1
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
2
|
Durães-Oliveira J, Palma-Marques J, Moreno C, Rodrigues A, Monteiro M, Alexandre-Pires G, da Fonseca IP, Santos-Gomes G. Chagas Disease: A Silent Threat for Dogs and Humans. Int J Mol Sci 2024; 25:3840. [PMID: 38612650 PMCID: PMC11011309 DOI: 10.3390/ijms25073840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Chagas disease (CD) is a vector-borne Neglected Zoonotic Disease (NZD) caused by a flagellate protozoan, Trypanosoma cruzi, that affects various mammalian species across America, including humans and domestic animals. However, due to an increase in population movements and new routes of transmission, T. cruzi infection is presently considered a worldwide health concern, no longer restricted to endemic countries. Dogs play a major role in the domestic cycle by acting very efficiently as reservoirs and allowing the perpetuation of parasite transmission in endemic areas. Despite the significant progress made in recent years, still there is no vaccine against human and animal disease, there are few drugs available for the treatment of human CD, and there is no standard protocol for the treatment of canine CD. In this review, we highlight human and canine Chagas Disease in its different dimensions and interconnections. Dogs, which are considered to be the most important peridomestic reservoir and sentinel for the transmission of T. cruzi infection in a community, develop CD that is clinically similar to human CD. Therefore, an integrative approach, based on the One Health concept, bringing together the advances in genomics, immunology, and epidemiology can lead to the effective development of vaccines, new treatments, and innovative control strategies to tackle CD.
Collapse
Affiliation(s)
- João Durães-Oliveira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Joana Palma-Marques
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Cláudia Moreno
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Armanda Rodrigues
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Marta Monteiro
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Graça Alexandre-Pires
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| |
Collapse
|
3
|
Suárez C, Nolder D, García-Mingo A, Moore DAJ, Chiodini PL. Diagnosis and Clinical Management of Chagas Disease: An Increasing Challenge in Non-Endemic Areas. Res Rep Trop Med 2022; 13:25-40. [PMID: 35912165 PMCID: PMC9326036 DOI: 10.2147/rrtm.s278135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
Chagas disease (CD) is caused by the parasite Trypanosoma cruzi, and it is endemic in Central, South America, Mexico and the South of the United States. It is an important cause of early mortality and morbidity, and it is associated with poverty and stigma. A third of the cases evolve into chronic cardiomyopathy and gastrointestinal disease. The infection is transmitted vertically and by blood/organ donation and can reactivate with immunosuppression. Case identification requires awareness and screening programmes targeting the population at risk (women in reproductive age, donors, immunocompromised patients). Treatment with benznidazole or nifurtimox is most effective in the acute phase and prevents progression to chronic phase when given to children. Treating women antenatally reduces but does not eliminate vertical transmission. Treatment is poorly tolerated, contraindicated during pregnancy, and has little effect modifying the disease in the chronic phase. Screening is easily performed with serology. Migration has brought the disease outside of the endemic countries, where the transmission continues vertically and via blood and tissue/organ donations. There are more than 32 million migrants from Latin America living in non-endemic countries. However, the infection is massively underdiagnosed in this setting due to the lack of awareness by patients, health authorities and professionals. Blood and tissue donation screening policies have significantly reduced transmission in endemic countries but are not universally established in the non-endemic setting. Antenatal screening is not commonly done. Other challenges include difficulties accessing and retaining patients in the healthcare system and lack of specific funding for the interventions. Any strategy must be accompanied by education and awareness campaigns directed to patients, professionals and policy makers. The involvement of patients and their communities is central and key for success and must be sought early and actively. This review proposes strategies to address challenges faced by non-endemic countries.
Collapse
Affiliation(s)
- Cristina Suárez
- UK Chagas Hub, London, UK
- Department of Infection, Barts Health NHS Trust, London, UK
| | - Debbie Nolder
- UK Chagas Hub, London, UK
- Diagnostic Parasitology Laboratory, London School of Hygiene & Tropical Medicine, London, UK
| | - Ana García-Mingo
- UK Chagas Hub, London, UK
- Microbiology Department, Whittington Health NHS Trust, London, UK
| | - David A J Moore
- UK Chagas Hub, London, UK
- Hospital for Tropical Diseases, University College London Hospitals NHS Trust;, London, UK
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Peter L Chiodini
- UK Chagas Hub, London, UK
- Hospital for Tropical Diseases, University College London Hospitals NHS Trust;, London, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
4
|
Murphy N, Cardinal MV, Bhattacharyya T, Enriquez GF, Macchiaverna NP, Alvedro A, Freilij H, Martinez de Salazar P, Molina I, Mertens P, Gilleman Q, Gürtler RE, Miles MA. Assessing antibody decline after chemotherapy of early chronic Chagas disease patients. Parasit Vectors 2021; 14:543. [PMID: 34670602 PMCID: PMC8527601 DOI: 10.1186/s13071-021-05040-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chagas disease remains a significant public health problem in Latin America. There are only two chemotherapy drugs, nifurtimox and benznidazole, and both may have severe side effects. After complete chemotherapy of acute cases, seropositive diagnosis may revert to negative. However, there are no definitive parasitological or serological biomarkers of cure. METHODS Following a pilot study with seven Bolivian migrants to Spain, we tested 71 serum samples from chronic patients (mean age 12.6 years) inhabiting the Argentine Chaco region. Benznidazole chemotherapy (5-8 mg/kg day, twice daily for 60 days) was administered during 2011-2016. Subsequently, pre-and post-chemotherapy serum samples were analysed in pairs by IgG1 and IgG ELISA using two different antigens and Chagas Sero K-SeT rapid diagnostic tests (RDT). Molecular diagnosis by kDNA-PCR was applied to post-treatment samples. RESULTS Pilot data demonstrated IgG1 antibody decline in three of seven patients from Bolivia 1 year post-treatment. All Argentine patients in 2017 (averaging 5 years post-treatment), except one, were positive by conventional serology. All were kDNA-PCR-negative. Most (91.5%) pre-treatment samples were positive by the Chagas Sero K-SeT RDT, confirming the predominance of TcII/V/VI. IgG1 and IgG of Argentine patients showed significant decline in antibody titres post-chemotherapy, with either lysate (IgG, P = 0.0001, IgG1, P = 0.0001) or TcII/V/VI peptide antigen (IgG, P = 0.0001, IgG1, P = 0.0001). IgG1 decline was more discriminative than IgG. Antibody decline after treatment was also detected by the RDT. Incomplete treatment was associated with high IgG1 post-treatment titres against lysate (P = 0.013), as were IgG post-treatment titres to TcII/V/VI peptide (P = 0.0001). High pre-treatment IgG1 with lysate was associated with Qom ethnicity (P = 0.045). No associations were found between gender, age, body mass index and pre- or post-treatment antibody titres. CONCLUSIONS We show that following chemotherapy of early chronic Chagas disease, significant decline in IgG1 antibody suggests cure, whereas sustained or increased IgG1 is a potential indicator of treatment failure. Due to restricted sensitivity, IgG1 should not be used as a diagnostic marker but has promise, with further development, as a biomarker of cure. We show that following chemotherapy of early chronic Chagas disease, a significant decline in IgG1 antibody suggests cure, whereas sustained or increased IgG1 is a potential indicator of treatment failure. Due to restricted sensitivity, IgG1 should not be used as a diagnostic marker but has promise, with further development, as a biomarker of cure.
Collapse
Affiliation(s)
- Niamh Murphy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - M Victoria Cardinal
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Gustavo F Enriquez
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Natalia P Macchiaverna
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Alejandra Alvedro
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Héctor Freilij
- Hopital de Niños "Dr. Ricardo Gutiérrez", CABA, Argentina
| | | | - Israel Molina
- Barcelona Institute for Global Health (IS Global), Barcelona, Spain
| | | | | | - Ricardo E Gürtler
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
5
|
Sanchez L, Messenger LA, Bhattacharyya T, Gilman RH, Mayta H, Colanzi R, Bozo R, Verástegui M, Miles MA, Bern C. Congenital Chagas disease in Santa Cruz Department, Bolivia, is dominated by Trypanosoma cruzi lineage V. Trans R Soc Trop Med Hyg 2021; 116:80-84. [PMID: 34134129 DOI: 10.1093/trstmh/trab089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND This study identified Trypanosoma cruzi discrete typing units (DTUs) in maternal and infant specimens collected from two hospitals in Bolivia, using conventional genotyping and DTU-specific serotyping. METHODS Specimens from 142 mothers were used, including 24 seronegative and 118 seropositive individuals; 29 women transmitted T. cruzi to their infants. Maternal and infant parasite loads were determined by quantitative real-time PCR. Maternal sera were tested with an in-house parasite lysate ELISA and serotyped by a lineage-specific peptide ELISA, targeting the trypomastigote small surface antigen (TSSA). Trypanosoma cruzi genotypes in infected infants were determined by a triple PCR-RFLP assay. RESULTS All infant specimens were genotyped as TcV. Maternal parasite loads and absorbance values by the lysate ELISA were significantly higher for transmitters compared with non-transmitters. Among seropositive mothers, 65.3% had positive results by the TSSA II/V/VI peptide ELISA. No significant difference in reactivity to TSSA II/V/VI was observed for transmitters compared with non-transmitters (79.3% vs 60.7%, respectively). CONCLUSIONS Our findings reinforce the difficulty in obtaining sufficient sample numbers and parasite DNA to investigate the interaction between parasite genetics and the risk of congenital transmission and argue for the inclusion of DTU-specific serotyping in prospective studies.
Collapse
Affiliation(s)
- Leny Sanchez
- Laboratorio de Investigación en Enfermedades Infecciosas, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima Av. Honorio Delgado 430, San Martín de Porres 15102, Perú
| | - Louisa A Messenger
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Tapan Bhattacharyya
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Robert H Gilman
- Laboratorio de Investigación en Enfermedades Infecciosas, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima Av. Honorio Delgado 430, San Martín de Porres 15102, Perú.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, Maryland 21205, USA
| | - Holger Mayta
- Laboratorio de Investigación en Enfermedades Infecciosas, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima Av. Honorio Delgado 430, San Martín de Porres 15102, Perú
| | - Rony Colanzi
- Hospital Japonés de Tercer Nivel, Santa Cruz de la Sierra, Plurinational State of Bolivia
| | - Ricardo Bozo
- Hospital Municipal Camiri, Camiri, Plurinational State of Bolivia
| | - Manuela Verástegui
- Laboratorio de Investigación en Enfermedades Infecciosas, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia, Lima Av. Honorio Delgado 430, San Martín de Porres 15102, Perú
| | - Michael A Miles
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, 550 16th St, San Francisco, California 94158, USA
| |
Collapse
|
6
|
Serological Approaches for Trypanosoma cruzi Strain Typing. Trends Parasitol 2021; 37:214-225. [PMID: 33436314 DOI: 10.1016/j.pt.2020.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/23/2022]
Abstract
Trypanosoma cruzi, the protozoan agent of Chagas' disease, displays a complex population structure made up of multiple strains showing a diverse ecoepidemiological distribution. Parasite genetic variability may be associated with disease outcome, hence stressing the need to develop methods for T. cruzi typing in vivo. Serological typing methods that exploit the presence of host antibodies raised against polymorphic parasite antigens emerge as an appealing approach to address this issue. These techniques are robust, simple, cost-effective, and are not curtailed by methodological/biological limitations intrinsic to available genotyping methods. Here, we critically assess the progress towards T. cruzi serotyping and discuss the opportunity provided by high-throughput immunomics to improve this field.
Collapse
|
7
|
Buss LF, Campos de Oliveira- da Silva L, Moreira CHV, Manuli ER, Sales FC, Morales I, Di Germanio C, de Almeida-Neto C, Bakkour S, Constable P, Pinto-Filho MM, Ribeiro AL, Busch M, Sabino EC. Declining antibody levels to Trypanosoma cruzi correlate with polymerase chain reaction positivity and electrocardiographic changes in a retrospective cohort of untreated Brazilian blood donors. PLoS Negl Trop Dis 2020; 14:e0008787. [PMID: 33108390 PMCID: PMC7647114 DOI: 10.1371/journal.pntd.0008787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 11/06/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Although infection with Trypanosoma cruzi is thought to be lifelong, less than half of those infected develop cardiomyopathy, suggesting greater parasite control or even clearance. Antibody levels appear to correlate with T. cruzi (antigen) load. We test the association between a downwards antibody trajectory, PCR positivity and ECG alterations in untreated individuals with Chagas disease. Methodology/Principal findings This is a retrospective cohort of T. cruzi seropositive blood donors. Paired blood samples (index donation and follow-up) were tested using the VITROS Immunodiagnostic Products Anti-T.cruzi (Chagas) assay (Ortho Clinical Diagnostics, Raritan NJ) and PCR performed on the follow-up sample. A 12-lead resting ECG was performed. Significant antibody decline was defined as a reduction of > 1 signal-to-cutoff (S/CO) unit on the VITROS assay. Follow-up S/CO of < 4 was defined as borderline/low. 276 untreated seropositive blood donors were included. The median (IQR) follow-up was 12.7 years (8.5–16.9). 56 (22.1%) subjects had a significant antibody decline and 35 (12.7%) had a low/borderline follow-up result. PCR positivity was lower in the falling (26.8% vs 52.8%, p = 0.001) and low/borderline (17.1% vs 51.9%, p < 0.001) antibody groups, as was the rate of ECG abnormalities. Falling and low/borderline antibody groups were predominantly composed of individuals with negative PCR and normal ECG findings: 64% and 71%, respectively. Conclusions/Significance Low and falling antibody levels define a phenotype of possible spontaneous parasite clearance. Infection with the single-celled parasite Trypanosoma cruzi (Chagas disease) is thought to be lifelong. However, only a third of infected people develop Chagas cardiomyopathy–the main disease manifestation. This may reflect the different extent to which individuals control the parasite, with some potentially clearing it entirely. In chronically infected immunocompetent patients, a marker of parasite burden is the quantity of antibody against T. cruzi in the blood: more parasite, more immune stimulation, more antibody. In this study we show how antibody levels change over many years in a cohort of untreated patients with Chagas disease. We find that among individuals with falling or low/borderline antibody levels there was a lower rate of parasite detection in the blood and a lower rate of cardiomyopathy. 60% of subjects with falling antibody levels had no evidence of active disease, twice as many as among patients with other antibody trajectories (stable or rising). Our findings support an account of the natural history of Chagas disease in which a proportion of those infected achieve a greater control of the parasite, with some individuals potentially clearing it completely.
Collapse
Affiliation(s)
- Lewis F. Buss
- Instituto de Medicina Tropical da Faculdade de Medicina (FMUSP) da Universidade de São Paulo, São Paulo, Brazil
| | | | - Carlos H. V. Moreira
- Instituto de Medicina Tropical da Faculdade de Medicina (FMUSP) da Universidade de São Paulo, São Paulo, Brazil
| | - Erika R. Manuli
- Instituto de Medicina Tropical da Faculdade de Medicina (FMUSP) da Universidade de São Paulo, São Paulo, Brazil
| | - Flavia C. Sales
- Instituto de Medicina Tropical da Faculdade de Medicina (FMUSP) da Universidade de São Paulo, São Paulo, Brazil
| | - Ingra Morales
- Instituto de Medicina Tropical da Faculdade de Medicina (FMUSP) da Universidade de São Paulo, São Paulo, Brazil
| | - Clara Di Germanio
- Vitalant Research Institute, San Francisco, CA, United States of America
| | | | - Sonia Bakkour
- Vitalant Research Institute, San Francisco, CA, United States of America
| | - Paul Constable
- Ortho Clinical Diagnostics, Rochester, NY, United States of America
| | - Marcelo M. Pinto-Filho
- Telehealth Center, Hospital das Clínicas, and Internal Medicine Department, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Antonio L. Ribeiro
- Telehealth Center, Hospital das Clínicas, and Internal Medicine Department, School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michael Busch
- Vitalant Research Institute, San Francisco, CA, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Ester C. Sabino
- Instituto de Medicina Tropical da Faculdade de Medicina (FMUSP) da Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
8
|
Murphy N, Rooney B, Bhattacharyya T, Triana-Chavez O, Krueger A, Haslam SM, O'Rourke V, Pańczuk M, Tsang J, Bickford-Smith J, Gilman RH, Tetteh K, Drakeley C, Smales CM, Miles MA. Glycosylation of Trypanosoma cruzi TcI antigen reveals recognition by chagasic sera. Sci Rep 2020; 10:16395. [PMID: 33009443 PMCID: PMC7532467 DOI: 10.1038/s41598-020-73390-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
Chagas disease is considered the most important parasitic disease in Latin America. The protozoan agent, Trypanosoma cruzi, comprises six genetic lineages, TcI-TcVI. Genotyping to link lineage(s) to severity of cardiomyopathy and gastrointestinal pathology is impeded by the sequestration and replication of T. cruzi in host tissues. We describe serology specific for TcI, the predominant lineage north of the Amazon, based on expression of recombinant trypomastigote small surface antigen (gTSSA-I) in the eukaryote Leishmania tarentolae, to allow realistic glycosylation and structure of the antigen. Sera from TcI-endemic regions recognised gTSSA-I (74/146; 50.7%), with no cross reaction with common components of gTSSA-II/V/VI recombinant antigen. Antigenicity was abolished by chemical (periodate) oxidation of gTSSA-I glycosylation but retained after heat-denaturation of conformation. Conversely, non-specific recognition of gTSSA-I by non-endemic malaria sera was abolished by heat-denaturation. TcI-specific serology facilitates investigation between lineage and diverse clinical presentations. Glycosylation cannot be ignored in the search for immunogenic antigens.
Collapse
Affiliation(s)
- Niamh Murphy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Barrie Rooney
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury, Kent, UK.,TroZonX17, Kent, UK
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Victoria O'Rourke
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Magdalena Pańczuk
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jemima Tsang
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jack Bickford-Smith
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Kevin Tetteh
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - C Mark Smales
- Centre for Molecular Processing, School of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
9
|
Human Chagas-Flow ATE-IgG1 for advanced universal and Trypanosoma cruzi Discrete Typing Units-specific serodiagnosis of Chagas disease. Sci Rep 2020; 10:13296. [PMID: 32764546 PMCID: PMC7414038 DOI: 10.1038/s41598-020-69921-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
The molecular and serological methods available for Discrete Typing Units (DTU)-specific diagnosis of Trypanosoma cruzi in chronic Chagas disease present limitations. The study evaluated the performance of Human Chagas-Flow ATE-IgG1 for universal and DTU-specific diagnosis of Chagas disease. A total of 102 sera from Chagas disease patients (CH) chronically infected with TcI, TcVI or TcII DTUs were tested for IgG1 reactivity to amastigote/(A), trypomastigote/(T) and epimastigote/(E) antigens along the titration curve (1:250-1:32,000). The results demonstrated that "AI 250/40%", "EVI 250/30%", "AII 250/40%", "TII 250/40%" and "EII 250/30%" have outstanding accuracy (100%) to segregate CH from non-infected controls. The attributes "TI 4,000/50%", "EI 2,000/50%", "AVI 8,000/60%" and "TVI 4,000/50%" were selected for DTU-specific serotyping of Chagas disease. The isolated use of "EI 2,000/50%" provided the highest co-positivity for TcI patients (91%). The combined decision tree algorithms using the pre-defined sets of attributes showed outstanding full accuracy (92% and 97%) to discriminate "TcI vs TcVI vs TcII" and "TcI vs TcII" prototypes, respectively. The elevated performance of Human Chagas-Flow ATE-IgG1 qualifies its use for universal and TcI/TcVI/TcII-specific diagnosis of Chagas disease. These findings further support the application of this method in epidemiological surveys, post-therapeutic monitoring and clinical outcome follow-ups for Chagas disease.
Collapse
|
10
|
Maiguashca Sánchez J, Sueto SOB, Schwabl P, Grijalva MJ, Llewellyn MS, Costales JA. Remarkable genetic diversity of Trypanosoma cruzi and Trypanosoma rangeli in two localities of southern Ecuador identified via deep sequencing of mini-exon gene amplicons. Parasit Vectors 2020; 13:252. [PMID: 32410645 PMCID: PMC7227245 DOI: 10.1186/s13071-020-04079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/10/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi, the causative agent of Chagas disease, and T. rangeli are kinetoplastid parasites endemic to Latin America. Although closely related to T. cruzi and capable of infecting humans, T. rangeli is non-pathogenic. Both parasite species are transmitted by triatomine bugs, and the presence of T. rangeli constitutes a confounding factor in the study of Chagas disease prevalence and transmission dynamics. Trypanosoma cruzi possesses high molecular heterogeneity: seven discrete typing units (DTUs) are currently recognized. In Ecuador, T. cruzi TcI and T. rangeli KP1(-) predominate, while other genetic lineages are seldom reported. METHODS Infection by T. cruzi and/or T. rangeli in different developmental stages of triatomine bugs from two communities of southern Ecuador was evaluated via polymerase chain reaction product size polymorphism of kinetoplast minicircle sequences and the non-transcribed spacer region of the mini-exon gene (n = 48). Forty-three mini-exon amplicons were also deep sequenced to analyze single-nucleotide polymorphisms within single and mixed infections. Mini-exon products from ten monoclonal reference strains were included as controls. RESULTS Trypanosoma cruzi genetic richness and diversity was not significantly greater in adult vectors than in nymphal stages III and V. In contrast, instar V individuals showed significantly higher T. rangeli richness when compared with other developmental stages. Among infected triatomines, deep sequencing revealed one T. rangeli infection (3%), 8 T. cruzi infections (23.5%) and 25 T. cruzi + T. rangeli co-infections (73.5%), suggesting that T. rangeli prevalence has been largely underestimated in the region. Furthermore, deep sequencing detected TcIV sequences in nine samples; this DTU had not previously been reported in Loja Province. CONCLUSIONS Our data indicate that deep sequencing allows for better parasite identification/typing than amplicon size analysis alone for mixed infections containing both T. cruzi and T. rangeli, or when multiple T. cruzi DTUs are present. Additionally, our analysis showed extensive overlap among the parasite populations present in the two studied localities (c.28 km apart), suggesting active parasite dispersal over the study area. Our results highlight the value of amplicon sequencing methodologies to clarify the population dynamics of kinetoplastid parasites in endemic regions and inform control campaigns in southern Ecuador.
Collapse
Affiliation(s)
- Jalil Maiguashca Sánchez
- Centro de Investigación para la Salud en América Latina, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Salem Oduro Beffi Sueto
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G128QQ UK
- Present Address: Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, 18057 Rostock, Germany
| | - Philipp Schwabl
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G128QQ UK
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Infectious and Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
| | - Martin S. Llewellyn
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G128QQ UK
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina, Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
11
|
McClean MCW, Bhattacharyya T, Mertens P, Murphy N, Gilleman Q, Gustin Y, Zeippen N, Xavier SCC, Jansen AM, Miles MA. A lineage-specific rapid diagnostic test (Chagas Sero K-SeT) identifies Brazilian Trypanosoma cruzi II/V/VI reservoir hosts among diverse mammalian orders. PLoS One 2020; 15:e0227828. [PMID: 31951634 PMCID: PMC6968848 DOI: 10.1371/journal.pone.0227828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Trypanosoma cruzi, the protozoan agent of Chagas disease in the Americas, is comprised of six genetic lineages (TcI-TcVI) and a possible seventh (TcBat, related to TcI). Identification of T. cruzi lineages infecting reservoir mammalian species is fundamental to resolving transmission cycles. However, this is hindered by the limited sensitivity and technical complexity of parasite isolation and genotyping. An alternative approach is serology using T. cruzi lineage-specific epitopes, such as those of the trypomastigote small surface antigen (TSSA). For surveillance of T. cruzi lineage infections in mammal species from diverse Brazilian regions, we apply a novel rapid diagnostic test (RDT, Chagas Sero K-SeT), which incorporates the TSSA peptide epitope specific to TcII/V/VI (TSSApep-II/V/VI) and Protein G detection of antibodies. Chagas Sero K-SeT RDT results with sera from experimentally infected mice, from tamarin primates (Leontopithecus spp.) and from canines (Canis familiaris) were concordant with corresponding TSSApep-II/V/VI ELISAs. The Chagas Sero K-Set detected TcII/V/VI infections in Leontopithecus spp. from the Atlantic forest (n = 46), in C. familiaris (n = 16) and Thrichomys laurentius (n = 2) from Caatinga biome and Chiroptera (n = 1) from Acre, Amazonia. The Chagas Sero K-SeT RDT is directly applicable to TcII/V/VI-specific serological surveillance of T. cruzi infection in several different mammalian Orders. It can replace ELISAs and provides efficient, point-of-sampling, low-cost detection of TcII/V/VI infections, with at least equivalent sensitivity, although some mammals may be difficult to trap, and, not unexpectedly, Chagas Sero K-SeT could not recognise feline IgG. Knowledge of sylvatic hosts of T. cruzi can be expanded, new reservoir species discovered, and the ecology of transmission cycles clarified, particularly with adaptation to further mammalian Orders.
Collapse
Affiliation(s)
- Mairi C. W. McClean
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| | | | - Niamh Murphy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | | | - Samanta C. C. Xavier
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Ana M. Jansen
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
12
|
Bhattacharyya T, Messenger LA, Bern C, Mertens P, Gilleman Q, Zeippen N, Bremer Hinckel BC, Murphy N, Gilman RH, Miles MA. Severity of Chagasic Cardiomyopathy Is Associated With Response to a Novel Rapid Diagnostic Test for Trypanosoma cruzi TcII/V/VI. Clin Infect Dis 2019; 67:519-524. [PMID: 29438471 PMCID: PMC6070114 DOI: 10.1093/cid/ciy121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background Trypanosoma cruzi causes Chagas disease in the Americas. The outcome of infection ranges from lifelong asymptomatic status to severe disease. Relationship between T. cruzi lineage (TcI-TcVI) infection history and prognosis is not understood. We previously described peptide-based lineage-specific enzyme-linked immunosorbent assay (ELISA) with trypomastigote small surface antigen (TSSA). Methods A novel rapid diagnostic test (RDT; Chagas Sero K-SeT) that incorporates a peptide that corresponds to the TSSA II/V/VI common epitope was developed and validated by comparison with ELISA. Patients from Bolivia and Peru, including individuals with varying cardiac pathology, and matched mothers and neonates, were then tested using Chagas Sero K-SeT. Results Chagas Sero K-SeT and ELISA results, with a Bolivian subset of cardiac patients, mothers, and neonates, were in accord. In adult chronic infections (n = 121), comparison of severity class A (no evidence of Chagas cardiomyopathy) with class B (electrocardiogram suggestive of Chagas cardiomyopathy) and class C/D (decreased left ventricular ejection fraction; moderate/severe Chagas cardiomyopathy) revealed a statistically significant increase in Chagas Sero K-SeT reactivity with increasing severity (χ2 for trend, 7.39; P = .007). In Peru, Chagas Sero K-SeT detected the sporadic TcII/V/VI infections. Conclusions We developed a low cost RDT that can replace ELISA for identification of TSSA II/V/VI immunoglobulin G. Most importantly, we show that response to this RDT is associated with severity of Chagas cardiomyopathy and thus may have prognostic value. Repeated challenge with T. cruzi infection may both exacerbate disease progression and boost the immune response to the TSSApep-II/V/VI epitope.
Collapse
Affiliation(s)
- Tapan Bhattacharyya
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, United Kingdom
| | - Louisa A Messenger
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, United Kingdom
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco
| | | | | | | | - Bruno C Bremer Hinckel
- Coris BioConcept, Gembloux, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Niamh Murphy
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, United Kingdom
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Michael A Miles
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, United Kingdom
| | | |
Collapse
|
13
|
Bhattacharyya T, Murphy N, Miles MA. Trypanosoma cruzi lineage-specific serology: new rapid tests for resolving clinical and ecological associations. Future Sci OA 2019; 5:FSO422. [PMID: 31827891 PMCID: PMC6900971 DOI: 10.2144/fsoa-2019-0103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Tapan Bhattacharyya
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Niamh Murphy
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Michael A Miles
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
14
|
Pinzón Martín S, Seeberger PH, Varón Silva D. Mucins and Pathogenic Mucin-Like Molecules Are Immunomodulators During Infection and Targets for Diagnostics and Vaccines. Front Chem 2019; 7:710. [PMID: 31696111 PMCID: PMC6817596 DOI: 10.3389/fchem.2019.00710] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Mucins and mucin-like molecules are highly O-glycosylated proteins present on the cell surface of mammals and other organisms. These glycoproteins are highly diverse in the apoprotein and glycan cores and play a central role in many biological processes and diseases. Mucins are the most abundant macromolecules in mucus and are responsible for its biochemical and biophysical properties. Mucin-like molecules cover various protozoan parasites, fungi and viruses. In humans, modifications in mucin glycosylation are associated with tumors in epithelial tissue. These modifications allow the distinction between normal and abnormal cell conditions and represent important targets for vaccine development against some cancers. Mucins and mucin-like molecules derived from pathogens are potential diagnostic markers and targets for therapeutic agents. In this review, we summarize the distribution, structure, role as immunomodulators, and the correlation of human mucins with diseases and perform a comparative analysis of mucins with mucin-like molecules present in human pathogens. Furthermore, we review the methods to produce pathogenic and human mucins using chemical synthesis and expression systems. Finally, we present applications of mucin-like molecules in diagnosis and prevention of relevant human diseases.
Collapse
Affiliation(s)
- Sandra Pinzón Martín
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Daniel Varón Silva
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Murphy N, Macchiaverna NP, Victoria Cardinal M, Bhattacharyya T, Mertens P, Zeippen N, Gustin Y, Gilleman Q, Gürtler RE, Miles MA. Lineage-specific rapid diagnostic tests can resolve Trypanosoma cruzi TcII/V/VI ecological and epidemiological associations in the Argentine Chaco. Parasit Vectors 2019; 12:424. [PMID: 31522683 PMCID: PMC6746045 DOI: 10.1186/s13071-019-3681-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/22/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the protozoan agent of Chagas disease, is comprised of at least 6 genetic lineages (TcI-TcVI). Their geographical distribution, clinical associations and reservoir hosts are not fully elucidated, as genotyping is hampered due to the difficulty in isolating representative populations of organisms. Lineage-specific serological techniques may address these issues. METHODS Trypanosoma cruzi lineage-specific serological assays were performed on human, canine, feline and armadillo sera from the Gran Chaco in northern Argentina, a region of ongoing transmission. Synthetic peptides representing lineage-specific epitopes of the trypomastigote small surface antigen (TSSA) were used in ELISA, and the TcII/V/VI shared epitope peptide (TSSApep-II/V/VI) was used in the Chagas Sero K-SeT rapid diagnostic test (RDT). RESULTS Chagas Sero K-SeT RDT, using Protein G to detect human and canine IgG, was at least as sensitive as TSSApep-II/V/VI ELISA using specific secondary antibodies. For sera from humans TSSApep-II/V/VI seroprevalence by Chagas Sero K-SeT was 273/393 (69.5%), for dogs 48/73 (65.8%) and for armadillos 1/7 (14.3%); by ELISA for cats 5/19 (26.3%). The seroprevalence for humans was similar to that for Bolivian patients, amongst whom we previously observed an association of TSSApep-II/V/VI seropositivity with severity of cardiomyopathy. In humans, prevalence of TSSApep-II/V/VI recognition was associated with locality, and with increasing and decreasing age within the Qom and Creole populations, respectively. For dogs TSSApep-II/V/VI recognition was associated with being born before community-wide insecticide spraying (P = 0.05) and with Qom household (P < 0.001). CONCLUSIONS We show here that Chagas Sero K-SeT RDT can replace ELISA for TSSApep-II/V/VI serology of humans and dogs; for humans there were statistically significant associations between a positive Chagas Sero K-SeT RDT and being resident in Area IV, and for dogs association with Qom household or with being born before the mass spraying campaign; we also show that with cats the TcII/V/VI epitope can be detected by ELISA. We assessed the lineage distribution in an unprecedented 83% of the human T. cruzi-seropositive population. These results form the basis for more detailed studies, enabling rapid in-the-field surveillance of the distribution and clustering of these lineages among humans and mammalian reservoirs of T. cruzi infection.
Collapse
Affiliation(s)
- Niamh Murphy
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Natalia P. Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exacta y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - M. Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exacta y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Tapan Bhattacharyya
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | | | | - Ricardo E. Gürtler
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exacta y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Michael A. Miles
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
16
|
Bremer Hinckel BC, Marlais T, Airs S, Bhattacharyya T, Imamura H, Dujardin JC, El-Safi S, Singh OP, Sundar S, Falconar AK, Andersson B, Litvinov S, Miles MA, Mertens P. Refining wet lab experiments with in silico searches: A rational quest for diagnostic peptides in visceral leishmaniasis. PLoS Negl Trop Dis 2019; 13:e0007353. [PMID: 31059497 PMCID: PMC6522066 DOI: 10.1371/journal.pntd.0007353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 05/16/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022] Open
Abstract
Background The search for diagnostic biomarkers has been profiting from a growing number of high quality sequenced genomes and freely available bioinformatic tools. These can be combined with wet lab experiments for a rational search. Improved, point-of-care diagnostic tests for visceral leishmaniasis (VL), early case detection and surveillance are required. Previous investigations demonstrated the potential of IgG1 as a biomarker for monitoring clinical status in rapid diagnostic tests (RDTs), although using a crude lysate antigen (CLA) as capturing antigen. Replacing the CLA by specific antigens would lead to more robust RDTs. Methodology Immunoblots revealed L. donovani protein bands detected by IgG1 from VL patients. Upon confident identification of these antigens by mass spectrometry (MS), we searched for evidence of constitutive protein expression and presence of antigenic domains or high accessibility to B-cells. Selected candidates had their linear epitopes mapped with in silico algorithms. Multiple high-scoring predicted epitopes from the shortlisted proteins were screened in peptide arrays. The most promising candidate was tested in RDT prototypes using VL and nonendemic healthy control (NEHC) patient sera. Results Over 90% of the proteins identified from the immunoblots did not satisfy the selection criteria and were excluded from the downstream epitope mapping. Screening of predicted epitope peptides from the shortlisted proteins identified the most reactive, for which the sensitivity for IgG1 was 84% (95% CI 60—97%) with Sudanese VL sera on RDT prototypes. None of the sera from NEHCs were positive. Conclusion We employed in silico searches to reduce drastically the output of wet lab experiments, focusing on promising candidates containing selected protein features. By predicting epitopes in silico we screened a large number of peptides using arrays, identifying the most promising one, for which IgG1 sensitivity and specificity, with limited sample size, supported this proof of concept strategy for diagnostics discovery, which can be applied to the development of more robust IgG1 RDTs for monitoring clinical status in VL. Visceral leishmaniasis (VL) is a neglected tropical disease caused by protozoan parasites of the Leishmania donovani complex. Without treatment, VL is fatal. Although diagnostic techniques, mainly based on the detection of anti-Leishmania antibodies are available, invasive procedures such as microscopy from spleen or bone marrow aspirates are still required for the diagnosis of seronegative VL suspects, for the detection of recurrent cases and to confirm cure after successful treatment. Previous investigations showed the potential of IgG1 as a biomarker of post-chemotherapeutic relapse for VL in rapid diagnostic tests (RDTs) sensitised with crude lysate antigen (CLA). Here we employed in silico tools to search for desired protein features in a large number of L. donovani antigens detected by human IgG1 in western blots. We then employed prediction algorithms to profile epitopes from the shortlisted proteins. We screened a panel of high-scoring peptides in a high-throughput manner using arrays, with low reagent consumption. The most reactive peptide was adapted to RDTs, showing promising results of both sensitivity and specificity. This peptide has the potential of replacing the CLAs in IgG1 RDTs. Thus we believe that in silico tools can be used to optimise wet lab experiments for a rational search of biomarkers.
Collapse
Affiliation(s)
- Bruno Cesar Bremer Hinckel
- Coris BioConcept, Gembloux, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Tegwen Marlais
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephanie Airs
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hideo Imamura
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Sayda El-Safi
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Om Prakash Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | | - Bjorn Andersson
- Department of Cell- and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
17
|
A systematic review of the Trypanosoma cruzi genetic heterogeneity, host immune response and genetic factors as plausible drivers of chronic chagasic cardiomyopathy. Parasitology 2018; 146:269-283. [PMID: 30210012 DOI: 10.1017/s0031182018001506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are responsible of this clinical pattern. To date, no conclusive data support the reason why a few percentages of the infected individuals will develop CCC. Therefore, we decided to conduct a systematic review analysing the host genetic factors, immune response, cytokine production, virulence factors and the plausible association of the parasite DTUs and CCC. The epidemiological and clinical implications are herein discussed.
Collapse
|
18
|
Zingales B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 2018; 184:38-52. [PMID: 28941731 DOI: 10.1016/j.actatropica.2017.09.017] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 11/27/2022]
Abstract
The genetic diversity of Trypanosoma cruzi, the protozoan agent of Chagas disease, is widely recognized. At present, T. cruzi is partitioned into seven discrete typing units (DTUs), TcI-TcVI and Tcbat. This article reviews the present knowledge on the parasite population structure, the evolutionary relationships among DTUs and their distinct, but not exclusive ecological and epidemiological associations. Different models for the origin of hybrid DTUs are examined, which agree that genetic exchange among T. cruzi populations is frequent and has contributed to the present parasite population structure. The geographic distribution of the prevalent DTUs in humans from the southern United States to Argentina is here presented and the circumstantial evidence of a possible association between T. cruzi genotype and Chagas disease manifestations is discussed. The available information suggests that parasite strains detected in patients, regardless of the clinical presentation, reflect the principal DTU circulating in the domestic transmission cycles of a particular region. In contrast, in several orally transmitted outbreaks, sylvatic strains are implicated. As a consequence of the genotypic and phenotypic differences of T. cruzi strains and the differential geographic distribution of DTUs in humans, regional variations in the sensitivity of the serological tests are verified. The natural resistance to benznidazole and nifurtimox, verified in vivo and in vitro for some parasite stocks, is not associated with any particular DTU, and does not explain the marked difference in the anti-parasitic efficacy of both drugs in the acute and chronic phases of Chagas disease. Throughout this review, it is emphasized that the interplay between parasite and host genetics should have an important role in the definition of Chagas disease pathogenesis, anti-T. cruzi immune response and chemotherapy outcome and should be considered in future investigations.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
19
|
Alessio GD, de Araújo FF, Sales Júnior PA, Gomes MDS, do Amaral LR, Pascoal Xavier MA, Teixeira-Carvalho A, de Lana M, Martins-Filho OA. Accomplishing the genotype-specific serodiagnosis of single and dual Trypanosoma cruzi infections by flow cytometry Chagas-Flow ATE-IgG2a. PLoS Negl Trop Dis 2018; 12:e0006140. [PMID: 29462135 PMCID: PMC5843347 DOI: 10.1371/journal.pntd.0006140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/08/2018] [Accepted: 11/28/2017] [Indexed: 01/04/2023] Open
Abstract
The methods currently available for genotype-specific diagnosis of T. cruzi infection still present relevant limitations, especially to identify mixed infection. In the present investigation, we have evaluated the performance of Chagas-Flow ATE-IgG2a test for early and late differential diagnosis of single and dual genotype-specific T. cruzi infections. Serum samples from Swiss mice at early and late stages of T. cruzi infection were assayed in parallel batches for genotype-specific diagnosis of single (TcI, TcVI or TcII) and dual (TcI+TcVI, TcVI+TcII or TcII+TcI) infections. The intrinsic reactivity to TcI, TcVI and TcII target antigens, including amastigote (AI/AVI/AII), trypomastigote-(TI/TVI/TII) and epimastigote (EI/EVI/EII), at specific reverse of serum dilutions (500 to 64,000), was employed to provide reliable decision-trees for "early" vs "late", "single vs "dual" and "genotype-specific" serology. The results demonstrated that selective set of attributes "EII 500/EI 2,000/AII 500" were able to provide high-quality accuracy (81%) to segregate early and late stages of T. cruzi infection. The sets "TI 2,000/AI 1,000/EII 1,000" and "TI 8,000/AII 32,000" presented expressive scores to discriminate single from dual T. cruzi infections at early (85%) and late stages (84%), respectively. Moreover, the attributes "TI 4,000/TVI 500/TII 1,000", "TI 16,000/EI 2,000/EII 2,000/AI 500/TVI 500" showed good performance for genotype-specific diagnosis at early stage of single (72%) and dual (80%) T. cruzi infections, respectively. In addition, the attributes "TI 4,000/AII 1,000/EVI 1,000", "TI 64,000/AVI 500/AI 2,000/AII 1,000/EII 4,000" showed moderate performance for genotype-specific diagnosis at late stage of single (69%) and dual (76%) T. cruzi infections, respectively. The sets of decision-trees were assembled to construct a sequential algorithm with expressive accuracy (81%) for serological diagnosis of T. cruzi infection. These findings engender new perspectives for the application of Chagas-Flow ATE-IgG2a method for genotype-specific diagnosis in humans, with relevant contributions for epidemiological surveys as well as clinical and post-therapeutic monitoring of Chagas disease.
Collapse
Affiliation(s)
- Glaucia Diniz Alessio
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Fernanda Fortes de Araújo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
- Programa de Pós-graduação em Sanidade e Produção Animal nos Trópicos, Universidade de Uberaba, Uberaba, Brazil
| | - Policarpo Ademar Sales Júnior
- Grupo de Genômica Funcional e Proteômica de Leishmania spp e Trypanosoma cruzi, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, INGEB/FACOM, Campus Patos de Minas, Patos de Minas, MG, Brazil
| | - Laurence Rodrigues do Amaral
- Laboratório de Bioinformática e Análises Moleculares, Universidade Federal de Uberlândia, INGEB/FACOM, Campus Patos de Minas, Patos de Minas, MG, Brazil
| | - Marcelo Antônio Pascoal Xavier
- Grupo de Pesquisas Clínicas e Políticas Públicas em Doenças Infecciosas e Parasitárias, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Marta de Lana
- Laboratório de Doença de Chagas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
20
|
Biosensors to Diagnose Chagas Disease: A Brief Review. SENSORS 2017; 17:s17112629. [PMID: 29140309 PMCID: PMC5712880 DOI: 10.3390/s17112629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 01/01/2023]
Abstract
Chagas disease (CD), which mostly affects those living in deprived areas, has become one of Latin America’s main public health problems. Effective prevention of the disease requires early diagnosis, initiation of therapy, and regular blood monitoring of the infected individual. However, the majority of the Trypanosoma cruzi infections go undiagnosed because of mild symptoms, limited access to medical attention and to a high variability in the sensitivity and specificity of diagnostic tests. Consequently, more affordable and accessible detection technologies capable of providing early diagnosis and T. cruzi load measurements in settings where CD is most prevalent are needed to enable enhanced intervention strategies. This work analyzes the potential contribution of biosensing technologies, reviewing examples that have been tested and contrasted with traditional methods, both serological and parasitological (i.e., molecular detection by PCR), and discusses some emerging biosensing technologies that have been applied for this public health issue. Even if biosensing technologies still require further research efforts to develop portable systems, we arrive at the conclusion that biosensors could improve the accuracy of CD diagnosis and the follow-up of patients’ treatments in terms of the rapidity of results, small sample volume, high integration, ease of use, real-time and low cost detection when compared with current conventional technologies.
Collapse
|
21
|
The Trypomastigote Small Surface Antigen from Trypanosoma cruzi Improves Treatment Evaluation and Diagnosis in Pediatric Chagas Disease. J Clin Microbiol 2017; 55:3444-3453. [PMID: 28978686 DOI: 10.1128/jcm.01317-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023] Open
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi Assessment of parasitological cure upon treatment with available drugs relies on achieving consistent negative results in conventional parasitological and serological tests, which may take years to assess. Here, we evaluated the use of a recombinant T. cruzi antigen termed trypomastigote small surface antigen (TSSA) as an early serological marker of drug efficacy in T. cruzi-infected children. A cohort of 78 pediatric patients born to T. cruzi-infected mothers was included in this study. Only 39 of the children were infected with T. cruzi, and they were immediately treated with trypanocidal drugs. Serological responses against TSSA were evaluated in infected and noninfected populations during the follow-up period using an in-house enzyme-linked immunosorbent assay (ELISA) and compared to conventional serological methods. Anti-TSSA antibody titers decreased significantly faster than anti-whole parasite antibodies detected by conventional serology both in T. cruzi-infected patients undergoing effective treatment and in those not infected. The differential kinetics allowed a significant reduction in the required follow-up periods to evaluate therapeutic responses or to rule out maternal-fetal transmission. Finally, we present the case of a congenitally infected patient with an atypical course in whom TSSA provided an early marker for T. cruzi infection. In conclusion, we showed that TSSA was efficacious both for rapid assessment of treatment efficiency and for early negative diagnosis in infants at risk of congenital T. cruzi infection. Based upon these findings we propose the inclusion of TSSA for refining the posttherapeutic cure criterion and other diagnostic needs in pediatric Chagas disease.
Collapse
|
22
|
Cámara MDLM, Cánepa GE, Lantos AB, Balouz V, Yu H, Chen X, Campetella O, Mucci J, Buscaglia CA. The Trypomastigote Small Surface Antigen (TSSA) regulates Trypanosoma cruzi infectivity and differentiation. PLoS Negl Trop Dis 2017; 11:e0005856. [PMID: 28800609 PMCID: PMC5568413 DOI: 10.1371/journal.pntd.0005856] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/23/2017] [Accepted: 08/05/2017] [Indexed: 02/06/2023] Open
Abstract
Background TSSA (Trypomastigote Small Surface Antigen) is an antigenic, adhesion molecule displayed on the surface of Trypanosoma cruzi trypomastigotes. TSSA displays substantial sequence identity to members of the TcMUC gene family, which code for the trypomastigote mucins (tGPI-mucins). In addition, TSSA bears sequence polymorphisms among parasite strains; and two TSSA variants expressed as recombinant molecules (termed TSSA-CL and TSSA-Sy) were shown to exhibit contrasting features in their host cell binding and signaling properties. Methods/Principle findings Here we used a variety of approaches to get insights into TSSA structure/function. We show that at variance with tGPI-mucins, which rely on their extensive O-glycoslylation to achieve their protective function, TSSA seems to be displayed on the trypomastigote coat as a hypo-glycosylated molecule. This has a functional correlate, as further deletion mapping experiments and cell binding assays indicated that exposition of at least two peptidic motifs is critical for the engagement of the ‘adhesive’ TSSA variant (TSSA-CL) with host cell surface receptor(s) prior to trypomastigote internalization. These motifs are not conserved in the ‘non-adhesive’ TSSA-Sy variant. We next developed transgenic lines over-expressing either TSSA variant in different parasite backgrounds. In strict accordance to recombinant protein binding data, trypomastigotes over-expressing TSSA-CL displayed improved adhesion and infectivity towards non-macrophagic cell lines as compared to those over-expressing TSSA-Sy or parental lines. These phenotypes could be specifically counteracted by exogenous addition of peptides spanning the TSSA-CL adhesion motifs. In addition, and irrespective of the TSSA variant, over-expression of this molecule leads to an enhanced trypomastigote-to-amastigote conversion, indicating a possible role of TSSA also in parasite differentiation. Conclusion/Significance In this study we provided novel evidence indicating that TSSA plays an important role not only on the infectivity and differentiation of T. cruzi trypomastigotes but also on the phenotypic variability displayed by parasite strains. Infection with Trypanosoma cruzi produces a chronic and debilitating infectious disease known as Chagas disease, of major significance in Latin America and an emergent threat to global public health. In the absence of vaccines and/or appropriate chemotherapies, the search for parasite effectors that support infection of mammalian cells is a focus of significant interest. One such candidate is the Trypomastigote Small Surface Antigen (TSSA), a polymorphic molecule expressed on the surface coat of infective trypomastigote forms. Previous data indicated that recombinant versions of two different TSSA variants (termed TSSA-CL and TSSA-Sy) encoded by parasite strains belonging to extant phylogenetic groups exhibited contrasting host cell binding and signaling abilities. Here, we generated genetically modified strains of T. cruzi over-expressing different TSSAs to address this issue. Trypomastigotes over-expressing TSSA-CL, the ‘adhesive variant’, displayed improved adhesion and infectivity towards non-macrophagic cell lines as compared to those over-expressing TSSA-Sy or parental lines. In addition, and irrespective of the protein variant, TSSA over-expression enhanced trypomastigote-to-amastigote conversion. Overall, our data strongly suggest that TSSA plays an important role not only on the infectivity and differentiation of T. cruzi trypomastigotes but also on the phenotypic variability displayed by different strains of this parasite. These data, together with the fact that TSSA recalls a strong and likely protective humoral response during human infections, support this molecule as an excellent candidate for molecular intervention and/or vaccine development in Chagas disease.
Collapse
Affiliation(s)
- María de los Milagros Cámara
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Tecnología, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Gaspar E. Cánepa
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés B. Lantos
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, California, United States of America
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, California, United States of America
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan Mucci
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
23
|
Performance of TcI/TcVI/TcII Chagas-Flow ATE-IgG2a for universal and genotype-specific serodiagnosis of Trypanosoma cruzi infection. PLoS Negl Trop Dis 2017; 11:e0005444. [PMID: 28333926 PMCID: PMC5380352 DOI: 10.1371/journal.pntd.0005444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/04/2017] [Accepted: 03/01/2017] [Indexed: 11/19/2022] Open
Abstract
Distinct Trypanosoma cruzi genotypes have been considered relevant for patient management and therapeutic response of Chagas disease. However, typing strategies for genotype-specific serodiagnosis of Chagas disease are still unavailable and requires standardization for practical application. In this study, an innovative TcI/TcVI/TcII Chagas Flow ATE-IgG2a technique was developed with applicability for universal and genotype-specific diagnosis of T. cruzi infection. For this purpose, the reactivity of serum samples (percentage of positive fluorescent parasites-PPFP) obtained from mice chronically infected with TcI/Colombiana, TcVI/CL or TcII/Y strain as well as non-infected controls were determined using amastigote-AMA, trypomastigote-TRYPO and epimastigote-EPI in parallel batches of TcI, TcVI and TcII target antigens. Data demonstrated that “α-TcII-TRYPO/1:500, cut-off/PPFP = 20%” presented an excellent performance for universal diagnosis of T. cruzi infection (AUC = 1.0, Se and Sp = 100%). The combined set of attributes “α-TcI-TRYPO/1:4,000, cut-off/PPFP = 50%”, “α-TcII-AMA/1:1,000, cut-off/PPFP = 40%” and “α-TcVI-EPI/1:1,000, cut-off/PPFP = 45%” showed good performance to segregate infections with TcI/Colombiana, TcVI/CL or TcII/Y strain. Overall, hosts infected with TcI/Colombiana and TcII/Y strains displayed opposite patterns of reactivity with “α-TcI TRYPO” and “α-TcII AMA”. Hosts infected with TcVI/CL strain showed a typical interweaved distribution pattern. The method presented a good performance for genotype-specific diagnosis, with global accuracy of 69% when the population/prototype scenario include TcI, TcVI and TcII infections and 94% when comprise only TcI and TcII infections. This study also proposes a receiver operating reactivity panel, providing a feasible tool to classify serum samples from hosts infected with distinct T. cruzi genotypes, supporting the potential of this method for universal and genotype-specific diagnosis of T. cruzi infection. Chagas disease remains a significant public health issue infecting 6–7 million people worldwide. The factors influencing the clinical heterogeneity of Chagas disease have not been elucidated, although it has been suggested that different clinical outcome may be associated with the genetic diversity of T. cruzi isolates. Moreover, differences in therapeutic response of distinct T. cruzi genotypes have been also reported. Typing strategies for genotype-specific diagnosis of Chagas disease to identify the T. cruzi discrete typing units (DTU) have already been developed, including biochemical and molecular methods, however the techniques have limitations. The majority of these methods can not directly be performed in biological and clinical samples. In addition, it has been proposed that parasite isolates from blood may not necessarily represent the full set of strains current in the individual as some strains can be confined to tissues. The improvement of genotype-specific serology to identify the T. cruzi DTU(s) present in a given host may provide a useful tool for clinical studies. In the present investigation, we developed an innovative TcI/TcVI/TcII Chagas Flow ATE-IgG2a technique with applicability for universal and genotype-specific diagnosis of T. cruzi infection that may contribute to add future insights for genotype-specific diagnosis of Chagas disease.
Collapse
|
24
|
|
25
|
Schwarz NG, Loderstaedt U, Hahn A, Hinz R, Zautner AE, Eibach D, Fischer M, Hagen RM, Frickmann H. Microbiological laboratory diagnostics of neglected zoonotic diseases (NZDs). Acta Trop 2017; 165:40-65. [PMID: 26391646 DOI: 10.1016/j.actatropica.2015.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/03/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023]
Abstract
This review reports on laboratory diagnostic approaches for selected, highly pathogenic neglected zoonotic diseases, i.e. anthrax, bovine tuberculosis, brucellosis, echinococcosis, leishmaniasis, rabies, Taenia solium-associated diseases (neuro-/cysticercosis & taeniasis) and trypanosomiasis. Diagnostic options, including microscopy, culture, matrix-assisted laser-desorption-ionisation time-of-flight mass spectrometry, molecular approaches and serology are introduced. These procedures are critically discussed regarding their diagnostic reliability and state of evaluation. For rare diseases reliable evaluation data are scarce due to the rarity of samples. If bio-safety level 3 is required for cultural growth, but such high standards of laboratory infrastructure are not available, serological and molecular approaches from inactivated sample material might be alternatives. Multiple subsequent testing using various test platforms in a stepwise approach may improve sensitivity and specificity. Cheap and easy to use tests, usually called "rapid diagnostic tests" (RDTs) may impact disease control measures, but should not preclude developing countries from state of the art diagnostics.
Collapse
|
26
|
Kerr CL, Bhattacharyya T, Xavier SCC, Barros JH, Lima VS, Jansen AM, Miles MA. Lineage-specific serology confirms Brazilian Atlantic forest lion tamarins, Leontopithecus chrysomelas and Leontopithecus rosalia, as reservoir hosts of Trypanosoma cruzi II (TcII). Parasit Vectors 2016; 9:584. [PMID: 27846858 PMCID: PMC5111205 DOI: 10.1186/s13071-016-1873-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/03/2016] [Indexed: 02/04/2023] Open
Abstract
Background Trypanosoma cruzi, the agent of Chagas disease in humans, has a vast reservoir of mammalian hosts in the Americas, and is classified into six genetic lineages, TcI-TcVI, with a possible seventh, TcBat. Elucidating enzootic cycles of the different lineages is important for understanding the ecology of this parasite, the emergence of new outbreaks of Chagas disease and for guiding control strategies. Direct lineage identification by genotyping is hampered by limitations of parasite isolation and culture. An indirect method is to identify lineage-specific serological reactions in infected individuals; here we describe its application with sylvatic Brazilian primates. Methods Synthetic peptides representing lineage-specific epitopes of the T. cruzi surface protein TSSA were used in ELISA with sera from Atlantic Forest Leontopithecus chrysomelas (golden-headed lion tamarin), L. rosalia (golden lion tamarin), Amazonian Sapajus libidinosus (black-striped capuchin) and Alouatta belzebul (red-handed howler monkey). Results The epitope common to lineages TcII, TcV and TcVI was recognised by sera from 15 of 26 L. chrysomelas and 8 of 13 L. rosalia. For 12 of these serologically identified TcII infections, the identity of the lineage infection was confirmed by genotyping T. cruzi isolates. Of the TcII/TcV/TcVI positive sera 12 of the 15 L. chrysomelas and 2 of the 8 L. rosalia also reacted with the specific epitope restricted to TcV and TcVI. Sera from one of six S. libidinous recognised the TcIV/TcIII epitopes. Conclusions This lineage-specific serological surveillance has verified that Atlantic Forest primates are reservoir hosts of at least TcII, and probably TcV and TcVI, commonly associated with severe Chagas disease in the southern cone region of South America. With appropriate reagents, this novel methodology is readily applicable to a wide range of mammal species and reservoir host discovery.
Collapse
Affiliation(s)
- Charlotte L Kerr
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London, UK
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London, UK.
| | - Samanta C C Xavier
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, Zip Code 21040-360, Brazil
| | - Juliana H Barros
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, Zip Code 21040-360, Brazil
| | - Valdirene S Lima
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, Zip Code 21040-360, Brazil
| | - Ana M Jansen
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, Zip Code 21040-360, Brazil
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London, UK
| |
Collapse
|
27
|
Balouz V, Agüero F, Buscaglia CA. Chagas Disease Diagnostic Applications: Present Knowledge and Future Steps. ADVANCES IN PARASITOLOGY 2016; 97:1-45. [PMID: 28325368 PMCID: PMC5363286 DOI: 10.1016/bs.apar.2016.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a lifelong and debilitating illness of major significance throughout Latin America and an emergent threat to global public health. Being a neglected disease, the vast majority of Chagasic patients have limited access to proper diagnosis and treatment, and there is only a marginal investment into R&D for drug and vaccine development. In this context, identification of novel biomarkers able to transcend the current limits of diagnostic methods surfaces as a main priority in Chagas disease applied research. The expectation is that these novel biomarkers will provide reliable, reproducible and accurate results irrespective of the genetic background, infecting parasite strain, stage of disease, and clinical-associated features of Chagasic populations. In addition, they should be able to address other still unmet diagnostic needs, including early detection of congenital T. cruzi transmission, rapid assessment of treatment efficiency or failure, indication/prediction of disease progression and direct parasite typification in clinical samples. The lack of access of poor and neglected populations to essential diagnostics also stresses the necessity of developing new methods operational in point-of-care settings. In summary, emergent diagnostic tests integrating these novel and tailored tools should provide a significant impact on the effectiveness of current intervention schemes and on the clinical management of Chagasic patients. In this chapter, we discuss the present knowledge and possible future steps in Chagas disease diagnostic applications, as well as the opportunity provided by recent advances in high-throughput methods for biomarker discovery.
Collapse
Affiliation(s)
- Virginia Balouz
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| | - Carlos A. Buscaglia
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, B 1650 HMP, Buenos Aires, Argentina
| |
Collapse
|
28
|
Lewis MD, Kelly JM. Putting Infection Dynamics at the Heart of Chagas Disease. Trends Parasitol 2016; 32:899-911. [PMID: 27612651 PMCID: PMC5086431 DOI: 10.1016/j.pt.2016.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
In chronic Trypanosoma cruzi infections, parasite burden is controlled by effective, but nonsterilising immune responses. Infected cells are difficult to detect because they are scarce and focally distributed in multiple sites. However, advances in detection technologies have established a link between parasite persistence and the pathogenesis of Chagas heart disease. Long-term persistence likely involves episodic reinvasion as well as continuous infection, to an extent that varies between tissues. The primary reservoir sites in humans are not definitively known, but analysis of murine models has identified the gastrointestinal tract. Here, we highlight that quantitative, spatial, and temporal aspects of T. cruzi infection are central to a fuller understanding of the association between persistence, pathogenesis, and immunity, and for optimising treatment.
Collapse
Affiliation(s)
- Michael D Lewis
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK; Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - John M Kelly
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
29
|
Klahr JI, Uribe AM, Roa N, González JM. Inmunidad celular en la patogénesis de la cardiopatía chagásica crónica. REVISTA COLOMBIANA DE CARDIOLOGÍA 2016. [DOI: 10.1016/j.rccar.2016.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
30
|
Feliciano ND, Ribeiro VS, Gonzaga HT, Santos FA, Fujimura PT, Goulart LR, Costa-Cruz JM. Short epitope-based synthetic peptides for serodiagnosis of human strongyloidiasis. Immunol Lett 2016; 172:89-93. [DOI: 10.1016/j.imlet.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 02/04/2023]
|
31
|
Bhattacharyya T, Mills EA, Jansen AM, Miles MA. Prospects for T. cruzi lineage-specific serological surveillance of wild mammals. Acta Trop 2015; 151:182-6. [PMID: 26116784 DOI: 10.1016/j.actatropica.2015.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/01/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Sequence diversity in the Trypanosoma cruzi small surface molecule TSSA has yielded antigens for serology to investigate the T. cruzi lineage-specific infection history of patients with Chagas disease. Synthetic peptides can be used as the lineage-specific antigens. Here we consider the rationale, feasibility and potential of applying peptide-based lineage-specific serology to naturally infected wild mammals. The commercial availability of appropriate secondary antibodies encourages this further development, for discovery of new reservoir host species and to reveal the wider ecological distribution of T. cruzi lineages, currently hindered by the need to recover live isolates or to attempt genotyping of DNA extracted from blood samples.
Collapse
|
32
|
de Oliveira MT, de Assis GFM, Oliveira e Silva JCV, Machado EMM, da Silva GN, Veloso VM, Macedo AM, Martins HR, de Lana M. Trypanosoma cruzi Discret Typing Units (TcII and TcVI) in samples of patients from two municipalities of the Jequitinhonha Valley, MG, Brazil, using two molecular typing strategies. Parasit Vectors 2015; 8:568. [PMID: 26520576 PMCID: PMC4628324 DOI: 10.1186/s13071-015-1161-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/09/2015] [Indexed: 02/04/2023] Open
Abstract
Background Trypanosoma cruzi is classified into six discrete taxonomic units (DTUs). For this classification, different biological markers and classification criteria have been used. The objective was to identify the genetic profile of T. cruzi samples isolated from patients of two municipalities of Jequitinhonha Valley, MG, Brazil. Methods Molecular characterization was performed using two different criteria for T. cruzi typing to characterize 63 T. cruzi samples isolated from chronic Chagas disease patients. The characterizations followed two distinct methodologies. Additionally, the RAPD technique was used to evaluate the existence of genetic intragroup variability. Results The first methodology identified 89 % of the samples as TcII, but it was not possible to define the genetic identity of seven isolates. The results obtained with the second methodology corroborated the classification as TcII of the same samples and defined the classification of the other seven as TcVI. RAPD analysis showed lower intra-group variability in TcII. Conclusions The results confirmed the preliminary data obtained in other municipalities of the Jequitinhonha Valley, showing a predominance of TcII, similar to that verified in northeast/south axis of Brazil and the first detection of TcVI in the study region. The second protocol was more simple and reliable to identify samples of hybrid character.
Collapse
Affiliation(s)
- Maykon Tavares de Oliveira
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil.
| | - Girley Francisco Machado de Assis
- Departamento- Básico de Saúde, Universidade Federal de Juiz de Fora (UFJF), CEP: 35010-177, Campus Governador Valadares, Governador Valadares, MG, Brazil.
| | - Jaquelline Carla Valamiel Oliveira e Silva
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil.
| | - Evandro Marques Menezes Machado
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil.
| | - Glenda Nicioli da Silva
- Departamento de Análises Clínicas, Escola de Farmácia, UFOP, CEP: 35400-000 Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil. .,Programa de Pós-Graduação em Ciências Farmacêuticas (CiPHARMA), Escola de Farmácia, UFOP, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil.
| | - Vanja Maria Veloso
- Departamento de Análises Clínicas, Escola de Farmácia, UFOP, CEP: 35400-000 Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil. .,Programa de Pós-Graduação em Ciências Farmacêuticas (CiPHARMA), Escola de Farmácia, UFOP, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil.
| | - Andrea Mara Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), 6627, Belo Horizonte, 31270-901, MG, Brazil.
| | - Helen Rodrigues Martins
- Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000, Diamantina, MG, Brazil.
| | - Marta de Lana
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil. .,Departamento de Análises Clínicas, Escola de Farmácia, UFOP, CEP: 35400-000 Campus Universitário Morro do Cruzeiro, CEP: 35400-000, Ouro Preto, MG, Brazil. .,Programa de Pós-Graduação em Ciências Farmacêuticas (CiPHARMA), Escola de Farmácia, UFOP, Campus Universitário Morro do Cruzeiro, 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
33
|
Costales JA, Kotton CN, Zurita-Leal AC, Garcia-Perez J, Llewellyn MS, Messenger LA, Bhattacharyya T, Burleigh BA. Chagas disease reactivation in a heart transplant patient infected by domestic Trypanosoma cruzi discrete typing unit I (TcIDOM). Parasit Vectors 2015; 8:435. [PMID: 26303927 PMCID: PMC4548706 DOI: 10.1186/s13071-015-1039-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/10/2015] [Indexed: 01/31/2023] Open
Abstract
Background Trypanosoma cruzi, causative agent of Chagas disease, displays high intraspecific genetic diversity: six genetic lineages or discrete typing units (DTUs) are currently recognized, termed TcI through TcVI. Each DTU presents a particular distribution pattern across the Americas, and is loosely associated with different transmission cycles and hosts. Several DTUs are known to circulate in Central America. It has been previously suggested that TcI infection is benign and does not lead to chronic chagasic cardiomyopathy (CCC). Findings In this study, we genotyped T. cruzi parasites circulating in the blood and from explanted cardiac tissue of an El Salvadorian patient who developed reactivation Chagas disease while on immunosuppressive medications after undergoing heart transplant in the U.S. as treatment for end-stage CCC. Parasite typing was performed through molecular methods (restriction fragment length polymorphism of polymerase reaction chain amplified products, microsatellite typing, maxicircle sequence typing and low-stringency single primer PCR, [LSSP-PCR]) as well as lineage-specific serology. We show that the parasites infecting the patient belong to the TcI DTU exclusively. Our data indicate that the parasites isolated from the patient belong to a genotype frequently associated with human infection throughout the Americas (TcIDOM). Conclusions Our results constitute compelling evidence in support of TcI DTU’s ability to cause end-stage CCC and help dispel any residual bias that infection with this lineage is benign, pointing to the need for increased surveillance for dissemination of this genotype in endemic regions, the USA and globally.
Collapse
Affiliation(s)
- Jaime A Costales
- Centro de Investigación en Enfermedades Infecciosas, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, Quito, Ecuador.
| | - Camille N Kotton
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, USA.
| | - Andrea C Zurita-Leal
- Centro de Investigación en Enfermedades Infecciosas, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, Quito, Ecuador. .,Present address: Wellcome Trust Centre for Molecular Parasitology, Institute of Infection and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, UK.
| | - Josselyn Garcia-Perez
- Centro de Investigación en Enfermedades Infecciosas, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, Quito, Ecuador. .,Present address: VIB Autoimmune Genetics Laboratory, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
| | - Martin S Llewellyn
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK. .,Present address: Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, University of Wales, Bangor, Deiniol Road, Bangor, Gwynedd, LL57 2UW, UK.
| | - Louisa A Messenger
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Tapan Bhattacharyya
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, USA.
| |
Collapse
|
34
|
Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther 2015; 13:995-1029. [PMID: 26162928 PMCID: PMC4784490 DOI: 10.1586/14787210.2015.1056158] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last 30 years, concomitant with successful transnational disease control programs across Latin America, Chagas disease has expanded from a neglected, endemic parasitic infection of the rural poor to an urbanized chronic disease, and now a potentially emergent global health problem. Trypanosoma cruzi infection has a highly variable clinical course, ranging from complete absence of symptoms to severe and often fatal cardiovascular and/or gastrointestinal manifestations. To date, few correlates of clinical disease progression have been identified. Elucidating a putative role for T. cruzi strain diversity in Chagas disease pathogenesis is complicated by the scarcity of parasites in clinical specimens and the limitations of our contemporary genotyping techniques. This article systematically reviews the historical literature, given our current understanding of parasite genetic diversity, to evaluate the evidence for any association between T. cruzi genotype and chronic clinical outcome, risk of congenital transmission or reactivation and orally transmitted outbreaks.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
Mapping antigenic motifs in the trypomastigote small surface antigen from Trypanosoma cruzi. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:304-12. [PMID: 25589551 DOI: 10.1128/cvi.00684-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The trypomastigote small surface antigen (TSSA) is a mucin-like molecule from Trypanosoma cruzi, the etiological agent of Chagas disease, which displays amino acid polymorphisms in parasite isolates. TSSA expression is restricted to the surface of infective cell-derived trypomastigotes, where it functions as an adhesin and engages surface receptors on the host cell as a prerequisite for parasite internalization. Previous results have established TSSA-CL, the isoform encoded by the CL Brener clone, as an appealing candidate for use in serology-based diagnostics for Chagas disease. Here, we used a combination of peptide- and recombinant protein-based tools to map the antigenic structure of TSSA-CL at maximal resolution. Our results indicate the presence of different partially overlapping B-cell epitopes clustering in the central portion of TSSA-CL, which contains most of the polymorphisms found in parasite isolates. Based on these results, we assessed the serodiagnostic performance of a 21-amino-acid-long peptide that spans TSSA-CL major antigenic determinants, which was similar to the performance of the previously validated glutathione S-transferase (GST)-TSSA-CL fusion molecule. Furthermore, the tools developed for the antigenic characterization of the TSSA antigen were also used to explore other potential diagnostic applications of the anti-TSSA humoral response in Chagasic patients. Overall, our present results provide additional insights into the antigenic structure of TSSA-CL and support this molecule as an excellent target for molecular intervention in Chagas disease.
Collapse
|