1
|
Walker AJ, Rinaldi G, Shakir EMN. Molecular interactions between male and female schistosomes - a role for remote communication? Trends Parasitol 2025; 41:28-37. [PMID: 39665922 DOI: 10.1016/j.pt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Persistent physical interaction between male and female schistosome adult worms has long been shown to be crucial for their development and sexual maturation, particularly for the female. Although not fully understood, worm pairing promotes local molecular communication between sexes, driving gonad and vitellaria differentiation. In this opinion article we (i) summarise evidence concerning molecular interactions underlying the physical pairing, and (ii) propose a new paradigm whereby remote male-female molecular communication may play an overlooked role in parasite sexual maturation. In this context we discuss recent research that supports both physical and remote male-female interactions driving differentiation of the gonads/vitellaria. This remote communication between sexes may be mediated by excretory-secretory products (ESPs). Integrated hypotheses are presented to stimulate research in this important and emerging field.
Collapse
Affiliation(s)
- Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK.
| | - Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, SY23 3DA, UK; Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Eman M N Shakir
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
2
|
Maharjan S, Kirk RS, Lawton SP, Walker AJ. Human growth factor-mediated signalling through lipid rafts regulates stem cell proliferation, development and survival of Schistosoma mansoni. Open Biol 2024; 14:230262. [PMID: 38195062 PMCID: PMC10776228 DOI: 10.1098/rsob.230262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 01/11/2024] Open
Abstract
Although the mechanisms by which schistosomes grow and develop in humans are poorly defined, their unique outer tegument layer, which interfaces with host blood, is considered vital to homeostasis of the parasite. Here, we investigated the importance of tegument lipid rafts to the biology of Schistosoma mansoni in the context of host-parasite interactions. We demonstrate the temporal clustering of lipid rafts in response to human epidermal growth factor (EGF) during early somule development, concomitant with the localization of anteriorly orientated EGF receptors (EGFRs) and insulin receptors, mapped using fluorescent EGF/insulin ligand. Methyl-β-cyclodextrin (MβCD)-mediated depletion of cholesterol from lipid rafts abrogated the EGFR/IR binding at the parasite surface and led to modulation of protein kinase C, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase and Akt signalling pathways within the parasite. Furthermore, MβCD-mediated lipid raft disruption, and blockade of EGFRs using canertinib, profoundly reduced somule motility and survival, and attenuated stem cell proliferation and somule growth and development particularly to the fast-growing liver stage. These findings provide a novel paradigm for schistosome development and vitality in the host, driven through host-parasite interactions at the tegument, that might be exploitable for developing innovative therapeutic approaches to combat human schistosomiasis.
Collapse
Affiliation(s)
- Shradha Maharjan
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| | - Scott P. Lawton
- Centre for Epidemiology and Planetary Health, SRUC School of Veterinary Medicine, Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
3
|
Shakir EMN, Rinaldi G, Kirk RS, Walker AJ. Schistosoma mansoni excretory-secretory products induce protein kinase signalling, hyperkinesia, and stem cell proliferation in the opposite sex. Commun Biol 2023; 6:985. [PMID: 37752334 PMCID: PMC10522684 DOI: 10.1038/s42003-023-05333-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Adult male and female schistosomes in copula dwell within human blood vessels and lay eggs that cause the major Neglected Tropical Disease human schistosomiasis. How males and females communicate to each other is poorly understood; however, male-female physical interaction is known to be important. Here, we investigate whether excretory-secretory products (ESPs), released into the external milieu by mature Schistosoma mansoni, might induce responses in the opposite sex. We demonstrate that ESPs adhere to the surface of opposite sex worms inducing the activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) pathways, particularly in the parasite tegument. Furthermore, we show that mature worms stimulated signalling in juvenile worms. Strikingly, we demonstrate that ESPs from the opposite sex promote stem cell proliferation, in an ERK- and p38 MAPK-dependent manner, in the tegument and within the testes of males, and the ovaries and vitellaria of females. Hyperkinesia also occurs following opposite sex ESP exposure. Our findings support the hypothesis that male and female schistosomes may communicate over distance to modulate key processes underlying worm development and disease progression, opening unique avenues for schistosomiasis control.
Collapse
Affiliation(s)
- Eman M N Shakir
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK.
| |
Collapse
|
4
|
CaMKII regulates neuromuscular activity and survival of the human blood fluke Schistosoma mansoni. Sci Rep 2022; 12:19831. [PMID: 36400915 PMCID: PMC9674609 DOI: 10.1038/s41598-022-23962-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Calcium/calmodulin dependant protein kinase II (CaMKII), an important transducer of Ca2+ signals, orchestrates multiple cellular functions in animals. Here we investigated the importance of CaMKII to Schistosoma mansoni, a blood parasite that causes human schistosomiasis. We demonstrate that phosphorylated (activated) CaMKII is present in cercariae, schistosomula and adult worms, and show that striking activation occurs in the nervous tissue of these parasite life-stages; CaMKII was also activated in the tegument and muscles of adult worms and the vitellaria of females. Exposure of worms to the anti-schistosomal drug praziquantel (PZQ) induced significant CaMKII activation and depletion of CaMKII protein/activation in adult worms resulted in hypokinesia, reduced vitality and death. At medium confidence (global score ≥ 0.40), S. mansoni CaMKII was predicted to interact with 51 proteins, with many containing CaMKII phosphorylation sites and nine mapped to phosphoproteome data including sites within a ryanodine receptor. The CaMKII network was functionally enriched with mitogen-activated protein kinase, Wnt, and notch pathways, and ion-transport and voltage-dependent channel protein domains. Collectively, these data highlight the intricacies of CaMKII signalling in S. mansoni, show CaMKII to be an active player in the PZQ-mediated response of schistosomes and highlight CaMKII as a possible target for the development of novel anti-schistosome therapeutics.
Collapse
|
5
|
Phuphisut O, Kobpornchai P, Chusongsang P, Limpanont Y, Kanjanapruthipong T, Ampawong S, Reamtong O, Adisakwattana P. Molecular characterization and functional analysis of Schistosoma mekongi neuroglobin homolog. Acta Trop 2022; 231:106433. [PMID: 35364046 DOI: 10.1016/j.actatropica.2022.106433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 11/01/2022]
Abstract
Schistosomes are blood-dwelling parasites that are constantly exposed to high-level oxidative stress arising from parasite-intrinsic and host defense mechanisms. To survive in their hosts, schistosomes require an antioxidant system to minimize with oxidative stress. Several schistosome antioxidant enzymes have been identified and have been suggested to play indispensable antioxidant roles for the parasite. In addition to antioxidant enzymes, non-enzymatic antioxidants including small molecules, peptides, and proteins have been identified and characterized. Neuroglobin (Ngb), a nervous system-specific heme-binding protein, has been classified as a non-enzymatic antioxidant and is capable of scavenging a variety of free radical species. The antioxidant activity of Ngb has been well-studied in humans. Ngb is involved in cellular oxygen homeostasis and reactive oxygen/nitrogen scavenging in the central and peripheral nervous systems, but its functions in schistosome parasites have not yet been characterized. In this study, we aimed to characterize the molecular properties and functions of Schistosoma mekongi Ngb (SmeNgb) using bioinformatic, biochemical, and molecular biology approaches. The amino acid sequence of Ngb was highly conserved among schistosomes as well as closely related trematodes. SmeNgb was abundantly localized in the gastrodermis, vitelline, and ovary of adult female S. mekongi worms as well as in the tegument of adult male worms. Assessment of antioxidant activity demonstrated that recombinant SmeNgb had Fe2+ chelating and hydrogen peroxide scavenging activities. Intriguingly, siRNA silencing of SmeNgb gene expression resulted in tegument pathology. Understanding the properties and functions of SmNgb will help in future development of effective treatments and vaccines against S. mekongi, other schistosome parasites, and other platyhelminths.
Collapse
|
6
|
Inhibitors of protein kinases A and C impair the motility of oncospheres of the model tapeworm Hymenolepis microstoma. Mol Biochem Parasitol 2021; 246:111423. [PMID: 34562553 DOI: 10.1016/j.molbiopara.2021.111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/05/2021] [Accepted: 09/20/2021] [Indexed: 11/20/2022]
Abstract
The oncosphere larvae of tapeworms cyclically extend and retract their hooks during the penetration of the intestine of their intermediate hosts. The mechanisms regulating these movements are essentially unknown, in part due to the biohazardous nature of oncospheres from human pathogens. In this work, we standardized a method for the analysis of motility of hatched oncospheres (hexacanths) of the model tapeworm Hymenolepis microstoma. We used this assay to explore the relevance of protein kinases C (PKC) and A (PKA) in these processes. Pharmacological inhibition of the PKC pathway resulted in impaired larval motility. On the other hand, the PKA inhibitor H-89 potently blocked larval motility, as well as the motility of other life stages, although other inhibitors of the PKA pathway were not effective. This work represents the first study of the mechanisms that regulate the motility of oncospheres, and provides a path for further exploration.
Collapse
|
7
|
Munday JC, Kunz S, Kalejaiye TD, Siderius M, Schroeder S, Paape D, Alghamdi AH, Abbasi Z, Huang SX, Donachie AM, William S, Sabra AN, Sterk GJ, Botros SS, Brown DG, Hoffman CS, Leurs R, de Koning HP. Cloning and functional complementation of ten Schistosoma mansoni phosphodiesterases expressed in the mammalian host stages. PLoS Negl Trop Dis 2020; 14:e0008447. [PMID: 32730343 PMCID: PMC7430754 DOI: 10.1371/journal.pntd.0008447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/17/2020] [Accepted: 06/02/2020] [Indexed: 01/29/2023] Open
Abstract
Only a single drug against schistosomiasis is currently available and new drug development is urgently required but very few drug targets have been validated and characterised. However, regulatory systems including cyclic nucleotide metabolism are emerging as primary candidates for drug discovery. Here, we report the cloning of ten cyclic nucleotide phosphodiesterase (PDE) genes of S. mansoni, out of a total of 11 identified in its genome. We classify these PDEs by homology to human PDEs. Male worms displayed higher expression levels for all PDEs, in mature and juvenile worms, and schistosomula. Several functional complementation approaches were used to characterise these genes. We constructed a Trypanosoma brucei cell line in which expression of a cAMP-degrading PDE complements the deletion of TbrPDEB1/B2. Inhibitor screens of these cells expressing only either SmPDE4A, TbrPDEB1 or TbrPDEB2, identified highly potent inhibitors of the S. mansoni enzyme that elevated the cellular cAMP concentration. We further expressed most of the cloned SmPDEs in two pde1Δ/pde2Δ strains of Saccharomyces cerevisiae and some also in a specialised strain of Schizosacharomyces pombe. Five PDEs, SmPDE1, SmPDE4A, SmPDE8, SmPDE9A and SmPDE11 successfully complemented the S. cerevisiae strains, and SmPDE7var also complemented to a lesser degree, in liquid culture. SmPDE4A, SmPDE8 and SmPDE11 were further assessed in S. pombe for hydrolysis of cAMP and cGMP; SmPDE11 displayed considerable preferrence for cGMP over cAMP. These results and tools enable the pursuit of a rigorous drug discovery program based on inhibitors of S. mansoni PDEs.
Collapse
Affiliation(s)
- Jane C. Munday
- Institute of Infection, Immunity and inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Stefan Kunz
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, The Netherlands
| | - Titilola D. Kalejaiye
- Institute of Infection, Immunity and inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Marco Siderius
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, The Netherlands
| | | | - Daniel Paape
- Institute of Infection, Immunity and inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Ali H. Alghamdi
- Institute of Infection, Immunity and inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Zainab Abbasi
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Sheng Xiang Huang
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Anne-Marie Donachie
- Institute of Infection, Immunity and inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Samia William
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Egypt
| | - Abdel Nasser Sabra
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Egypt
| | - Geert Jan Sterk
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, The Netherlands
| | - Sanaa S. Botros
- Department of Pharmacology, Theodor Bilharz Research Institute, Warrak El-Hadar, Imbaba, Egypt
| | - David G. Brown
- School of Biosciences, University of Kent, United Kingdom
| | - Charles S. Hoffman
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Rob Leurs
- Division of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, The Netherlands
| | - Harry P. de Koning
- Institute of Infection, Immunity and inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
8
|
Fan J, Wu H, Li K, Liu X, Tan Q, Cao W, Liang B, Ye B. Transcriptomic Features of Echinococcus granulosus Protoscolex during the Encystation Process. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:287-299. [PMID: 32615742 PMCID: PMC7338903 DOI: 10.3347/kjp.2020.58.3.287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/27/2022]
Abstract
Cystic echinococcosis (CE) is a zoonotic infection caused by Echinococcus granulosus larvae. It seriously affects the development of animal husbandry and endangers human health. Due to a poor understanding of the cystic fluid formation pathway, there is currently a lack of innovative methods for the prevention and treatment of CE. In this study, the protoscoleces (PSCs) in the encystation process were analyzed by high-throughput RNA sequencing. A total of 32,401 transcripts and 14,903 cDNAs revealed numbers of new genes and transcripts, stage-specific genes, and differently expressed genes. Genes encoding proteins involved in signaling pathways, such as putative G-protein coupled receptor, tyrosine kinases, and serine/threonine protein kinase, were predominantly up-regulated during the encystation process. Antioxidant enzymes included cytochrome c oxidase, thioredoxin glutathione, and glutathione peroxidase were a high expression level. Intriguingly, KEGG enrichment suggested that differentially up-regulated genes involved in the vasopressin-regulated water reabsorption metabolic pathway may play important roles in the transport of proteins, carbohydrates, and other substances. These results provide valuable information on the mechanism of cystic fluid production during the encystation process, and provide a basis for further studies on the molecular mechanisms of growth and development of PSCs.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Hongye Wu
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Kai Li
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Xunuo Liu
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Qingqing Tan
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Wenqiao Cao
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
| | - Bo Liang
- Chongqing No.18 Middle School, Chongqing 400016, China
| | - Bin Ye
- Department of Pathogenic Biology, Chongqing Medical University, Chongqing 400016, China
- Research Center for Molecular Medicine and Tumor, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
Hirst NL, Nebel JC, Lawton SP, Walker AJ. Deep phosphoproteome analysis of Schistosoma mansoni leads development of a kinomic array that highlights sex-biased differences in adult worm protein phosphorylation. PLoS Negl Trop Dis 2020; 14:e0008115. [PMID: 32203512 PMCID: PMC7089424 DOI: 10.1371/journal.pntd.0008115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Although helminth parasites cause enormous suffering worldwide we know little of how protein phosphorylation, one of the most important post-translational modifications used for molecular signalling, regulates their homeostasis and function. This is particularly the case for schistosomes. Herein, we report a deep phosphoproteome exploration of adult Schistosoma mansoni, providing one of the richest phosphoprotein resources for any parasite so far, and employ the data to build the first parasite-specific kinomic array. Complementary phosphopeptide enrichment strategies were used to detect 15,844 unique phosphopeptides mapping to 3,176 proteins. The phosphoproteins were predicted to be involved in a wide range of biological processes and phosphoprotein interactome analysis revealed 55 highly interconnected clusters including those enriched with ribosome, proteasome, phagosome, spliceosome, glycolysis, and signalling proteins. 93 distinct phosphorylation motifs were identified, with 67 providing a ‘footprint’ of protein kinase activity; CaMKII, PKA and CK1/2 were highly represented supporting their central importance to schistosome function. Within the kinome, 808 phosphorylation sites were matched to 136 protein kinases, and 68 sites within 37 activation loops were discovered. Analysis of putative protein kinase-phosphoprotein interactions revealed canonical networks but also novel interactions between signalling partners. Kinomic array analysis of male and female adult worm extracts revealed high phosphorylation of transformation:transcription domain associated protein by both sexes, and CDK and AMPK peptides by females. Moreover, eight peptides including protein phosphatase 2C gamma, Akt, Rho2 GTPase, SmTK4, and the insulin receptor were more highly phosphorylated by female extracts, highlighting their possible importance to female worm function. We envision that these findings, tools and methodology will help drive new research into the functional biology of schistosomes and other helminth parasites, and support efforts to develop new therapeutics for their control. Schistosomes are formidable parasites that cause the debilitating and life-threatening disease human schistosomiasis. We need to better understand the cellular biology of these parasites to develop novel strategies for their control. Within cells, a process called protein phosphorylation controls many aspects of molecular communication or ‘signalling’ and is central to cellular function and homeostasis. Here, using complementary strategies, we have performed the first in-depth characterisation and functional annotation of protein phosphorylation events in schistosomes, providing one of the richest phosphoprotein resources for any parasite to date. Using this knowledge, we have developed a novel tool to simultaneously evaluate signalling processes in these worms and highlight sex-biased differences in adult worm protein phosphorylation. Several proteins were found to be more greatly phosphorylated by female worm extracts, suggesting their possible importance to female worm function. This work will help drive new research into the fundamental biology of schistosomes, as well as related parasites, and will support efforts to develop new drug or vaccine-based therapeutics for their control.
Collapse
Affiliation(s)
- Natasha L. Hirst
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
| | - Jean-Christophe Nebel
- School of Computer Science and Mathematics, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
| | - Scott P. Lawton
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
| | - Anthony J. Walker
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
McKenzie M, Kirk RS, Walker AJ. Glucose Uptake in the Human Pathogen Schistosoma mansoni Is Regulated Through Akt/Protein Kinase B Signaling. J Infect Dis 2019; 218:152-164. [PMID: 29309602 PMCID: PMC5989616 DOI: 10.1093/infdis/jix654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background In Schistosoma mansoni, the facilitated glucose transporter SGTP4, which is expressed uniquely in the apical surface tegumental membranes of the parasite, imports glucose from host blood to support its growth, development, and reproduction. However, the molecular mechanisms that underpin glucose uptake in this blood fluke are not understood. Methods In this study we employed techniques including Western blotting, immunolocalization, confocal laser scanning microscopy, pharmacological assays, and RNA interference to functionally characterize and map activated Akt in S mansoni. Results We find that Akt, which could be activated by host insulin and l-arginine, was active in the tegument layer of both schistosomules and adult worms. Blockade of Akt attenuated the expression and evolution of SGTP4 at the surface of the host-invading larval parasite life-stage, and suppressed SGTP4 expression at the tegument in adults; concomitant glucose uptake by the parasite was also attenuated in both scenarios. Conclusions These findings shed light on crucial mechanistic signaling processes that underpin the energetics of glucose uptake in schistosomes, which may open up novel avenues for antischistosome drug development.
Collapse
Affiliation(s)
- Maxine McKenzie
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| |
Collapse
|
11
|
Discovery of novel Schistosoma mansoni PDE4A inhibitors as potential agents against schistosomiasis. Future Med Chem 2019; 11:1703-1720. [PMID: 31370708 DOI: 10.4155/fmc-2018-0592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Aim: Due to the urgent need for effective drugs to treat schistosomiasis that act through a known molecular mechanism of action, we focused on a target-based approach with the aim to discover inhibitors of a cyclic nucleotide phosphodiesterase from Schistosoma mansoni (SmPDE4A). Materials & methods: To discover new inhibitors of SmPDE4A homology models of the enzyme structure were constructed based on known human and protozoan homologs. The best two models were selected for subsequent virtual screening of our in-house chemical library. Results & conclusion: A total of 25 library compounds were selected for experimental confirmation as SmPDE4A inhibitors and after dose-response experiments, three top hits were identified. The results presented validate the virtual screening approach to identify new inhibitors for clinically relevant phosphodiesterases.
Collapse
|
12
|
Computationally-guided drug repurposing enables the discovery of kinase targets and inhibitors as new schistosomicidal agents. PLoS Comput Biol 2018; 14:e1006515. [PMID: 30346968 PMCID: PMC6211772 DOI: 10.1371/journal.pcbi.1006515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/01/2018] [Accepted: 09/15/2018] [Indexed: 01/31/2023] Open
Abstract
The development of novel therapeutics is urgently required for diseases where existing treatments are failing due to the emergence of resistance. This is particularly pertinent for parasitic infections of the tropics and sub-tropics, referred to collectively as neglected tropical diseases, where the commercial incentives to develop new drugs are weak. One such disease is schistosomiasis, a highly prevalent acute and chronic condition caused by a parasitic helminth infection, with three species of the genus Schistosoma infecting humans. Currently, a single 40-year old drug, praziquantel, is available to treat all infective species, but its use in mass drug administration is leading to signs of drug-resistance emerging. To meet the challenge of developing new therapeutics against this disease, we developed an innovative computational drug repurposing pipeline supported by phenotypic screening. The approach highlighted several protein kinases as interesting new biological targets for schistosomiasis as they play an essential role in many parasite’s biological processes. Focusing on this target class, we also report the first elucidation of the kinome of Schistosoma japonicum, as well as updated kinomes of S. mansoni and S. haematobium. In comparison with the human kinome, we explored these kinomes to identify potential targets of existing inhibitors which are unique to Schistosoma species, allowing us to identify novel targets and suggest approved drugs that might inhibit them. These include previously suggested schistosomicidal agents such as bosutinib, dasatinib, and imatinib as well as new inhibitors such as vandetanib, saracatinib, tideglusib, alvocidib, dinaciclib, and 22 newly identified targets such as CHK1, CDC2, WEE, PAKA, MEK1. Additionally, the primary and secondary targets in Schistosoma of those approved drugs are also suggested, allowing for the development of novel therapeutics against this important yet neglected disease. The rise of resistance through the intensive use of drugs targeted to treat specific infectious diseases means that new therapeutics are continually required. Diseases common in the tropics and sub-tropics, classified as neglected tropical diseases, suffer from a lack of new drug treatments due to the difficulty in developing new drugs and the lack of market incentive. One such disease is schistosomiasis, a major human helminth disease caused by worms from the genus Schistosoma. It is currently treated by a 40-year old drug, praziquantel, but its widespread use has led to signs of drug-resistance emerging, with no alternative effective treatments available. To meet this challenge, we have developed an innovative computational drug repurposing pipeline supported by experimental phenotypic screening. Protein kinases emerged from our pipeline as interesting new biological targets. Given that many human kinase inhibitors have been successfully applied specially in cancer therapy and kinases have conserved structures and functions, we also undertook a detailed analysis of the kinases present in all infective Schistosoma species and human host. This allowed identification of new Schistosoma-specific kinase targets and suggest approved drugs to be used for treating schistosomiasis as well as opening new avenues to treat this neglected disease.
Collapse
|
13
|
Signalling pathways in schistosomes: novel targets for control interventions against schistosomiasis. Emerg Top Life Sci 2017; 1:633-639. [PMID: 33525854 DOI: 10.1042/etls20170093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022]
Abstract
Over the last decade, there has been accumulating evidence showing that signalling pathways are involved in extensive biological and physiological processes in the human blood fluke schistosomes, playing essential roles in environmental sensing, host penetration, growth, development, maturation, embryogenesis, tissue self-renewal and survival. Owing to the likelihood of resistance developing against praziquantel, the only drug currently available that is effective against all the human schistosome species, there is an urgent requirement for an alternative treatment, arguing for continuing research into novel or repurposed anti-schistosomal drugs. An increasing number of anticancer drugs are being developed which block abnormal signalling pathways, a feature that has stimulated interest in developing novel interventions against human schistosomiasis by targeting key cell signalling components. In this review, we discuss the functional characterization of signal transduction pathways in schistosomes and consider current challenges and future perspectives in this important area of research.
Collapse
|
14
|
Tungtur SK, Nishimune N, Radel J, Nishimune H. Mouse Behavior Tracker: An economical method for tracking behavior in home cages. Biotechniques 2017; 63:215-220. [PMID: 29185921 PMCID: PMC5910027 DOI: 10.2144/000114607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 10/06/2017] [Indexed: 02/02/2023] Open
Abstract
Analysis of mouse behavior often requires expensive equipment and transfer of the mice to new test environments, which could trigger confounding behavior alterations. Here, we describe a system for tracking mouse behavior in home cages using a low-cost USB webcam and free software (Fiji and wrMTrck). We demonstrate the effectiveness of this method by tracking differences in distance traveled, speed, and movement tracks between wild-type mice and amyotrophic lateral sclerosis (ALS) model mice (SOD1G93A).
Collapse
Affiliation(s)
- Sudheer K. Tungtur
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Natsuko Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Jeff Radel
- Department of Occupational Therapy Education, University of Kansas School of Health Professions, Kansas City, KS, 66160, USA
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| |
Collapse
|
15
|
Ressurreição M, Elbeyioglu F, Kirk RS, Rollinson D, Emery AM, Page NM, Walker AJ. Molecular characterization of host-parasite cell signalling in Schistosoma mansoni during early development. Sci Rep 2016; 6:35614. [PMID: 27762399 PMCID: PMC5071895 DOI: 10.1038/srep35614] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/04/2016] [Indexed: 02/04/2023] Open
Abstract
During infection of their human definitive host, schistosomes transform rapidly from free-swimming infective cercariae in freshwater to endoparasitic schistosomules. The 'somules' next migrate within the skin to access the vasculature and are surrounded by host molecules that might activate intracellular pathways that influence somule survival, development and/or behaviour. However, such 'transactivation' by host factors in schistosomes is not well defined. In the present study, we have characterized and functionally localized the dynamics of protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) activation during early somule development in vitro and demonstrate activation of these protein kinases by human epidermal growth factor, insulin, and insulin-like growth factor I, particularly at the parasite surface. Further, we provide evidence that support the existence of specialized signalling domains called lipid rafts in schistosomes and propose that correct signalling to ERK requires proper raft organization. Finally, we show that modulation of PKC and ERK activities in somules affects motility and reduces somule survival. Thus, PKC and ERK are important mediators of host-ligand regulated transactivation events in schistosomes, and represent potential targets for anti-schistosome therapy aimed at reducing parasite survival in the human host.
Collapse
Affiliation(s)
- Margarida Ressurreição
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| | - Firat Elbeyioglu
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| | - David Rollinson
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, United Kingdom
| | - Aidan M. Emery
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, United Kingdom
| | - Nigel M. Page
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| |
Collapse
|
16
|
Hirst NL, Lawton SP, Walker AJ. Protein kinase A signalling in Schistosoma mansoni cercariae and schistosomules. Int J Parasitol 2016; 46:425-37. [PMID: 26777870 DOI: 10.1016/j.ijpara.2015.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
Abstract
Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A regulates multiple processes in eukaryotes by phosphorylating diverse cellular substrates, including metabolic and signalling enzymes, ion channels and transcription factors. Here we provide insight into protein kinase A signalling in cercariae and 24h in vitro cultured somules of the blood parasite, Schistosoma mansoni, which causes human intestinal schistosomiasis. Functional mapping of activated protein kinase A using anti-phospho protein kinase A antibodies and confocal laser scanning microscopy revealed activated protein kinase A in the central and peripheral nervous system, oral-tip sensory papillae, oesophagus and excretory system of intact cercariae. Cultured 24h somules, which biologically represent the skin-resident stage of the parasite, exhibited similar activation patterns in oesophageal and nerve tissues but also displayed striking activation at the tegument and activation in a region resembling the germinal 'stem' cell cluster. The adenylyl cyclase activator, forskolin, stimulated somule protein kinase A activation and produced a hyperkinesia phenotype. The biogenic amines, serotonin and dopamine known to be present in skin also induced protein kinase A activation in somules, whereas neuropeptide Y or [Leu(31),Pro(34)]-neuropeptide Y attenuated protein kinase A activation. However, neuropeptide Y did not block the forskolin-induced somule hyperkinesia. Bioinformatic investigation of potential protein associations revealed 193 medium confidence and 59 high confidence protein kinase A interacting partners in S. mansoni, many of which possess putative protein kinase A phosphorylation sites. These data provide valuable insight into the intricacies of protein kinase A signalling in S. mansoni and a framework for further physiological investigations into the roles of protein kinase A in schistosomes, particularly in the context of interactions between the parasite and the host.
Collapse
Affiliation(s)
- Natasha L Hirst
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Scott P Lawton
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey KT1 2EE, UK.
| |
Collapse
|
17
|
Stroehlein AJ, Young ND, Jex AR, Sternberg PW, Tan P, Boag PR, Hofmann A, Gasser RB. Defining the Schistosoma haematobium kinome enables the prediction of essential kinases as anti-schistosome drug targets. Sci Rep 2015; 5:17759. [PMID: 26635209 PMCID: PMC4669435 DOI: 10.1038/srep17759] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/26/2015] [Indexed: 01/13/2023] Open
Abstract
The blood fluke Schistosoma haematobium causes urogenital schistosomiasis, a neglected tropical disease (NTD) that affects more than 110 million people. Treating this disease by targeted or mass administration with a single chemical, praziquantel, carries the risk that drug resistance will develop in this pathogen. Therefore, there is an imperative to search for new drug targets in S. haematobium and other schistosomes. In this regard, protein kinases have potential, given their essential roles in biological processes and as targets for drugs already approved by the US Food and Drug Administration (FDA) for use in humans. In this context, we defined here the kinome of S. haematobium using a refined bioinformatic pipeline. We classified, curated and annotated predicted kinases, and assessed the developmental transcription profiles of kinase genes. Then, we prioritised a panel of kinases as potential drug targets and inferred chemicals that bind to them using an integrated bioinformatic pipeline. Most kinases of S. haematobium are very similar to those of its congener, S. mansoni, offering the prospect of designing chemicals that kill both species. Overall, this study provides a global insight into the kinome of S. haematobium and should assist the repurposing or discovery of drugs against schistosomiasis.
Collapse
Affiliation(s)
- Andreas J. Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul W. Sternberg
- HHMI, Division of Biology, California Institute of Technology, Pasadena, California, USA
| | - Patrick Tan
- Genome Institute of Singapore, Republic of Singapore
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Republic of Singapore
| | - Peter R. Boag
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Andreas Hofmann
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Australia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Ressurreição M, Kirk RS, Rollinson D, Emery AM, Page NM, Walker AJ. Sensory Protein Kinase Signaling in Schistosoma mansoni Cercariae: Host Location and Invasion. J Infect Dis 2015; 212:1787-97. [PMID: 26401028 PMCID: PMC4633769 DOI: 10.1093/infdis/jiv464] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/11/2015] [Indexed: 11/16/2022] Open
Abstract
Schistosoma mansoni cercariae display specific behavioral responses to abiotic/biotic stimuli enabling them to locate and infect the definitive human host. Here we report the effect of such stimulants on signaling pathways of cercariae in relation to host finding and invasion. Cercariae exposed to various light/temperature regimens displayed modulated protein kinase C (PKC), extracellular signal–regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) activities, with distinct responses at 37°C and intense light/dark, when compared to 24°C under normal light. Kinase activities were localized to regions including the oral sensory papillae, acetabular ducts, tegument, acetabular glands, and nervous system. Furthermore, linoleic acid modulated PKC and ERK activities concurrent with the temporal release of acetabular gland components. Attenuation of PKC, ERK, and p38 MAPK activities significantly reduced gland component release, particularly in response to linoleic acid, demonstrating the importance of these signaling pathways to host penetration mechanisms.
Collapse
Affiliation(s)
- Margarida Ressurreição
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston Upon Thames
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston Upon Thames
| | - David Rollinson
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Aidan M Emery
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Nigel M Page
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston Upon Thames
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston Upon Thames
| |
Collapse
|
19
|
Beckmann S, Long T, Scheld C, Geyer R, Caffrey CR, Grevelding CG. Serum albumin and α-1 acid glycoprotein impede the killing of Schistosoma mansoni by the tyrosine kinase inhibitor Imatinib. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:287-95. [PMID: 25516839 PMCID: PMC4266805 DOI: 10.1016/j.ijpddr.2014.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Abl tyrosine-kinase inhibitor Imatinib is toxic to S. mansoni in vitro but not in vivo in rodents. Blood components like serum albumin and alpha-1 acid glycoprotein (AGP) negated Imatinib’s toxicity in vitro. Erythromycin partially restored the toxicity of Imatinib in vitro. High levels of AGP upon infection make rodents poor models for examining some small molecule inhibitors.
In the search for new drugs and drug targets to treat the flatworm disease schistosomiasis, protein kinases (PKs) have come under particular scrutiny because of their essential roles in developmental and physiological processes in schistosome parasites. In this context the application of the anti-cancer Abl tyrosine kinase (TK) inhibitor Imatinib (Gleevec/Glivec; STI-571) to adult Schistosoma mansoni in vitro has indicated negative effects on diverse physiological processes including survival. Motivated by these in vitro findings, we performed in vivo experiments in rodent models of S. mansoni infection. Unexpectedly, Imatinib had no effect on worm burden or egg-production. We found that the blood components serum albumin (SA) and alpha-1 acid glycoprotein (AGP or orosomucoid) negated Imatinib’s deleterious effects on adult S. mansoni and schistosomula (post-infective larvae) in vitro. This negative effect was partially reversed by erythromycin. AGP synthesis can increase as a consequence of inflammatory processes or infection; in addition upon infection AGP levels are 6–8 times higher in mice compared to humans. Therefore, mice and probably other rodents are poor infection models for measuring the effects of Imatinib in vivo. Accordingly, we suggest the routine evaluation of the ability of AGP and SA to block in vitro anti-schistosomal effects of small molecules like Imatinib prior to laborious and expensive animal experiments.
Collapse
Affiliation(s)
- Svenja Beckmann
- BFS, Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Thavy Long
- Center for Discovery and Innovation in Parasitic Diseases and the Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Christina Scheld
- BFS, Institute for Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Rudolf Geyer
- Institute for Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases and the Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
20
|
Walker AJ, Ressurreição M, Rothermel R. Exploring the function of protein kinases in schistosomes: perspectives from the laboratory and from comparative genomics. Front Genet 2014; 5:229. [PMID: 25132840 PMCID: PMC4117187 DOI: 10.3389/fgene.2014.00229] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic protein kinases are well conserved through evolution. The genome of Schistosoma mansoni, which causes intestinal schistosomiasis, encodes over 250 putative protein kinases with all of the main eukaryotic groups represented. However, unraveling functional roles for these kinases is a considerable endeavor, particularly as protein kinases regulate multiple and sometimes overlapping cell and tissue functions in organisms. In this article, elucidating protein kinase signal transduction and function in schistosomes is considered from the perspective of the state-of-the-art methodologies used and comparative organismal biology, with a focus on current advances and future directions. Using the free-living nematode Caenorhabditis elegans as a comparator we predict roles for various schistosome protein kinases in processes vital for host invasion and successful parasitism such as sensory behavior, growth and development. It is anticipated that the characterization of schistosome protein kinases in the context of parasite function will catalyze cutting edge research into host-parasite interactions and will reveal new targets for developing drug interventions against human schistosomiasis.
Collapse
Affiliation(s)
- Anthony J Walker
- Laboratory of Molecular Parasitology, School of Life Sciences, Kingston University Kingston upon Thames, UK
| | - Margarida Ressurreição
- Laboratory of Molecular Parasitology, School of Life Sciences, Kingston University Kingston upon Thames, UK
| | - Rolf Rothermel
- Laboratory of Molecular Parasitology, School of Life Sciences, Kingston University Kingston upon Thames, UK
| |
Collapse
|
21
|
Ressurreição M, De Saram P, Kirk RS, Rollinson D, Emery AM, Page NM, Davies AJ, Walker AJ. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni. PLoS Negl Trop Dis 2014; 8:e2924. [PMID: 24921927 PMCID: PMC4055629 DOI: 10.1371/journal.pntd.0002924] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/19/2014] [Indexed: 01/22/2023] Open
Abstract
Protein kinases C (PKCs) and extracellular signal-regulated kinases (ERKs) are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using ‘smart’ antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated) throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance. Parasitic blood flukes, also called schistosomes, cause human schistosomiasis, a neglected tropical disease and major public health problem in developing countries, especially sub-Saharan Africa. Sustainable control of schistosomiasis is difficult, mainly because the complex life cycle of the parasite involves a freshwater snail host, and the ability of the parasite to evade the immune response of the human host and to survive for many years. Little is yet known about the cellular mechanisms in schistosomes and how they regulate parasite homeostasis, development and behaviour. In this paper, the nature of intracellular signalling by protein kinases C (PKCs) and extracellular signal-regulated kinases (ERKs) in schistosomes is studied and these proteins are found to be vital for the coordination of processes fundamental to parasite survival, such as muscular activity and reproductive function. Our results contribute to an understanding of molecular events regulating schistosome function and identify PKCs and ERKs as possible targets for the development of new chemotherapeutic treatments against schistosomiasis.
Collapse
Affiliation(s)
- Margarida Ressurreição
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey, United Kingdom
- Wolfson Wellcome Biomedical Laboratories, Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Paulu De Saram
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey, United Kingdom
- Wolfson Wellcome Biomedical Laboratories, Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - David Rollinson
- Wolfson Wellcome Biomedical Laboratories, Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Aidan M. Emery
- Wolfson Wellcome Biomedical Laboratories, Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Nigel M. Page
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Angela J. Davies
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Kingston University, Kingston upon Thames, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Patocka N, Sharma N, Rashid M, Ribeiro P. Serotonin signaling in Schistosoma mansoni: a serotonin-activated G protein-coupled receptor controls parasite movement. PLoS Pathog 2014; 10:e1003878. [PMID: 24453972 PMCID: PMC3894222 DOI: 10.1371/journal.ppat.1003878] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/25/2013] [Indexed: 01/19/2023] Open
Abstract
Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly understood. Here we provide the first molecular evidence of a functional serotonin receptor (Sm5HTR) in S. mansoni. The schistosome receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is distantly related to serotonergic type 7 (5HT7) receptors from other species. Functional expression studies in transfected HEK 293 cells showed that Sm5HTR is a specific serotonin receptor and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism. Immunolocalization studies with a specific anti-Sm5HTR antibody revealed that the receptor is abundantly distributed in the worm's nervous system, including the cerebral ganglia and main nerve cords of the central nervous system and the peripheral innervation of the body wall muscles and tegument. RNA interference (RNAi) was performed both in schistosomulae and adult worms to test whether the receptor is required for parasite motility. The RNAi-suppressed adults and larvae were markedly hypoactive compared to the corresponding controls and they were also resistant to exogenous serotonin treatment. These results show that Sm5HTR is at least one of the receptors responsible for the motor effects of serotonin in S. mansoni. The fact that Sm5HTR is expressed in nerve tissue further suggests that serotonin stimulates movement via this receptor by modulating neuronal output to the musculature. Together, the evidence identifies Sm5HTR as an important neuronal protein and a key component of the motor control apparatus in S. mansoni.
Collapse
Affiliation(s)
- Nicholas Patocka
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | - Nidhi Sharma
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | - Mohammed Rashid
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|