, Heraklion, 700 13, Greece
| | - Dimitra Tsakireli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, 100 N. Plastira Street, Heraklion, 700 13, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, Athens, 118 55, Greece
| | - Hanafy M Ismail
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | - Mark J I Paine
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
6
|
Jacobs E, Chrissian C, Rankin-Turner S, Wear M, Camacho E, Broderick NA, McMeniman CJ, Stark RE, Casadevall A. Cuticular profiling of insecticide resistant Aedes aegypti. Sci Rep 2023; 13:10154. [PMID: 37349387 PMCID: PMC10287657 DOI: 10.1038/s41598-023-36926-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti, is lacking. In the current study, we utilized solid-state nuclear magnetic resonance spectroscopy, gas chromatography/mass spectrometry, and transmission electron microscopy to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti. No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.
Collapse
|
7
|
Al-Amin HM, Gyawali N, Graham M, Alam MS, Lenhart A, Hugo LE, Rašić G, Beebe NW, Devine GJ. Insecticide resistance compromises the control of Aedes aegypti in Bangladesh. PEST MANAGEMENT SCIENCE 2023. [PMID: 36942761 DOI: 10.1002/ps.7462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND With no effective drugs or widely available vaccines, dengue control in Bangladesh is dependent on targeting the primary vector Aedes aegypti with insecticides and larval source management. Despite these interventions, the dengue burden is increasing in Bangladesh, and the country experienced its worst outbreak in 2019 with 101 354 hospitalized cases. This may be partially facilitated by the presence of intense insecticide resistance in vector populations. Here, we describe the intensity and mechanisms of resistance to insecticides commonly deployed against Ae. aegypti in Dhaka, Bangladesh. RESULTS Dhaka Ae. aegypti colonies exhibited high-intensity resistance to pyrethroids. Using CDC bottle assays, we recorded 2-24% mortality (recorded at 24 h) to permethrin and 48-94% mortality to deltamethrin, at 10× the diagnostic dose. Bioassays conducted using insecticide-synergist combinations suggested that metabolic mechanisms were contributing to pyrethroid resistance, specifically multi-function oxidases, esterases, and glutathione S-transferases. In addition, kdr alleles were detected, with a high frequency (78-98%) of homozygotes for the V1016G mutation. A large proportion (≤ 74%) of free-flying and resting mosquitoes from Dhaka colonies survived exposure to standard applications of pyrethroid aerosols in an experimental free-flight room. Although that exposure affected the immediate host-seeking behavior of Ae. aegypti, the effect was transient in surviving mosquitoes. CONCLUSION The intense resistance characterized in this study is likely compromising the operational effectiveness of pyrethroids against Ae. aegypti in Dhaka. Switching to alternative chemical classes may offer a medium-term solution, but ultimately a more sustainable and effective approach to controlling dengue vectors is required. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Hasan Mohammad Al-Amin
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Narayan Gyawali
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Melissa Graham
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Mohammad Shafiul Alam
- International Center for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nigel W Beebe
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
- CSIRO, Brisbane, Queensland, Australia
| | - Gregor J Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
You C, Zhang L, Song J, Zhang L, Zhen C, Gao X. The variation of a cytochrome P450 gene, CYP6G4, drives the evolution of Musca domestica L. (Diptera: Muscidae) resistance to insecticides in China. Int J Biol Macromol 2023; 236:123399. [PMID: 36775219 DOI: 10.1016/j.ijbiomac.2023.123399] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/12/2023]
Abstract
Long term and excessive insecticide use has resulted in some environmental problems and especially, insecticide resistance evolution in insect pests. The variation of cytochrome P450 monooxygenases (P450s), associated with the metabolic detoxification of toxic xenobiotics, is often involved in insecticide resistance. Here, we found that the variation in a P450 gene, CYP6G4, is the most important driver of carbamates resistance in the house fly (Musca domestica). Deciphering the detailed molecular mechanisms of the insecticide resistance is critical for performing suitable insecticide resistance management strategies. Our research results revealed that the combination of amino acid mutations (110C-330E-360N/S, 110C-330E-360S) of CYP6G4 could improve the resistance to propoxur. The nucleotide variations in the promoter region of CYP6G4 significantly increased the luciferase activity by the reporter gene assays. Additionally, miR-281-1-5p was confirmed to post-transcriptionally down-regulate the expression of CYP6G4. These findings suggest that three independent mechanisms; amino acid mutations of the P450 protein, mutations in the promoter region and low expression of post-trans-regulatory factors, as the powerful strategies for the insect resistance to toxic compounds, play a crucial role in the evolutionary processes of insecticide resistance.
Collapse
Affiliation(s)
- Chunmei You
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Lulu Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Jiajia Song
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Congai Zhen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Vliet SMF, Hazemi M, Blatz D, Jensen M, Mayasich S, Transue TR, Simmons C, Wilkinson A, LaLone CA. Demonstration of the Sequence Alignment to Predict Across Species Susceptibility Tool for Rapid Assessment of Protein Conservation. J Vis Exp 2023:10.3791/63970. [PMID: 36847398 PMCID: PMC10758989 DOI: 10.3791/63970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool is a fast, freely available, online screening application that allows researchers and regulators to extrapolate toxicity information across species. For biological targets in model systems such as human cells, mice, rats, and zebrafish, toxicity data are available for a variety of chemicals. Through the evaluation of protein target conservation, this tool can be used to extrapolate data generated from such model systems to thousands of other species lacking toxicity data, yielding predictions of relative intrinsic chemical susceptibility. The latest releases of the tool (versions 2.0-6.1) have incorporated new features that allow for the rapid synthesis, interpretation, and use of the data for publication plus presentation-quality graphics. Among these features are customizable data visualizations and a comprehensive summary report designed to summarize SeqAPASS data for ease of interpretation. This paper describes the protocol to guide users through submitting jobs, navigating the various levels of protein sequence comparisons, and interpreting and displaying the resulting data. New features of SeqAPASS v2.0-6.0 are highlighted. Furthermore, two use-cases focused on transthyretin and opioid receptor protein conservation using this tool are described. Finally, SeqAPASS' strengths and limitations are discussed to define the domain of applicability for the tool and highlight different applications for cross-species extrapolation.
Collapse
Affiliation(s)
- Sara M F Vliet
- Office of Research and Development, Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, U.S. Environmental Protection Agency;
| | | | | | - Marissa Jensen
- Swenson College of Science and Engineering, Department of Biology, University of Minnesota Duluth
| | | | | | - Cody Simmons
- General Dynamics Information Technology, Research Triangle Park
| | | | - Carlie A LaLone
- Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency
| |
Collapse
|
10
|
Jacobs E, Chrissian C, Rankin-Turner S, Wear M, Camacho E, Scott JG, Broderick NA, McMeniman CJ, Stark RE, Casadevall A. Cuticular profiling of insecticide resistant Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523989. [PMID: 36712033 PMCID: PMC9882251 DOI: 10.1101/2023.01.13.523989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insecticides have made great strides in reducing the global burden of vector-borne disease. Nonetheless, serious public health concerns remain because insecticide-resistant vector populations continue to spread globally. To circumvent insecticide resistance, it is essential to understand all contributing mechanisms. Contact-based insecticides are absorbed through the insect cuticle, which is comprised mainly of chitin polysaccharides, cuticular proteins, hydrocarbons, and phenolic biopolymers sclerotin and melanin. Cuticle interface alterations can slow or prevent insecticide penetration in a phenomenon referred to as cuticular resistance. Cuticular resistance characterization of the yellow fever mosquito, Aedes aegypti , is lacking. In the current study, we utilized solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy, gas chromatography/mass spectrometry (GC-MS), and transmission electron microscopy (TEM) to gain insights into the cuticle composition of congenic cytochrome P450 monooxygenase insecticide resistant and susceptible Ae. aegypti . No differences in cuticular hydrocarbon content or phenolic biopolymer deposition were found. In contrast, we observed cuticle thickness of insecticide resistant Ae. aegypti increased over time and exhibited higher polysaccharide abundance. Moreover, we found these local cuticular changes correlated with global metabolic differences in the whole mosquito, suggesting the existence of novel cuticular resistance mechanisms in this major disease vector.
Collapse
Affiliation(s)
| | - Christine Chrissian
- The City College of New York and CUNY Institute for Macromolecular Assemblies
| | | | - Maggie Wear
- Johns Hopkins University Bloomberg School of Public Health
| | - Emma Camacho
- Johns Hopkins University Bloomberg School of Public Health
| | | | | | | | - Ruth E. Stark
- The City College of New York and CUNY Institute for Macromolecular Assemblies
| | | |
Collapse
|
11
|
Pusawang K, Sattabongkot J, Saingamsook J, Zhong D, Yan G, Somboon P, Wongpalee SP, Cui L, Saeung A, Sriwichai P. Insecticide Susceptibility Status of Anopheles and Aedes Mosquitoes in Malaria and Dengue Endemic Areas, Thai-Myanmar Border. INSECTS 2022; 13:1035. [PMID: 36354859 PMCID: PMC9694411 DOI: 10.3390/insects13111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The occurrence and spread of insecticide resistance has had a negative effect on the efficacy of insecticide-based tools and is distributed worldwide, including the Greater Mekong Subregion (GMS). This study aims to determine the insecticide susceptibility of malaria and dengue vectors in malaria and dengue hotspots on the Thai-Myanmar border. Mosquito larvae and pupae were obtained from water sources from December 2019 to April 2020 in Tha Song Yang District, Tak province, western Thailand. WHO bioassay susceptibility tests were conducted with three classes of insecticides to evaluate the knockdown and mortality rates of Anopheles and Aedes aegypti female adults. V1016G and F1534C kdr mutations in the voltage-gated sodium channel of Ae. aegypti were identified using a multiplex PCR. A total of 5764 female mosquitoes were bioassayed in this study, including Anopheles spp. (92.63%) and F1 Ae. aegypti (7.37%). After 24 h of observation, An. minimus s.l. (n = 3885) and An. maculatus s.l. (n = 1138) in Suan Oi (SO) and Tala Oka (TO) were susceptible to pyrethroids, organophosphates and carbamates (except bendiocarb) with 98-100% mortality (MR). Resistance to bendiocarb was detected with a mortality rate of 88.80%, 88.77%, and 89.92% for An. minimus s.l. (n = 125, 125) and An. maculatus s.l. (n = 66), respectively. The first generation of Ae. aegypti adult females were suspected of resistance to deltamethrin (n = 225, MR = 96.89%) and confirmed resistance to permethrin (n = 200, MR = 20.00%). V1016G and F1534C mutations were detected in three genotypes, heterozygote and homozygote forms. The correlation between the kdr alleles and deltamethrin resistance was significant. In conclusion, bendiocarb resistance was found in primary malaria vectors, An. minimus s.l. and An. maculatus s.l. F1 Ae. aegypti population was pyrethroids-resistant, associated with kdr alleles. Therefore, molecular analysis should be conducted to gain insights into the mechanism of insecticide resistance. Routine malaria vector control programmes, such as fogging implementation in hotspot villages to induce Aedes resistance available in peri-domestic sites, are questionable.
Collapse
Affiliation(s)
- Kanchon Pusawang
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Center, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Jassada Saingamsook
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Daibin Zhong
- Department of Population Health and Disease Prevention, University of California, Irvine, CA 92697, USA
| | - Guiyun Yan
- Department of Population Health and Disease Prevention, University of California, Irvine, CA 92697, USA
| | - Pradya Somboon
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somsakul Pop Wongpalee
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Liwang Cui
- Division of Infectious Diseases, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
12
|
Toé HK, Zongo S, Guelbeogo MW, Kamgang B, Viana M, Tapsoba M, Sanou A, Traoré A, McCall PJ, Sagnon N. Multiple insecticide resistance and first evidence of V410L kdr mutation in Aedes (Stegomyia) aegypti (Linnaeus) from Burkina Faso. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:309-319. [PMID: 35869781 DOI: 10.1111/mve.12602] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/01/2022] [Indexed: 05/02/2023]
Abstract
The response to recent dengue outbreaks in Burkina Faso was insecticide-based, despite poor knowledge of the vector population's susceptibility to the insecticides used. Here, we report on the susceptibility to the main insecticide classes and identify important underlying mechanisms in Aedes aegypti populations in Ouagadougou and Banfora, in 2019 and 2020. Wild Ae. aegypti were tested as adults in WHO bioassays and then screened in real time melting curve qPCR analyses to genotype the F1534C, V1016I, and V410L Aedes kdr mutations. Ae. aegypti showed moderate resistance to 0.1% bendiocarb (80-95% survival post-exposure), 0.8% Malathion (60-100%), 0.21% pirimiphos-methyl (75% - 97%), and high resistance to 0.03% deltamethrin (20-70%). PBO pre-exposure partially restored pyrethroid susceptibility. Genotyping detected high frequency of 1534C allele (0.92) and moderate 1016I (0.1-0.32). The V410L mutation was detected in Burkina Faso for the first time (frequency 0.1-0.36). Mosquitoes surviving 4 h exposure to 0.03% deltamethrin had significantly higher frequencies of the F1534C mutation than dead mosquitoes (0.70 vs. 0.96, p < 0.0001) and mosquitoes surviving 2 - 4 h exposure had a significantly reduced life span. Ae. aegypti from Burkina Faso are resistant to multiple insecticide classes with multiple mechanisms involved, demonstrating the essential role of insecticide resistance monitoring within national dengue control programmes.
Collapse
Affiliation(s)
- Hyacinthe K Toé
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-ZERBO, Ouagadougou, Burkina Faso
| | - Soumanaba Zongo
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Moussa W Guelbeogo
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Basile Kamgang
- Department of Medical Entomology, Centre for Research in Infectious Diseases, Yaoundé, Cameroon
| | - Mafalda Viana
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Madou Tapsoba
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Antoine Sanou
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Alphonse Traoré
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - N'Falé Sagnon
- Laboratoire de recherche, Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso
| |
Collapse
|
13
|
Zhang C, Du S, Liu R, Dai W. Overexpression of Multiple Cytochrome P450 Genes Conferring Clothianidin Resistance in Bradysia odoriphaga. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7636-7643. [PMID: 35709533 DOI: 10.1021/acs.jafc.2c01315] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) play important roles in the detoxification metabolism of xenobiotics and are involved in the resistance of insects to many insecticides. In this study, piperonyl butoxide (PBO), an inhibitor of P450 enzyme activity, significantly increased the toxicity of clothianidin in the clothianidin-resistant (CL-R) population of Bradysia odoriphaga. The enzyme activity of P450 in the CL-R population was significantly higher than that in the SS population. Furthermore, four P450 genes were found to be significantly overexpressed in the CL-R population. Tissue-specific expression analysis indicates that CYP9J57, CYP3828A1, CYP6SX1, and CYP6QE1 were most highly expressed in the midgut and/or Malpighian tubules. After exposure to LC30 of clothianidin, the expression levels of the four P450 genes were significantly upregulated. The RNAi-mediated knockdown of CYP9J57, CYP3828A1, and CYP6QE1 significantly increased the susceptibility of B. odoriphaga to clothianidin. These results suggest that P450 genes are involved in clothianidin resistance in B. odoriphaga. This provides a better understanding of P450-mediated clothianidin resistance in B. odoriphaga and will contribute to the management of insect resistance to insecticides.
Collapse
Affiliation(s)
- Chunni Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shaokai Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruifang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wu Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, and Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
14
|
Geiser DL, Li W, Pham DQD, Wysocki VH, Winzerling JJ. Shotgun and TMT-Labeled Proteomic Analysis of the Ovarian Proteins of an Insect Vector, Aedes aegypti (Diptera: Culicidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:7. [PMID: 35303100 PMCID: PMC8932505 DOI: 10.1093/jisesa/ieac018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 06/14/2023]
Abstract
Aedes aegypti [Linnaeus in Hasselquist; yellow fever mosquito] transmits several viruses that infect millions of people each year, including Zika, dengue, yellow fever, chikungunya, and West Nile. Pathogen transmission occurs during blood feeding. Only the females blood feed as they require a bloodmeal for oogenesis; in the bloodmeal, holo-transferrin and hemoglobin provide the females with a high iron load. We are interested in the effects of the bloodmeal on the expression of iron-associated proteins in oogenesis. Previous data showed that following digestion of a bloodmeal, ovarian iron concentrations doubles by 72 hr. We have used shotgun proteomics to identify proteins expressed in Ae. aegypti ovaries at two oogenesis developmental stages following blood feeding, and tandem mass tag-labeling proteomics to quantify proteins expressed at one stage following feeding of a controlled iron diet. Our findings provide the first report of mosquito ovarian protein expression in early and late oogenesis. We identify proteins differentially expressed in the two oogenesis development stages. We establish that metal-associated proteins play an important role in Ae. aegypti oogenesis and we identify new candidate proteins that might be involved in mosquito iron metabolism. Finally, this work identified a unique second ferritin light chain subunit, the first reported in any species. The shotgun proteomic data are available via ProteomeXchange with identifier PXD005893, while the tandem mass tag-labeled proteomic data are available with identifier PXD028242.
Collapse
Affiliation(s)
- Dawn L Geiser
- Nutritional Sciences, Division of Agriculture, Life and Veterinary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Wenzhou Li
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ 85721, USA
- Present Address: Amgen Incorporation, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Daphne Q-D Pham
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 53141, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, College of Science, University of Arizona, Tucson, AZ 85721, USA
- Present Address: Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Joy J Winzerling
- Nutritional Sciences, Division of Agriculture, Life and Veterinary Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
15
|
Nolden M, Paine MJI, Nauen R. Biochemical profiling of functionally expressed CYP6P9 variants of the malaria vector Anopheles funestus with special reference to cytochrome b 5 and its role in pyrethroid and coumarin substrate metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105051. [PMID: 35249659 DOI: 10.1016/j.pestbp.2022.105051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are well studied enzymes catalyzing the oxidative metabolism of xenobiotics in insects including mosquitoes. Their duplication and upregulation in agricultural and public health pests such as anopheline mosquitoes often leads to an enhanced metabolism of insecticides which confers resistance. In the laboratory strain Anopheles funestus FUMOZ-R the duplicated P450s CYP6P9a and CYP6P9b are highly upregulated and proven to confer pyrethroid resistance. Microsomal P450 activity is regulated by NADPH cytochrome P450 oxidoreductase (CPR) required for electron transfer, whereas the modulatory role of cytochrome b5 (CYB5) on insect P450 activity is less clear. In previous studies CYP6P9a and CYP6P9b were recombinantly expressed in tandem with An. gambiae CPR using E. coli-expression systems and CYB5 added to the reaction mix to enhance activity. However, the precise role of CYB5 on substrate turn-over when combined with CYP6P9a and CYP6P9b remains poorly investigated, thus one objective of our study was to address this knowledge gap. In contrast to the CYP6P9 variants, the expression levels of both CYB5 and CPR were not upregulated in the pyrethroid resistant FUMOZ-R strain when compared to the susceptible FANG strain, suggesting no immediate regulatory role of these genes in pyrethroid resistance in FUMOZ-R. Here, for the first time we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus in a baculovirus expression system using High-5 insect cells. Co-expression of each enzyme with CPR from either An. gambiae or An. funestus did not reveal noteworthy differences in catalytic capacity. Whereas the co-expression of An. funestus CYB5 - tested at different multiplicity of infection (MOI) ratios - resulted in a significantly higher metabolization of coumarin substrates as measured by fluorescence assays. This was confirmed by Michaelis-Menten kinetics using the most active substrate, 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC). We observed a similar increase in coumarin substrate turnover by adding human CYB5 to the reaction mix. Finally, we compared by UPLC-MS/MS analysis the depletion rate of deltamethrin and the formation of 4'OH-deltamethrin by recombinantly expressed CYP6P9a and CYP6P9b with and without CYB5 and detected no difference in the extent of deltamethrin metabolism. Our results suggest that co-expression (or addition) of CYB5 with CYP6P9 variants, recombinantly expressed in insect cells, can significantly enhance their metabolic capacity to oxidize coumarins, but not deltamethrin.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
16
|
Gong Y, Li M, Li T, Liu N. Molecular and functional characterization of three novel carboxylesterases in the detoxification of permethrin in the mosquito, Culex quinquefasciatus. INSECT SCIENCE 2022; 29:199-214. [PMID: 34048147 DOI: 10.1111/1744-7917.12927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Carboxylesterases (CarEs) belong to a super family of multifunctional enzymes associated with the degradation of endogenous and exogenous compounds. Many insect CarEs are known to play important roles in catalyzing the hydrolysis of organophosphates (OPs), carbamates, and synthetic pyrethroids (SPs). The elevation of esterase activity through gene amplification and overexpression of estα2 and estβ2 genes contributes to the development of resistance to OP insecticides in the mosquito Culex quinquefasciatus. Three additional CarE genes are upregulated in permethrin-resistant Cx. quinquefasciatus according to an RNA-seq analysis, but their function remains unknown. In this study, we, for the first time, characterized the function of these three novel genes using in vitro protein expression, an insecticide metabolism study and molecular docking analysis. All three CarE genes were significantly overexpressed in resistant mosquito larvae, but not adults, compared to susceptible strain. No gene copy differences in these three genes were found in the mosquitoes tested. In vitro high-performance liquid chromatography (HPLC) revealed that CPIJ018231, CPIJ018232, and CPIJ018233 metabolized 30.4% ± 2.9%, 34.7% ± 6.8%, and 23.2% ± 2.2% of the permethrin, respectively. No mutations in resistant strains might significantly affect their CarE hydrolysis ability. A docking analysis further confirmed that these three CarEs from resistant strain all potentially metabolize permethrin. Taken together, these three carboxylesterase genes could play important roles in the development of permethrin resistance in Cx. quinquefasciatus larvae through transcriptional overexpression, metabolism, and detoxification.
Collapse
Affiliation(s)
- Youhui Gong
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
- Department of Biology Sciences, University of California, San Diego, California, USA
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
17
|
Katsavou E, Riga M, Ioannidis P, King R, Zimmer CT, Vontas J. Functionally characterized arthropod pest and pollinator cytochrome P450s associated with xenobiotic metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105005. [PMID: 35082029 DOI: 10.1016/j.pestbp.2021.105005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The cytochrome P450 family (P450s) of arthropods includes diverse enzymes involved in endogenous essential physiological functions and in the oxidative metabolism of xenobiotics, insecticides and plant allelochemicals. P450s can also establish insecticide selectivity in bees and pollinators. Several arthropod P450s, distributed in different phylogenetic groups, have been associated with xenobiotic metabolism, and some of them have been functionally characterized, using different in vitro and in vivo systems. The purpose of this review is to summarize scientific publications on arthropod P450s from major insect and mite agricultural pests, pollinators and Papilio sp, which have been functionally characterized and shown to metabolize xenobiotics and/or their role (direct or indirect) in pesticide toxicity or resistance has been functionally validated. The phylogenetic relationships among these P450s, the functional systems employed for their characterization and their xenobiotic catalytic properties are presented, in a systematic approach, including critical aspects and limitations. The potential of the primary P450-based metabolic pathway of target and non-target organisms for the development of highly selective insecticides and resistance-breaking formulations may help to improve the efficiency and sustainability of pest control.
Collapse
Affiliation(s)
- Evangelia Katsavou
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Maria Riga
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| | - Panagiotis Ioannidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece
| | - Rob King
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
18
|
Gong Y, Li T, Li Q, Liu S, Liu N. The Central Role of Multiple P450 Genes and Their Co-factor CPR in the Development of Permethrin Resistance in the Mosquito Culex quinquefasciatus. Front Physiol 2022; 12:802584. [PMID: 35095564 PMCID: PMC8792746 DOI: 10.3389/fphys.2021.802584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes’ increasing resistance to insecticides is becoming a major threat for control efforts worldwide. Multiple P450 genes that are up-regulated in permethrin resistant strains of Culex quinquefasciatus have been linked to the development of resistance. In the current study, we characterized the function of six P450 genes, CYP6P14, CYP6BZ2, CYP9J33, CYP9J34, CYP9J40, and CYP9J45, that are overexpressed in the permethrin resistant Culex mosquitoes and showed their capability in metabolism of permethrin. These six P450 genes can convert 3-phenoxybenzoic alcohol (PBCHO) to a less toxic product, 3-phenoxybenzoic acid (PBCOOH), indicating that these P450s play an important role in permethrin degradation pathways. Although we know multiple P450 genes are over-expressed in permethrin resistant Culex mosquitoes, it remains to be seen whether cytochrome P450-reductase (CPR) gene that are co-overexpressed with P450 genes in permethrin resistant mosquitoes do indeed serve as a resistance mechanism. An in-depth investigation of the expression of CPR gene in resistant mosquitoes was conducted in permethrin resistant mosquitoes. The finding of CPR gene overexpression in permethrin resistant mosquitoes suggested the importance of co-overexpression of multiple P450 genes with their obligatory electron donor CPR in the complex detoxification system, boosting the metabolism of permethrin and hence the development of permethrin resistance in Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Youhui Gong
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Qi Li
- College of Aquaculture, Ocean University of China, Qingdao, China
| | - Shikai Liu
- College of Aquaculture, Ocean University of China, Qingdao, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- *Correspondence: Nannan Liu,
| |
Collapse
|
19
|
Nauen R, Bass C, Feyereisen R, Vontas J. The Role of Cytochrome P450s in Insect Toxicology and Resistance. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:105-124. [PMID: 34590892 DOI: 10.1146/annurev-ento-070621-061328] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect cytochrome P450 monooxygenases (P450s) perform a variety of important physiological functions, but it is their role in the detoxification of xenobiotics, such as natural and synthetic insecticides, that is the topic of this review. Recent advances in insect genomics and postgenomic functional approaches have provided an unprecedented opportunity to understand the evolution of insect P450s and their role in insect toxicology. These approaches have also been harnessed to provide new insights into the genomic alterations that lead to insecticide resistance, the mechanisms by which P450s are regulated, and the functional determinants of P450-mediated insecticide resistance. In parallel, an emerging body of work on the role of P450s in defining the sensitivity of beneficial insects to insecticides has been developed. The knowledge gained from these studies has applications for the management of P450-mediated resistance in insect pests and can be leveraged to safeguard the health of important beneficial insects.
Collapse
Affiliation(s)
- Ralf Nauen
- Crop Science Division R&D, Bayer AG, D-40789 Monheim, Germany;
| | - Chris Bass
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom;
| | - René Feyereisen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium;
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - John Vontas
- Department of Crop Science, Agricultural University of Athens, GR-11855 Athens, Greece;
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, GR-700 13 Heraklion, Crete, Greece
| |
Collapse
|
20
|
Lau MJ, Schmidt TL, Yang Q, Chung J, Sankey L, Ross PA, Hoffmann AA. Genetic stability of Aedes aegypti populations following invasion by wMel Wolbachia. BMC Genomics 2021; 22:894. [PMID: 34906084 PMCID: PMC8670162 DOI: 10.1186/s12864-021-08200-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Background Wolbachia wMel is the most commonly used strain in rear and release strategies for Aedes aegypti mosquitoes that aim to inhibit the transmission of arboviruses such as dengue, Zika, Chikungunya and yellow fever. However, the long-term establishment of wMel in natural Ae. aegypti populations raises concerns that interactions between Wolbachia wMel and Ae. aegypti may lead to changes in the host genome, which could affect useful attributes of Wolbachia that allow it to invade and suppress disease transmission. Results We applied an evolve-and-resequence approach to study genome-wide genetic changes in Ae. aegypti from the Cairns region, Australia, where Wolbachia wMel was first introduced more than 10 years ago. Mosquito samples were collected at three different time points in Gordonvale, Australia, covering the phase before (2010) and after (2013 and 2018) Wolbachia releases. An additional three locations where Wolbachia replacement happened at different times across the last decade were also sampled in 2018. We found that the genomes of mosquito populations mostly remained stable after Wolbachia release, with population differences tending to reflect the geographic location of the populations rather than Wolbachia infection status. However, outlier analysis suggests that Wolbachia may have had an influence on some genes related to immune response, development, recognition and behavior. Conclusions Ae. aegypti populations remained geographically distinct after Wolbachia wMel releases in North Australia despite their Wolbachia infection status. At some specific genomic loci, we found signs of selection associated with Wolbachia, suggesting potential evolutionary impacts can happen in the future and further monitoring is warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08200-1.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Thomas L Schmidt
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica Chung
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucien Sankey
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
21
|
Nawaz S, Tahir HM, Asif Mahmood M, Summer M, Ali S, Ali A, Gormani AH. Current Status of Pyrethroids Resistance in Aedes aegypti (Culicidae: Diptera) in Lahore District, Pakistan: A Novel Mechanistic Insight. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2432-2438. [PMID: 34343301 DOI: 10.1093/jme/tjab137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Aedes aegypti (Linnaeus, 1762) is a major vector responsible for dengue transmission. Insecticides are being used as the most effective tool to control vector populations in Lahore, Pakistan. Control of Ae. aegypti is threatened by the development of resistance against insecticides. The current status of insecticide resistance was evaluated against pyrethroids (deltamethrin, cypermethrin, and lambda-cyhalothrin) in different populations of Lahore (Model Town, Mishri Shah, Sadar Cantt, Walton, and Valencia). The susceptibility of the larval and adult populations was tested following the standard WHO guidelines. Moderate to high levels of resistance were found against pyrethroids in the larval (RR50: 3.6-27.2 and RR90: 5-90) and adult populations (percentage mortality < 98%). Biochemical assays revealed a statistically significant increase in the enzyme level in all field populations compared to the laboratory strain. The value of esterase was one-fold higher, monooxygenase was 3.9- to 4.7-fold higher, and glutathione S-transferases was 1.9- to 2.6-fold higher in field populations compared to the laboratory strain. These results depict the presence of resistance against deltamethrin, cypermethrin, and lambda-cyhalothrin in field populations of Lahore mediated by metabolic enzymes i.e. esterases, monooxygenases, and glutathione S-transferase.
Collapse
Affiliation(s)
- Saira Nawaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | | | - Muhammad Summer
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
22
|
Sun H, Mertz RW, Smith LB, Scott JG. Transcriptomic and proteomic analysis of pyrethroid resistance in the CKR strain of Aedes aegypti. PLoS Negl Trop Dis 2021; 15:e0009871. [PMID: 34723971 PMCID: PMC8559961 DOI: 10.1371/journal.pntd.0009871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Aedes aegypti is an important vector of human viral diseases. This mosquito is distributed globally and thrives in urban environments, making it a serious risk to human health. Pyrethroid insecticides have been the mainstay for control of adult A. aegypti for decades, but resistance has evolved, making control problematic in some areas. One major mechanism of pyrethroid resistance is detoxification by cytochrome P450 monooxygenases (CYPs), commonly associated with the overexpression of one or more CYPs. Unfortunately, the molecular basis underlying this mechanism remains unknown. We used a combination of RNA-seq and proteomic analysis to evaluate the molecular basis of pyrethroid resistance in the highly resistant CKR strain of A. aegypti. The CKR strain has the resistance mechanisms from the well-studied Singapore (SP) strain introgressed into the susceptible Rockefeller (ROCK) strain genome. The RNA-seq and proteomics data were complimentary; each offering insights that the other technique did not provide. However, transcriptomic results did not quantitatively mirror results of the proteomics. There were 10 CYPs which had increased expression of both transcripts and proteins. These CYPs appeared to be largely trans-regulated, except for some CYPs for which we could not rule out gene duplication. We identified 65 genes and lncRNAs as potentially being responsible for elevating the expression of CYPs in CKR. Resistance was associated with multiple loci on chromosome 1 and at least one locus on chromosome 3. We also identified five CYPs that were overexpressed only as proteins, suggesting that stabilization of CYP proteins could be a mechanism of resistance. Future studies to increase the resolution of the resistance loci, and to examine the candidate genes and lncRNAs identified here will greatly enhance our understanding of CYP-mediated resistance in A. aegypti.
Collapse
Affiliation(s)
- Haina Sun
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu China
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Robert W. Mertz
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Letícia B. Smith
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, United States of America
| | - Jeffrey G. Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
23
|
Wamba ANR, Ibrahim SS, Kusimo MO, Muhammad A, Mugenzi LMJ, Irving H, Wondji MJ, Hearn J, Bigoga JD, Wondji CS. The cytochrome P450 CYP325A is a major driver of pyrethroid resistance in the major malaria vector Anopheles funestus in Central Africa. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103647. [PMID: 34530119 DOI: 10.1016/j.ibmb.2021.103647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
The overexpression and overactivity of key cytochrome P450s (CYP450) genes are major drivers of metabolic resistance to insecticides in African malaria vectors such as Anopheles funestus s.s. Previous RNAseq-based transcription analyses revealed elevated expression of CYP325A specific to Central African populations but its role in conferring resistance has not previously been demonstrated. In this study, RT-qPCR consistently confirmed that CYP325A is highly over-expressed in pyrethroid-resistant An. funestus from Cameroon, compared with a control strain and insecticide-unexposed mosquitoes. A synergist bioassay with PBO significantly recovered susceptibility for permethrin and deltamethrin indicating P450-based metabolic resistance. Analyses of the coding sequence of CYP325A Africa-wide detected high-levels of polymorphism, but with no predominant alleles selected by pyrethroid resistance. Geographical amino acid changes were detected notably in Cameroon. In silico homology modelling and molecular docking simulations predicted that CYP325A binds and metabolises type I and type II pyrethroids. Heterologous expression of recombinant CYP325A and metabolic assays confirmed that the most-common Cameroonian haplotype metabolises both type I and type II pyrethroids with depletion rate twice that the of the DR Congo haplotype. Analysis of the 1 kb putative promoter of CYP325A revealed reduced diversity in resistant mosquitoes compared to susceptible ones, suggesting a potential selective sweep in this region. The establishment of CYP325A as a pyrethroid resistance metabolising gene further explains pyrethroid resistance in Central African populations of An. funestus. Our work will facilitate future efforts to detect the causative resistance markers in the promoter region of CYP325A to design field applicable DNA-based diagnostic tools.
Collapse
Affiliation(s)
- Amelie N R Wamba
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Faculty of Science, Department of Biochemistry, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Sulaiman S Ibrahim
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Department of Biochemistry, Bayero University, PMB, 3011, Kano, Nigeria.
| | - Michael O Kusimo
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon.
| | - Abdullahi Muhammad
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Centre for Biotechnology Research, Bayero University, Kano, PMB, 3011, Kano Nigeria.
| | - Leon M J Mugenzi
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Murielle J Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| | - Jude D Bigoga
- Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK; Laboratory for Vector Biology and Control, National Reference Unit for Vector Control, The Biotechnology Centre, Nkolbisson - University of Yaoundé I, P.O. Box 3851, Messa, Yaoundé, Cameroon.
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon; Vector Biology Department, Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
24
|
Wang Y, Tian J, Han Q, Zhang Y, Liu Z. Genomic organization and expression pattern of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109118. [PMID: 34182095 DOI: 10.1016/j.cbpc.2021.109118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022]
Abstract
As one of the dominant natural enemies for insect pests, the pond wolf spider, Pardosa pseudoannulata, plays important roles in pest control. Insecticide applications threaten P. pseudoannulata and consequently weaken its control effects. The roles of P450 monooxygenases in insecticide detoxifications have been richly reported in insects, but there are few reported in spiders. In this study, 120 transcripts encoding P. pseudoannulata P450s were identified based on whole genome sequencing. Compared to P450s of Aedes aegypti and Nilaparvata lugens, several novel P450 families were found, such as CYP3310. KEGG analysis of the CYP3310 family indicated that the family might be involved in the synthesis and metabolism of polyunsaturated fatty acids and hydrocarbons. The potential P450s involved in insecticide metabolism were obtained according to the high FPKM values in fat bodies based on transcriptome sequencing. However, none of the selected P450 genes was significantly upregulated by the treatments of deltamethrin or imidacloprid. The present study provides genomic and transcriptomic information of spider P450s, especially for their roles in the synthesis and metabolism of endogenous and exogenous compounds, such as polyunsaturated fatty acids, hydrocarbons and insecticides.
Collapse
Affiliation(s)
- Yunchao Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Jiahua Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Qianqian Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| |
Collapse
|
25
|
Metabolic Resistance in Permethrin-Resistant Florida Aedes aegypti (Diptera: Culicidae). INSECTS 2021; 12:insects12100866. [PMID: 34680634 PMCID: PMC8540271 DOI: 10.3390/insects12100866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary Pyrethroid-oriented vector control programs have increased worldwide to control adult Aedes aegypti mosquitoes and quell Aedes-borne disease epidemics. Due to years of pyrethroid use, resistance to pyrethroids in Ae. aegypti has become a global issue. In Florida, permethrin is the most common pyrethroid adulticide active ingredient used to control mosquito populations. Thus far, all wild Florida Ae. aegypti populations tested against permethrin have been found to be resistant. Metabolic resistance is a major mechanism of resistance in insects in which enzyme-mediated reactions cause the degradation or sequestration of insecticides. We performed assays to investigate the presence of metabolic resistance in 20 Florida Ae. aegypti populations and found that 11 populations (55%) exhibited metabolic resistance due to the action of at least one of three classes of metabolizing enzymes: oxidases, esterases, and glutathione transferases. Additionally, we identified two metabolic enzyme inhibitors: S.S.S-tributyl phosphorotrithioate (DEF; inhibits esterase activity) and diethyl maleate (DM; inhibits glutathione transferase activity), in addition to the commonly used piperonyl butoxide (PBO; inhibits oxidase activity), which were able to increase the efficacy of permethrin against resistant Ae. aegypti populations. Pre-exposure to DEF, PBO, and DM resulted in increased mortality after permethrin exposure in eight (73%), seven (64%), and six (55%) of the Ae. aegypti populations, respectively. Increasing the effectiveness of pyrethroids is important for mosquito control, as it is the primary method used for adult control during mosquito-borne disease outbreaks. Considering that DEF and DM performed similarly to PBO, they may be good candidates for inclusion in formulated pyrethroid products to increase their efficacy against resistant mosquitoes. Abstract Aedes aegypti is the principal mosquito vector for many arthropod-borne viruses (arboviruses) including dengue, chikungunya, and Zika. In the United States, excessive permethrin use has led to a high frequency of resistance in mosquitoes. Insecticide resistance is a significant obstacle in the struggle against vector-borne diseases. To help overcome metabolic resistance, synergists that inhibit specific metabolic enzymes can be added to formulated pyrethroid products. Using modified CDC bottle bioassays, we assessed the effect of three inhibitors (piperonyl butoxide (PBO), which inhibits oxidase activity; S.S.S-tributyl phosphorotrithioate (DEF), which inhibits esterase activity; and diethyl maleate (DM), which inhibits glutathione transferase activity) + permethrin. We performed these against 20 Florida Ae. aegypti populations, all of which were resistant to permethrin. Our data indicated that 11 out of 20 populations (55%) exhibited metabolic resistance. Results revealed 73% of these populations had significant increases in mortality attributed to DEF + permethrin, 64% to PBO + permethrin, and 55% to DM + permethrin compared to permethrin alone. Currently, PBO is the only metabolic enzyme inhibitor added to formulated pyrethroid products used for adult mosquito control. Our results suggest that the DEF and DM inhibitors could also be useful additives in permethrin products, especially against metabolically resistant Ae. aegypti mosquitoes. Moreover, metabolic assays should be conducted to better inform mosquito control programs for designing and implementing integrated vector management strategies.
Collapse
|
26
|
Shi Y, Jiang Q, Yang Y, Feyereisen R, Wu Y. Pyrethroid metabolism by eleven Helicoverpa armigera P450s from the CYP6B and CYP9A subfamilies. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 135:103597. [PMID: 34089822 DOI: 10.1016/j.ibmb.2021.103597] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 05/21/2023]
Abstract
Lepidopteran P450s of the CYP6B and CYP9A subfamilies are thought to play important roles in host plant adaptation and insecticide resistance. An increasing number of paralogs and orthologs with high levels of sequence identity have been found in these subfamilies by mining recent genome projects. However, the biochemical function of most of them remains unknown. A better understanding of the evolution of P450 genes and of the catalytic competence of the enzymes they encode is needed to facilitate studies of host plant use and insecticide resistance. Here, we focused on the full complement of CYP6B (4 genes) and CYP9A (7 genes) in the generalist herbivore, Helicoverpa armigera. These P450s were heterologously expressed in Sf9 cells and compared functionally. In vitro assays showed that all CYP6B and CYP9A P450s can metabolize esfenvalerate efficiently, except for the evolutionarily divergent CYP6B43. A new 2'-hydroxy-metabolite of esfenvalerate was identified and found to be the main metabolite produced by CYP9A12. All tested P450s showed only low induction responses to esfenvalerate. To put these results from H. armigera P450s in perspective, 158 complete CYP6B and 100 complete CYP9A genes from 34 ditrysian species were manually curated. The CYP9A subfamily was more widespread than the CYP6B subfamily and the latter showed dramatic gains and losses, with ten species lacking CYP6B genes. Two adjacent CYP6B loci were found on chromosome 21, with different fates during the evolution of Lepidoptera. The diversity and functional redundancy of CYP6B and CYP9A genes challenge resistance management and pest control strategies as many P450s are available to insects to cope with chemical stresses they encounter.
Collapse
Affiliation(s)
- Yu Shi
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qianqian Jiang
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yihua Yang
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Yidong Wu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
27
|
Tian K, Feng J, Zhu J, Cheng J, Li M, Qiu X. Pyrethrin-resembling pyrethroids are metabolized more readily than heavily modified ones by CYP9As from Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104871. [PMID: 34119216 DOI: 10.1016/j.pestbp.2021.104871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The cotton bollworm, Helicoverpa armigera, is a polyphagous pest threatening many economically important crops worldwide. Until recently, synthetic pyrethroids remain in wide use for controlling pest insects including the cotton bollworm. Understanding the metabolic mechanism of pyrethroids in a given pest can provide significant implication for a smart choice of insecticides, and such information is useful for the development of novel selective and safe insecticides. In this study, we used complexes of recombinant H. armigera cytochrome P450 CYP9A and NADPH-dependent cytochrome P450 reductase to investigate the capacity of three CYP9A paralogs in the transformation of seven structurally different pyrethroids by metabolism assays. The results showed that the three paralogous CYP9As were able to metabolize multiple pyrethroids. Interestingly, all the three CYP9As transformed pyrethrin-resembling pyrethroids (e.g. bioallethrin) more efficiently than the heavily modified ones (e.g. bifenthrin). These findings suggest that herbivorous insects can cope with synthetic insecticides using their physiological systems that initially evolved to survive exposure to the defensive chemicals in their host plants, adding support to the pre-adaptation hypothesis.
Collapse
Affiliation(s)
- Kai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Feng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiagao Cheng
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
28
|
Gan SJ, Leong YQ, Bin Barhanuddin MFH, Wong ST, Wong SF, Mak JW, Ahmad RB. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasit Vectors 2021; 14:315. [PMID: 34112220 PMCID: PMC8194039 DOI: 10.1186/s13071-021-04785-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Dengue fever is the most important mosquito-borne viral disease in Southeast Asia. Insecticides remain the most effective vector control approach for Aedes mosquitoes. Four main classes of insecticides are widely used for mosquito control: organochlorines, organophosphates, pyrethroids and carbamates. Here, we review the distribution of dengue fever from 2000 to 2020 and its associated mortality in Southeast Asian countries, and we gather evidence on the trend of insecticide resistance and its distribution in these countries since 2000, summarising the mechanisms involved. The prevalence of resistance to these insecticides is increasing in Southeast Asia, and the mechanisms of resistance are reported to be associated with target site mutations, metabolic detoxification, reduced penetration of insecticides via the mosquito cuticle and behavioural changes of mosquitoes. Continuous monitoring of the status of resistance and searching for alternative control measures will be critical for minimising any unpredicted outbreaks and improving public health. This review also provides improved insights into the specific use of insecticides for effective control of mosquitoes in these dengue endemic countries. ![]()
Collapse
Affiliation(s)
- Soon Jian Gan
- International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Yong Qi Leong
- International Medical University, 57000, Kuala Lumpur, Malaysia.,Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Siew Tung Wong
- International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Shew Fung Wong
- International Medical University, 57000, Kuala Lumpur, Malaysia. .,Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Joon Wah Mak
- International Medical University, 57000, Kuala Lumpur, Malaysia.,Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rohani Binti Ahmad
- Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Saavedra-Rodriguez K, Campbell CL, Lozano S, Penilla-Navarro P, Lopez-Solis A, Solis-Santoyo F, Rodriguez AD, Perera R, Black IV WC. Permethrin resistance in Aedes aegypti: Genomic variants that confer knockdown resistance, recovery, and death. PLoS Genet 2021; 17:e1009606. [PMID: 34138859 PMCID: PMC8211209 DOI: 10.1371/journal.pgen.1009606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Pyrethroids are one of the few classes of insecticides available to control Aedes aegypti, the major vector of dengue, chikungunya, and Zika viruses. Unfortunately, evolving mechanisms of pyrethroid resistance in mosquito populations threaten our ability to control disease outbreaks. Two common pyrethroid resistance mechanisms occur in Ae. aegypti: 1) knockdown resistance, which involves amino acid substitutions at the pyrethroid target site-the voltage-gated sodium channel (VGSC)-and 2) enhanced metabolism by detoxification enzymes. When a heterogeneous population of mosquitoes is exposed to pyrethroids, different responses occur. During exposure, a proportion of mosquitoes exhibit immediate knockdown, whereas others are not knocked-down and are designated knockdown resistant (kdr). When these individuals are removed from the source of insecticide, the knocked-down mosquitoes can either remain in this status and lead to dead or recover within a few hours. The proportion of these phenotypic responses is dependent on the pyrethroid concentration and the genetic background of the population tested. In this study, we sequenced and performed pairwise genome comparisons between kdr, recovered, and dead phenotypes in a pyrethroid-resistant colony from Tapachula, Mexico. We identified single-nucleotide polymorphisms (SNPs) associated with each phenotype and identified genes that are likely associated with the mechanisms of pyrethroid resistance, including detoxification, the cuticle, and insecticide target sites. We identified high association between kdr and mutations at VGSC and moderate association with additional insecticide target site, detoxification, and cuticle protein coding genes. Recovery was associated with cuticle proteins, the voltage-dependent calcium channel, and a different group of detoxification genes. We provide a list of detoxification genes under directional selection in this field-resistant population. Their functional roles in pyrethroid metabolism and their potential uses as genomic markers of resistance require validation.
Collapse
Affiliation(s)
- Karla Saavedra-Rodriguez
- Colorado State University, Department of Microbiology, Immunology and Pathology, Center of Vector-borne and Infectious Diseases, Fort Collins, Colorado, United States of America
| | - Corey L. Campbell
- Colorado State University, Department of Microbiology, Immunology and Pathology, Center of Vector-borne and Infectious Diseases, Fort Collins, Colorado, United States of America
| | - Saul Lozano
- Centers for Diseases Prevention and Control, Arboviral Diseases Branch, Fort Collins, Colorado, United States of America
| | - Patricia Penilla-Navarro
- Centro Regional de Investigacion en Salud Publica, Instituto Nacional de Salud Publica, Tapachula, Mexico
| | - Alma Lopez-Solis
- Centro Regional de Investigacion en Salud Publica, Instituto Nacional de Salud Publica, Tapachula, Mexico
| | - Francisco Solis-Santoyo
- Centro Regional de Investigacion en Salud Publica, Instituto Nacional de Salud Publica, Tapachula, Mexico
| | - Americo D. Rodriguez
- Centro Regional de Investigacion en Salud Publica, Instituto Nacional de Salud Publica, Tapachula, Mexico
| | - Rushika Perera
- Colorado State University, Department of Microbiology, Immunology and Pathology, Center of Vector-borne and Infectious Diseases, Fort Collins, Colorado, United States of America
| | - William C. Black IV
- Colorado State University, Department of Microbiology, Immunology and Pathology, Center of Vector-borne and Infectious Diseases, Fort Collins, Colorado, United States of America
| |
Collapse
|
30
|
Djiappi-Tchamen B, Nana-Ndjangwo MS, Mavridis K, Talipouo A, Nchoutpouen E, Makoudjou I, Bamou R, Mayi AMP, Awono-Ambene P, Tchuinkam T, Vontas J, Antonio-Nkondjio C. Analyses of Insecticide Resistance Genes in Aedes aegypti and Aedes albopictus Mosquito Populations from Cameroon. Genes (Basel) 2021; 12:genes12060828. [PMID: 34071214 PMCID: PMC8229692 DOI: 10.3390/genes12060828] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
The emergence of insecticide resistance in Aedes mosquitoes could pose major challenges for arboviral-borne disease control. In this paper, insecticide susceptibility level and resistance mechanisms were assessed in Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894) from urban settings of Cameroon. The F1 progeny of Aedes aegypti and Aedes albopictus collected in Douala, Yaoundé and Dschang from August to December 2020 was tested using WHO tube assays with four insecticides: deltamethrin 0.05%, permethrin 0.75%, DDT 4% and bendiocarb 0.1%. TaqMan, qPCR and RT-qPCR assays were used to detect kdr mutations and the expression profiles of eight detoxification genes. Aedes aegypti mosquitoes from Douala were found to be resistant to DDT, permethrin and deltamethrin. Three kdr mutations, F1534C, V1016G and V1016I were detected in Aedes aegypti populations from Douala and Dschang. The kdr allele F1534C was predominant (90%) in Aedes aegypti and was detected for the first time in Aedes albopictus (2.08%). P450s genes, Cyp9J28 (2.23-7.03 folds), Cyp9M6 (1.49-2.59 folds), Cyp9J32 (1.29-3.75 folds) and GSTD4 (1.34-55.3 folds) were found overexpressed in the Douala and Yaoundé Aedes aegypti populations. The emergence of insecticide resistance in Aedes aegypti and Aedes albopictus calls for alternative strategies towards the control and prevention of arboviral vector-borne diseases in Cameroon.
Collapse
Affiliation(s)
- Borel Djiappi-Tchamen
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067 Dschang, Cameroon; (R.B.); (A.M.P.M.); (T.T.)
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
- Correspondence: (B.D.-T.); (C.A.-N.)
| | - Mariette Stella Nana-Ndjangwo
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337 Yaoundé, Cameroon
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece; (K.M.); (J.V.)
| | - Abdou Talipouo
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337 Yaoundé, Cameroon
| | - Elysée Nchoutpouen
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
| | - Idene Makoudjou
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337 Yaoundé, Cameroon
| | - Roland Bamou
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067 Dschang, Cameroon; (R.B.); (A.M.P.M.); (T.T.)
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
| | - Audrey Marie Paul Mayi
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067 Dschang, Cameroon; (R.B.); (A.M.P.M.); (T.T.)
| | - Parfait Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
| | - Timoléon Tchuinkam
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067 Dschang, Cameroon; (R.B.); (A.M.P.M.); (T.T.)
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece; (K.M.); (J.V.)
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Christophe Antonio-Nkondjio
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
- Department of Vector Biology, Liverpool School of Tropical medicine, Pembroke Place, Liverpool L3 5QA, UK
- Correspondence: (B.D.-T.); (C.A.-N.)
| |
Collapse
|
31
|
Multiple cytochrome P450 genes: conferring high levels of permethrin resistance in mosquitoes, Culex quinquefasciatus. Sci Rep 2021; 11:9041. [PMID: 33907243 PMCID: PMC8079677 DOI: 10.1038/s41598-021-88121-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
Insecticides, especially pyrethroids, are the most important in the insect pest control and preventing insect vector-borne human diseases. However, insect pests, including mosquitoes, have developed resistance in the insecticides that used against them. Cytochrome P450s are associated with insecticide resistance through overexpression and detoxification mechanisms in insect species. In this study, we utilized a powerful tool, the RNAi technique, to determine the roles of key P450 genes overexpressed in permethrin resistant mosquitoes that confer insecticide resistance to unravel the molecular basis of resistance mechanisms in the mosquito Culex quinquefasciatus. The results showed that knockdown of 8 key P450 genes using RNAi techniques significantly decreased resistance to permethrin in resistant mosquitoes. In silico modeling and docking analysis further revealed the potential metabolic function of overexpressed P450 genes in the development of insecticide resistance in mosquitoes. These findings not only highlighted the functional importance of these P450 genes in insecticide resistance, but also revealed that overexpression of multiple P450 genes was responsible for the high levels of insecticide resistance in a mosquito population of Culex quinquefasciatus.
Collapse
|
32
|
Nauen R, Zimmer CT, Vontas J. Heterologous expression of insect P450 enzymes that metabolize xenobiotics. CURRENT OPINION IN INSECT SCIENCE 2021; 43:78-84. [PMID: 33186746 DOI: 10.1016/j.cois.2020.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Insect cytochrome P450-monooxygenases (P450s) are an enzyme superfamily involved in the oxidative transformation of endogenous and exogenous substrates, including insecticides. They were also shown to determine insecticide selectivity in beneficial arthropods such as bee pollinators, and to detoxify plant secondary metabolites. The recent explosion in numbers of P450s due to increased invertebrate genomes sequenced, allowed researchers to study their functional relevance for xenobiotic metabolism by recombinant expression using different expression systems. Troubleshooting strategies, including different systems and protein modifications typically adapted from mammalian P450s, have been applied to improve the functional expression, with partial success. The aim of this mini review is to critically summarize different strategies recently developed and used to produce recombinant insect P450s for xenobiotic metabolism studies.
Collapse
Affiliation(s)
- Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany.
| | - Christoph T Zimmer
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, Stein CH4332, Switzerland
| | - John Vontas
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology (FORTH), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Iera Odos 9 75, 11855, Athens, Greece.
| |
Collapse
|
33
|
Souza D, Siegfried BD, Meinke LJ, Miller NJ. Molecular characterization of western corn rootworm pyrethroid resistance. PEST MANAGEMENT SCIENCE 2021; 77:860-868. [PMID: 32946636 DOI: 10.1002/ps.6090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/11/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Western corn rootworm (WCR) pyrethroid resistance has been confirmed in the western US Corn Belt. Toxicological and biochemical studies indicated that multiple mechanisms of resistance might be involved in the resistance trait, such as enhanced metabolism and/or kdr target-site mutation(s) in the voltage-gated sodium channels. To characterize the mechanisms of WCR pyrethroid resistance at the molecular level, pairwise comparisons were made between RNA-Seq data collected from pyrethroid-resistant and -susceptible WCR populations. Gene expression levels and sodium channel sequences were evaluated. RESULTS Seven transcripts exhibited significantly different expression (q ≤ 0.05) when comparing field-collected pyrethroid-resistant (R-Field) and -susceptible (S-Field) WCR populations. Three of the differentially expressed transcripts were P450s overexpressed in R-Field (9.2-26.2-fold). A higher number (99) of differentially expressed transcripts was found when comparing laboratory-derived pyrethroid-resistant (R-Lab) and -susceptible (S-Lab) WCR populations. Eight of the significant transcripts were P450s overexpressed in R-Lab (2.7-39.8-fold). This study did not detect kdr mutations in pyrethroid-resistant WCR populations. Other differentially expressed transcripts that may play a role in WCR pyrethroid resistance are discussed. CONCLUSION This study revealed that P450-mediated metabolism is likely to be a major mechanism of WCR pyrethroid resistance, which could affect the efficacy of other insecticides sharing similar metabolic pathways. Additionally, results suggested that although laboratory selection of a pyrethroid-resistant WCR population may help to characterize resistance mechanisms, a field-selected population provided rare and perhaps major variants corresponding to the resistance trait.
Collapse
Affiliation(s)
- Dariane Souza
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Blair D Siegfried
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Lance J Meinke
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nicholas J Miller
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
34
|
Thornton J, Gomes B, Ayres C, Reimer L. Insecticide resistance selection and reversal in two strains of Aedes aegypti. Wellcome Open Res 2020; 5:183. [PMID: 33521329 PMCID: PMC7814284 DOI: 10.12688/wellcomeopenres.15974.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Laboratory reared mosquito colonies are essential tools to understand insecticide action. However, they differ considerably from wild populations and from each other depending on their origin and rearing conditions, which makes studying the effects of specific resistance mechanisms difficult. This paper describes our methods for establishing multiple resistant strains of Aedes aegypti from two colonies as a new resource for further research on metabolic and target site resistance. Methods: Two resistant colonies of Ae. aegypti, from Cayman and Recife, were selected through 10 generations of exposure to insecticides including permethrin, malathion and temephos, to yield eight strains with different profiles of resistance due to either target site or metabolic resistance. Resistance ratios for each insecticide were calculated for the selected and unselected strains. The frequency of kdr alleles (F1534C and V1016I) in the Cayman strains was determined using TaqMan assays. A comparative gene expression analysis among Recife strains was conducted using qPCR in larvae (CCae3A, CYP6N12, CYP6F3, CYP9M9) and adults (CCae3A, CYP6N12, CYP6BB2, CYP9J28a). Results: In the selected strain of Cayman, mortality against permethrin reduced almost to 0% and kdr became fixated by 5 generations. A similar phenotype was seen in the unselected homozygous resistant colony, whilst mortality in the susceptible homozygous colony rose to 82.9%. The Recife strains showed different responses between exposure to adulticide and larvicide, with detoxification genes in the temephos selected strain staying similar to the baseline, but a reduction in detoxification genes displayed in the other strains. Conclusions: These selected strains, with a range of insecticide resistance phenotypes and genotypes, will support further research on the effects of target-site and/or metabolic resistance mechanisms on various life-history traits, behaviours and vector competence of this important arbovirus vector.
Collapse
Affiliation(s)
- Jonathan Thornton
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | - Bruno Gomes
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
- Laboratório de Bioquímica e Fisiologia de Insetos, Oswaldo Cruz Institute (IOC-FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
| | - Constância Ayres
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Recife, Brazil
| | - Lisa Reimer
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| |
Collapse
|
35
|
Vontas J, Katsavou E, Mavridis K. Cytochrome P450-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors: Muddying the waters. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104666. [PMID: 32980073 DOI: 10.1016/j.pestbp.2020.104666] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Despite the substantial progress achieved in the characterization of cytochrome P450 (CYP) -based resistance mechanisms in mosquitoes, a number of questions remain unanswered. These include: (i) the regulation and physiology of resistance conferring CYPs; (ii) the actual contribution of CYPs in resistance alone or in combination with other detoxification partners or other resistance mechanisms; (iii) the association between overexpression levels and allelic variation, with the catalytic activity and the intensity of resistance and (iv) the true value of molecular diagnostics targeting CYP markers, for driving decision making in the frame of Insecticide Resistance Management applications. Furthermore, the translation of CYP - based insecticide resistance research in mosquitoes into practical applications, is being developed, but it is not fully exploited, as yet. Examples include the production of high throughput platforms for screening the liability (stability) or inhibition potential of novel insecticidal leads and synergists (add-ons), as well as the exploration of the negative cross resistance concept (i.e. detoxification of certain insecticides, but activation of others pro-insecticides). The goal of this review is to critically summarise the current knowledge and the gaps of the CYP-based metabolic insecticide resistance in Anopheles and Aedes mosquito vectors. The progress and limitations of the protein and the reverse/forward genetic approaches, the understanding and importance of molecular and physiological aspects, as well as the current and future exploitation routes of CYP research are discussed.
Collapse
Affiliation(s)
- John Vontas
- Foundation for Research and Technology (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece; Department of Crop Science, Agricultural University of Athens, Iera Odos 875, 11855, Athens, Greece.
| | - Eva Katsavou
- Department of Crop Science, Agricultural University of Athens, Iera Odos 875, 11855, Athens, Greece
| | - Konstantinos Mavridis
- Foundation for Research and Technology (FORTH), Institute of Molecular Biology and Biotechnology (IMBB), Nikolaou Plastira Street 100, 70013, Heraklion, Crete, Greece
| |
Collapse
|
36
|
Xia S, Cosme LV, Lutomiah J, Sang R, Ngangue MF, Rahola N, Ayala D, Powell JR. Genetic structure of the mosquito Aedes aegypti in local forest and domestic habitats in Gabon and Kenya. Parasit Vectors 2020; 13:417. [PMID: 32791977 PMCID: PMC7427282 DOI: 10.1186/s13071-020-04278-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background The mosquito Aedes aegypti is a devastating disease vector transmitting several important human arboviral diseases. In its native range in Africa, the mosquito can be found in both the ancestral forest habitat and anthropogenic habitats such as villages. How do the different habitats impact the population genetic structure of the local mosquito populations? Methods To address this question, we simultaneously sampled Ae. aegypti from the forest and local villages in La Lopé, Gabon and Rabai, Kenya. The mosquitoes were genotyped at 12 microsatellite loci and a panel of ~25,000 single nucleotide polymorphisms (SNPs), which allowed us to estimate their genetic ancestries and the population genetic structure related to habitats and sampling sites. Results In the context of the global population genetic structure of Ae. aegypti, clustering analysis showed that mosquitoes from the same locality (La Lopé or Rabai) have similar genetic ancestry, regardless of their habitats. Further analysis at the local scale also found no strong genetic differentiation between the forest and village mosquitoes in both La Lopé and Rabai. Interestingly, these results from our 2017 samples from Rabai, Kenya contrast to the documentation of genetic differentiation between village and forest mosquito collections from 1975–1976 and 2009. Between-habitat measures of genetic difference (Fst) vary across the genome, with a peak of high divergence observed at the third chromosome only in the La Lopé populations. Conclusion Collectively, these results demonstrated that there is little genetic isolation between forest and village habitats, which suggests possible extensive gene flow between them. From an epidemiological perspective, the forest habitat could act as a refuge for mosquitoes against vector control programmes in the domestic settings. Moreover, sylvatic populations could play a role in zoonotic pathogen transferred to humans. Therefore, future studies on disease transmission and vector control planning in the study area should take natural populations into consideration.![]()
Collapse
Affiliation(s)
- Siyang Xia
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
| | - Luciano V Cosme
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Joel Lutomiah
- Arbovirus/Viral Hemorrhagic Fever Laboratory, Center for Virus Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Rosemary Sang
- Arbovirus/Viral Hemorrhagic Fever Laboratory, Center for Virus Research, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | | | - Nil Rahola
- CIRMF, Franceville, Gabon.,MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | - Diego Ayala
- CIRMF, Franceville, Gabon.,MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
| | - Jeffrey R Powell
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
37
|
Thornton J, Gomes B, Ayres C, Reimer L. Insecticide resistance selection and reversal in two strains of Aedes aegypti. Wellcome Open Res 2020; 5:183. [PMID: 33521329 PMCID: PMC7814284 DOI: 10.12688/wellcomeopenres.15974.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Laboratory reared mosquito colonies are essential tools to understand insecticide action. However, they differ considerably from wild populations and from each other depending on their origin and rearing conditions, which makes studying the effects of specific resistance mechanisms difficult. This paper describes our methods for establishing multiple resistant strains of Aedes aegypti from two colonies as a new resource for further research on metabolic and target site resistance. Methods: Two resistant colonies of Ae. aegypti, from Cayman and Recife, were selected through 10 generations of exposure to insecticides including permethrin, malathion and temephos, to yield eight strains with different profiles of resistance due to either target site or metabolic resistance. Resistance ratios for each insecticide were calculated for the selected and unselected strains. The frequency of kdr alleles in the Cayman strains was determined using TaqMan assays. A comparative gene expression analysis among Recife strains was conducted using qPCR in larvae (CCae3A, CYP6N12, CYP6F3, CYP9M9) and adults (CCae3A, CYP6N12, CYP6BB2, CYP9J28a). Results: In the selected strain of Cayman, mortality against permethrin reduced almost to 0% and kdr became fixated by 5 generations. A similar phenotype was seen in the unselected homozygous resistant colony, whilst mortality in the susceptible homozygous colony rose to 82.9%. The Recife strains showed different responses between exposure to adulticide and larvicide, with detoxification genes in the temephos selected strain staying similar to the baseline, but a reduction in detoxification genes displayed in the other strains. Conclusions: These selected strains, with a range of insecticide resistance phenotypes and genotypes, will support further research on the effects of target-site and/or metabolic resistance mechanisms on various life-history traits, behaviours and vector competence of this important arbovirus vector.
Collapse
Affiliation(s)
- Jonathan Thornton
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | - Bruno Gomes
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
- Laboratório de Bioquímica e Fisiologia de Insetos, Oswaldo Cruz Institute (IOC-FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
| | - Constância Ayres
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Recife, Brazil
| | - Lisa Reimer
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| |
Collapse
|
38
|
Contreras-Perera Y, Ponce-Garcia G, Villanueva-Segura K, Lopez-Monroy B, Rodríguez-Sanchez IP, Lenhart A, Manrique-Saide P, Flores AE. Impact of deltamethrin selection on kdr mutations and insecticide detoxifying enzymes in Aedes aegypti from Mexico. Parasit Vectors 2020; 13:224. [PMID: 32375862 PMCID: PMC7201803 DOI: 10.1186/s13071-020-04093-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 12/02/2022] Open
Abstract
Background Insecticide resistance is a serious problem for vector control programmes worldwide. Resistance is commonly attributed to mutations at the insecticide’s target site or increased activity of detoxification enzymes. Methods We determined the knockdown concentration (KC50) and lethal concentration (LC50) of deltamethrin in six natural populations of adult Aedes aegypti from southeastern Mexico. These populations were then selected over five generations using the LC50 from the preceding generation that underwent selection, and the heritability of deltamethrin resistance was quantified. For each generation, we also determined the frequency of the kdr alleles L410, I1016 and C1534, and the levels of activity of three enzyme families (α- and β-esterases, mixed-function oxidases and glutathione S-transferases (GST)) associated with insecticide detoxification. Results There was an increase in KC50 and LC50 values in the subsequent generations of selection with deltamethrin (FS5vs FS0). According to the resistance ratios (RRs), we detected increases in LC50 ranging from 1.5 to 5.6 times the values of the parental generation and in KC50 ranging from 1.3–3.8 times the values of the parental generation. Triple homozygous mutant individuals (tri-locus, LL/II/CC) were present in the parental generations and increased in frequency after selection. The frequency of L410 increased from 1.18-fold to 2.63-fold after selection with deltamethrin (FS5vs FS0) in the populations analyzed; for I1016 an increase between 1.19-fold to 2.79-fold was observed, and C1534 was fixed in all populations after deltamethrin selection. Enzymatic activity varied significantly over the generations of selection. However, only α- esterase activity remained elevated in multiple populations after five generations of deltamethrin selection. We observed an increase in the mean activity levels of GSTs in two of the six populations analyzed. Conclusions The high levels of resistance and their association with high frequencies of kdr mutations (V410L, V1016I and F1534C) obtained through artificial selection, suggest an important role of these mutations in conferring resistance to deltamethrin. We highlight the need to implement strategies that involve the monitoring of kdr frequencies in insecticide resistance monitoring and management programmes.![]()
Collapse
Affiliation(s)
- Yamili Contreras-Perera
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Gustavo Ponce-Garcia
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Karina Villanueva-Segura
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Beatriz Lopez-Monroy
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Iram P Rodríguez-Sanchez
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico
| | - Audrey Lenhart
- Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Campus de Ciencias Biologicas y Agropecuarias, Merida, Yucatan, Mexico
| | - Adriana E Flores
- Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Cd, Universitaria, San Nicolas de los Garza, N.L., CP. 66455, Mexico.
| |
Collapse
|
39
|
Cattel J, Faucon F, Le Péron B, Sherpa S, Monchal M, Grillet L, Gaude T, Laporte F, Dusfour I, Reynaud S, David J. Combining genetic crosses and pool targeted DNA-seq for untangling genomic variations associated with resistance to multiple insecticides in the mosquito Aedes aegypti. Evol Appl 2020; 13:303-317. [PMID: 31993078 PMCID: PMC6976963 DOI: 10.1111/eva.12867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023] Open
Abstract
In addition to combating vector-borne diseases, studying the adaptation of mosquitoes to insecticides provides a remarkable example of evolution-in-action driving the selection of complex phenotypes. Actually, most resistant mosquito populations show multi-resistance phenotypes as a consequence of the variety of insecticides employed and of the complexity of selected resistance mechanisms. Such complexity makes the identification of alleles conferring resistance to specific insecticides challenging and prevents the development of molecular assays to track them in the field. Here we showed that combining simple genetic crosses with pool targeted DNA-seq can enhance the specificity of resistance allele's detection while maintaining experimental work and sequencing effort at reasonable levels. A multi-resistant population of the mosquito Aedes aegypti was exposed to three distinct insecticides (deltamethrin, bendiocarb and fenitrothion), and survivors to each insecticide were crossed with a susceptible strain to generate three distinct lines. F2 individuals from each line were then segregated based on their survival to two insecticide doses. Hundreds of genes covering all detoxifying enzymes and insecticide targets together with more than 7,000 intergenic regions equally spread over mosquito genome were sequenced from pools of F0 and F2 individuals unexposed or surviving insecticide. Differential coverage analysis identified 39 detoxification enzymes showing an increased gene copy number in association with resistance. Combining an allele frequency filtering approach with a Bayesian F ST-based genome scan identified multiple genomic regions showing strong selection signatures together with 50 nonsynonymous variations associated with resistance. This study provides a simple and cost-effective approach to improve the specificity of resistance allele's detection in multi-resistant populations while reducing false positives frequently arising when comparing populations showing divergent genetic backgrounds. The identification of novel DNA resistance markers opens new opportunities for improving the tracking of insecticide resistance in the field.
Collapse
Affiliation(s)
- Julien Cattel
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Frédéric Faucon
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Bastien Le Péron
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Stéphanie Sherpa
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Marie Monchal
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Lucie Grillet
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Thierry Gaude
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Frederic Laporte
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | | | - Stéphane Reynaud
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Jean‐Philippe David
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| |
Collapse
|
40
|
Marcombe S, Fustec B, Cattel J, Chonephetsarath S, Thammavong P, Phommavanh N, David JP, Corbel V, Sutherland IW, Hertz JC, Brey PT. Distribution of insecticide resistance and mechanisms involved in the arbovirus vector Aedes aegypti in Laos and implication for vector control. PLoS Negl Trop Dis 2019; 13:e0007852. [PMID: 31830027 PMCID: PMC6932826 DOI: 10.1371/journal.pntd.0007852] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/26/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The yellow fever mosquito Aedes aegypti is the major vector of dengue, yellow fever, Zika, and Chikungunya viruses. Worldwide vector control is largely based on insecticide treatments but, unfortunately, vector control programs are facing operational challenges due to mosquitoes becoming resistant to commonly used insecticides. In Southeast Asia, resistance of Ae. aegypti to chemical insecticides has been documented in several countries but no data regarding insecticide resistance has been reported in Laos. To fill this gap, we assessed the insecticide resistance of 11 Ae. aegypti populations to larvicides and adulticides used in public health operations in the country. We also investigated the underlying molecular mechanisms associated with resistance, including target site mutations and detoxification enzymes putatively involved in metabolic resistance. METHODS AND RESULTS Bioassays on adults and larvae collected in five provinces revealed various levels of resistance to organophosphates (malathion and temephos), organochlorine (DDT) and pyrethroids (permethrin and deltamethrin). Synergist bioassays showed a significant increased susceptibility of mosquitoes to insecticides after exposure to detoxification enzyme inhibitors. Biochemical assays confirmed these results by showing significant elevated activities of cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST) and carboxylesterases (CCE) in adults. Two kdr mutations, V1016G and F1534C, were detected by qPCR at low and high frequency, respectively, in all populations tested. A significant negative association between the two kdr mutations was detected. No significant association between kdr mutations frequency (for both 1534C and 1016G) and survival rate to DDT or permethrin (P > 0.05) was detected. Gene Copy Number Variations (CNV) were detected for particular detoxification enzymes. At the population level, the presence of CNV affecting the carboxylesterase CCEAE3A and the two cytochrome P450 CYP6BB2 and CYP6P12 were significantly correlated to insecticide resistance. CONCLUSIONS These results suggest that both kdr mutations and metabolic resistance mechanisms are present in Laos but their impact on phenotypic resistance may differ in proportion at the population or individual level. Molecular analyses suggest that CNV affecting CCEAE3A previously associated with temephos resistance is also associated with malathion resistance while CNV affecting CYP6BB2 and CYP6P12 are associated with pyrethroid and possibly DDT resistance. The presence of high levels of insecticide resistance in the main arbovirus vector in Laos is worrying and may have important implications for dengue vector control in the country.
Collapse
Affiliation(s)
- Sébastien Marcombe
- Medical Entomology and Vector-Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Laos
| | - Bénédicte Fustec
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Julien Cattel
- Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS - Université Grenoble-Alpes, Grenoble, France
| | | | - Phoutmany Thammavong
- Medical Entomology and Vector-Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Laos
| | - Nothasin Phommavanh
- Medical Entomology and Vector-Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Laos
| | - Jean-Philippe David
- Laboratoire d'Ecologie Alpine (LECA), UMR 5553 CNRS - Université Grenoble-Alpes, Grenoble, France
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | | | | | - Paul T. Brey
- Medical Entomology and Vector-Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Laos
| |
Collapse
|
41
|
Smith LB, Sears C, Sun H, Mertz RW, Kasai S, Scott JG. CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in Aedes aegypti in the presence and absence of kdr. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:119-126. [PMID: 31519246 DOI: 10.1016/j.pestbp.2019.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/09/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of controlling A. aegypti, but widespread insecticide resistance has emerged. The two main mechanisms of pyrethroid resistance in A. aegypti are CYP-mediated detoxification and mutations in the target site, voltage-sensitive sodium channel (Vssc), referred to as knockdown resistance (kdr). Knowledge about the contributions and interactions of these mechanisms to resistance is important for the understanding of the molecular and evolutionary basis of insecticide resistance, and to determine the effectiveness of insecticides. In this study, we address two aims: 1) determine the patterns of CYP-mediated cross-resistance to pyrethroid and OP insecticides, both in the presence and absence of kdr (S989P + V1016G), and 2) determine whether the interaction between the two mechanisms yields a greater than, less than, or additive effect on resistance. We tested seven pyrethroids and four OPs against three congenic strains of A. aegypti: ROCK (susceptible), CYP:ROCK (CR) (resistant due to CYP-mediated detoxification without kdr), and CYP + KDR:ROCK (CKR) (resistant due to both CYPs and kdr), and compared these to the congenic KDR:ROCK strain that was previously reported. We found that resistance ratios (RRs) were variable between pyrethroids and strains, ranging from 6.2- to 42-fold for CR, and 70- to 261-fold for CKR. In general, we found that CYP-mediated resistance alone contributes less to resistance than kdr. The effect of the combined mechanisms on resistance was significantly greater than additive for all pyrethroids except (1R)-trans-fenfluthrin. CYP-mediated pyrethroid resistance conferred cross-resistance to both methyl paraoxon and fenitrothion, and negative cross-resistance to methyl parathion and naled. Based on our results, we recommend that etofenprox and cyfluthrin be avoided for A. aegypti control in areas where these two resistance mechanisms are prevalent.
Collapse
Affiliation(s)
- Letícia B Smith
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Colin Sears
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Haina Sun
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Robert W Mertz
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
| | - Shinji Kasai
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA; Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjukuku, Tokyo, Japan
| | - Jeffrey G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
42
|
Saavedra‐Rodriguez K, Campbell CL, Lenhart A, Penilla P, Lozano‐Fuentes S, Black WC. Exome-wide association of deltamethrin resistance in Aedes aegypti from Mexico. INSECT MOLECULAR BIOLOGY 2019; 28:591-604. [PMID: 30758862 PMCID: PMC6766855 DOI: 10.1111/imb.12575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Aedes aegypti is the major vector of a number of arboviruses that cause disease in humans. Without vaccines or pharmaceuticals, pyrethroid insecticides remain the major tool for public health protection. Pyrethroid resistance is now widespread. Replacement substitutions in the voltage-gated sodium channel (vgsc) that reduce the stability of pyrethroid binding account for most of the resistance, but metabolic mechanisms also inactivate pyrethroids. High-throughput sequencing and the A. aegypti L5 annotated physical map has allowed interrogation of the exome for genes and single-nucleotide polymorphisms associated with pyrethroid resistance. We exposed females of A. aegypti from Mexico to a deltamethrin discriminating dose to designate them as resistant (active after 1 h) or susceptible (knocked down with no recovery after 4 h). The vgsc on chromosome 3 had the highest association, followed by genes proximal to vgsc. We identified potential detoxification genes located singly (eg HPX8C) or within clusters in chromosome 2 [three esterase clusters, two of cytochrome P450 monooxygenases (CYP)] and chromosome 3 (one cluster of 16 CYP325 and seven CYP9 genes). Deltamethrin resistance in A. aegypti is associated with mutations in the vgsc gene and a large assortment of genes.
Collapse
Affiliation(s)
- K. Saavedra‐Rodriguez
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
| | - C. L. Campbell
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
| | - A. Lenhart
- Division of Parasitic Diseases and MalariaCenter for Global Health, Centers for Disease Control and PreventionAtlantaGAUSA
| | - P. Penilla
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
- Division of Parasitic Diseases and MalariaCenter for Global Health, Centers for Disease Control and PreventionAtlantaGAUSA
| | - S. Lozano‐Fuentes
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
| | - W. C. Black
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
| |
Collapse
|
43
|
Su X, Guo Y, Deng J, Xu J, Zhou G, Zhou T, Li Y, Zhong D, Kong L, Wang X, Liu M, Wu K, Yan G, Chen XG. Fast emerging insecticide resistance in Aedes albopictus in Guangzhou, China: Alarm to the dengue epidemic. PLoS Negl Trop Dis 2019; 13:e0007665. [PMID: 31525199 PMCID: PMC6762209 DOI: 10.1371/journal.pntd.0007665] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/26/2019] [Accepted: 07/25/2019] [Indexed: 02/05/2023] Open
Abstract
Dengue is one of the most serious mosquito-borne infectious diseases in the world. Aedes albopictus is the most invasive mosquito and one of the primary vectors of dengue. Vector control using insecticides is the only viable strategy to prevent dengue virus transmission. In Guangzhou, after the 2014 pandemic, massive insecticides have been implemented. Massive insecticide use may lead to the development of resistance, but few reports are available on the status of insecticide resistance in Guangzhou after 2014. In this study, Ae. albopictus were collected from four districts with varied dengue virus transmission intensity in Guangzhou from 2015 to 2017. Adult Ae. albopictus insecticide susceptibility to deltamethrin (0.03%), permethrin(0.25%), DDT(4%), malathion (0.8%) and bendiocarb (0.1%) was determined by the standard WHO tube test, and larval resistance bioassays were conducted using temephos, Bacillus thuringiensis israelensis (Bti), pyriproxyfen (PPF) and hexaflumuron. Mutations at the voltage-gated sodium channel (VGSC) gene and acetylcholinesterase (AChE) gene were analyzed. The effect of cytochrome P450s on the resistance of Ae. albopictus to deltamethrin was tested using the synergistic agent piperonyl butoxide (PBO). The results showed that Ae. albopictus populations have rapidly developed very high resistances to multiple commonly used insecticides at all study areas except malathion, Bti and hexaflumuron. We found 1534 codon mutations in the VGSC gene that were significantly correlated with the resistance to pyrethroids and DDT, and 11 synonymous mutations were also found in the gene. The resistance to deltamethrin can be significantly reduced by PBO but may generated cross-resistance to PPF. Fast emerging resistance in Ae. albopictus may affect mosquito management and threaten the prevention and control of dengue, similar to the resistance in Anopheles mosquitoes has prevented the elimination of malaria and call for timely and guided insecticide management.
Collapse
Affiliation(s)
- Xinghua Su
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yijia Guo
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jielin Deng
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiabao Xu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Tengfei Zhou
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiji Li
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
| | - Ling Kong
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoming Wang
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Min Liu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kun Wu
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, Irvine, CA, United States of America
- * E-mail: (GY); (XGC)
| | - Xiao-Guang Chen
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
- * E-mail: (GY); (XGC)
| |
Collapse
|
44
|
Sever B, Altıntop MD, Özdemir A, Tabanca N, Estep AS, Becnel JJ, Bloomquist JR. Biological evaluation of a series of benzothiazole derivatives as mosquitocidal agents. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractAedes aegypti is associated with the transmission of numerous human and animal diseases, such as yellow fever, dengue fever, chikungunya, and more recently Zika virus. Emerging insecticide resistance has created a need to develop new mosquitocidal agents for effective control operations. A series of benzothiazole-piperidine derivatives (1-24) were investigated for their larvicidal and adulticidal effects on Ae. aegypti It was observed that compounds 2, 4, 6, 7, 8, 11 and 13 showed notable larvicidal activity. Furthermore, compounds 6 and 10 showed promising adulticidal activity. Based on the mosquitocidal properties of these compounds, docking studies were also carried out in the active site of the AeSCP2 enzyme to explore any insights into further in vitro enzyme studies. Docking results indicated that all these active compounds showed reasonable interactions with critical residues in the active site of this enzyme. This outcome suggested that these compounds might show their larvicidal and adulticidal effects via the inhibition of AeSCP2. According to in vitro and in silico studies, compounds 2, 4, 6, 7, 8, 10, 11 and 13 stand out as candidates for further studies.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470Eskişehir, Turkey
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470Eskişehir, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470Eskişehir, Turkey
| | - Nurhayat Tabanca
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Alden S. Estep
- Navy Entomology Center of Excellence, Research & Development Department, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - James J. Becnel
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Jeffrey R. Bloomquist
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
45
|
Tsakireli D, Riga M, Kounadi S, Douris V, Vontas J. Functional characterization of CYP6A51, a cytochrome P450 associated with pyrethroid resistance in the Mediterranean fruit fly Ceratitis capitata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:196-203. [PMID: 31153469 DOI: 10.1016/j.pestbp.2019.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Overexpression of the cytochrome P450 monooxygenase CYP6A51 has been previously associated with pyrethroid resistance in the Mediterranean fruit fly (medfly) Ceratitis capitata, an important pest species worldwide; however, this association has not been functionally validated. We expressed CYP6A51 gene in Escherichia coli and produced a functional enzyme with preference for the chemiluminescent substrate Luciferin-ME EGE. In vitro metabolism assays revealed that CYP6A51 is capable of metabolizing two insecticides that share the same mode of action, λ-cyhalothrin and deltamethrin, whereas no metabolism or substrate depletion was observed in the presence of spinosad or malathion. We further expressed CYP6A51 in vivo via a GAL4/UAS system in Drosophila melanogaster flies, driving expression with detoxification tissue-specific drivers. Toxicity bioassays indicated that CYP6A51 confers knock-down resistance to both λ-cyhalothrin and deltamethrin. Detection of CYP6A51 - associated pyrethroid resistance in field populations may be important for efficient Insecticide Resistance Management (IRM) strategies.
Collapse
Affiliation(s)
- Dimitra Tsakireli
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Laboratory of Molecular Entomology, Department of Biology, University of Crete, GR-700 13, Heraklion, Crete, Greece
| | - Maria Riga
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece
| | - Stella Kounadi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Laboratory of Molecular Entomology, Department of Biology, University of Crete, GR-700 13, Heraklion, Crete, Greece
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece.
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece.
| |
Collapse
|
46
|
Rault LC, O'Neal ST, Johnson EJ, Anderson TD. Association of age, sex, and pyrethroid resistance status on survival and cytochrome P450 gene expression in Aedes aegypti (L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:96-104. [PMID: 31027587 DOI: 10.1016/j.pestbp.2019.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Aedes aegypti is a vector of viruses that negatively impact human health. Insecticide resistance complicates mosquito control efforts, but understanding the mechanisms of resistance can help to improve management practices. This study examined different factors that could influence the interpretation of toxicity bioassays and gene expression studies in A. aegypti, including sex and age, in the context of resistance to pyrethroids. Bioassays using a pyrethroid-resistant strain, Puerto Rico (PR), and a pyrethroid-susceptible strain, Rockefeller (Rock), of A. aegypti were conducted with females and males of three age groups to determine differences in mortality induced by deltamethrin. Overall, strain was the only factor with a significant effect on the LD50. Enzyme assays showed that cytochrome P450 monooxygenase activity in PR was constitutively higher than in Rock, and that pretreatment with the cytochrome P450 inhibitor piperonyl butoxide (PBO) followed by a topical application of deltamethrin (LD25) significantly increased mortality in both strains. Evaluation of the expression levels of seven CYP9J genes previously reported to be involved in pyrethroid resistance revealed that CYP9J10, CYP9J19, and CYP9J28 were more highly expressed in PR than in Rock at all ages of females and males, indicating that they may be essential for resistance. The expression of CYP9J24, CYP9J26, CYP9J27, and CYP9J32 was higher in PR males compared to other groups, including PR females. Significant differences in expression between sexes and strains were also observed as a result of age.
Collapse
Affiliation(s)
- Leslie C Rault
- Department of Entomology, University of Nebraska, 103 Entomology Hall, Lincoln, NE 68583, USA.
| | - Scott T O'Neal
- Department of Entomology, University of Nebraska, 103 Entomology Hall, Lincoln, NE 68583, USA
| | - Ellis J Johnson
- Department of Entomology, University of Nebraska, 103 Entomology Hall, Lincoln, NE 68583, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, 103 Entomology Hall, Lincoln, NE 68583, USA
| |
Collapse
|
47
|
Zhou X, Yang C, Liu N, Li M, Tong Y, Zeng X, Qiu X. Knockdown resistance (kdr) mutations within seventeen field populations of Aedes albopictus from Beijing China: first report of a novel V1016G mutation and evolutionary origins of kdr haplotypes. Parasit Vectors 2019; 12:180. [PMID: 31014392 PMCID: PMC6480817 DOI: 10.1186/s13071-019-3423-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/29/2019] [Indexed: 12/19/2022] Open
Abstract
Background Aedes albopictus (Skuse) is an important vector of chikungunya, dengue, yellow fever and Zika viruses. In the absence of anti-viral medication and with limited availability of a commercial vaccine for public health use, vector control remains an effective means for reducing Aedes-borne disease morbidity. Knowledge about genetic mutations associated with insecticide resistance (IR) is a prerequisite for developing rapid resistance diagnosis, and the distribution and frequency of IR conferring mutations is important information for making smart vector control decisions. Methods Partial DNA sequences of domain II and domain III of Ae. albopictus voltage gated sodium channel (VGSC) gene were amplified from a total of 426 individuals, collected from 17 sites in the Beijing municipality. These DNA fragments were sequenced to discover the possible genetic mutations mediating knockdown resistance (kdr) to pyrethroids. The frequency and distribution of kdr mutations were assessed in the 17 Ae. albopictus populations. The origin of kdr mutations was investigated by haplotype clarification and phylogenetic analysis. Results Sequence alignments revealed the existence of multiple mutations (V1016G, I1532T, F1534S and F1534L) in VGSC. The highest frequency of the mutant 1016G allele (0.647) was found in Haidian, while 1016G was not detected in Huai Rou, Yan Qing, Ping Gu and Shun Yi. The frequency of 1532T was highest (0.537) in the population from the Olympic Forest Park (OFP, Chao Yang District), but not detectable in Huai Rou and Mi Yun. Two mutations were observed at codon 1534 with different distribution patterns: 1534L was only found in Tong Zhou (TZ) with a frequency of 0.017, while 1534S was distributed in TZ, OFP, Fang Shan, Da Xing and Shi Jing Shan with frequencies ranging from 0.019 (OFP) to 0.276 (TZ). One 1016G, one 1532T, one 1534L and two 1534S haplotypes were identified. Conclusions Multiple mutations (V1016G, I1532T, F1534L/S) in VGSC were found in Ae. albopictus in Beijing. This represents the first report of V1016G in Ae. albopictus. Sequence alignment and phylogenetic analysis revealed multiple origins of 1534S. The spatial heterogeneity in distribution and frequency of kdr mutations calls for a site-specific strategy for the monitoring of insecticide resistance. The relatively high frequencies of V1016G warn of a risk of pyrethroid resistance in mosquitoes in the urban zones.
Collapse
Affiliation(s)
- Xiaojie Zhou
- Beijing Research Center for Preventive Medicine, Beijing Center for Disease Control and Prevention, Beijing, 100013, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chan Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nian Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute of Physical Science and Information Technology, Anhui University, Anhui, 230039, China
| | - Mei Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Tong
- Beijing Research Center for Preventive Medicine, Beijing Center for Disease Control and Prevention, Beijing, 100013, China
| | - Xiaopeng Zeng
- Beijing Research Center for Preventive Medicine, Beijing Center for Disease Control and Prevention, Beijing, 100013, China.
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
48
|
Miah MA, Elzaki MEA, Husna A, Han Z. An overexpressed cytochrome P450 CYP439A1v3 confers deltamethrin resistance in Laodelphax striatellus Fallén (Hemiptera: Delphacidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21525. [PMID: 30511429 DOI: 10.1002/arch.21525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deltamethrin resistance in Laodelphax striatellus had been associated with its oxidative detoxification by overexpression of four cytochrome P450 monooxygenases like CYP353D1v2, CYP6FU1, CYP6AY3v2, and CYP439A1v3. The first three P450s have been validated for insecticide-metabolizing capability and only CYP6FU1 was found to degrade deltamethrin. In this study, an investigation was conducted to confirm the capability of CYP439A1v3 to degrade deltamethrin. The CYP439A1v3 was first expressed in Sf9 cell line and its recombinant enzyme was tested for metabolic activity against different insecticides using substrate depletion assay combined with metabolite identification. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and carbon monoxide (CO)-difference spectra analysis showed that the intact cytochrome P450 protein was successfully expressed. Tests with probe substrates proved its enzyme activity, as p-nitroanisole, ethoxycoumarin, and ethoxyresorufin were preferentially metabolized (specific activity 7.767 ± 1.22, 1.325 ± 0.37, and 0.355 ± 0.37 nmol/min per mg of protein, respectively) while only luciferin-HEGE was not. In vitro incubation of the recombinant CYP439A1v3 protein with deltamethrin revealed hydroxylation by producing hydroxydeltamethrin. On the contrary, no metabolite/metabolism was seen with nonpyrethroid insecticide, including imidacloprid, buprofezin, chlorpyrifos, and fipronil. To the best of our knowledge, this is the first study to link a CYP450 from family 439 to confer pyrethroid resistance to L. striatellus. This finding should help in the design of appropriate insecticide resistance management for control of this strain of L. striatellus.
Collapse
Affiliation(s)
- Mohammad Asaduzzaman Miah
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, The Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing, Jiangsu, China
- Faculty of Agriculture, Patuakhali Science and Technology University, Bangladesh
- Department of Biology, School of Distance Education, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohammed Esmail Abdalla Elzaki
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, The Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing, Jiangsu, China
| | - Asmaul Husna
- Faculty of Agriculture, Patuakhali Science and Technology University, Bangladesh
- Department of Biology, School of Distance Education, Universiti Sains Malaysia, Penang, Malaysia
| | - Zhaojun Han
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, The Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing, Jiangsu, China
| |
Collapse
|
49
|
Sombié A, Saiki E, Yaméogo F, Sakurai T, Shirozu T, Fukumoto S, Sanon A, Weetman D, McCall PJ, Kanuka H, Badolo A. High frequencies of F1534C and V1016I kdr mutations and association with pyrethroid resistance in Aedes aegypti from Somgandé (Ouagadougou), Burkina Faso. Trop Med Health 2019; 47:2. [PMID: 30787670 PMCID: PMC6318976 DOI: 10.1186/s41182-018-0134-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/25/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Resistance to pyrethroid insecticides involving kdr mutations is widespread in Aedes aegypti (L.) (Diptera: Culicidae) and potentially could impact control efforts in endemic countries. Dengue cases had been sporadic in Burkina Faso for over a decade prior to the 2016-2017 outbreak that resulted in 15,074 suspected cases and 36 deaths, mainly in Ouagadougou. These outbreaks highlighted the lack of information on numerous aspects of the biology, behaviour and insecticide status of local dengue vector populations that are fundamental to vector control. RESULTS We investigated the insecticide resistance profiles and the kdr mutations involved in pyrethroid resistance of Ae. aegypti from Somgandé, a district of Ouagadougou. WHO bioassays revealed that the local Ae. aegypti populations were highly resistant to pyrethroids with mortalities of 15% for permethrin and 37% for deltamethrin. Resistance to carbamates was also detected with mortalities of 55% for propoxur and 90% for bendiocarb, but high mortalities (> 97%) to organophosphates (malathion and fenitrothion) indicated susceptibility. Allele-specific PCR and voltage-gated sodium channel gene sequencing showed a very high frequency (97%) of the F1534C kdr allele whilst the V1016I kdr mutation frequency was 46%. Association of dual-locus kdr mutations was detected for permethrin resistance. CONCLUSION We conclude that in this locality of Burkina Faso, Ae. aegypti is resistant to pyrethroid and carbamate insecticides but remains susceptible to organophosphates, providing useful information for possible future control.
Collapse
Affiliation(s)
- Aboubacar Sombié
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Ouaga 1 JKZ, Ouagadougou, Burkina Faso
| | - Erisha Saiki
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
| | - Félix Yaméogo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Ouaga 1 JKZ, Ouagadougou, Burkina Faso
| | - Tatsuya Sakurai
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Shirozu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Antoine Sanon
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Ouaga 1 JKZ, Ouagadougou, Burkina Faso
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hirotaka Kanuka
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Ouaga 1 JKZ, Ouagadougou, Burkina Faso
| |
Collapse
|
50
|
Antivirus effectiveness of ivermectin on dengue virus type 2 in Aedes albopictus. PLoS Negl Trop Dis 2018; 12:e0006934. [PMID: 30452439 PMCID: PMC6277121 DOI: 10.1371/journal.pntd.0006934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 12/03/2018] [Accepted: 10/18/2018] [Indexed: 12/27/2022] Open
Abstract
Background Dengue fever is the most rapidly spreading mosquito-borne viral disease over the past 50 years, with a 30-fold increase in global incidence. Dengue vector control is a key component for the dengue control strategy, since no absolutely effective vaccine or drug is available yet. However, the rapid rise and spread of mosquito insecticide resistance have become major threats to the efficiency of insecticide-based vector control activities. Thus, innovative vector control tools are badly needed. This study aims to confirm the antivirus effectiveness of ivermectin on dengue virus type 2 (DENV-2) in Aedes albopictus (Skuse, 1894), then to explore its potential use in the combating to the dengue epidemics. Methods Aedes albopictus were first infected with DENV-2 in human whole blood, and at the fourth day after infectious blood feeding, they were divided into eight groups. Seven of them were held for six days with access to 0, 2, 4, 8, 16, 32 and 64 ng/ml ivermectin, respectively, and the last one was set as a historical control group, which was stored at -80°C until being detected at the same time with the other groups. Each mosquito was detected using real-time fluorescent RT-PCR kit. DENV-2 RNA concentration (copies/ml) and infection rate in each group were compared. Results Both of quantitatively and qualitatively inhibiting effects of ivermectin have been detected in this study. Generally, DENV-2 replicated well in Aedes albopictus without ivermectin intervention, whose virus loads exhibited significantly higher when the mosquitoes were holding from 4 days to 10 days after infectious blood feeding. In contrast, with the treatment of ivermectin, the infection rate was reduced by as much as 49.63%. The regression equation between infection rates (Y2) and ivermectin concentration log2 values (X2) was obtained as Y2 = 91.41–7.21*X2 with R2 = 0.89. Conclusion Ivermectin can directly or indirectly inhibit DENV-2 multiplication in Aedes albopictus. Moreover, the actual concentration for application in zooprophylaxis needs to be confirmed in the further field trials. Dengue fever is one of neglected vector-borne tropical diseases with a 30-fold increase in global incidence recently. In 2012, World Health Organization set a goal to reduce dengue mortality by at least 50% by 2020. Being faced with more challenges in the dengue control programs, such as the increase of dengue outbreaks, lacking absolutely effective vaccine, rise of vector insecticide resistance and so on; innovative vector control tools are urgently needed for current control programs on dengue fever. To find a new avenue in vector control, we for the first time assessed the inhibiting effectiveness of ivermectin on dengue virus type 2 (DENV-2) inside Aedes mosquitoes. We found that about 80% Aedes albopictus mosquitoes were effectively infected with DENV-2 without treatment of ivermectin. But in the groups of ivermectin treatment, the infection rate of DENV-2 and the median of virus loads were significantly reduced by up to 49.63% and 99.99%, respectively. Both quantitatively and qualitatively inhibiting effects of ivermectin were detected. We found out that ivermectin was able to effectively inhibit the DENV-2 multiplication in Aedes albopictus, which may gave us a hint that using ivermectin in some control programs as a zooprophylaxis to block dengue epidemic through inhibiting DENV-2 in field Aedes mosquitoes.
Collapse
|