1
|
Midha A, Oser L, Schlosser-Brandenburg J, Laubschat A, Mugo RM, Musimbi ZD, Höfler P, Kundik A, Hayani R, Adjah J, Groenhagen S, Tieke M, Elizalde-Velázquez LE, Kühl AA, Klopfleisch R, Tedin K, Rausch S, Hartmann S. Concurrent Ascaris infection modulates host immunity resulting in impaired control of Salmonella infection in pigs. mSphere 2024; 9:e0047824. [PMID: 39140728 PMCID: PMC11423588 DOI: 10.1128/msphere.00478-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Ascaris is one of the most widespread helminth infections, leading to chronic morbidity in humans and considerable economic losses in pig farming. In addition, pigs are an important reservoir for the zoonotic salmonellosis, where pigs can serve as asymptomatic carriers. Here, we investigated the impact of an ongoing Ascaris infection on the immune response to Salmonella in pigs. We observed higher bacterial burdens in experimentally coinfected pigs compared to pigs infected with Salmonella alone. The impaired control of Salmonella in the coinfected pigs was associated with repressed interferon gamma responses in the small intestine and with the alternative activation of gut macrophages evident in elevated CD206 expression. Ascaris single and coinfection were associated with a rise of CD4-CD8α+FoxP3+ Treg in the lymph nodes draining the small intestine and liver. In addition, macrophages from coinfected pigs showed enhanced susceptibility to Salmonella infection in vitro and the Salmonella-induced monocytosis and tumor necrosis factor alpha production by myeloid cells was repressed in pigs coinfected with Ascaris. Hence, our data indicate that acute Ascaris infection modulates different immune effector functions with important consequences for the control of tissue-invasive coinfecting pathogens.IMPORTANCEIn experimentally infected pigs, we show that an ongoing infection with the parasitic worm Ascaris suum modulates host immunity, and coinfected pigs have higher Salmonella burdens compared to pigs infected with Salmonella alone. Both infections are widespread in pig production and the prevalence of Salmonella is high in endemic regions of human Ascariasis, indicating that this is a clinically meaningful coinfection. We observed the type 2/regulatory immune response to be induced during an Ascaris infection correlates with increased susceptibility of pigs to the concurrent bacterial infection.
Collapse
Affiliation(s)
- Ankur Midha
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Larissa Oser
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Josephine Schlosser-Brandenburg
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Alexandra Laubschat
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert M Mugo
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Zaneta D Musimbi
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Philipp Höfler
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Arkadi Kundik
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Rima Hayani
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Joshua Adjah
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Saskia Groenhagen
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Malte Tieke
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Luis E Elizalde-Velázquez
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja A Kühl
- Charité Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Core unit of Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Karsten Tedin
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Rausch
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Hammer TJ. Why do hosts malfunction without microbes? Missing benefits versus evolutionary addiction. Trends Microbiol 2024; 32:132-141. [PMID: 37652785 DOI: 10.1016/j.tim.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023]
Abstract
Microbes are widely recognized to be vital to host health. This new consensus rests, in part, on experiments showing how hosts malfunction when microbes are removed. More and more microbial dependencies are being discovered, even in fundamental processes such as development, immunity, physiology, and behavior. But why do they exist? The default explanation is that microbes are beneficial; when hosts lose microbes, they also lose benefits. Here I call attention to evolutionary addiction, whereby a host trait evolves a need for microbes without having been improved by them. Evolutionary addiction should be considered when interpreting microbe-removal experiments, as it is a distinct and potentially common process. Further, it may have unique implications for the evolution and stability of host-microbe interactions.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Bonde CS, Mejer H, Myhill LJ, Zhu L, Jensen P, Büdeyri Gökgöz N, Krych L, Nielsen DS, Skovgaard K, Thamsborg SM, Williams AR. Dietary seaweed (Saccharina latissima) supplementation in pigs induces localized immunomodulatory effects and minor gut microbiota changes during intestinal helminth infection. Sci Rep 2023; 13:21931. [PMID: 38081984 PMCID: PMC10713666 DOI: 10.1038/s41598-023-49082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
Brown seaweeds have a rich bioactive content known to modulate biological processes, including the mucosal immune response and microbiota function, and may therefore have the potential to control enteric pathogens. Here, we tested if dietary seaweed (Saccharina latissima) supplementation could modulate pig gut health with a specific focus on parasitic helminth burdens, gut microbiota composition, and host immune response during a five week feeding period in pigs co-infected with the helminths Ascaris suum and Oesophagostomum dentatum. We found that inclusion of fermented S. latissima (Fer-SL) at 8% of the diet increased gut microbiota α-diversity with higher relative abundances of Firmicutes, Tenericutes, Verrucomicrobia, Spirochaetes and Elusimicrobia, and lower abundance of Prevotella copri. In the absence of helminth infection, transcription of immune-related genes in the intestine was only moderately influenced by dietary seaweed. However, Fer-SL modulated the transcriptional response to infection in a site-specific manner in the gut, with an attenuation of infection-induced gene expression in the jejunum and an amplification of gene expression in the colon. Effects on systemic immune parameters (e.g. blood lymphocyte populations) were limited, indicating the effects of Fer-SL were mainly localized to the intestinal tissues. Despite previously documented in vitro anti-parasitic activity against pig helminths, Fer-SL inclusion did not significantly affect parasite egg excretion or worm establishment. Collectively, our results show that although Fer-SL inclusion did not reduce parasite burdens, it may modify the gut environment during enteric parasite infection, which encourages continued investigations into the use of seaweeds or related products as novel tools to improve gut health.
Collapse
Affiliation(s)
- Charlotte Smith Bonde
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Penille Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
4
|
In silico design of a polypeptide as a vaccine candidate against ascariasis. Sci Rep 2023; 13:3504. [PMID: 36864139 PMCID: PMC9981566 DOI: 10.1038/s41598-023-30445-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Ascariasis is the most prevalent zoonotic helminthic disease worldwide, and is responsible for nutritional deficiencies, particularly hindering the physical and neurological development of children. The appearance of anthelmintic resistance in Ascaris is a risk for the target of eliminating ascariasis as a public health problem by 2030 set by the World Health Organisation. The development of a vaccine could be key to achieving this target. Here we have applied an in silico approach to design a multi-epitope polypeptide that contains T-cell and B-cell epitopes of reported novel potential vaccination targets, alongside epitopes from established vaccination candidates. An artificial toll-like receptor-4 (TLR4) adjuvant (RS09) was added to improve immunogenicity. The constructed peptide was found to be non-allergic, non-toxic, with adequate antigenic and physicochemical characteristics, such as solubility and potential expression in Escherichia coli. A tertiary structure of the polypeptide was used to predict the presence of discontinuous B-cell epitopes and to confirm the molecular binding stability with TLR2 and TLR4 molecules. Immune simulations predicted an increase in B-cell and T-cell immune response after injection. This polypeptide can now be validated experimentally and compared to other vaccine candidates to assess its possible impact in human health.
Collapse
|
5
|
Springer A, Wagner L, Koehler S, Klinger S, Breves G, Brüggemann DA, Strube C. Modulation of the porcine intestinal microbiota in the course of Ascaris suum infection. Parasit Vectors 2022; 15:433. [PMID: 36397169 PMCID: PMC9673396 DOI: 10.1186/s13071-022-05535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background The porcine roundworm Ascaris suum impairs feed conversion and weight gain, but its effects on intestinal microbiota remain largely unexplored. Methods Modulation of the intestinal microbiota was assessed in pigs that were infected once with 10,000 A. suum eggs and pigs that received a trickle infection (1000 eggs/day over 10 days), compared with a non-infected control group. Six pigs each were sacrificed per group at days 21, 35 and 49 post-infection (p.i.). Faecal samples taken weekly until slaughter and ingesta samples from different intestinal compartments were subjected to next-generation sequencing of the bacterial 16S rRNA gene. Results The results revealed marked differences between the single- and the trickle-infected group. Single infection caused a remarkable but transient decrease in microbial diversity in the caecum, which was not observed in the trickle-infected group. However, an increase in short-chain fatty acid-producing genera in the caecum on day 21 p.i., which shifted to a decrease on day 35 p.i., was common to both groups, possibly related to changes in excretory–secretory products following the parasite’s final moult. Faecal microbial interaction networks were more similar between the single-infected and control group than the trickle-infected group. In addition, a lower degree of similarity over time indicated that A. suum trickle infection prevented microbiota stabilization. Conclusions These different patterns may have important implications regarding the comparability of experimental infections with natural scenarios characterized by continuous exposure, and should be confirmed by further studies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05535-w.
Collapse
|
6
|
Koehler S, Springer A, Issel N, Klinger S, Wendt M, Breves G, Strube C. Effects of adult Ascaris suum and their antigens (total and trans-cuticular excretory-secretory antigen, cuticular somatic antigen) on intestinal nutrient transport in vivo. Parasitology 2022; 150:1-34. [PMID: 36274629 PMCID: PMC10090646 DOI: 10.1017/s0031182022001512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/20/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Ascaris suum constitutes a major problem in commercial pig farming worldwide. Lower weight gains in infected pigs probably result from impaired nutrient absorption. This study investigated intestinal nutrient transport in 4 groups of 6 pigs each, which were inoculated with 30 living adult A. suum , or antigen fractions consisting of (1) total excretory–secretory (ES) antigens of adult worms, (2) ES antigens secreted exclusively from the parasites' body surface (trans-cuticular ES) and (3) cuticular somatic antigens of A. suum , compared to placebo-treated controls. Three days after inoculation into the gastrointestinal tract, glucose, alanine and glycyl-l -glutamine transport was measured in the duodenum, jejunum and ileum using Ussing chambers. Transcription of relevant genes [sodium glucose cotransporter 1 (SGLT1), glucose transporter 1 (GLUT1), GLUT2, hypoxia-inducible factor 1-alpha (Hif1α ), interleukin-4 (IL-4), IL-13, signal transducer and activator of transcription 6 (STAT6), peptide transporter 1 (PepT1)] and expression of transport proteins [SGLT1, phosphorylated SGLT1, GLUT2, Na+/K+-ATPase, amino acid transporter A (ASCT1), PepT1] were studied. Although no significant functional changes were noted after exposure to adult A. suum , a significant downregulation of jejunal GLUT1, STAT6, Hif1α and PepT1 transcription as well as ileal GLUT2 and PepT1 expression indicates a negative impact of infection on transport physiology. Therefore, the exposure period of 3 days may have been insufficient for functional alterations to become apparent. In contrast, A. suum antigens mainly induced an upregulation of transport processes and an increase in transcription of relevant genes in the duodenum and jejunum, possibly as a compensatory reaction after a transient downregulation. In the ileum, a consistent pattern of downregulation was observed in all inoculated groups, in line with the hypothesis of impaired nutrient transport.
Collapse
Affiliation(s)
- Sarina Koehler
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Andrea Springer
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Nicole Issel
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Stefanie Klinger
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Michael Wendt
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Gerhard Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
7
|
Roose S, Leta GT, Vlaminck J, Getachew B, Mekete K, Peelaers I, Geldhof P, Levecke B. Comparison of coproprevalence and seroprevalence to guide decision-making in national soil-transmitted helminthiasis control programs: Ethiopia as a case study. PLoS Negl Trop Dis 2022; 16:e0010824. [PMID: 36197895 PMCID: PMC9534397 DOI: 10.1371/journal.pntd.0010824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND WHO recommends periodical assessment of the prevalence of any soil-transmitted helminth (STH) infections to adapt the frequency of mass drug administration targeting STHs. Today, detection of eggs in stool smears (Kato-Katz thick smear) remains the diagnostic standard. However, stool examination (coprology) has important operational drawbacks and impedes integrated surveys of multiple neglected tropical diseases. Therefore, the aim of the present study was to assess the potential of applying serology instead of coprology in STH control program decision-making. METHODOLOGY An antibody-ELISA based on extract of Ascaris lung stage larvae (AsLungL3-ELISA) was applied in ongoing monitoring activities of the Ethiopian national control program against schistosomiasis and soil-transmitted helminthiasis. Blood and stool samples were collected from over 6,700 students (median age: 11) from 63 schools in 33 woredas (districts) across the country. Stool samples of two consecutive days were analyzed applying duplicate Kato-Katz thick smear. PRINCIPAL FINDINGS On woreda level, qualitative (seroprevalence) and quantitative (mean optical density ratio) serology results were highly correlated, and hence seroprevalence was chosen as parameter. For 85% of the woredas, prevalence based on serology was higher than those based on coprology. The results suggested cross-reactivity of the AsLungL3-ELISA with Trichuris. When extrapolating the WHO coproprevalence thresholds, there was a moderate agreement (weighted κ = 0.43) in program decision-making. Using the same threshold values would predominantly lead to a higher frequency of drug administration. SIGNIFICANCE This is the first time that serology for soil-transmitted helminthiasis is applied on such large scale, thereby embedded in a control program context. The results underscore that serology holds promise as a tool to monitor STH control programs. Further research should focus on the optimization of the diagnostic assay and the refinement of serology-specific program decision-making thresholds.
Collapse
Affiliation(s)
- Sara Roose
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
- * E-mail: (SR); (BL)
| | - Gemechu Tadesse Leta
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Johnny Vlaminck
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Birhanu Getachew
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Kalkidan Mekete
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Iris Peelaers
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Peter Geldhof
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Bruno Levecke
- Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
- * E-mail: (SR); (BL)
| |
Collapse
|
8
|
Assessing the impact of Ascariasis and Trichuriasis on weight gain using a porcine model. PLoS Negl Trop Dis 2022; 16:e0010709. [PMID: 35984809 PMCID: PMC9390923 DOI: 10.1371/journal.pntd.0010709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background Infections with Ascaris lumbricoides and Trichuris trichiura remain significant contributors to the global burden of neglected tropical diseases. Infection may in particular affect child development as they are more likely to be infected with T. trichiura and/or A. lumbricoides and to carry higher worm burdens than adults. Whilst the impact of heavy infections are clear, the effects of moderate infection intensities on the growth and development of children remain elusive. Field studies are confounded by a lack of knowledge of infection history, nutritional status, presence of co-infections and levels of exposure to infective eggs. Therefore, animal models are required. Given the physiological similarities between humans and pigs but also between the helminths that infect them; A. suum and T. suis, growing pigs provide an excellent model to investigate the direct effects of Ascaris spp. and Trichuris spp. on weight gain. Methods and results We employed a trickle infection protocol to mimic natural co-infection to assess the effect of infection intensity, determined by worm count (A. suum) or eggs per gram of faeces (A. suum and T. suis), on weight gain in a large pig population (n = 195) with variable genetic susceptibility. Pig body weights were assessed over 14 weeks. Using a post-hoc statistical approach, we found a negative association between weight gain and T. suis infection. For A. suum, this association was not significant after adjusting for other covariates in a multivariable analysis. Estimates from generalized linear mixed effects models indicated that a 1 kg increase in weight gain was associated with 4.4% (p = 0.00217) decrease in T. suis EPG and a 2.8% (p = 0.02297) or 2.2% (p = 0.0488) decrease in A. suum EPG or burden, respectively. Conclusions Overall this study has demonstrated a negative association between STH and weight gain in growing pigs but also that T. suis infection may be more detrimental that A. suum on growth. Infections with the roundworm, Ascaris lumbricoides and the whipworm Trichuris trichiura are estimated to affect over 800 and 400 million people, respectively. Infections are most common in children and whilst very heavy infections present clear pathology it is less clear what effect more moderate infection have on the growth and development of children. Attempts to quantify the detrimental effects in humans have been inconclusive to date due to multiple confounding variables. Therefore, animal models are required. Pigs are natural hosts to two very closely related helminths; A. suum and T. suis and therefore we have investigated the effects of infection on growing pigs. This study has identified an association of infection levels with both helminths with reduced weight gain but also that whipworm infection may be more detrimental to weight gain than giant roundworm infection. Given the overall high prevalence of A. lumbricoides and difficulties in successfully clearing whipworm infections (multiple doses of anthelminthic are required), this work highlights the importance of drug administration programs targeted to clear these infections in children.
Collapse
|
9
|
Andersen-Civil AIS, Myhill LJ, Büdeyri Gökgöz N, Engström MT, Mejer H, Zhu L, Zeller WE, Salminen JP, Krych L, Lauridsen C, Nielsen DS, Thamsborg SM, Williams AR. Dietary proanthocyanidins promote localized antioxidant responses in porcine pulmonary and gastrointestinal tissues during Ascaris suum-induced type 2 inflammation. FASEB J 2022; 36:e22256. [PMID: 35333423 DOI: 10.1096/fj.202101603rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Abstract
Proanthocyanidins (PAC) are dietary polyphenols with putative anti-inflammatory and immunomodulatory effects. However, whether dietary PAC can regulate type-2 immune function and inflammation at mucosal surfaces remains unclear. Here, we investigated if diets supplemented with purified PAC modulated pulmonary and intestinal mucosal immune responses during infection with the helminth parasite Ascaris suum in pigs. A. suum infection induced a type-2 biased immune response in lung and intestinal tissues, characterized by pulmonary granulocytosis, increased Th2/Th1 T cell ratios in tracheal-bronchial lymph nodes, intestinal eosinophilia, and modulation of genes involved in mucosal barrier function and immunity. Whilst PAC had only minor effects on pulmonary immune responses, RNA-sequencing of intestinal tissues revealed that dietary PAC significantly enhanced transcriptional responses related to immune function and antioxidant responses in the gut of both naïve and A. suum-infected animals. A. suum infection and dietary PAC induced distinct changes in gut microbiota composition, primarily in the jejunum and colon, respectively. Notably, PAC consumption substantially increased the abundance of Limosilactobacillus reuteri. In vitro experiments with porcine macrophages and intestinal epithelial cells supported a role for both PAC polymers and PAC-derived microbial metabolites in regulating oxidative stress responses in host tissues. Thus, dietary PAC may have distinct beneficial effects on intestinal health during infection with mucosal pathogens, while having a limited activity to modulate naturally-induced type-2 pulmonary inflammation. Our results shed further light on the mechanisms underlying the health-promoting properties of PAC-rich foods, and may aid in the design of novel dietary supplements to regulate mucosal inflammatory responses in the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Marica T Engström
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Wayne E Zeller
- USDA-ARS, U.S. Dairy Forage Research Center, Madison, Wisconsin, USA
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
10
|
Gazzinelli-Guimarães AC, Nogueira DS, Amorim CCO, Oliveira FMS, Coqueiro-Dos-Santos A, Carvalho SAP, Kraemer L, Barbosa FS, Fraga VG, Santos FV, de Castro JC, Russo RC, Akamatsu MA, Ho PL, Bottazzi ME, Hotez PJ, Zhan B, Bartholomeu DC, Bueno LL, Fujiwara RT. ASCVac-1, a Multi-Peptide Chimeric Vaccine, Protects Mice Against Ascaris suum Infection. Front Immunol 2021; 12:788185. [PMID: 34992603 PMCID: PMC8724438 DOI: 10.3389/fimmu.2021.788185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022] Open
Abstract
Control of human ascariasis, the most prevalent neglected tropical disease globally affecting 450 million people, mostly relies on mass drug administration of anthelmintics. However, chemotherapy alone is not efficient due to the high re-infection rate for people who live in the endemic area. The development of a vaccine that reduces the intensity of infection and maintains lower morbidity should be the primary target for infection control. Previously, our group demonstrated that immunization with crude Ascaris antigens in mice induced an IgG-mediated protective response with significant worm reduction. Here, we aimed to develop a multipeptide chimera vaccine based on conserved B-cell epitopes predicted from 17 common helminth proteomes using a bioinformatics algorithm. More than 480 B-cell epitopes were identified that are conserved in all 17 helminths. The Ascaris-specific epitopes were selected based on their reactivity to the pooled sera of mice immunized with Ascaris crude antigens or infected three times with A. suum infective eggs. The top 35 peptides with the strongest reactivity to Ascaris immune serum were selected to construct a chimeric antigen connected in sequence based on conformation. This chimera, called ASCVac-1, was produced as a soluble recombinant protein in an Escherichia coli expression system and, formulated with MPLA, was used to immunize mice. Mice immunized with ASCVac-1/MPLA showed around 50% reduced larvae production in the lungs after being challenged with A. suum infective eggs, along with significantly reduced inflammation and lung tissue/function damage. The reduced parasite count and pathology in infected lungs were associated with strong Th2 immune responses characterized by the high titers of antigen-specific IgG and its subclasses (IgG1, IgG2a, and IgG3) in the sera and significantly increased IL-4, IL-5, IL-13 levels in lung tissues. The reduced IL-33 titers and stimulated eosinophils were also observed in lung tissues and may also contribute to the ASCVac-1-induced protection. Taken together, the preclinical trial with ASCVac-1 chimera in a mouse model demonstrated its significant vaccine efficacy associated with strong IgG-based Th2 responses, without IgE induction, thus reducing the risk of an allergic response. All results suggest that the multiepitope-based ASCVac-1 chimera is a promising vaccine candidate against Ascaris sp. infections.
Collapse
Affiliation(s)
| | - Denise Silva Nogueira
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | - Lucas Kraemer
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Vanessa Gomes Fraga
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira Santos
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Remo Castro Russo
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Milena Apetito Akamatsu
- BioIndustrial Division, Butantan Institute, Sao Paulo Secretary of Health, São Paulo, Brazil
| | - Paulo Lee Ho
- BioIndustrial Division, Butantan Institute, Sao Paulo Secretary of Health, São Paulo, Brazil
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Lilian Lacerda Bueno
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Ricardo Toshio Fujiwara,
| |
Collapse
|
11
|
Graham AL, Schrom EC, Metcalf CJE. The evolution of powerful yet perilous immune systems. Trends Immunol 2021; 43:117-131. [PMID: 34949534 PMCID: PMC8686020 DOI: 10.1016/j.it.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 12/23/2022]
Abstract
The mammalian immune system packs serious punch against infection but can also cause harm: for example, coronavirus disease 2019 (COVID-19) made headline news of the simultaneous power and peril of human immune responses. In principle, natural selection leads to exquisite adaptation and therefore cytokine responsiveness that optimally balances the benefits of defense against its costs (e.g., immunopathology suffered and resources expended). Here, we illustrate how evolutionary biology can predict such optima and also help to explain when/why individuals exhibit apparently maladaptive immunopathological responses. Ultimately, we argue that the evolutionary legacies of multicellularity and life-history strategy, in addition to our coevolution with symbionts and our demographic history, together explain human susceptibility to overzealous, pathology-inducing cytokine responses. Evolutionary insight thereby complements molecular/cellular mechanistic insights into immunopathology.
Collapse
|
12
|
Gazzinelli-Guimarães AC, Gazzinelli-Guimarães P, Weatherhead JE. A historical and systematic overview of Ascaris vaccine development. Parasitology 2021; 148:1795-1805. [PMID: 35586777 PMCID: PMC9109942 DOI: 10.1017/s0031182021001347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/06/2022]
Abstract
Ascariasis is the most prevalent helminth infection in the world and leads to significant, life-long morbidity, particularly in young children. Current efforts to control and eradicate ascariasis in endemic regions have been met with significant challenges including high-rates of re-infection and potential development of anthelminthic drug resistance. Vaccines against ascariasis are a key tool that could break the transmission cycle and lead to disease eradication globally. Evolution of the Ascaris vaccine pipeline has progressed, however no vaccine product has been brought to human clinical trials to date. Advancement in recombinant protein technology may provide the first step in generating an Ascaris vaccine as well as a pan-helminthic vaccine ready for human trials. However, several roadblocks remain and investment in new technologies will be important to develop a successful human Ascaris vaccine that is critically needed to prevent significant morbidity in Ascaris-endemic regions around the world.
Collapse
Affiliation(s)
| | | | - Jill E. Weatherhead
- Department of Medicine, Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
13
|
Nogueira DS, de Oliveira LM, Amorim CCO, Gazzinelli-Guimarães AC, Barbosa FS, Oliveira FMS, Kraemer L, Mattos M, Cardoso MS, Resende NM, Clímaco MDC, Negrão-Corrêa DA, Faria AMC, Caliari MV, Bueno LL, Gaze S, Russo RC, Gazzinelli-Guimarães PH, Fujiwara RT. Eosinophils mediate SIgA production triggered by TLR2 and TLR4 to control Ascaris suum infection in mice. PLoS Pathog 2021; 17:e1010067. [PMID: 34784389 PMCID: PMC8631680 DOI: 10.1371/journal.ppat.1010067] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 11/30/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Human ascariasis is the most prevalent but neglected tropical disease in the world, affecting approximately 450 million people. The initial phase of Ascaris infection is marked by larval migration from the host's organs, causing mechanical injuries followed by an intense local inflammatory response, which is characterized mainly by neutrophil and eosinophil infiltration, especially in the lungs. During the pulmonary phase, the lesions induced by larval migration and excessive immune responses contribute to tissue remodeling marked by fibrosis and lung dysfunction. In this study, we investigated the relationship between SIgA levels and eosinophils. We found that TLR2 and TLR4 signaling induces eosinophils and promotes SIgA production during Ascaris suum infection. Therefore, control of parasite burden during the pulmonary phase of ascariasis involves eosinophil influx and subsequent promotion of SIgA levels. In addition, we also demonstrate that eosinophils also participate in the process of tissue remodeling after lung injury caused by larval migration, contributing to pulmonary fibrosis and dysfunction in re-infected mice. In conclusion, we postulate that eosinophils play a central role in mediating host innate and humoral immune responses by controlling parasite burden, tissue inflammation, and remodeling during Ascaris suum infection. Furthermore, we suggest that the use of probiotics can induce eosinophilia and SIgA production and contribute to controlling parasite burden and morbidity of helminthic diseases with pulmonary cycles.
Collapse
Affiliation(s)
- Denise Silva Nogueira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Maria de Oliveira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, Aracajú, Brazil
| | - Chiara Cássia Oliveira Amorim
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara Gazzinelli-Guimarães
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fabrício Marcus Silva Oliveira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus Mattos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Santos Cardoso
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Marianna de Carvalho Clímaco
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Soraya Gaze
- René Rachou Institute, Oswaldo Cruz Foundation–FIOCRUZ, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ricardo Toshio Fujiwara
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Käser T. Swine as biomedical animal model for T-cell research-Success and potential for transmittable and non-transmittable human diseases. Mol Immunol 2021; 135:95-115. [PMID: 33873098 DOI: 10.1016/j.molimm.2021.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Swine is biologically one of the most relevant large animal models for biomedical research. With its use as food animal that can be exploited as a free cell and tissue source for research and its high susceptibility to human diseases, swine additionally represent an excellent option for both the 3R principle and One Health research. One of the previously most limiting factors of the pig model was its arguably limited immunological toolbox. Yet, in the last decade, this toolbox has vastly improved including the ability to study porcine T-cells. This review summarizes the swine model for biomedical research with focus on T cells. It first contrasts the swine model to the more commonly used mouse and non-human primate model before describing the current capabilities to characterize and extend our knowledge on porcine T cells. Thereafter, it not only reflects on previous biomedical T-cell research but also extends into areas in which more in-depth T-cell analyses could strongly benefit biomedical research. While the former should inform on the successes of biomedical T-cell research in swine, the latter shall inspire swine T-cell researchers to find collaborations with researchers working in other areas - such as nutrition, allergy, cancer, transplantation, infectious diseases, or vaccine development.
Collapse
Affiliation(s)
- Tobias Käser
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, 27607 Raleigh, NC, USA.
| |
Collapse
|
15
|
Caraballo L, Zakzuk J, Acevedo N. Helminth-derived cystatins: the immunomodulatory properties of an Ascaris lumbricoides cystatin. Parasitology 2021; 148:1-13. [PMID: 33563346 DOI: 10.1017/s0031182021000214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Helminth infections such as ascariasis elicit a type 2 immune response resembling that involved in allergic inflammation, but differing to allergy, they are also accompanied with strong immunomodulation. This has stimulated an increasing number of investigations, not only to better understand the mechanisms of allergy and helminth immunity but to find parasite-derived anti-inflammatory products that could improve the current treatments of chronic non-communicable inflammatory diseases such as asthma. A great number of helminth-derived immunomodulators have been discovered and some of them extensively analysed, showing their potential use as anti-inflammatory drugs in clinical settings. Since Ascaris lumbricoides is one of the most successful parasites, several groups have focused on the immunomodulatory properties of this helminth. As a result, several excretory/secretory components and purified molecules have been analysed, revealing interesting anti-inflammatory activities potentially useful as therapeutic tools. One of these molecules is A. lumbricoides cystatin, whose genomic, cellular, molecular, and immunomodulatory properties are described in this review.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| |
Collapse
|
16
|
Wang T, Nie S, Ma G, Vlaminck J, Geldhof P, Williamson NA, Reid GE, Gasser RB. Quantitative lipidomic analysis of Ascaris suum. PLoS Negl Trop Dis 2020; 14:e0008848. [PMID: 33264279 PMCID: PMC7710092 DOI: 10.1371/journal.pntd.0008848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/05/2020] [Indexed: 12/02/2022] Open
Abstract
Ascaris is a soil-transmitted nematode that causes ascariasis, a neglected tropical disease affecting predominantly children and adolescents in the tropics and subtropics. Approximately 0.8 billion people are affected worldwide, equating to 0.86 million disability-adjusted life-years (DALYs). Exploring the molecular biology of Ascaris is important to gain a better understanding of the host-parasite interactions and disease processes, and supports the development of novel interventions. Although advances have been made in the genomics, transcriptomics and proteomics of Ascaris, its lipidome has received very limited attention. Lipidomics is an important sub-discipline of systems biology, focused on exploring lipids profiles in tissues and cells, and elucidating their biological and metabolic roles. Here, we characterised the lipidomes of key developmental stages and organ systems of Ascaris of porcine origin via high throughput LC-MS/MS. In total, > 500 lipid species belonging to 18 lipid classes within three lipid categories were identified and quantified–in precise molar amounts in relation to the dry weight of worm material–in different developmental stages/sexes and organ systems. The results showed substantial differences in the composition and abundance of lipids with key roles in cellular processes and functions (e.g. energy storage regulation and membrane structure) among distinct stages and among organ systems, likely reflecting differing demands for lipids, depending on stage of growth and development as well as the need to adapt to constantly changing environments within and outside of the host animal. This work provides the first step toward understanding the biology of lipids in Ascaris, with possibilities to work toward designing new interventions against ascariasis. Lipids are of vital importance in the biology of parasitic worms, particularly in relation to cellular membranes, energy storage, and intra- and intercellular signalling. However, very little is known about the biology of lipids in parasitic nematodes. Using a high-throughput LC-MS/MS approach, we characterised the first global lipidome for Ascaris. We investigated the lipid composition and abundance in key developmental stages/sexes as well as the organ systems of Ascaris. We observed substantial differences in lipid composition and abundance among these stages/sexes and among the organ systems studied. The findings provide a basis to start to understand lipid biology in Ascaris, with possible implications for developing new interventions against ascariasis.
Collapse
Affiliation(s)
- Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Shuai Nie
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Johnny Vlaminck
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Peter Geldhof
- Laboratory of Parasitology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nicholas A. Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria, Australia
| | - Gavin E. Reid
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
17
|
Zawawi A, Else KJ. Soil-Transmitted Helminth Vaccines: Are We Getting Closer? Front Immunol 2020; 11:576748. [PMID: 33133094 PMCID: PMC7565266 DOI: 10.3389/fimmu.2020.576748] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023] Open
Abstract
Parasitic helminths infect over one-fourth of the human population resulting in significant morbidity, and in some cases, death in endemic countries. Despite mass drug administration (MDA) to school-aged children and other control measures, helminth infections are spreading into new areas. Thus, there is a strong rationale for developing anthelminthic vaccines as cost-effective, long-term immunological control strategies, which, unlike MDA, are not haunted by the threat of emerging drug-resistant helminths nor limited by reinfection risk. Advances in vaccinology, immunology, and immunomics include the development of new tools that improve the safety, immunogenicity, and efficacy of vaccines; and some of these tools have been used in the development of helminth vaccines. The development of anthelminthic vaccines is fraught with difficulty. Multiple lifecycle stages exist each presenting stage-specific antigens. Further, helminth parasites are notorious for their ability to dampen down and regulate host immunity. One of the first significant challenges in developing any vaccine is identifying suitable candidate protective antigens. This review explores our current knowledge in lead antigen identification and reports on recent pre-clinical and clinical trials in the context of the soil-transmitted helminths Trichuris, the hookworms and Ascaris. Ultimately, a multivalent anthelminthic vaccine could become an essential tool for achieving the medium-to long-term goal of controlling, or even eliminating helminth infections.
Collapse
Affiliation(s)
- Ayat Zawawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Ayat Zawawi
| | - Kathryn J. Else
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine, and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom,Kathryn J. Else
| |
Collapse
|
18
|
Else KJ, Keiser J, Holland CV, Grencis RK, Sattelle DB, Fujiwara RT, Bueno LL, Asaolu SO, Sowemimo OA, Cooper PJ. Whipworm and roundworm infections. Nat Rev Dis Primers 2020; 6:44. [PMID: 32467581 DOI: 10.1038/s41572-020-0171-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 12/26/2022]
Abstract
Trichuriasis and ascariasis are neglected tropical diseases caused by the gastrointestinal dwelling nematodes Trichuris trichiura (a whipworm) and Ascaris lumbricoides (a roundworm), respectively. Both parasites are staggeringly prevalent, particularly in tropical and subtropical areas, and are associated with substantial morbidity. Infection is initiated by ingestion of infective eggs, which hatch in the intestine. Thereafter, T. trichiura larvae moult within intestinal epithelial cells, with adult worms embedded in a partially intracellular niche in the large intestine, whereas A. lumbricoides larvae penetrate the gut mucosa and migrate through the liver and lungs before returning to the lumen of the small intestine, where adult worms dwell. Both species elicit type 2 anti-parasite immunity. Diagnosis is typically based on clinical presentation (gastrointestinal symptoms and inflammation) and the detection of eggs or parasite DNA in the faeces. Prevention and treatment strategies rely on periodic mass drug administration (generally with albendazole or mebendazole) to at-risk populations and improvements in water, sanitation and hygiene. The effectiveness of drug treatment is very high for A. lumbricoides infections, whereas cure rates for T. trichiura infections are low. Novel anthelminthic drugs are needed, together with vaccine development and tools for diagnosis and assessment of parasite control in the field.
Collapse
Affiliation(s)
- Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Richard K Grencis
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Rayne Building, University College London, London, UK
| | - Ricardo T Fujiwara
- Department of Parasitology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian L Bueno
- Department of Parasitology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Samuel O Asaolu
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Oluyomi A Sowemimo
- Department of Zoology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Philip J Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK.,Facultad de Ciencias Medicas, de la Salud y la Vida, Universidad Internacional del Ecuador, Quito, Ecuador
| |
Collapse
|
19
|
Coakley G, Volpe B, Bouchery T, Shah K, Butler A, Geldhof P, Hatherill M, Horsnell WGC, Esser-von Bieren J, Harris NL. Immune serum-activated human macrophages coordinate with eosinophils to immobilize Ascaris suum larvae. Parasite Immunol 2020; 42:e12728. [PMID: 32394439 DOI: 10.1111/pim.12728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
Helminth infection represents a major health problem causing approximately 5 million disability-adjusted life years worldwide. Concerns that repeated anti-helminthic treatment may lead to drug resistance render it important that vaccines are developed but will require increased understanding of the immune-mediated cellular and antibody responses to helminth infection. IL-4 or antibody-activated murine macrophages are known to immobilize parasitic nematode larvae, but few studies have addressed whether this is translatable to human macrophages. In the current study, we investigated the capacity of human macrophages to recognize and attack larval stages of Ascaris suum, a natural porcine parasite that is genetically similar to the human helminth Ascaris lumbricoides. Human macrophages were able to adhere to and trap A suum larvae in the presence of either human or pig serum containing Ascaris-specific antibodies and other factors. Gene expression analysis of serum-activated macrophages revealed that CCL24, a potent eosinophil attractant, was the most upregulated gene following culture with A suum larvae in vitro, and human eosinophils displayed even greater ability to adhere to, and trap, A suum larvae. These data suggest that immune serum-activated macrophages can recruit eosinophils to the site of infection, where they act in concert to immobilize tissue-migrating Ascaris larvae.
Collapse
Affiliation(s)
- Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Beatrice Volpe
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Tiffany Bouchery
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Kathleen Shah
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Alana Butler
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Peter Geldhof
- Department of Virology, Parasitology and Immunology, Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mark Hatherill
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa
| | - William G C Horsnell
- Institute of Infectious Disease and Molecular Medicine and Division of Immunology, University of Cape Town, Cape Town, South Africa.,Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Julia Esser-von Bieren
- Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland.,Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Nicola Laraine Harris
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Global Health Institute, Swiss Federal Institute of Technology, Lausanne, Switzerland
| |
Collapse
|
20
|
van Leeuwen A, Budischak SA, Graham AL, Cressler CE. Parasite resource manipulation drives bimodal variation in infection duration. Proc Biol Sci 2020; 286:20190456. [PMID: 31064304 DOI: 10.1098/rspb.2019.0456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Over a billion people on earth are infected with helminth parasites and show remarkable variation in parasite burden and chronicity. These parasite distributions are captured well by classic statistics, such as the negative binomial distribution. But the within-host processes underlying this variation are not well understood. In this study, we explain variation in macroparasite infection outcomes on the basis of resource flows within hosts. Resource flows realize the interactions between parasites and host immunity and metabolism. When host metabolism is modulated by parasites, we find a positive feedback of parasites on their own resources. While this positive feedback results in parasites improving their resource availability at high burdens, giving rise to chronic infections, it also results in a threshold biomass required for parasites to establish in the host, giving rise to acute infections when biomass fails to clear the threshold. Our finding of chronic and acute outcomes in bistability contrasts with classic theory, yet is congruent with the variation in helminth burdens observed in human and wildlife populations.
Collapse
Affiliation(s)
- Anieke van Leeuwen
- 1 Royal Netherlands Institute for Sea Research, Department of Coastal Systems, and Utrecht University , PO Box 59, 1790 AB Den Burg, Texel , The Netherlands.,2 Department of Ecology & Evolutionary Biology, Princeton University , Princeton, NJ , USA
| | - Sarah A Budischak
- 2 Department of Ecology & Evolutionary Biology, Princeton University , Princeton, NJ , USA.,3 W.M. Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges , Claremont, CA , USA
| | - Andrea L Graham
- 2 Department of Ecology & Evolutionary Biology, Princeton University , Princeton, NJ , USA
| | - Clayton E Cressler
- 4 Department of Biological Sciences, University of Nebraska , Lincoln, NE , USA
| |
Collapse
|
21
|
Deslyper G, Doherty DG, Carolan JC, Holland CV. The role of the liver in the migration of parasites of global significance. Parasit Vectors 2019; 12:531. [PMID: 31703729 PMCID: PMC6842148 DOI: 10.1186/s13071-019-3791-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Many parasites migrate through different tissues during their life-cycle, possibly with the aim to enhance their fitness. This is true for species of three parasite genera of global importance, Ascaris, Schistosoma and Plasmodium, which cause significant global morbidity and mortality. Interestingly, these parasites all incorporate the liver in their life-cycle. The liver has a special immune status being able to preferentially induce tolerance over immunity. This function may be exploited by parasites to evade host immunity, with Plasmodium spp. in particular using this organ for its multiplication. However, hepatic larval attrition occurs in both ascariasis and schistosomiasis. A better understanding of the molecular mechanisms involved in hepatic infection could be useful in developing novel vaccines and therapies for these parasites.
Collapse
Affiliation(s)
- Gwendoline Deslyper
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Derek G Doherty
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
22
|
Mast cells drive IgE-mediated disease but might be bystanders in many other inflammatory and neoplastic conditions. J Allergy Clin Immunol 2019; 144:S19-S30. [DOI: 10.1016/j.jaci.2019.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/11/2019] [Accepted: 07/08/2019] [Indexed: 01/05/2023]
|
23
|
Wang Y, Liu F, Urban JF, Paerewijck O, Geldhof P, Li RW. Ascaris suum infection was associated with a worm-independent reduction in microbial diversity and altered metabolic potential in the porcine gut microbiome. Int J Parasitol 2019; 49:247-256. [DOI: 10.1016/j.ijpara.2018.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 01/02/2023]
|
24
|
Gazzinelli-Guimarães AC, Gazzinelli-Guimarães PH, Nogueira DS, Oliveira FMS, Barbosa FS, Amorim CCO, Cardoso MS, Kraemer L, Caliari MV, Akamatsu MA, Ho PL, Jones KM, Weatherhead J, Bottazzi ME, Hotez PJ, Zhan B, Bartholomeu DC, Russo RC, Bueno LL, Fujiwara RT. IgG Induced by Vaccination With Ascaris suum Extracts Is Protective Against Infection. Front Immunol 2018; 9:2535. [PMID: 30473693 PMCID: PMC6238660 DOI: 10.3389/fimmu.2018.02535] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/15/2018] [Indexed: 01/22/2023] Open
Abstract
Human ascariasis has a global and cosmopolitan distribution, and has been characterized as the most prevalent neglected tropical disease worldwide. The development of a preventive vaccine is highly desirable to complement current measures required for this parasitic infection control and to reduce chronic childhood morbidities. In the present study, we describe the mechanism of protection elicited by a preventive vaccine against ascariasis. Vaccine efficacy was evaluated after immunization with three different Ascaris suum antigen extracts formulated with monophosphoryl lipid A (MPLA) as an adjuvant: crude extract of adult worm (ExAD); crude extract of adult worm cuticle (CUT); and crude extract of infective larvae (L3) (ExL3). Immunogenicity elicited by immunization was assessed by measuring antibody responses, cytokine production, and influx of tissue inflammatory cells. Vaccine efficacy was evaluated by measuring the reductions in the numbers of larvae in the lungs of immunized BALB/c mice that were challenged with A. suum eggs. Moreover, lung physiology and functionality were tested by spirometry to determine clinical efficacy. Finally, the role of host antibody mediated protection was determined by passive transfer of serum from immunized mice. Significant reductions in the total number of migrating larvae were observed in mice immunized with ExL3 61% (p < 0.001), CUT 59% (p < 0.001), and ExAD 51% (p < 0.01) antigens in comparison with non-immunized mice. For the Ascaris antigen-specific IgG antibody levels, a significant and progressive increase was observed with each round of immunization, in association with a marked increase of IgG1 and IgG3 subclasses. Moreover, a significant increase in concentration of IL-5 and IL-10 (pre-challenge) in the blood and IL-10 in the lung tissue (post-challenge) was induced by CUT immunization. Finally, ExL3 and CUT-immunized mice showed a marked improvement in lung pathology and tissue fibrosis as well as reduced pulmonary dysfunction induced by Ascaris challenge, when compared to non-immunized mice. Moreover, the passive transfer of specific IgG antibodies from ExL3, CUT, and ExAD elicited a protective response in naïve mice, with significant reductions in parasite burdens in lungs of 65, 64, and 64%, respectively. Taken together, these studies indicated that IgG antibodies contribute to protective immunity.
Collapse
Affiliation(s)
| | | | - Denise Silva Nogueira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Fernando Sérgio Barbosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Mariana Santos Cardoso
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milena Apetito Akamatsu
- BioIndustrial Division, Butantan Institute, Sao Paulo Secretary of Health, São Paulo, Brazil
| | - Paulo Lee Ho
- BioIndustrial Division, Butantan Institute, Sao Paulo Secretary of Health, São Paulo, Brazil
| | - Kathryn Marie Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jill Weatherhead
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Bin Zhan
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | | | - Remo Castro Russo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
25
|
Inclan-Rico JM, Siracusa MC. First Responders: Innate Immunity to Helminths. Trends Parasitol 2018; 34:861-880. [PMID: 30177466 PMCID: PMC6168350 DOI: 10.1016/j.pt.2018.08.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 02/07/2023]
Abstract
Helminth infections represent a significant public health concern resulting in devastating morbidity and economic consequences across the globe. Helminths migrate through mucosal sites causing tissue damage and the induction of type 2 immune responses. Antihelminth protection relies on the mobilization and activation of multiple immune cells, including type 2 innate lymphocytes (ILC2s), basophils, mast cells, macrophages, and hematopoietic stem/progenitor cells. Further, epithelial cells and neurons have been recognized as important regulators of type 2 immunity. Collectively, these pathways stimulate host-protective responses necessary for worm expulsion and the healing of affected tissues. In this review we focus on the innate immune pathways that regulate immunity to helminth parasites and describe how better understanding of these pathways may lead to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Mark C Siracusa
- Center for Immunity and Inflammation, Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
26
|
Co-expulsion of Ascaridia galli and Heterakis gallinarum by chickens. Int J Parasitol 2018; 48:1003-1016. [PMID: 30240707 DOI: 10.1016/j.ijpara.2018.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023]
Abstract
Worm expulsion is known to occur in mammalian hosts exposed to mono-species helminth infections, whilst this phenomenon is poorly described in avian hosts. Mono-species infections, however, are rather rare under natural circumstances. Therefore, we quantified the extent and duration of worm expulsion by chickens experimentally infected with both Ascaridia galli and Heterakis gallinarum, and investigated the accompanying humoral and cell-mediated host immune responses in association with population dynamics of the worms. Results demonstrated the strong co-expulsion of the two ascarid species in three phases. The expulsion patterns were characterized by non-linear alterations separated by species-specific time thresholds. Ascaridia galli burden decreased at a daily expulsion rate (e) of 4.3 worms up to a threshold of 30.5 days p.i., followed by a much lower second expulsion rate (e = 0.46), which resulted in almost, but not entirely, complete expulsion. Heterakis gallinarum was able to induce reinfection within the experimental period (9 weeks). First generation H. gallinarum worms were expelled at a daily rate of e = 0.8 worms until 36.4 days p.i., and thereafter almost no expulsion occurred. Data on both humoral and tissue-specific cellular immune responses collectively indicated that antibody production in chickens with multispecies ascarid infections is triggered by Th2 polarisation. Local Th2 immune responses and mucin-regulating genes are associated with the regulation of worm expulsion. In conclusion, the chicken host is able to eliminate the vast majority of both A. galli and H. gallinarum in three distinct phases. Worm expulsion was strongly associated with the developmental stages of the worms, where the elimination of juvenile stages was specifically targeted. A very small percentage of worms was nevertheless able to survive, reach maturity and induce reinfection if given sufficient time to complete their life cycle. Both humoral and local immune responses were associated with worm expulsion.
Collapse
|
27
|
Ebner F, Kuhring M, Radonić A, Midha A, Renard BY, Hartmann S. Silent Witness: Dual-Species Transcriptomics Reveals Epithelial Immunological Quiescence to Helminth Larval Encounter and Fostered Larval Development. Front Immunol 2018; 9:1868. [PMID: 30158930 PMCID: PMC6104121 DOI: 10.3389/fimmu.2018.01868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 11/17/2022] Open
Abstract
Gastrointestinal nematodes are among the most prevalent parasites infecting humans and livestock worldwide. Infective larvae of the soil-transmitted nematode Ascaris spp. enter the host and start tissue migration by crossing the intestinal epithelial barrier. The initial interaction of the intestinal epithelium with the parasite, however, has received little attention. In a time-resolved interaction model of porcine intestinal epithelial cells (IPEC-J2) and infective Ascaris suum larvae, we addressed the early transcriptional changes occurring simultaneously in both organisms using dual-species RNA-Seq. Functional analysis of the host response revealed an overall induction of metabolic activity, without induction of immune responsive genes or immune signaling pathways and showing suppression of chemotactic genes like CXCL8/IL-8 or CHI3L1. Ascaris larvae, when getting in contact with the epithelium, showed induction of genes that orchestrate motor activity and larval development, such as myosin, troponin, myoglobin, and protein disulfide isomerase 2 (PDI-2). In addition, excretory-secretory products that likely facilitate parasite invasion were increased, among them, aspartic protease 6 or hyaluronidase. Integration of host and pathogen data in an interspecies gene co-expression network indicated links between nematode fatty acid biosynthesis and host ribosome assembly/protein synthesis. In summary, our study provides new molecular insights into the early factors of parasite invasion, while at the same time revealing host immunological unresponsiveness. Reproducible software for dual RNA-Seq analysis of non-model organisms is available at https://gitlab.com/mkuhring/project_asuum and can be applied to similar studies.
Collapse
Affiliation(s)
- Friederike Ebner
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Mathias Kuhring
- Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, Berlin, Germany.,Core Unit Bioinformatics, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health Metabolomics Platform, Berlin Institute of Health (BIH), Berlin, Germany.,Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Aleksandar Radonić
- Center for Biological Threats and Special Pathogens: Highly Pathogenic Viruses (ZBS 1), Robert Koch Institute, Berlin, Germany
| | - Ankur Midha
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Bernhard Y Renard
- Bioinformatics Unit (MF1), Department for Methods Development and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Martínez-Pérez J, Vandekerckhove E, Vlaminck J, Geldhof P, Martínez-Valladares M. Serological detection of Ascaris suum at fattening pig farms is linked with performance and management indices. Vet Parasitol 2017; 248:33-38. [DOI: 10.1016/j.vetpar.2017.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
|
29
|
Charlier J, Thamsborg SM, Bartley DJ, Skuce PJ, Kenyon F, Geurden T, Hoste H, Williams AR, Sotiraki S, Höglund J, Chartier C, Geldhof P, van Dijk J, Rinaldi L, Morgan ER, von Samson-Himmelstjerna G, Vercruysse J, Claerebout E. Mind the gaps in research on the control of gastrointestinal nematodes of farmed ruminants and pigs. Transbound Emerg Dis 2017; 65 Suppl 1:217-234. [PMID: 29124904 DOI: 10.1111/tbed.12707] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Indexed: 12/31/2022]
Abstract
Gastrointestinal (GI) nematode control has an important role to play in increasing livestock production from a limited natural resource base and to improve animal health and welfare. In this synthetic review, we identify key research priorities for GI nematode control in farmed ruminants and pigs, to support the development of roadmaps and strategic research agendas by governments, industry and policymakers. These priorities were derived from the DISCONTOOLS gap analysis for nematodes and follow-up discussions within the recently formed Livestock Helminth Research Alliance (LiHRA). In the face of ongoing spread of anthelmintic resistance (AR), we are increasingly faced with a failure of existing control methods against GI nematodes. Effective vaccines against GI nematodes are generally not available, and anthelmintic treatment will therefore remain a cornerstone for their effective control. At the same time, consumers and producers are increasingly concerned with environmental issues associated with chemical parasite control. To address current challenges in GI nematode control, it is crucial to deepen our insights into diverse aspects of epidemiology, AR, host immune mechanisms and the socio-psychological aspects of nematode control. This will enhance the development, and subsequent uptake, of the new diagnostics, vaccines, pharma-/nutraceuticals, control methods and decision support tools required to respond to the spread of AR and the shifting epidemiology of GI nematodes in response to climatic, land-use and farm husbandry changes. More emphasis needs to be placed on the upfront evaluation of the economic value of these innovations as well as the socio-psychological aspects to prioritize research and facilitate uptake of innovations in practice. Finally, targeted regulatory guidance is needed to create an innovation-supportive environment for industries and to accelerate the access to market of new control tools.
Collapse
Affiliation(s)
- J Charlier
- Kreavet, Kruibeke, Belgium.,Avia-GIS, Zoersel, Belgium
| | - S M Thamsborg
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| | | | - P J Skuce
- Moredun Research Institute, Edinburgh, UK
| | - F Kenyon
- Moredun Research Institute, Edinburgh, UK
| | | | - H Hoste
- UMR IHAP 1225, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - A R Williams
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg C, Denmark
| | - S Sotiraki
- VetResInst, HAO-DEMETER, Thessaloniki, Greece
| | - J Höglund
- BVF, Section for Parasitology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - P Geldhof
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - J van Dijk
- Institute of Infection and Global Health, University of Liverpool, Neston, Cheshire, UK
| | - L Rinaldi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Napoli, Italy
| | - E R Morgan
- Institute for Global Food Security, Queen's University Belfast, Belfast, UK.,School of Veterinary Science, University of Bristol, North Somerset, UK
| | | | - J Vercruysse
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E Claerebout
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
30
|
Midttun HLE, Acevedo N, Skallerup P, Almeida S, Skovgaard K, Andresen L, Skov S, Caraballo L, van Die I, Jørgensen CB, Fredholm M, Thamsborg SM, Nejsum P, Williams AR. Ascaris Suum Infection Downregulates Inflammatory Pathways in the Pig Intestine In Vivo and in Human Dendritic Cells In Vitro. J Infect Dis 2017; 217:310-319. [DOI: 10.1093/infdis/jix585] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/07/2017] [Indexed: 11/15/2022] Open
|
31
|
Evaluation of serology to measure exposure of piglets to Ascaris suum during the nursery phase. Vet Parasitol 2017; 246:82-87. [DOI: 10.1016/j.vetpar.2017.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 11/24/2022]
|
32
|
A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs. PLoS One 2017; 12:e0186546. [PMID: 29028844 PMCID: PMC5640243 DOI: 10.1371/journal.pone.0186546] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP), an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A. suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet significantly increased numbers of eosinophils induced by A. suum infection in the duodenum, jejunum and ileum, and modulated gene expression in the jejunal mucosa of infected pigs. Both GP-supplementation and A. suum infection induced significant and apparently similar changes in the composition of the prokaryotic gut microbiota, and both also decreased concentrations of isobutyric and isovaleric acid (branched-chain short chain fatty acids) in the colon. Our results demonstrate that while a polyphenol-enriched diet in pigs may not directly influence A. suum establishment, it significantly modulates the subsequent host response to helminth infection. Our results suggest an influence of diet on immune function which may potentially be exploited to enhance immunity to helminths.
Collapse
|
33
|
Williams AR, Hansen TVA, Krych L, Ahmad HFB, Nielsen DS, Skovgaard K, Thamsborg SM. Dietary cinnamaldehyde enhances acquisition of specific antibodies following helminth infection in pigs. Vet Immunol Immunopathol 2017; 189:43-52. [PMID: 28669386 DOI: 10.1016/j.vetimm.2017.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/20/2017] [Accepted: 06/16/2017] [Indexed: 01/08/2023]
Abstract
Dietary phytonutrients such as cinnamaldehyde (CA) may contribute to immune function during pathogen infections, and CA has been reported to have positive effects on gut health when used as feed additive for livestock. Here, we investigated whether CA could enhance antibody production and specific immune responses during infection with an enteric pathogen. We examined the effect of dietary CA on plasma antibody levels in parasite-naïve pigs, and subsequently acquisition of humoral immune responses during infection with the parasitic nematode Ascaris suum. Parasite-naïve pigs fed diets supplemented with CA had higher levels of total IgA and IgG in plasma, and A. suum-infected pigs fed CA had higher levels of parasite-specific IgM and IgA in plasma 14days post-infection. Moreover, dietary CA increased expression of genes encoding the B-cell marker CD19, sodium/glucose co-transporter1 (SCA5L1) and glucose transporter 2 (SLC2A2) in the jejunal mucosa of A.suum-infected pigs. Dietary CA induced only limited changes in the composition of the prokaryotic gut microbiota of A. suum-infected pigs, and in vitro experiments showed that CA did not directly induce proliferation or increase secretion of IgG and IgA from lymphocytes. Our results demonstrate that dietary CA can significantly enhance acquisition of specific immune responses in pigs. The underlying mechanism remains obscure, but apparently does not derive simply from direct contact between CA and host lymphocytes and appears to be independent of the gut microbiota.
Collapse
Affiliation(s)
- Andrew R Williams
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | - Tina V A Hansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Hajar Fauzan Bin Ahmad
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dennis S Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Kerstin Skovgaard
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Frederiksberg, Denmark
| | - Stig M Thamsborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
34
|
Garza JJ, Greiner SP, Bowdridge SA. Serum‐mediated
Haemonchus contortus
larval aggregation differs by larval stage and is enhanced by complement. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022]
Affiliation(s)
- J. J. Garza
- Division of Animal and Nutritional Sciences West Virginia University Morgantown WV USA
| | - S. P. Greiner
- Department of Animal and Poultry Sciences Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - S. A. Bowdridge
- Division of Animal and Nutritional Sciences West Virginia University Morgantown WV USA
| |
Collapse
|
35
|
Nogueira DS, Gazzinelli-Guimarães PH, Barbosa FS, Resende NM, Silva CC, de Oliveira LM, Amorim CCO, Oliveira FMS, Mattos MS, Kraemer LR, Caliari MV, Gaze S, Bueno LL, Russo RC, Fujiwara RT. Multiple Exposures to Ascaris suum Induce Tissue Injury and Mixed Th2/Th17 Immune Response in Mice. PLoS Negl Trop Dis 2016; 10:e0004382. [PMID: 26814713 PMCID: PMC4729520 DOI: 10.1371/journal.pntd.0004382] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/19/2015] [Indexed: 02/07/2023] Open
Abstract
Ascaris spp. infection affects 800 million people worldwide, and half of the world population is currently at risk of infection. Recurrent reinfection in humans is mostly due to the simplicity of the parasite life cycle, but the impact of multiple exposures to the biology of the infection and the consequences to the host's homeostasis are poorly understood. In this context, single and multiple exposures in mice were performed in order to characterize the parasitological, histopathological, tissue functional and immunological aspects of experimental larval ascariasis. The most important findings revealed that reinfected mice presented a significant reduction of parasite burden in the lung and an increase in the cellularity in the bronchoalveolar lavage (BAL) associated with a robust granulocytic pulmonary inflammation, leading to a severe impairment of respiratory function. Moreover, the multiple exposures to Ascaris elicited an increased number of circulating inflammatory cells as well as production of higher levels of systemic cytokines, mainly IL-4, IL-5, IL-6, IL-10, IL-17A and TNF-α when compared to single-infected animals. Taken together, our results suggest the intense pulmonary inflammation associated with a polarized systemic Th2/Th17 immune response are crucial to control larval migration after multiple exposures to Ascaris.
Collapse
Affiliation(s)
- Denise Silva Nogueira
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro Henrique Gazzinelli-Guimarães
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Sérgio Barbosa
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nathália Maria Resende
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Institute of Biological and Health Sciences, Universidade Federal do Mato Grosso, Cuiabá, Brazil
| | - Caroline Cavalcanti Silva
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Maria de Oliveira
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabrício Marcus Silva Oliveira
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus Silvério Mattos
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Rocha Kraemer
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Soraya Gaze
- Laboratory of Cellular and Molecular Immunology, René Rachou Institute, Oswaldo Cruz Foundation–FIOCRUZ, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Parasite Genomics, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Institute of Biological and Health Sciences, Universidade Federal do Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
36
|
Advances in the diagnosis of Ascaris suum infections in pigs and their possible applications in humans. Parasitology 2014; 141:1904-11. [DOI: 10.1017/s0031182014000328] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYAscariasis is one of the most common parasitic diseases in both humans and pigs. It has been shown to cause growth deficits in both species and to impair cognitive development in children. Notwithstanding its substantial impact on pig economy and public health, diagnosis of ascariasis has mostly relied on the detection of eggs in stool and further development of novel, more sensitive methods has been limited or non-existent. Here, we discuss the currently available techniques for the diagnosis of ascariasis in pigs, their caveats, and the implications of a new serological detection technique for the evaluation of both pig and human ascariasis.
Collapse
|