1
|
Bigeard C, Pezzi L, Klitting R, Ayhan N, L’Ambert G, Gomez N, Piorkowski G, Amaral R, Durand GA, Colmant AMG, Giraud C, Ramiara K, Migné C, Grard G, Touzet T, Zientara S, Charrel R, Gonzalez G, Duvignaud A, Malvy D, de Lamballerie X, Fontaine A. Molecular Xenomonitoring (MX) allows real-time surveillance of West Nile and Usutu virus in mosquito populations. PLoS Negl Trop Dis 2024; 18:e0012754. [PMID: 39724146 PMCID: PMC11709297 DOI: 10.1371/journal.pntd.0012754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/08/2025] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
West Nile Virus (WNV) and Usutu virus (USUV) circulate through complex cryptic transmission cycles involving mosquitoes as vectors, birds as amplifying hosts and several mammal species as dead-end hosts. Both viruses can be transmitted to humans through mosquito bites, which can lead to neuroinvasive and potentially fatal disease. Notably, WNV can also be transmitted through blood donations and organ transplants. The high proportion of asymptomatic infections caused by these viruses and their cryptic enzootic circulation make their early detection in the environment challenging. Viral surveillance in France still heavily relies on human and animal surveillance, i.e. late indicators of viral circulation. Entomological surveillance is a method of choice for identifying virus circulation ahead of the first human and animal cases and to reveal their genetic identity, but performing molecular screening of vectors is expensive, and time-consuming. Here we show substantial WNV and USUV co-circulation in Atlantic seaboard of France between July and August 2023 using a non-invasive MX (Molecular Xenomonitoring) method that use trapped mosquito excreta. MX offers significant advantages over traditional entomological surveillance: it is cost-effective and efficient, enabling viral RNA screening from a community of trapped mosquitoes via their excreta, which can be transported at room temperature. Additionally, MX extends the longevity of trapped mosquitoes, enhancing virus detection and simplifying logistics, and is easy to implement without requiring specialized skills. At the crossroads between entomological and environmental surveillance, MX can detect the circulation of zoonotic pathogens in the environment before cases are observed in humans and horses, enabling the timely alerts to health policy makers, allowing them to take suitable control measures.
Collapse
Affiliation(s)
- Clément Bigeard
- Department of Infectious Diseases and Tropical Medicine, CHU Bordeaux, France; National Institute for Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Laura Pezzi
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Raphaelle Klitting
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Nazli Ayhan
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Grégory L’Ambert
- Entente interdépartementale pour la démoustication du littoral méditerranéen (EID Méditerranée), Montpellier, France
| | - Nicolas Gomez
- Unité de Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Géraldine Piorkowski
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Rayane Amaral
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Guillaume André Durand
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Agathe M. G. Colmant
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Cynthia Giraud
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Katia Ramiara
- Department of Infectious Diseases and Tropical Medicine, CHU Bordeaux, France; National Institute for Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France
| | - Camille Migné
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Gilda Grard
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Thierry Touzet
- Direction Régional de l’Alimentation de l’Agriculture et de la Forêt (DRAAF) de Nouvelle-Aquitaine
| | - Stéphan Zientara
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Rémi Charrel
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Gaëlle Gonzalez
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR Virologie, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alexandre Duvignaud
- Department of Infectious Diseases and Tropical Medicine, CHU Bordeaux, France; National Institute for Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France
| | - Denis Malvy
- Department of Infectious Diseases and Tropical Medicine, CHU Bordeaux, France; National Institute for Health and Medical Research (INSERM) UMR 1219, Research Institute for Sustainable Development (IRD) EMR 271, Bordeaux Population Health Research Centre, University of Bordeaux, Bordeaux, France
| | - Xavier de Lamballerie
- Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
| | - Albin Fontaine
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), France
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de virologie, Marseille, France
| |
Collapse
|
2
|
Zhou CM, Jiang ZZ, Liu N, Yu XJ. Current insights into human pathogenic phenuiviruses and the host immune system. Virulence 2024; 15:2384563. [PMID: 39072499 PMCID: PMC11290763 DOI: 10.1080/21505594.2024.2384563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Phenuiviruses are a class of segmented negative-sense single-stranded RNA viruses, typically consisting of three RNA segments that encode four distinct proteins. The emergence of pathogenic phenuivirus strains, such as Rift Valley fever phlebovirus (RVFV) in sub-Saharan Africa, Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) in East and Southeast Asia, and Heartland Virus (HRTV) in the United States has presented considerable challenges to global public health in recent years. The innate immune system plays a crucial role as the initial defense mechanism of the host against invading pathogens. In addition to continued research aimed at elucidating the epidemiological characteristics of phenuivirus, significant advancements have been made in investigating its viral virulence factors (glycoprotein, non-structural protein, and nucleoprotein) and potential host-pathogen interactions. Specifically, efforts have focused on understanding mechanisms of viral immune evasion, viral assembly and egress, and host immune networks involving immune cells, programmed cell death, inflammation, nucleic acid receptors, etc. Furthermore, a plethora of technological advancements, including metagenomics, metabolomics, single-cell transcriptomics, proteomics, gene editing, monoclonal antibodies, and vaccines, have been utilized to further our understanding of phenuivirus pathogenesis and host immune responses. Hence, this review aims to provide a comprehensive overview of the current understanding of the mechanisms of host recognition, viral immune evasion, and potential therapeutic approaches during human pathogenic phenuivirus infections focusing particularly on RVFV and SFTSV.
Collapse
Affiliation(s)
- Chuan-Min Zhou
- Gastrointestinal Disease Diagnosis and Treatment Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ze-Zheng Jiang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Ning Liu
- Department of Quality and Operations Management, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Beythien G, de le Roi M, Stanelle-Bertram S, Armando F, Heydemann L, Rosiak M, Becker S, Lamers MM, Kaiser FK, Haagmans BL, Ciurkiewicz M, Gabriel G, Osterhaus ADME, Baumgärtner W. Detection of Double-Stranded RNA Intermediates During SARS-CoV-2 Infections of Syrian Golden Hamsters with Monoclonal Antibodies and Its Implications for Histopathological Evaluation of In Vivo Studies. Int J Mol Sci 2024; 25:11425. [PMID: 39518980 PMCID: PMC11546166 DOI: 10.3390/ijms252111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The SARS-CoV-2 pandemic has highlighted the challenges posed by the emergence and rapid global spread of previously unknown viruses. Early investigations on the pathogenesis of newly identified viruses are often hampered by a lack of appropriate sample material and conventional detection methods. In this study, viral replication within the lungs of SARS-CoV-2-infected Syrian golden hamsters was assessed by immunolabeling dsRNA intermediates with three different monoclonal antibodies in formalin-fixed, paraffin-embedded tissue samples. The presence of dsRNA was compared to viral antigen levels, viral titers, and genomic RNA replicates using three different variants of concern and an ancestral virus strain at a single time point and during the course of infection with an ancestral variant, and then validated using fluorescent 2-plex in situ hybridization. The results indicate that the detection of viral infection using anti-dsRNA antibodies is restricted to an early phase of infection with high viral replication activity. Additionally, the combined detection of dsRNA intermediates and viral antigens may help to bridge the interpretation gaps between viral antigen levels and viral titers at a single time point. Further testing in other viral infections or species is needed to assess the potential of dsRNA as an early marker for viral infections.
Collapse
Affiliation(s)
- Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Madeleine de le Roi
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
| | | | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Pathology Unit, Department of Veterinary Science, University of Parma, 43121 Parma, Italy
| | - Laura Heydemann
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Malgorzata Rosiak
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Svenja Becker
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
| | - Mart M. Lamers
- Department of Viroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.M.L.); (B.L.H.)
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Franziska K. Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (F.K.K.); (A.D.M.E.O.)
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.M.L.); (B.L.H.)
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
| | - Gülşah Gabriel
- Leibniz Institute of Virology, 20251 Hamburg, Germany; (S.S.-B.); (G.G.)
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (F.K.K.); (A.D.M.E.O.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
4
|
Witwit H, Khafaji R, Salaniwal A, Kim AS, Cubitt B, Jackson N, Ye C, Weiss SR, Martinez-Sobrido L, de la Torre JC. Activation of protein kinase receptor (PKR) plays a pro-viral role in mammarenavirus-infected cells. J Virol 2024; 98:e0188323. [PMID: 38376197 PMCID: PMC10949842 DOI: 10.1128/jvi.01883-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double-stranded RNA (dsRNA) sensor protein kinase receptor (PKR) pathway plays a critical role in the cell anti-viral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the anti-viral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro- and anti-viral activities.IMPORTANCEAs with many other viruses, the prototypic Old World mammarenavirus LCMV can interfere with the host cell innate immune response to infection, which includes the dsRNA sensor PKR pathway. A detailed understanding of LCMV-PKR interactions can provide novel insights about mammarenavirus-host cell interactions and facilitate the development of effective anti-viral strategies against human pathogenic mammarenaviruses. In the present work, we present evidence that LCMV multiplication is enhanced in PKR-deficient cells, but pharmacological inhibition of PKR activation unexpectedly resulted in severely restricted propagation of LCMV. Likewise, we document a robust PKR activation in LCMV-infected cells in the absence of detectable levels of dsRNA. Our findings have revealed a complex role of the PKR pathway during LCMV infection and uncovered the activation of PKR as a druggable target for the development of anti-viral drugs against human pathogenic mammarenaviruses.
Collapse
Affiliation(s)
- Haydar Witwit
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Roaa Khafaji
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Arul Salaniwal
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Arthur S. Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | | | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
5
|
Loterio RK, Monson EA, Templin R, de Bruyne JT, Flores HA, Mackenzie JM, Ramm G, Helbig KJ, Simmons CP, Fraser JE. Antiviral Wolbachia strains associate with Aedes aegypti endoplasmic reticulum membranes and induce lipid droplet formation to restrict dengue virus replication. mBio 2024; 15:e0249523. [PMID: 38132636 PMCID: PMC10865983 DOI: 10.1128/mbio.02495-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Wolbachia are a genus of insect endosymbiotic bacteria which includes strains wMel and wAlbB that are being utilized as a biocontrol tool to reduce the incidence of Aedes aegypti-transmitted viral diseases like dengue. However, the precise mechanisms underpinning the antiviral activity of these Wolbachia strains are not well defined. Here, we generated a panel of Ae. aegypti-derived cell lines infected with antiviral strains wMel and wAlbB or the non-antiviral Wolbachia strain wPip to understand host cell morphological changes specifically induced by antiviral strains. Antiviral strains were frequently found to be entirely wrapped by the host endoplasmic reticulum (ER) membrane, while wPip bacteria clustered separately in the host cell cytoplasm. ER-derived lipid droplets (LDs) increased in volume in wMel- and wAlbB-infected cell lines and mosquito tissues compared to cells infected with wPip or Wolbachia-free controls. Inhibition of fatty acid synthase (required for triacylglycerol biosynthesis) reduced LD formation and significantly restored ER-associated dengue virus replication in cells occupied by wMel. Together, this suggests that antiviral Wolbachia strains may specifically alter the lipid composition of the ER to preclude the establishment of dengue virus (DENV) replication complexes. Defining Wolbachia's antiviral mechanisms will support the application and longevity of this effective biocontrol tool that is already being used at scale.IMPORTANCEAedes aegypti transmits a range of important human pathogenic viruses like dengue. However, infection of Ae. aegypti with the insect endosymbiotic bacterium, Wolbachia, reduces the risk of mosquito to human viral transmission. Wolbachia is being utilized at field sites across more than 13 countries to reduce the incidence of viruses like dengue, but it is not well understood how Wolbachia induces its antiviral effects. To examine this at the subcellular level, we compared how different strains of Wolbachia with varying antiviral strengths associate with and modify host cell structures. Strongly antiviral strains were found to specifically associate with the host endoplasmic reticulum and induce striking impacts on host cell lipid droplets. Inhibiting Wolbachia-induced lipid redistribution partially restored dengue virus replication demonstrating this is a contributing role for Wolbachia's antiviral activity. These findings provide new insights into how antiviral Wolbachia strains associate with and modify Ae. aegypti host cells.
Collapse
Affiliation(s)
- Robson K. Loterio
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Ebony A. Monson
- Department of Microbiology, Anatomy, Physiology and Pharmacology; School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Rachel Templin
- Ramaciotti Centre For Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | | | - Heather A. Flores
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Jason M. Mackenzie
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Georg Ramm
- Ramaciotti Centre For Cryo-Electron Microscopy, Monash University, Clayton, Australia
| | - Karla J. Helbig
- Department of Microbiology, Anatomy, Physiology and Pharmacology; School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Cameron P. Simmons
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- World Mosquito Program, Monash University, Clayton, Australia
| | - Johanna E. Fraser
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
6
|
Zhu H, Wang D, Ye Z, Huang L, Wei W, Chan KM, Zhang R, Zhang L, Yue J. The temporal association of CapZ with early endosomes regulates endosomal trafficking and viral entry into host cells. BMC Biol 2024; 22:12. [PMID: 38273307 PMCID: PMC10809671 DOI: 10.1186/s12915-024-01819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Many viruses enter host cells by hijacking endosomal trafficking. CapZ, a canonical actin capping protein, participates in endosomal trafficking, yet its precise role in endocytosis and virus infection remains elusive. RESULTS Here, we showed that CapZ was transiently associated with early endosomes (EEs) and was subsequently released from the matured EEs after the fusion of two EEs, which was facilitated by PI(3)P to PI(3,5)P2 conversion. Vacuolin-1 (a triazine compound) stabilized CapZ at EEs and thus blocked the transition of EEs to late endosomes (LEs). Likewise, artificially tethering CapZ to EEs via a rapamycin-induced protein-protein interaction system blocked the early-to-late endosome transition. Remarkably, CapZ knockout or artificially tethering CapZ to EEs via rapamycin significantly inhibited flaviviruses, e.g., Zika virus (ZIKV) and dengue virus (DENV), or beta-coronavirus, e.g., murine hepatitis virus (MHV), infection by preventing the escape of RNA genome from endocytic vesicles. CONCLUSIONS These results indicate that the temporal association of CapZ with EEs facilitates early-to-late endosome transition (physiologically) and the release of the viral genome from endocytic vesicles (pathologically).
Collapse
Affiliation(s)
- Huazhang Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Dawei Wang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Zuodong Ye
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Lihong Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenjie Wei
- Research Core Facilities, Southern University of Science and Technology of China, Shenzhen, 518052, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
- Divison of Natural and Applied Sciences, Synear Molecular Biology Lab, Duke Kunshan University, Kunshan, China.
| |
Collapse
|
7
|
Witwit H, Khafaji R, Salaniwal A, Kim AS, Cubitt B, Jackson N, Ye C, Weiss SR, Martinez-Sobrido L, de la Torre JC. Activation of Protein Kinase R (PKR) Plays a Pro-Viral Role in Mammarenavirus Infected Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570143. [PMID: 38106082 PMCID: PMC10723269 DOI: 10.1101/2023.12.05.570143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double strand (ds)RNA sensor protein kinase receptor (PKR) pathway plays a critical role in the cell antiviral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the antiviral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein (NP) resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro-and antiviral activities.
Collapse
Affiliation(s)
- Haydar Witwit
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Roaa Khafaji
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Arul Salaniwal
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | - Arthur S. Kim
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Beatrice Cubitt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | | | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
8
|
Bruner-Montero G, Luque CM, Cesar CS, Ding SD, Day JP, Jiggins FM. Hunting Drosophila viruses from wild populations: A novel isolation approach and characterisation of viruses. PLoS Pathog 2023; 19:e1010883. [PMID: 36996192 PMCID: PMC10109509 DOI: 10.1371/journal.ppat.1010883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/17/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023] Open
Abstract
Metagenomic studies have demonstrated that viruses are extremely diverse and abundant in insects, but the difficulty of isolating them means little is known about the biology of these newly discovered viruses. To overcome this challenge in Drosophila, we created a cell line that was more permissive to infection and detected novel viruses by the presence of double-stranded RNA. We demonstrate the utility of these tools by isolating La Jolla virus (LJV) and Newfield virus (NFV) from several wild Drosophila populations. These viruses have different potential host ranges, with distinct abilities to replicate in five Drosophila species. Similarly, in some species they cause high mortality and in others they are comparatively benign. In three species, NFV but not LJV caused large declines in female fecundity. This sterilization effect was associated with differences in tissue tropism, as NFV but not LJV was able to infect Drosophila melanogaster ovaries. We saw a similar effect in the invasive pest of fruit crops Drosophila suzukii, where oral infection with NFV caused reductions in the fecundity, suggesting it has potential as a biocontrol agent. In conclusion, a simple protocol allowed us to isolate new viruses and demonstrate that viruses identified by metagenomics have a large effect on the fitness of the model organism D. melanogaster and related species.
Collapse
Affiliation(s)
- Gaspar Bruner-Montero
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Coiba Scientific Station, City of Knowledge, Clayton, Panama
| | - Carlos M Luque
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Cássia Siqueira Cesar
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Ecology Department, Universidade de São Paulo, São Paulo, Brazil
| | | | - Jonathan P Day
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
9
|
Batovska J, Mee PT, Sawbridge TI, Rodoni BC, Lynch SE. Enhanced Arbovirus Surveillance with High-Throughput Metatranscriptomic Processing of Field-Collected Mosquitoes. Viruses 2022; 14:v14122759. [PMID: 36560765 PMCID: PMC9782886 DOI: 10.3390/v14122759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Peter T. Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
10
|
Barbosa AD, Long M, Lee W, Austen JM, Cunneen M, Ratchford A, Burns B, Kumarasinghe P, Ben-Othman R, Kollmann TR, Stewart CR, Beaman M, Parry R, Hall R, Tabor A, O’Donovan J, Faddy HM, Collins M, Cheng AC, Stenos J, Graves S, Oskam CL, Ryan UM, Irwin PJ. The Troublesome Ticks Research Protocol: Developing a Comprehensive, Multidiscipline Research Plan for Investigating Human Tick-Associated Disease in Australia. Pathogens 2022; 11:1290. [PMID: 36365042 PMCID: PMC9694322 DOI: 10.3390/pathogens11111290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
In Australia, there is a paucity of data about the extent and impact of zoonotic tick-related illnesses. Even less is understood about a multifaceted illness referred to as Debilitating Symptom Complexes Attributed to Ticks (DSCATT). Here, we describe a research plan for investigating the aetiology, pathophysiology, and clinical outcomes of human tick-associated disease in Australia. Our approach focuses on the transmission of potential pathogens and the immunological responses of the patient after a tick bite. The protocol is strengthened by prospective data collection, the recruitment of two external matched control groups, and sophisticated integrative data analysis which, collectively, will allow the robust demonstration of associations between a tick bite and the development of clinical and pathological abnormalities. Various laboratory analyses are performed including metagenomics to investigate the potential transmission of bacteria, protozoa and/or viruses during tick bite. In addition, multi-omics technology is applied to investigate links between host immune responses and potential infectious and non-infectious disease causations. Psychometric profiling is also used to investigate whether psychological attributes influence symptom development. This research will fill important knowledge gaps about tick-borne diseases. Ultimately, we hope the results will promote improved diagnostic outcomes, and inform the safe management and treatment of patients bitten by ticks in Australia.
Collapse
Affiliation(s)
- Amanda D. Barbosa
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
- CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, DF, Brazil
| | - Michelle Long
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Wenna Lee
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Jill M. Austen
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Mike Cunneen
- The App Workshop Pty Ltd., Perth, WA 6000, Australia
| | - Andrew Ratchford
- Emergency Department, Northern Beaches Hospital, Sydney, NSW 2086, Australia
- School of Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Brian Burns
- Emergency Department, Northern Beaches Hospital, Sydney, NSW 2086, Australia
- Sydney Medical School, Sydney University, Camperdown, NSW 2006, Australia
| | - Prasad Kumarasinghe
- School of Medicine, University of Western Australia, Crawley, WA 6009, Australia
- College of Science, Health, Education and Engineering, Murdoch University, Murdoch, WA 6150, Australia
- Western Dermatology, Hollywood Medical Centre, Nedlands, WA 6009, Australia
| | | | | | - Cameron R. Stewart
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia
| | - Miles Beaman
- PathWest Laboratory Medicine, Murdoch, WA 6150, Australia
- Pathology and Laboratory Medicine, Medical School, University of Western Australia, Crawley, WA 6009, Australia
- School of Medicine, University of Notre Dame Australia, Fremantle, WA 6160, Australia
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Roy Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Ala Tabor
- Queensland Alliance for Agriculture and Food Innovation, Centre of Animal Science, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Justine O’Donovan
- Clinical Services and Research, Australian Red Cross Lifeblood, Sydney, NSW 2015, Australia
| | - Helen M. Faddy
- Clinical Services and Research, Australian Red Cross Lifeblood, Sydney, NSW 2015, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Petrie, QLD 4502, Australia
| | - Marjorie Collins
- School of Psychology, Murdoch University, Murdoch, WA 6150, Australia
| | - Allen C. Cheng
- School of Public Health and Preventive Medicine, Monash University, Clayton, VIC 3800, Australia
- Infection Prevention and Healthcare Epidemiology Unit, Alfred Health, Melbourne, VIC 3004, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Stephen Graves
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, VIC 3220, Australia
| | - Charlotte L. Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Una M. Ryan
- Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Peter J. Irwin
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
11
|
Arthropod-Borne Virus Surveillance as a Tool to Study the Australian Mosquito Virome. Viruses 2022; 14:v14091882. [PMID: 36146689 PMCID: PMC9502171 DOI: 10.3390/v14091882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/05/2022] Open
Abstract
Mosquitoes (n = 4381 in 198 pools) were collected in March and April 2018 to survey the presence of West Nile virus Kunjin strain in mosquito populations around crocodile farms in the Darwin region of the Northern Territory (NT) of Australia. While no Kunjin virus was detected in these mosquitoes, we applied our viral replicative intermediates screening system termed monoclonal antibodies to viral RNA intermediates in cells or MAVRIC to this set of samples. This resulted in the detection of 28 pools with virus replicating in C6/36 mosquito cells and the identification of three insect viruses from three distinct virus classes. We demonstrate the persistence of the insect-specific flavivirus Palm Creek virus in Coquillettidia xanthogaster mosquitoes from Darwin over almost a decade, with limited genetic drift. We also detected a novel Hubei macula-like virus 3 strain in samples from two mosquito genera, suggesting the virus, for which the sequence was originally detected in spiders and soybean thrips, might be involved in a horizontal transmission cycle between arthropods and plants. Overall, these data demonstrate the strength of the optimized MAVRIC system and contribute to our general knowledge of the mosquito virome and insect viruses.
Collapse
|
12
|
O'Brien CA, Huang B, Warrilow D, Hazlewood JE, Bielefeldt-Ohmann H, Hall-Mendelin S, Pegg CL, Harrison JJ, Paramitha D, Newton ND, Schulz BL, Suhrbier A, Hobson-Peters J, Hall RA. Extended characterisation of five archival tick-borne viruses provides insights for virus discovery in Australian ticks. Parasit Vectors 2022; 15:59. [PMID: 35180893 PMCID: PMC8857802 DOI: 10.1186/s13071-022-05176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background A subset of Australians who have been bitten by ticks experience a complex of chronic and debilitating symptoms which cannot be attributed to the known pathogenic species of bacteria present in Australia. As a result, there has been a renewed effort to identify and characterise viruses in Australian terrestrial ticks. Recent transcriptome sequencing of Ixodes and Amblyomma ticks has revealed the presence of multiple virus sequences. However, without virus isolates our ability to understand the host range and pathogenesis of newly identified viruses is limited. We have established a successful method for high-throughput virus discovery and isolation in mosquitoes using antibodies to double-stranded RNA. In this study we sought to characterise five archival tick-borne viruses to adapt our virus discovery protocol for Australian ticks. Methods We performed virus characterisation using a combination of bioinformatic sequence analysis and in vitro techniques including replication kinetics, antigenic profiling, virus purification and mass spectrometry. Results Our sequence analysis of Nugget virus, Catch-me-Cave virus and Finch Creek virus revealed marked genetic stability in isolates collected from the same location approximately 30 years apart. We demonstrate that the Ixodes scapularis-derived ISE6 cell line supports replication of Australian members of the Flaviviridae, Nairoviridae, Phenuiviridae and Reoviridae families, including Saumarez Reef virus (SREV), a flavivirus isolated from the soft tick Ornithodoros capensis. While antibodies against double-stranded RNA could be used to detect replication of a tick-borne reovirus and mosquito-borne flavivirus, the tick-borne flaviviruses Gadgets Gully virus and SREV could not be detected using this method. Finally, four novel virus-like sequences were identified in transcriptome sequencing of the Australian native tick Ixodes holocyclus. Conclusions Genetic and antigenic characterisations of archival viruses in this study confirm that three viruses described in 2002 represent contemporary isolates of virus species first identified 30 years prior. Our findings with antibodies to double-stranded RNA highlight an unusual characteristic shared by two Australian tick-borne flaviviruses. Finally, comparative growth kinetics analyses of Australian tick-borne members of the Flaviviridae, Nairoviridae, Phenuiviridae and Reoviridae families in ISE6 and BSR cells will provide a useful resource for isolation of Australian tick-borne viruses using existing cell lines. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05176-z.
Collapse
Affiliation(s)
- Caitlin A O'Brien
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Bixing Huang
- Public Health Virology, Forensic and Scientific Services, Department of Health, P.O. Box 594, Archerfield, QLD, Australia
| | - David Warrilow
- Public Health Virology, Forensic and Scientific Services, Department of Health, P.O. Box 594, Archerfield, QLD, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia.,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, P.O. Box 594, Archerfield, QLD, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Natalee D Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Andreas Suhrbier
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia.
| |
Collapse
|
13
|
Störk T, de le Roi M, Haverkamp AK, Jesse ST, Peters M, Fast C, Gregor KM, Könenkamp L, Steffen I, Ludlow M, Beineke A, Hansmann F, Wohlsein P, Osterhaus ADME, Baumgärtner W. Analysis of avian Usutu virus infections in Germany from 2011 to 2018 with focus on dsRNA detection to demonstrate viral infections. Sci Rep 2021; 11:24191. [PMID: 34921222 PMCID: PMC8683490 DOI: 10.1038/s41598-021-03638-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/07/2021] [Indexed: 11/11/2022] Open
Abstract
Usutu virus (USUV) is a zoonotic arbovirus causing avian mass mortalities. The first outbreak in North-Western Germany occurred in 2018. This retrospective analysis focused on combining virological and pathological findings in birds and immunohistochemistry. 25 common blackbirds, one great grey owl, and one kingfisher collected from 2011 to 2018 and positive for USUV by qRT-PCR were investigated. Macroscopically, most USUV infected birds showed splenomegaly and hepatomegaly. Histopathological lesions included necrosis and lymphohistiocytic inflammation within spleen, Bursa fabricii, liver, heart, brain, lung and intestine. Immunohistochemistry revealed USUV antigen positive cells in heart, spleen, pancreas, lung, brain, proventriculus/gizzard, Bursa fabricii, kidney, intestine, skeletal muscle, and liver. Analysis of viral genome allocated the virus to Europe 3 or Africa 2 lineage. This study investigated whether immunohistochemical detection of double-stranded ribonucleic acid (dsRNA) serves as an alternative tool to detect viral intermediates. Tissue samples of six animals with confirmed USUV infection by qRT-PCR but lacking viral antigen in liver and spleen, were further examined immunohistochemically. Two animals exhibited a positive signal for dsRNA. This could indicate either an early state of infection without sufficient formation of virus translation products, occurrence of another concurrent virus infection or endogenous dsRNA not related to infectious pathogens and should be investigated in more detail in future studies.
Collapse
|
14
|
O'Brien CA, Harrison JJ, Colmant AMG, Traves RJ, Paramitha D, Hall-Mendelin S, Bielefeldt-Ohmann H, Vet LJ, Piyasena TBH, Newton ND, Yam AW, Hobson-Peters J, Hall RA. Improved detection of flaviviruses in Australian mosquito populations via replicative intermediates. J Gen Virol 2021; 102. [PMID: 34236957 DOI: 10.1099/jgv.0.001617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mosquito-borne flaviviruses are significant contributors to the arboviral disease burdens both in Australia and globally. While routine arbovirus surveillance remains a vital exercise to identify known flaviviruses in mosquito populations, novel or divergent and emerging species can be missed by these traditional methods. The MAVRIC (monoclonal antibodies to viral RNA intermediates in cells) system is an ELISA-based method for broad-spectrum isolation of positive-sense and double-stranded RNA (dsRNA) viruses based on detection of dsRNA in infected cells. While the MAVRIC ELISA has successfully been used to detect known and novel flaviviruses in Australian mosquitoes, we previously reported that dsRNA could not be detected in dengue virus-infected cells using this method. In this study we identified additional flaviviruses which evade detection of dsRNA by the MAVRIC ELISA. Utilising chimeric flaviviruses we demonstrated that this outcome may be dictated by the non-structural proteins and/or untranslated regions of the flaviviral genome. In addition, we report a modified fixation method that enables improved detection of flavivirus dsRNA and inactivation of non-enveloped viruses from mosquito populations using the MAVRIC system. This study demonstrates the utility of anti-dsRNA monoclonal antibodies for identifying viral replication in insect and vertebrate cell systems and highlights a unique characteristic of flavivirus replication.
Collapse
Affiliation(s)
- Caitlin A O'Brien
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Agathe M G Colmant
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,Aix Marseille Univ., CNRS, Information Génomique & Structurale (UMR7256), Institut de Microbiologie de la Méditerranée (FR 3489), Marseille, France
| | - Renee J Traves
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,Discipline of Infectious Diseases and Immunology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, PO Box 594, Archerfield, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Laura J Vet
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Thisun B H Piyasena
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alice W Yam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia.,Australian Infectious Disease Research Centre, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
15
|
Choo JJY, Vet LJ, McMillan CLD, Harrison JJ, Scott CAP, Depelsenaire ACI, Fernando GJP, Watterson D, Hall RA, Young PR, Hobson-Peters J, Muller DA. A chimeric dengue virus vaccine candidate delivered by high density microarray patches protects against infection in mice. NPJ Vaccines 2021; 6:66. [PMID: 33963191 PMCID: PMC8105366 DOI: 10.1038/s41541-021-00328-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue viruses (DENV) cause an estimated 390 million infections globally. With no dengue-specific therapeutic treatment currently available, vaccination is the most promising strategy for its control. A wide range of DENV vaccines are in development, with one having already been licensed, albeit with limited distribution. We investigated the immunogenicity and protective efficacy of a chimeric virus vaccine candidate based on the insect-specific flavivirus, Binjari virus (BinJV), displaying the structural prM/E proteins of DENV (BinJ/DENV2-prME). In this study, we immunized AG129 mice with BinJ/DENV2-prME via a needle-free, high-density microarray patch (HD-MAP) delivery system. Immunization with a single, 1 µg dose of BinJ/DENV2-prME delivered via the HD-MAPs resulted in enhanced kinetics of neutralizing antibody induction when compared to needle delivery and complete protection against mortality upon virus challenge in the AG129 DENV mouse model.
Collapse
Affiliation(s)
- Jovin J Y Choo
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Germain J P Fernando
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, QLD, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | - David A Muller
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
16
|
Botella L, Jung T. Multiple Viral Infections Detected in Phytophthora condilina by Total and Small RNA Sequencing. Viruses 2021; 13:v13040620. [PMID: 33916635 PMCID: PMC8067226 DOI: 10.3390/v13040620] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Marine oomycetes have recently been shown to be concurrently infected by (−)ssRNA viruses of the order Bunyavirales. In this work, even higher virus variability was found in a single isolate of Phytophthora condilina, a recently described member of Phytophthora phylogenetic Clade 6a, which was isolated from brackish estuarine waters in southern Portugal. Using total and small RNA-seq the full RdRp of 13 different potential novel bunya-like viruses and two complete toti-like viruses were detected. All these viruses were successfully confirmed by reverse transcription polymerase chain reaction (RT-PCR) using total RNA as template, but complementarily one of the toti-like and five of the bunya-like viruses were confirmed when dsRNA was purified for RT-PCR. In our study, total RNA-seq was by far more efficient for de novo assembling of the virus sequencing but small RNA-seq showed higher read numbers for most viruses. Two main populations of small RNAs (21 nts and 25 nts-long) were identified, which were in accordance with other Phytophthora species. To the best of our knowledge, this is the first study using small RNA sequencing to identify viruses in Phytophthora spp.
Collapse
Affiliation(s)
- Leticia Botella
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic;
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia, Na Sadkach 1780, 37005 Ceske Budejovice, Czech Republic
- Correspondence: ; Tel.: +420-389-032-942
| | - Thomas Jung
- Phytophthora Research Centre, Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 1, 61300 Brno, Czech Republic;
| |
Collapse
|
17
|
Singh S, Batra TA, Misra P. Detection of COVID-19 RNA: Looking beyond PCR. Med J Armed Forces India 2021; 77:S511-S512. [PMID: 33519048 PMCID: PMC7836377 DOI: 10.1016/j.mjafi.2020.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/24/2020] [Indexed: 10/25/2022] Open
Affiliation(s)
- Suyash Singh
- Medical Cadet, Armed Forces Medical College, Pune 40, India
| | | | - Pratibha Misra
- Associate Professor & Head, Department of Biochemistry, Armed Forces Medical College, Pune 40, India
| |
Collapse
|
18
|
McLean BJ, Hall-Mendelin S, Webb CE, Bielefeldt-Ohmann H, Ritchie SA, Hobson-Peters J, Hall RA, van den Hurk AF. The Insect-Specific Parramatta River Virus Is Vertically Transmitted by Aedes vigilax Mosquitoes and Suppresses Replication of Pathogenic Flaviviruses In Vitro. Vector Borne Zoonotic Dis 2020; 21:208-215. [PMID: 33325801 DOI: 10.1089/vbz.2020.2692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insect-specific flaviviruses (ISFs) have been isolated from a range of mosquito species from different parts of the world. These viruses replicate efficiently in mosquitoes but do not appear to replicate in vertebrates. There is increasing evidence that ISFs persist in nature through vertical transmission, and that they interfere with the replication and transmission of pathogenic flaviviruses in the mosquito host. A novel ISF species, Parramatta River virus (PaRV), was previously shown to occur at high rates in Aedes (Ae.) vigilax mosquitoes collected from Sydney, Australia. We investigated whether vertical transmission was the mechanism of viral persistence in Ae. vigilax populations and whether PaRV affected replication of the pathogenic flaviviruses, West Nile virus (WNV), and dengue virus type 3 (DENV-3) in cultured mosquito cells. Progeny reared from eggs obtained from field-collected infected females had infection rates as high as 142 and 85 per 1000 for females and males, respectively. In vitro experiments showed that replication of both WNV and DENV-3 was significantly suppressed in Aedes albopictus (C6/36) cells persistently infected with PaRV. Our studies with PaRV support the findings of previous investigations that ISFs persist in nature through vertical transmission and that ISFs can suppress the replication of pathogenic flaviviruses in coinfected mosquito cells.
Collapse
Affiliation(s)
- Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Archerfield, Australia
| | - Cameron E Webb
- Marie Bashir Institute of Infectious Diseases and Biosecurity, Medical Entomology, New South Wales Health Pathology, Sydney, Australia.,The University of Sydney, and Medical Entomology, New South Wales Health Pathology, Sydney, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Scott A Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Archerfield, Australia
| |
Collapse
|
19
|
Genetic, Morphological and Antigenic Relationships between Mesonivirus Isolates from Australian Mosquitoes and Evidence for Their Horizontal Transmission. Viruses 2020; 12:v12101159. [PMID: 33066222 PMCID: PMC7602028 DOI: 10.3390/v12101159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 12/26/2022] Open
Abstract
The Mesoniviridae are a newly assigned family of viruses in the order Nidovirales. Unlike other nidoviruses, which include the Coronaviridae, mesoniviruses are restricted to mosquito hosts and do not infect vertebrate cells. To date there is little information on the morphological and antigenic characteristics of this new group of viruses and a dearth of mesonivirus-specific research tools. In this study we determined the genetic relationships of recent Australian isolates of Alphamesonivirus 4 (Casuarina virus—CASV) and Alphamesonivirus 1 (Nam Dinh virus—NDiV), obtained from multiple mosquito species. Australian isolates of NDiV showed high-level similarity to the prototype NDiV isolate from Vietnam (99% nucleotide (nt) and amino acid (aa) identity). Isolates of CASV from Central Queensland were genetically very similar to the prototype virus from Darwin (95–96% nt and 91–92% aa identity). Electron microscopy studies demonstrated that virion diameter (≈80 nm) and spike length (≈10 nm) were similar for both viruses. Monoclonal antibodies specific to CASV and NDiV revealed a close antigenic relationship between the two viruses with 13/34 mAbs recognising both viruses. We also detected NDiV RNA on honey-soaked nucleic acid preservation cards fed on by wild mosquitoes supporting a possible mechanism of horizontal transmission between insects in nature.
Collapse
|
20
|
O’Brien CA, Pegg CL, Nouwens AS, Bielefeldt-Ohmann H, Huang B, Warrilow D, Harrison JJ, Haniotis J, Schulz BL, Paramitha D, Colmant AMG, Newton ND, Doggett SL, Watterson D, Hobson-Peters J, Hall RA. A Unique Relative of Rotifer Birnavirus Isolated from Australian Mosquitoes. Viruses 2020; 12:v12091056. [PMID: 32971986 PMCID: PMC7552023 DOI: 10.3390/v12091056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 01/24/2023] Open
Abstract
The family Birnaviridae are a group of non-enveloped double-stranded RNA viruses which infect poultry, aquatic animals and insects. This family includes agriculturally important pathogens of poultry and fish. Recently, next-generation sequencing technologies have identified closely related birnaviruses in Culex, Aedes and Anopheles mosquitoes. Using a broad-spectrum system based on detection of long double-stranded RNA, we have discovered and isolated a birnavirus from Aedes notoscriptus mosquitoes collected in northern New South Wales, Australia. Phylogenetic analysis of Aedes birnavirus (ABV) showed that it is related to Rotifer birnavirus, a pathogen of microscopic aquatic animals. In vitro cell infection assays revealed that while ABV can replicate in Aedes-derived cell lines, the virus does not replicate in vertebrate cells and displays only limited replication in Culex- and Anopheles-derived cells. A combination of SDS-PAGE and mass spectrometry analysis suggested that the ABV capsid precursor protein (pVP2) is larger than that of other birnaviruses and is partially resistant to trypsin digestion. Reactivity patterns of ABV-specific polyclonal and monoclonal antibodies indicate that the neutralizing epitopes of ABV are SDS sensitive. Our characterization shows that ABV displays a number of properties making it a unique member of the Birnaviridae and represents the first birnavirus to be isolated from Australian mosquitoes.
Collapse
Affiliation(s)
- Caitlin A. O’Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Cassandra L. Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Amanda S. Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Bixing Huang
- Public Health Virology, Queensland Health Forensic and Scientific Services, Brisbane, QLD 4108, Australia; (B.H.); (D.W.)
| | - David Warrilow
- Public Health Virology, Queensland Health Forensic and Scientific Services, Brisbane, QLD 4108, Australia; (B.H.); (D.W.)
| | - Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - John Haniotis
- New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (J.H.); (S.L.D.)
| | - Benjamin L. Schulz
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Devina Paramitha
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Agathe M. G. Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Natalee D. Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Stephen L. Doggett
- New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (J.H.); (S.L.D.)
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.A.O.); (H.B.-O.); (J.J.H.); (B.L.S.); (D.P.); (A.M.G.C.); (N.D.N.); (D.W.); (J.H.-P.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4067, Australia; (C.L.P.); (A.S.N.)
- Correspondence:
| |
Collapse
|
21
|
Hobson-Peters J, Harrison JJ, Watterson D, Hazlewood JE, Vet LJ, Newton ND, Warrilow D, Colmant AMG, Taylor C, Huang B, Piyasena TBH, Chow WK, Setoh YX, Tang B, Nakayama E, Yan K, Amarilla AA, Wheatley S, Moore PR, Finger M, Kurucz N, Modhiran N, Young PR, Khromykh AA, Bielefeldt-Ohmann H, Suhrbier A, Hall RA. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci Transl Med 2020; 11:11/522/eaax7888. [PMID: 31826984 DOI: 10.1126/scitranslmed.aax7888] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Flaviviruses such as dengue, yellow fever, Zika, West Nile, and Japanese encephalitis virus present substantial global health burdens. New vaccines are being sought to address safety and manufacturing issues associated with current live attenuated vaccines. Here, we describe a new insect-specific flavivirus, Binjari virus, which was found to be remarkably tolerant for exchange of its structural protein genes (prME) with those of the aforementioned pathogenic vertebrate-infecting flaviviruses (VIFs). Chimeric BinJ/VIF-prME viruses remained replication defective in vertebrate cells but replicated with high efficiency in mosquito cells. Cryo-electron microscopy and monoclonal antibody binding studies illustrated that the chimeric BinJ/VIF-prME virus particles were structurally and immunologically similar to their parental VIFs. Pilot manufacturing in C6/36 cells suggests that high yields can be reached up to 109.5 cell culture infectious dose/ml or ≈7 mg/liter. BinJ/VIF-prME viruses showed utility in diagnostic (microsphere immunoassays and ELISAs using panels of human and equine sera) and vaccine applications (illustrating protection against Zika virus challenge in murine IFNAR-/- mouse models). BinJ/VIF-prME viruses thus represent a versatile, noninfectious (for vertebrate cells), high-yield technology for generating chimeric flavivirus particles with low biocontainment requirements.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Carmel Taylor
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Weng Kong Chow
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Queensland, Australia
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Alberto A Amarilla
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Sarah Wheatley
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Peter R Moore
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Mitchell Finger
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Nina Kurucz
- Centre for Disease Control, Health Protection Division, Northern Territory Department of Health, Darwin, Northern Territory, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
22
|
Fraser JE, O’Donnell TB, Duyvestyn JM, O’Neill SL, Simmons CP, Flores HA. Novel phenotype of Wolbachia strain wPip in Aedes aegypti challenges assumptions on mechanisms of Wolbachia-mediated dengue virus inhibition. PLoS Pathog 2020; 16:e1008410. [PMID: 32726353 PMCID: PMC7416964 DOI: 10.1371/journal.ppat.1008410] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/10/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
The bacterial endosymbiont Wolbachia is a biocontrol tool that inhibits the ability of the Aedes aegypti mosquito to transmit positive-sense RNA viruses such as dengue and Zika. Growing evidence indicates that when Wolbachia strains wMel or wAlbB are introduced into local mosquito populations, human dengue incidence is reduced. Despite the success of this novel intervention, we still do not fully understand how Wolbachia protects mosquitoes from viral infection. Here, we demonstrate that the Wolbachia strain wPip does not inhibit virus infection in Ae. aegypti. We have leveraged this novel finding, and a panel of Ae. aegypti lines carrying virus-inhibitory (wMel and wAlbB) and non-inhibitory (wPip) strains in a common genetic background, to rigorously test a number of hypotheses about the mechanism of Wolbachia-mediated virus inhibition. We demonstrate that, contrary to previous suggestions, there is no association between a strain's ability to inhibit dengue infection in the mosquito and either its typical density in the midgut or salivary glands, or the degree to which it elevates innate immune response pathways in the mosquito. These findings, and the experimental platform provided by this panel of genetically comparable mosquito lines, clear the way for future investigations to define how Wolbachia prevents Ae. aegypti from transmitting viruses.
Collapse
Affiliation(s)
- Johanna E. Fraser
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| | - Tanya B. O’Donnell
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| | - Johanna M. Duyvestyn
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| | - Scott L. O’Neill
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| | - Cameron P. Simmons
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Heather A. Flores
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| |
Collapse
|
23
|
Antigenic Characterization of New Lineage II Insect-Specific Flaviviruses in Australian Mosquitoes and Identification of Host Restriction Factors. mSphere 2020; 5:5/3/e00095-20. [PMID: 32554715 PMCID: PMC7300350 DOI: 10.1128/msphere.00095-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We describe two new insect-specific flaviviruses (ISFs) isolated from mosquitoes in Australia, Binjari virus (BinJV) and Hidden Valley virus (HVV), that grow efficiently in mosquito cells but fail to replicate in a range of vertebrate cell lines. Phylogenetic analysis revealed that BinJV and HVV were closely related (90% amino acid sequence identity) and clustered with lineage II (dual-host affiliated) ISFs, including the Lammi and Nounané viruses. Using a panel of monoclonal antibodies prepared to BinJV viral proteins, we confirmed a close relationship between HVV and BinJV and revealed that they were antigenically quite divergent from other lineage II ISFs. We also constructed chimeric viruses between BinJV and the vertebrate-infecting West Nile virus (WNV) by swapping the structural genes (prM and E) to produce BinJ/WNVKUN-prME and WNVKUN/BinJV-prME. This allowed us to assess the role of different regions of the BinJV genome in vertebrate host restriction and revealed that while BinJV structural proteins facilitated entry to vertebrate cells, the process was inefficient. In contrast, the BinJV replicative components in wild-type BinJV and BinJ/WNVKUN-prME failed to initiate replication in a wide range of vertebrate cell lines at 37°C, including cells lacking components of the innate immune response. However, trace levels of replication of BinJ/WNVKUN-prME could be detected in some cultures of mouse embryo fibroblasts (MEFs) deficient in antiviral responses (IFNAR-/- MEFs or RNase L-/- MEFs) incubated at 34°C after inoculation. This suggests that BinJV replication in vertebrate cells is temperature sensitive and restricted at multiple stages of cellular infection, including inefficient cell entry and susceptibility to antiviral responses.IMPORTANCE The globally important flavivirus pathogens West Nile virus, Zika virus, dengue viruses, and yellow fever virus can infect mosquito vectors and be transmitted to humans and other vertebrate species in which they cause significant levels of disease and mortality. However, the subgroup of closely related flaviviruses, known as lineage II insect-specific flaviviruses (Lin II ISFs), only infect mosquitoes and cannot replicate in cells of vertebrate origin. Our data are the first to uncover the mechanisms that restrict the growth of Lin II ISFs in vertebrate cells and provides new insights into the evolution of these viruses and the mechanisms associated with host switching that may allow new mosquito-borne viral diseases to emerge. The new reagents generated in this study, including the first Lin II ISF-reactive monoclonal antibodies and Lin II ISF mutants and chimeric viruses, also provide new tools and approaches to enable further research advances in this field.
Collapse
|
24
|
Nguyen W, Nakayama E, Yan K, Tang B, Le TT, Liu L, Cooper TH, Hayball JD, Faddy HM, Warrilow D, Allcock RJN, Hobson-Peters J, Hall RA, Rawle DJ, Lutzky VP, Young P, Oliveira NM, Hartel G, Howley PM, Prow NA, Suhrbier A. Arthritogenic Alphavirus Vaccines: Serogrouping Versus Cross-Protection in Mouse Models. Vaccines (Basel) 2020; 8:vaccines8020209. [PMID: 32380760 PMCID: PMC7349283 DOI: 10.3390/vaccines8020209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Chikungunya virus (CHIKV), Ross River virus (RRV), o’nyong nyong virus (ONNV), Mayaro virus (MAYV) and Getah virus (GETV) represent arthritogenic alphaviruses belonging to the Semliki Forest virus antigenic complex. Antibodies raised against one of these viruses can cross-react with other serogroup members, suggesting that, for instance, a CHIKV vaccine (deemed commercially viable) might provide cross-protection against antigenically related alphaviruses. Herein we use human alphavirus isolates (including a new human RRV isolate) and wild-type mice to explore whether infection with one virus leads to cross-protection against viremia after challenge with other members of the antigenic complex. Persistently infected Rag1-/- mice were also used to assess the cross-protective capacity of convalescent CHIKV serum. We also assessed the ability of a recombinant poxvirus-based CHIKV vaccine and a commercially available formalin-fixed, whole-virus GETV vaccine to induce cross-protective responses. Although cross-protection and/or cross-reactivity were clearly evident, they were not universal and were often suboptimal. Even for the more closely related viruses (e.g., CHIKV and ONNV, or RRV and GETV), vaccine-mediated neutralization and/or protection against the intended homologous target was significantly more effective than cross-neutralization and/or cross-protection against the heterologous virus. Effective vaccine-mediated cross-protection would thus likely require a higher dose and/or more vaccinations, which is likely to be unattractive to regulators and vaccine manufacturers.
Collapse
Affiliation(s)
- Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Eri Nakayama
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 162-0052, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Liang Liu
- Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences, University of South Australia Cancer Research Institute, SA 5000, Australia; (L.L.); (T.H.C.); (J.D.H.)
| | - Tamara H. Cooper
- Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences, University of South Australia Cancer Research Institute, SA 5000, Australia; (L.L.); (T.H.C.); (J.D.H.)
| | - John D. Hayball
- Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences, University of South Australia Cancer Research Institute, SA 5000, Australia; (L.L.); (T.H.C.); (J.D.H.)
| | - Helen M. Faddy
- Research and Development Laboratory, Australian Red Cross Lifeblood, Kelvin Grove, Qld 4059, Australia;
| | - David Warrilow
- Public Health Virology Laboratory, Queensland Health Forensic and Scientific Services, PO Box 594, Archerfield, Qld 4108, Australia;
| | - Richard J. N. Allcock
- School of Biomedical Sciences, University of Western Australia, Crawley 6009, Australia;
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia; (J.H.-P.); (R.A.H.); (P.Y.)
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia; (J.H.-P.); (R.A.H.); (P.Y.)
- Australian Infectious Disease Research Centre, Brisbane, Qld 4027 & 4072, Australia
| | - Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Viviana P. Lutzky
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
| | - Paul Young
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia; (J.H.-P.); (R.A.H.); (P.Y.)
- Australian Infectious Disease Research Centre, Brisbane, Qld 4027 & 4072, Australia
| | - Nidia M. Oliveira
- Deptartment of Microbiology, University of Western Australia, Perth, WA 6009, Australia;
| | - Gunter Hartel
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane, Qld 4029, Australia;
| | | | - Natalie A. Prow
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
- Experimental Therapeutics Laboratory, School of Pharmacy & Medical Sciences, University of South Australia Cancer Research Institute, SA 5000, Australia; (L.L.); (T.H.C.); (J.D.H.)
- Australian Infectious Disease Research Centre, Brisbane, Qld 4027 & 4072, Australia
- Correspondence: (N.A.P.); (A.S.)
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane 4029, Australia; (W.N.); (E.N.); (K.Y.); (B.T.); (T.T.L.); (D.J.R.); (V.P.L.)
- Australian Infectious Disease Research Centre, Brisbane, Qld 4027 & 4072, Australia
- Correspondence: (N.A.P.); (A.S.)
| |
Collapse
|
25
|
Abbo SR, Visser TM, Wang H, Göertz GP, Fros JJ, Abma-Henkens MHC, Geertsema C, Vogels CBF, Koopmans MPG, Reusken CBEM, Hall-Mendelin S, Hall RA, van Oers MM, Koenraadt CJM, Pijlman GP. The invasive Asian bush mosquito Aedes japonicus found in the Netherlands can experimentally transmit Zika virus and Usutu virus. PLoS Negl Trop Dis 2020; 14:e0008217. [PMID: 32282830 PMCID: PMC7153878 DOI: 10.1371/journal.pntd.0008217] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/13/2020] [Indexed: 02/03/2023] Open
Abstract
Background The Asian bush mosquito Aedes japonicus is invading Europe and was first discovered in Lelystad, the Netherlands in 2013, where it has established a permanent population. In this study, we investigated the vector competence of Ae. japonicus from the Netherlands for the emerging Zika virus (ZIKV) and zoonotic Usutu virus (USUV). ZIKV causes severe congenital microcephaly and Guillain-Barré syndrome in humans. USUV is closely related to West Nile virus, has recently spread throughout Europe and is causing mass mortality of birds. USUV infection in humans can result in clinical manifestations ranging from mild disease to severe neurological impairments. Methodology/Principal findings In our study, field-collected Ae. japonicus females received an infectious blood meal with ZIKV or USUV by droplet feeding. After 14 days at 28°C, 3% of the ZIKV-blood fed mosquitoes and 13% of the USUV-blood fed mosquitoes showed virus-positive saliva, indicating that Ae. japonicus can transmit both viruses. To investigate the effect of the mosquito midgut barrier on virus transmission, female mosquitoes were intrathoracically injected with ZIKV or USUV. Of the injected mosquitoes, 96% (ZIKV) and 88% (USUV) showed virus-positive saliva after 14 days at 28°C. This indicates that ZIKV and USUV can efficiently replicate in Ae. japonicus but that a strong midgut barrier is normally restricting virus dissemination. Small RNA deep sequencing of orally infected mosquitoes confirmed active replication of ZIKV and USUV, as demonstrated by potent small interfering RNA responses against both viruses. Additionally, de novo small RNA assembly revealed the presence of a novel narnavirus in Ae. japonicus. Conclusions/Significance Given that Ae. japonicus can experimentally transmit arthropod-borne viruses (arboviruses) like ZIKV and USUV and is currently expanding its territories, we should consider this mosquito as a potential vector for arboviral diseases in Europe. Arthropod-borne viruses (arboviruses) cause a high disease burden in humans and animals. Zika virus (ZIKV) causes microcephaly and Guillain-Barré syndrome in humans, whereas Usutu virus (USUV) induces high mortality in birds and neurological disease in humans. The spread of arboviruses such as ZIKV and USUV is determined by the presence of mosquitoes that can transmit these viruses from one vertebrate host to the next. Here, we investigate the risk of transmission of ZIKV and USUV by the Asian bush mosquito Aedes japonicus. This mosquito is invading Europe and is currently present in the Netherlands. We found that field-collected Ae. japonicus mosquitoes can experimentally transmit ZIKV and USUV. Of the orally infected mosquitoes, 3% (ZIKV) and 13% (USUV) showed virus-positive saliva after 14 days at 28°C. We also found that ZIKV and USUV activated the antiviral RNA interference immune response of Ae. japonicus. Moreover, a strong barrier in the mosquito midgut restricted virus dissemination, since 96% (ZIKV) and 88% (USUV) of the mosquitoes injected with ZIKV or USUV showed virus-positive saliva. Additionally, we discovered a narnavirus in Ae. japonicus. Given that Ae. japonicus can transmit ZIKV and USUV, we should consider this mosquito as a potential vector for arboviral diseases in Europe.
Collapse
Affiliation(s)
- Sandra R. Abbo
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Tessa M. Visser
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | - Haidong Wang
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Giel P. Göertz
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Corinne Geertsema
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Chantal B. F. Vogels
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | | | | | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Coopers Plains, Australia
| | - Roy A. Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Australia
| | - Monique M. van Oers
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
- * E-mail:
| |
Collapse
|
26
|
Ku J, Kim S, Park J, Kim TS, Kharbash R, Shin EC, Char K, Kim Y, Li S. Reactive Polymer Targeting dsRNA as Universal Virus Detection Platform with Enhanced Sensitivity. Biomacromolecules 2020; 21:2440-2454. [PMID: 32233463 DOI: 10.1021/acs.biomac.0c00379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive poly(pentafluorophenyl acrylate) (PPFPA)-grafted surfaces offer a versatile platform to immobilize biomolecules. Here, we utilize PPFPA-grafted surface and double-stranded RNA (dsRNA) recognizing J2 antibody to construct a universal virus detection platform with enhanced sensitivity. PPFPA on silicon substrates is prepared, and surface hydrophilicity is modulated by partial substitution of the pentafluorophenyl units with poly(ethylene glycol). Following dsRNA antibody immobilization, the prepared surfaces can distinguish long dsRNAs from single-stranded RNAs of the same length and short dsRNAs. As long dsRNAs are common byproducts of viral transcription/replication, these surfaces can detect the presence of different kinds of viruses without prior knowledge of their genomic sequences. To increase dsRNA detection sensitivity, a two-step method is devised where the captured dsRNAs are visualized with multiple fluorophore-tagged J2 antibodies. We show that the developed platform can differentiate foreign long dsRNAs from cellular dsRNAs and other biomolecules present in the cell lysate. Moreover, when tested against cells infected with hepatitis A or C viruses, both viruses are successfully detected using a single platform. Our study shows that the developed PPFPA platform immobilized with J2 antibody can serve as a primary diagnostic tool to determine the infection status for a wide range of viruses.
Collapse
Affiliation(s)
- Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 South Korea.,KI for Health Science and Technology (KIHST), KAIST, Daejeon 34141 South Korea
| | - Sura Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 South Korea
| | - Jaemin Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 South Korea
| | - Tae-Shin Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141 South Korea
| | - Raisa Kharbash
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 South Korea.,KI for Health Science and Technology (KIHST), KAIST, Daejeon 34141 South Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141 South Korea
| | - Kookheon Char
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, South Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 South Korea.,KI for Health Science and Technology (KIHST), KAIST, Daejeon 34141 South Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141 South Korea
| |
Collapse
|
27
|
Samarfard S, McTaggart AR, Sharman M, Bejerman NE, Dietzgen RG. Viromes of Ten Alfalfa Plants in Australia Reveal Diverse Known Viruses and a Novel RNA Virus. Pathogens 2020; 9:pathogens9030214. [PMID: 32183134 PMCID: PMC7157637 DOI: 10.3390/pathogens9030214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Alfalfa plants in the field can display a range of virus-like symptoms, especially when grown over many years for seed production. Most known alfalfa viruses have RNA genomes, some of which can be detected using diagnostic assays, but many viruses of alfalfa are not well characterized. This study aims to identify the RNA and DNA virus complexes associated with alfalfa plants in Australia. To maximize the detection of RNA viruses, we purified double-stranded RNA (dsRNA) for high throughput sequencing and characterized the viromes of ten alfalfa samples that showed diverse virus-like symptoms. Using Illumina sequencing of tagged cDNA libraries from immune-captured dsRNA, we identified sequences of the single-stranded RNA viruses, alfalfa mosaic virus (AMV), bean leafroll virus, a new emaravirus tentatively named alfalfa ringspot-associated virus, and persistent dsRNA viruses belonging to the families Amalgaviridae and Partitiviridae. Furthermore, rolling circle amplification and restriction enzyme digestion revealed the complete genome of chickpea chlorosis Australia virus, a mastrevirus (family Geminiviridae) previously reported only from chickpea and French bean that was 97% identical to the chickpea isolate. The sequence data also enabled the assembly of the first complete genome (RNAs 1–3) of an Australian AMV isolate from alfalfa.
Collapse
Affiliation(s)
- Samira Samarfard
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia;
| | - Alistair R. McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia;
| | - Murray Sharman
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Queensland 4102, Australia;
| | - Nicolás E. Bejerman
- Instituto de Patología Vegetal–Centro de Investigaciones Agropecuarias–Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Córdoba 5020, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Unidad de Fitopatología y Modelización Agrícola, Córdoba 5020, Argentina
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4072, Australia;
- Correspondence: ; Tel.: +61-7-334-66503
| |
Collapse
|
28
|
Colmant AMG, O'Brien CA, Newton ND, Watterson D, Hardy J, Coulibaly F, Bielefeldt-Ohmann H, Warrilow D, Huang B, Paramitha D, Harrison JJ, Hall RA, Hobson-Peters J. Novel monoclonal antibodies against Australian strains of negeviruses and insights into virus structure, replication and host -restriction. J Gen Virol 2020; 101:440-452. [PMID: 32003709 DOI: 10.1099/jgv.0.001388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report the isolation of Australian strains of Bustos virus and Ngewotan virus, two insect-specific viruses in the newly identified taxon Negevirus, originally isolated from Southeast Asian mosquitoes. Consistent with the expected insect-specific tropism of negeviruses, these isolates of Ngewotan and Bustos viruses, alongside the Australian negevirus Castlerea virus, replicated exclusively in mosquito cells but not in vertebrate cells, even when their temperature was reduced to 34 °C. Our data confirmed the existence of two structural proteins, putatively one membrane protein forming the majority of the virus particle, and one glycoprotein forming a projection on the apex of the virions. We generated and characterized 71 monoclonal antibodies to both structural proteins of the two viruses, most of which were neutralizing. Overall, these data increase our knowledge of negevirus mechanisms of infection and replication in vitro.
Collapse
Affiliation(s)
- Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Joshua Hardy
- Infection and Immunity, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Fasséli Coulibaly
- Infection and Immunity, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, The University of Queensland, Queensland, Gatton, Australia.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - David Warrilow
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia
| | - Bixing Huang
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, 39 Kessels Rd, Coopers Plains, QLD 4108, Australia
| | - Devina Paramitha
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
29
|
Herpes Simplex Virus 1 Can Enter Dynamin 1 and 2 Double-Knockout Fibroblasts. J Virol 2019; 93:JVI.00704-19. [PMID: 31142668 DOI: 10.1128/jvi.00704-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Dynamin GTPases, best known for their role in membrane fission of endocytic vesicles, provide a target for viruses to be exploited during endocytic uptake. Recently, we found that entry of herpes simplex virus 1 (HSV-1) into skin cells depends on dynamin, although our results supported that viral internalization occurs via both direct fusion with the plasma membrane and via endocytic pathways. To further explore the role of dynamin for efficient HSV-1 entry, we utilized conditional dynamin 1 and dynamin 2 double-knockout (DKO) fibroblasts as an experimental tool. Strikingly, HSV-1 entered control and DKO fibroblasts with comparable efficiencies. For comparison, we infected DKO cells with Semliki Forest virus, which is known to adopt clathrin-mediated endocytosis as its internalization pathway, and observed efficient virus entry. These results support the notion that the DKO cells provide alternative pathways for viral uptake. Treatment of cells with the dynamin inhibitor dynasore confirmed that HSV-1 entry depended on dynamin in the control fibroblasts. As expected, dynasore did not interfere with viral entry into DKO cells. Electron microscopy of HSV-1-infected cells suggests viral entry after fusion with the plasma membrane and by endocytosis in both dynamin-expressing and dynamin-deficient cells. Infection at low temperatures where endocytosis is blocked still resulted in HSV-1 entry, although at a reduced level, which suggests that nonendocytic pathways contribute to successful entry. Overall, our results strengthen the impact of dynamin for HSV-1 entry, as only cells that adapt to the lack of dynamin allow dynamin-independent entry.IMPORTANCE The human pathogen herpes simplex virus 1 (HSV-1) can adapt to a variety of cellular pathways to enter cells. In general, HSV-1 is internalized by fusion of its envelope with the plasma membrane or by endocytic pathways, which reflects the high adaptation to differences in its target cells. The challenges are to distinguish whether multiple or only one of these internalization pathways leads to successful entry and, furthermore, to identify the mode of viral uptake. In this study, we focused on dynamin, which promotes endocytic vesicle fission, and explored how the presence and absence of dynamin can influence viral entry. Our results support the idea that HSV-1 entry into mouse embryonic fibroblasts depends on dynamin; however, depletion of dynamin still allows efficient viral entry, suggesting that alternative pathways present upon dynamin depletion can accomplish viral internalization.
Collapse
|
30
|
Clean bill of health? Towards an understanding of health risks posed by urban ibis. JOURNAL OF URBAN ECOLOGY 2019. [DOI: 10.1093/jue/juz006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
31
|
Fujita M, Adachi K, Nagasawa M. Development of a homogeneous time-resolved fluorescence assay for detection of viral double-stranded RNA. Anal Biochem 2019; 566:46-49. [PMID: 30352199 PMCID: PMC7172543 DOI: 10.1016/j.ab.2018.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 11/18/2022]
Abstract
The group of positive-sense single-stranded RNA ((+) ssRNA) viruses includes many important human pathogens. However, specific antiviral agents are not currently available for many RNA viruses. For screening of antiviral agents, methods that are simple, rapid, and compatible with high-throughput are required. Here, we describe a novel method for measurement of double-stranded RNA using a homogeneous time-resolved fluorescence assay. This method allowed detection of human rhinovirus (HRV), enterovirus, coxsackievirus, and murine norovirus. Furthermore, this method detected antiviral activity of a HRV 3C protease inhibitor. The assay may be useful for discovery of antiviral agents against (+) ssRNA viruses.
Collapse
Affiliation(s)
- Motomichi Fujita
- Pharmacology Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd, 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Koji Adachi
- Cisbio K. K., Makuhari Techno Garden, Building D 11F, 1-3 Nakase Mihama-ku, Chiba-shi, Chiba 261-8501, Japan
| | - Michiaki Nagasawa
- Pharmacology Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd, 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan.
| |
Collapse
|
32
|
McLean BJ, Dainty KR, Flores HA, O'Neill SL. Differential suppression of persistent insect specific viruses in trans-infected wMel and wMelPop-CLA Aedes-derived mosquito lines. Virology 2018; 527:141-145. [PMID: 30503908 PMCID: PMC6340807 DOI: 10.1016/j.virol.2018.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 01/07/2023]
Abstract
Wolbachia suppresses the replication of +ssRNA viruses such as dengue and Zika viruses in Aedes aegypti mosquitoes. However, the range of viruses affected by this endosymbiont is yet to be explored. Recently, novel insect-specific viruses (ISVs) have been described from numerous mosquito species and mosquito-derived cell lines. Cell-fusing agent virus (Flaviviridae) and Phasi Charoen-like virus (Bunyaviridae) persistently infect the Ae. aegypti cell line Aag2 which has been used for experimental studies with both the wMel and wMelPop-CLA strains. Wolbachia was found to restrict the replication of CFAV but not the PCLV infection in these lines. Furthermore, an additional Ae. albopictus cell line (RML-12) which contained either wMel or wMelPop-CLA was assessed. While no infectious +ssRNA or dsRNA viruses were detected, a PCLV infection was identified. These observations provide additional evidence to support that insect-specific, +ssRNA viruses can be suppressed in cell culture by Wolbachia but -ssRNA viruses may not.
Collapse
Affiliation(s)
- Breeanna J McLean
- Institute of Vector-Borne Disease, Monash University, Clayton, Vic., Australia
| | - Kimberley R Dainty
- Institute of Vector-Borne Disease, Monash University, Clayton, Vic., Australia
| | - Heather A Flores
- Institute of Vector-Borne Disease, Monash University, Clayton, Vic., Australia
| | - Scott L O'Neill
- Institute of Vector-Borne Disease, Monash University, Clayton, Vic., Australia.
| |
Collapse
|
33
|
Colmant AMG, Hall-Mendelin S, Ritchie SA, Bielefeldt-Ohmann H, Harrison JJ, Newton ND, O’Brien CA, Cazier C, Johansen CA, Hobson-Peters J, Hall RA, van den Hurk AF. The recently identified flavivirus Bamaga virus is transmitted horizontally by Culex mosquitoes and interferes with West Nile virus replication in vitro and transmission in vivo. PLoS Negl Trop Dis 2018; 12:e0006886. [PMID: 30356234 PMCID: PMC6200184 DOI: 10.1371/journal.pntd.0006886] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/29/2018] [Indexed: 11/19/2022] Open
Abstract
Arthropod-borne flaviviruses such as yellow fever (YFV), Zika and dengue viruses continue to cause significant human disease globally. These viruses are transmitted by mosquitoes when a female imbibes an infected blood-meal from a viremic vertebrate host and expectorates the virus into a subsequent host. Bamaga virus (BgV) is a flavivirus recently discovered in Culex sitiens subgroup mosquitoes collected from Cape York Peninsula, Australia. This virus phylogenetically clusters with the YFV group, but is potentially restricted in most vertebrates. However, high levels of replication in an opossum cell line (OK) indicate a potential association with marsupials. To ascertain whether BgV could be horizontally transmitted by mosquitoes, the vector competence of two members of the Cx. sitiens subgroup, Cx. annulirostris and Cx. sitiens, for BgV was investigated. Eleven to thirteen days after imbibing an infectious blood-meal, infection rates were 11.3% and 18.8% for Cx. annulirostris and Cx. sitiens, respectively. Cx. annulirostris transmitted the virus at low levels (5.6% had BgV-positive saliva overall); Cx. sitiens did not transmit the virus. When mosquitoes were injected intrathoracially with BgV, the infection and transmission rates were 100% and 82%, respectively, for both species. These results provided evidence for the first time that BgV can be transmitted horizontally by Cx. annulirostris, the primary vector of pathogenic zoonotic flaviviruses in Australia. We also assessed whether BgV could interfere with replication in vitro, and infection and transmission in vivo of super-infecting pathogenic Culex-associated flaviviruses. BgV significantly reduced growth of Murray Valley encephalitis and West Nile (WNV) viruses in vitro. While prior infection with BgV by injection did not inhibit WNV super-infection of Cx. annulirostris, significantly fewer BgV-infected mosquitoes could transmit WNV than mock-injected mosquitoes. Overall, these data contribute to our understanding of flavivirus ecology, modes of transmission by Australian mosquitoes and mechanisms for super-infection interference. Mosquito-borne flaviviruses include medically significant members such as the dengue viruses, yellow fever virus and Zika virus. These viruses regularly cause outbreaks globally, notably in tropical regions. The ability of mosquitoes to transmit these viruses to vertebrate hosts plays a major role in determining the scale of these outbreaks. It is essential to assess the risk of emergence of flaviviruses in a given region by investigating the vector competence of local mosquitoes for these viruses. Bamaga virus was recently discovered in Australia in Culex mosquitoes and shown to be related to yellow fever virus. In this article, we investigated the potential for Bamaga virus to emerge as an arthropod-borne viral pathogen by assessing the vector competence of Cx. annulirostris and Cx. sitiens mosquitoes for this virus. We showed that Bamaga virus could be detected in the saliva of Cx. annulirostris after an infectious blood-meal, demonstrating that the virus could be horizontally transmitted. In addition, we showed that Bamaga virus could interfere with the replication in vitro and transmission in vivo of the pathogenic flavivirus West Nile virus. These data provide further insight on how interactions between viruses in their vector can influence the efficiency of pathogen transmission.
Collapse
Affiliation(s)
- Agathe M. G. Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, Australia
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton Campus, QLD, Gatton Australia
| | - Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalee D. Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Caitlin A. O’Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Chris Cazier
- Technical Services, Biosciences Division, Faculty of Health, Queensland University of Technology, Gardens Point Campus, Brisbane, Qld, Australia
| | - Cheryl A. Johansen
- PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- * E-mail: (RAH); (AFVDH)
| | - Andrew F. van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, Australia
- * E-mail: (RAH); (AFVDH)
| |
Collapse
|
34
|
Prow NA, Mah MG, Deerain JM, Warrilow D, Colmant AMG, O'Brien CA, Harrison JJ, McLean BJ, Hewlett EK, Piyasena TBH, Hall-Mendelin S, van den Hurk AF, Watterson D, Huang B, Schulz BL, Webb CE, Johansen CA, Chow WK, Hobson-Peters J, Cazier C, Coffey LL, Faddy HM, Suhrbier A, Bielefeldt-Ohmann H, Hall RA. New genotypes of Liao ning virus (LNV) in Australia exhibit an insect-specific phenotype. J Gen Virol 2018. [PMID: 29533743 DOI: 10.1099/jgv.0.001038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Liao ning virus (LNV) was first isolated in 1996 from mosquitoes in China, and has been shown to replicate in selected mammalian cell lines and to cause lethal haemorrhagic disease in experimentally infected mice. The first detection of LNV in Australia was by deep sequencing of mosquito homogenates. We subsequently isolated LNV from mosquitoes of four genera (Culex, Anopheles, Mansonia and Aedes) in New South Wales, Northern Territory, Queensland and Western Australia; the earliest of these Australian isolates were obtained from mosquitoes collected in 1988, predating the first Chinese isolates. Genetic analysis revealed that the Australian LNV isolates formed two new genotypes: one including isolates from eastern and northern Australia, and the second comprising isolates from the south-western corner of the continent. In contrast to findings reported for the Chinese LNV isolates, the Australian LNV isolates did not replicate in vertebrate cells in vitro or in vivo, or produce signs of disease in wild-type or immunodeficient mice. A panel of human and animal sera collected from regions where the virus was found in high prevalence also showed no evidence of LNV-specific antibodies. Furthermore, high rates of virus detection in progeny reared from infected adult female mosquitoes, coupled with visualization of the virus within the ovarian follicles by immunohistochemistry, suggest that LNV is transmitted transovarially. Thus, despite relatively minor genomic differences between Chinese and Australian LNV strains, the latter display a characteristic insect-specific phenotype.
Collapse
Affiliation(s)
- Natalie A Prow
- Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia
| | - Marcus G Mah
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Present address: Duke-NUS Medical School, Programme in Emerging Infectious Diseases, 8 College Rd, 169857, Singapore
| | - Joshua M Deerain
- Present address: Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, VIC 3000, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - David Warrilow
- Public Health Virology, Queensland Health Forensic and Scientific Services (QHFSS), Queensland, Australia
| | - Agathe M G Colmant
- School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Caitlin A O'Brien
- School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Breeanna J McLean
- School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia.,Present address: Monash University, Institute of Vector-Borne Disease, 12 Innovation Walk, Clayton, VIC 3800, Australia
| | - Elise K Hewlett
- School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Thisun B H Piyasena
- School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Queensland Health Forensic and Scientific Services (QHFSS), Queensland, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Queensland Health Forensic and Scientific Services (QHFSS), Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Bixing Huang
- Public Health Virology, Queensland Health Forensic and Scientific Services (QHFSS), Queensland, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Cameron E Webb
- Medical Entomology Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Cheryl A Johansen
- PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Weng K Chow
- Australian Defence Force Malaria Infectious and Disease Institute, Gallipoli Barracks, Enoggera Queensland 4051, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Chris Cazier
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Helen M Faddy
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Queensland, Australia
| |
Collapse
|
35
|
Monsion B, Incarbone M, Hleibieh K, Poignavent V, Ghannam A, Dunoyer P, Daeffler L, Tilsner J, Ritzenthaler C. Efficient Detection of Long dsRNA in Vitro and in Vivo Using the dsRNA Binding Domain from FHV B2 Protein. FRONTIERS IN PLANT SCIENCE 2018; 9:70. [PMID: 29449856 PMCID: PMC5799278 DOI: 10.3389/fpls.2018.00070] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 05/17/2023]
Abstract
Double-stranded RNA (dsRNA) plays essential functions in many biological processes, including the activation of innate immune responses and RNA interference. dsRNA also represents the genetic entity of some viruses and is a hallmark of infections by positive-sense single-stranded RNA viruses. Methods for detecting dsRNA rely essentially on immunological approaches and their use is often limited to in vitro applications, although recent developments have allowed the visualization of dsRNA in vivo. Here, we report the sensitive and rapid detection of long dsRNA both in vitro and in vivo using the dsRNA binding domain of the B2 protein from Flock house virus. In vitro, we adapted the system for the detection of dsRNA either enzymatically by northwestern blotting or by direct fluorescence labeling on fixed samples. In vivo, we produced stable transgenic Nicotiana benthamiana lines allowing the visualization of dsRNA by fluorescence microscopy. Using these techniques, we were able to discriminate healthy and positive-sense single-stranded RNA virus-infected material in plants and insect cells. In N. benthamiana, our system proved to be very potent for the spatio-temporal visualization of replicative RNA intermediates of a broad range of positive-sense RNA viruses, including high- vs. low-copy number viruses.
Collapse
Affiliation(s)
- Baptiste Monsion
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Marco Incarbone
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Kamal Hleibieh
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Vianney Poignavent
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Ahmed Ghannam
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Patrice Dunoyer
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Laurent Daeffler
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Christophe Ritzenthaler
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
- *Correspondence: Christophe Ritzenthaler
| |
Collapse
|
36
|
Hall RA, Hobson-Peters J. Newly discovered mosquito viruses help control vector-borne viral diseases. MICROBIOLOGY AUSTRALIA 2018. [DOI: 10.1071/ma18020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many well-known mosquito-borne viruses such as dengue, Zika, West Nile, chikungunya and Ross River viruses can be transmitted to vertebrates and are associated with disease in man or animals. However, the use of deep sequencing and other open-minded approaches to detect viruses in mosquitoes have uncovered many new RNA viruses, most of which do not infect vertebrates. The discovery of these ‘insect-specific' viruses (ISVs) has redefined the mosquito virome and prompted the lines of viral taxonomic classification to be redrawn1,2. Despite their benign phenotype, ISVs have become a hot topic of research, with recent studies indicating they have significant application for biotechnology.
Collapse
|
37
|
Subramani C, Nair VP, Anang S, Mandal SD, Pareek M, Kaushik N, Srivastava A, Saha S, Shalimar, Nayak B, Ranjith-Kumar CT, Surjit M. Host-Virus Protein Interaction Network Reveals the Involvement of Multiple Host Processes in the Life Cycle of Hepatitis E Virus. mSystems 2018; 3:e00135-17. [PMID: 29404423 PMCID: PMC5781259 DOI: 10.1128/msystems.00135-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Comprehensive knowledge of host-pathogen interactions is central to understand the life cycle of a pathogen and devise specific therapeutic strategies. Protein-protein interactions (PPIs) are key mediators of host-pathogen interactions. Hepatitis E virus (HEV) is a major cause of viral hepatitis in humans. Recent reports also demonstrate its extrahepatic manifestations in the brain. Toward understanding the molecular details of HEV life cycle, we screened human liver and fetal brain cDNA libraries to identify the host interaction partners of proteins encoded by genotype 1 HEV and constructed the virus-host PPI network. Analysis of the network indicated a role of HEV proteins in modulating multiple host biological processes such as stress and immune responses, the ubiquitin-proteasome system, energy and iron metabolism, and protein translation. Further investigations revealed the presence of multiple host translation regulatory factors in the viral translation/replication complex. Depletion of host translation factors such as eIF4A2, eIF3A, and RACK1 significantly reduced the viral replication, whereas eIF2AK4 depletion had no effect. These findings highlight the ingenuity of the pathogen in manipulating the host machinery to its own benefit, a clear understanding of which is essential for the identification of strategic targets and development of specific antivirals against HEV. IMPORTANCE Hepatitis E virus (HEV) is a pathogen that is transmitted by the fecal-oral route. Owing to the lack of an efficient laboratory model, the life cycle of the virus is poorly understood. During the course of infection, interactions between the viral and host proteins play essential roles, a clear understanding of which is essential to decode the life cycle of the virus. In this study, we identified the direct host interaction partners of all HEV proteins and generated a PPI network. Our functional analysis of the HEV-human PPI network reveals a role of HEV proteins in modulating multiple host biological processes such as stress and immune responses, the ubiquitin-proteasome system, energy and iron metabolism, and protein translation. Further investigations revealed an essential role of several host factors in HEV replication. Collectively, the results from our study provide a vast resource of PPI data from HEV and its human host and identify the molecular components of the viral translation/replication machinery.
Collapse
Affiliation(s)
- Chandru Subramani
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Vidya P. Nair
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saumya Anang
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | | | - Madhu Pareek
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Nidhi Kaushik
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Akriti Srivastava
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Sudipto Saha
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, Gautam Nagar, Ansari Nagar East, New Delhi, Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, Gautam Nagar, Ansari Nagar East, New Delhi, Delhi, India
| | - C. T. Ranjith-Kumar
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| |
Collapse
|
38
|
Fraser JE, De Bruyne JT, Iturbe-Ormaetxe I, Stepnell J, Burns RL, Flores HA, O’Neill SL. Novel Wolbachia-transinfected Aedes aegypti mosquitoes possess diverse fitness and vector competence phenotypes. PLoS Pathog 2017; 13:e1006751. [PMID: 29216317 PMCID: PMC5736235 DOI: 10.1371/journal.ppat.1006751] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/19/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
Wolbachia pipientis from Drosophila melanogaster (wMel) is an endosymbiotic bacterium that restricts transmission of human pathogenic flaviviruses and alphaviruses, including dengue, Zika, and chikungunya viruses, when introduced into the mosquito vector Aedes aegypti. To date, wMel-infected Ae. aegypti have been released in field trials in 5 countries to evaluate the effectiveness of this strategy for disease control. Despite the success in establishing wMel-infected mosquitoes in wild populations, and the well-characterized antiviral capabilities of wMel, transinfecting different or additional Wolbachia strains into Ae. aegypti may improve disease impact, and perhaps more importantly, could provide a strategy to account for the possible evolution of resistant arboviruses. Here, we report the successful transinfection of Ae. aegypti with the Wolbachia strains wMelCS (D. melanogaster), wRi (D. simulans) and wPip (Culex quinquefasciatus) and assess the effects on Ae. aegypti fitness, cytoplasmic incompatibility, tissue tropism and pathogen blocking in a laboratory setting. The results demonstrate that wMelCS provides a similar degree of protection against dengue virus as wMel following an infectious blood meal, and significantly reduces viral RNA levels beyond that of wMel following a direct challenge with infectious virus in mosquitoes, with no additional fitness cost to the host. The protection provided by wRi is markedly weaker than that of wMelCS, consistent with previous characterisations of these lines in Drosophila, while wPip was found to substantially reduce the fitness of Ae. aegypti. Thus, we determine wMelCS as a key candidate for further testing in field-relevant fitness tests and viremic blood feeding challenges in a clinical setting to determine if it may represent an alternative Wolbachia strain with more desirable attributes than wMel for future field testing. Dengue viruses are transmitted by the Aedes aegypti mosquito, with an estimated 390 million human infections occurring per year worldwide. There is no approved antiviral therapeutic, and vaccines described so far have had limited efficacy. Recently, the endosymbiotic bacterium Wolbachia from Drosophila melanogaster (wMel) has been used to infect Ae. aegypti populations as a novel technology for reducing dengue virus transmission. Here we report the generation of three new mosquito lines infected with the Wolbachia strains wMelCS, wRi and wPip. Each line induced cytoplasmic incompatibility and was effectively maternally transmitted, as required for rapid spread through uninfected mosquito populations. Each Wolbachia strain was also found to reside in the salivary glands; a key tissue involved in viral transmission. Perhaps most importantly, wMelCS inhibited dengue virus replication and dissemination in mosquitoes following an infectious blood meal or intrathoracic injection, providing a similar level of protection as that described for wMel. wMelCS therefore warrants further investigation as a potential release strain in future field trials.
Collapse
Affiliation(s)
- Johanna E. Fraser
- Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
| | | | | | - Justin Stepnell
- Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
| | - Rhiannon L. Burns
- Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
| | - Heather A. Flores
- Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
| | - Scott L. O’Neill
- Institute of Vector-Borne Disease, Monash University, Clayton, VIC, Australia
- * E-mail:
| |
Collapse
|
39
|
Genome-Wide Mutagenesis of Dengue Virus Reveals Plasticity of the NS1 Protein and Enables Generation of Infectious Tagged Reporter Viruses. J Virol 2017; 91:JVI.01455-17. [PMID: 28956770 DOI: 10.1128/jvi.01455-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
Abstract
Dengue virus (DENV) is a major global pathogen that causes significant morbidity and mortality in tropical and subtropical areas worldwide. An improved understanding of the regions within the DENV genome and its encoded proteins that are required for the virus replication cycle will expedite the development of urgently required therapeutics and vaccines. We subjected an infectious DENV genome to unbiased insertional mutagenesis and used next-generation sequencing to identify sites that tolerate 15-nucleotide insertions during the virus replication cycle in hepatic cell culture. This revealed that the regions within capsid, NS1, and the 3' untranslated region were the most tolerant of insertions. In contrast, prM- and NS2A-encoding regions were largely intolerant of insertions. Notably, the multifunctional NS1 protein readily tolerated insertions in regions within the Wing, connector, and β-ladder domains with minimal effects on viral RNA replication and infectious virus production. Using this information, we generated infectious reporter viruses, including a variant encoding the APEX2 electron microscopy tag in NS1 that uniquely enabled high-resolution imaging of its localization to the surface and interior of viral replication vesicles. In addition, we generated a tagged virus bearing an mScarlet fluorescent protein insertion in NS1 that, despite an impact on fitness, enabled live cell imaging of NS1 localization and traffic in infected cells. Overall, this genome-wide profile of DENV genome flexibility may be further dissected and exploited in reporter virus generation and antiviral strategies.IMPORTANCE Regions of genetic flexibility in viral genomes can be exploited in the generation of reporter virus tools and should arguably be avoided in antiviral drug and vaccine design. Here, we subjected the DENV genome to high-throughput insertional mutagenesis to identify regions of genetic flexibility and enable tagged reporter virus generation. In particular, the viral NS1 protein displayed remarkable tolerance of small insertions. This genetic flexibility enabled generation of several novel NS1-tagged reporter viruses, including an APEX2-tagged virus that we used in high-resolution imaging of NS1 localization in infected cells by electron microscopy. For the first time, this analysis revealed the localization of NS1 within viral replication factories known as "vesicle packets" (VPs), in addition to its acknowledged localization to the luminal surface of these VPs. Together, this genetic profile of DENV may be further refined and exploited in the identification of antiviral targets and the generation of reporter virus tools.
Collapse
|
40
|
Discovery of new orbiviruses and totivirus from Anopheles mosquitoes in Eastern Australia. Arch Virol 2017; 162:3529-3534. [PMID: 28785815 DOI: 10.1007/s00705-017-3515-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/06/2017] [Indexed: 12/20/2022]
Abstract
Three new viruses classifiable within the Totivirus and Orbivirus genera were detected from Anopheles mosquito species collected in Eastern Australia. The viruses could not be isolated in C6/36 mosquito cell cultures but were shown to replicate in their mosquito hosts by small RNA analysis. The viruses grouped phylogenetically with other viruses recently detected in insects. These discoveries contribute to a better understanding of commensal viruses in Australian mosquitoes and the evolution of these viruses.
Collapse
|
41
|
Zhang G, Asad S, Khromykh AA, Asgari S. Cell fusing agent virus and dengue virus mutually interact in Aedes aegypti cell lines. Sci Rep 2017; 7:6935. [PMID: 28761113 PMCID: PMC5537255 DOI: 10.1038/s41598-017-07279-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
The genus Flavivirus contains more than 70 single-stranded, positive-sense arthropod-borne RNA viruses. Some flaviviruses are particularly medically important to humans and other vertebrates including dengue virus (DENV), West Nile virus, and yellow fever virus. These viruses are transmitted to vertebrates by mosquitoes and other arthropod species. Mosquitoes are also infected by insect-specific flaviviruses (ISFs) that do not appear to be infective to vertebrates. Cell fusing agent virus (CFAV) was the first described ISF, which was discovered in an Aedes aegypti cell culture. We found that while CFAV infection could be significantly reduced by application of RNAi against the NS5 gene, removal of the treatment led to quick restoration of CFAV replication. Interestingly, we found that CFAV infection significantly enhanced replication of DENV, and vice versa, DENV infection significantly enhanced replication of CFAV in mosquito cells. We have shown that CFAV infection leads to increase in the expression of ribonuclease kappa (RNASEK), which is known to promote infection of viruses that rely on endocytosis and pH-dependent entry. Knockdown of RNASEK by dsRNA resulted in reduced DENV replication. Thus, increased expression of RNASEK induced by CFAV is likely to contribute to enhanced DENV replication in CFAV-infected cells.
Collapse
Affiliation(s)
- Guangmei Zhang
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sultan Asad
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alexander A Khromykh
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
42
|
A New Clade of Insect-Specific Flaviviruses from Australian Anopheles Mosquitoes Displays Species-Specific Host Restriction. mSphere 2017; 2:mSphere00262-17. [PMID: 28713857 PMCID: PMC5506557 DOI: 10.1128/msphere.00262-17] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 12/03/2022] Open
Abstract
Flaviviruses like dengue, Zika, or West Nile virus infect millions of people each year and are transmitted to humans via infected-mosquito bites. A subset of flaviviruses can only replicate in the mosquito host, and recent studies have shown that some can interfere with pathogenic flaviviruses in mosquitoes and limit the replication and transmission of the latter. The insect-specific flaviviruses (ISFs) reported here form a new Anopheles mosquito-associated clade separate from the Aedes- and Culex-associated ISF clades. The identification of distinct clades for each mosquito genus provides new insights into the evolution and ecology of flaviviruses. One of these viruses was shown to replicate in the midgut of the mosquito host and exhibit the most specialized host restriction reported to date for ISFs. Understanding this unprecedented host restriction in ISFs could help identify the mechanisms involved in the evolution of flaviviruses and their emergence as mosquito-borne pathogens. Flaviviruses are arthropod-borne viruses found worldwide and are responsible for significant human and veterinary diseases, including dengue, Zika, and West Nile fever. Some flaviviruses are insect specific and replicate only in mosquitoes. We report a genetically divergent group of insect-specific flaviviruses from Anopheles mosquitoes that do not replicate in arthropod cell lines or heterologous Anopheles species, exhibiting unprecedented specialization for their host species. Determination of the complete sequences of the RNA genomes of three of these viruses, Karumba virus (KRBV), Haslams Creek virus, and Mac Peak virus (McPV), that are found in high prevalence in some Anopheles mosquito populations and detection of virus-specific proteins, replicative double-stranded RNA, and small interfering RNA responses in the host mosquito species provided strong evidence of a functional replicating virus in the mosquito midgut. Analysis of nucleotide composition in the KRBV and McPV sequences also revealed a pattern consistent with the virus evolving to replicate only in insects. These findings represent a significant advance in our knowledge of mosquito-borne flavivirus ecology, host restriction, and evolution. IMPORTANCE Flaviviruses like dengue, Zika, or West Nile virus infect millions of people each year and are transmitted to humans via infected-mosquito bites. A subset of flaviviruses can only replicate in the mosquito host, and recent studies have shown that some can interfere with pathogenic flaviviruses in mosquitoes and limit the replication and transmission of the latter. The insect-specific flaviviruses (ISFs) reported here form a new Anopheles mosquito-associated clade separate from the Aedes- and Culex-associated ISF clades. The identification of distinct clades for each mosquito genus provides new insights into the evolution and ecology of flaviviruses. One of these viruses was shown to replicate in the midgut of the mosquito host and exhibit the most specialized host restriction reported to date for ISFs. Understanding this unprecedented host restriction in ISFs could help identify the mechanisms involved in the evolution of flaviviruses and their emergence as mosquito-borne pathogens.
Collapse
|
43
|
Lee M, Etebari K, Hall-Mendelin S, van den Hurk AF, Hobson-Peters J, Vatipally S, Schnettler E, Hall R, Asgari S. Understanding the role of microRNAs in the interaction of Aedes aegypti mosquitoes with an insect-specific flavivirus. J Gen Virol 2017; 98:1892-1903. [PMID: 28699859 DOI: 10.1099/jgv.0.000832] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Flavivirus genus contains some of the most prevalent vector-borne viruses, such as the dengue, Zika and yellow fever viruses that cause devastating diseases in humans. However, the insect-specific clade of flaviviruses is restricted to mosquito hosts, albeit they have retained the general features of the genus, such as genome structure and replication. The interactions between insect-specific flaviviruses (ISFs) and their mosquito hosts are largely unknown. Pathogenic flaviviruses are known to modulate host-derived microRNAs (miRNAs), a class of non-coding RNAs that are important in controlling gene expression. Alterations in miRNAs may represent changes in host gene expression and promote understanding of virus-host interactions. The role of miRNAs in ISF-mosquito interactions is largely unknown. A recently discovered Australian ISF, Palm Creek virus (PCV), has the ability to suppress medically relevant flaviviruses. Here, we investigated the potential involvement of miRNAs in PCV infection using the model mosquito Aedes aegypti. By combining small-RNA sequencing and bioinformatics analysis, differentially expressed miRNAs were determined. Our results indicated that PCV infection hardly affects host miRNAs. Out of 101 reported miRNAs of Ae. aegypti, only aae-miR-2940-5p had a significantly altered expression over the course of infection. However, further analysis of aae-miR-2940-5p revealed that this miRNA does not have any direct impact on PCV replication in vitro. Thus, overall the results suggest that PCV infection has a limited effect on the mosquito miRNA profile and therefore miRNAs may not play a significant role in the PCV-Ae. aegypti interaction.
Collapse
Affiliation(s)
- Morris Lee
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, QLD 4108, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, QLD 4108, Australia
| | - Jody Hobson-Peters
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sreenu Vatipally
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
- Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Roy Hall
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
44
|
Van der Hoek KH, Eyre NS, Shue B, Khantisitthiporn O, Glab-Ampi K, Carr JM, Gartner MJ, Jolly LA, Thomas PQ, Adikusuma F, Jankovic-Karasoulos T, Roberts CT, Helbig KJ, Beard MR. Viperin is an important host restriction factor in control of Zika virus infection. Sci Rep 2017; 7:4475. [PMID: 28667332 PMCID: PMC5493656 DOI: 10.1038/s41598-017-04138-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023] Open
Abstract
Zika virus (ZIKV) infection has emerged as a global health threat and infection of pregnant women causes intrauterine growth restriction, spontaneous abortion and microcephaly in newborns. Here we show using biologically relevant cells of neural and placental origin that following ZIKV infection, there is attenuation of the cellular innate response characterised by reduced expression of IFN-β and associated interferon stimulated genes (ISGs). One such ISG is viperin that has well documented antiviral activity against a wide range of viruses. Expression of viperin in cultured cells resulted in significant impairment of ZIKV replication, while MEFs derived from CRISPR/Cas9 derived viperin-/- mice replicated ZIKV to higher titers compared to their WT counterparts. These results suggest that ZIKV can attenuate ISG expression to avoid the cellular antiviral innate response, thus allowing the virus to replicate unchecked. Moreover, we have identified that the ISG viperin has significant anti-ZIKV activity. Further understanding of how ZIKV perturbs the ISG response and the molecular mechanisms utilised by viperin to suppress ZIKV replication will aid in our understanding of ZIKV biology, pathogenesis and possible design of novel antiviral strategies.
Collapse
Affiliation(s)
- Kylie H Van der Hoek
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Nicholas S Eyre
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Byron Shue
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Onruedee Khantisitthiporn
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Kittirat Glab-Ampi
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Jillian M Carr
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Bedford Park, SA, 5042, Australia
| | - Matthew J Gartner
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Lachlan A Jolly
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Paul Q Thomas
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Fatwa Adikusuma
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tanja Jankovic-Karasoulos
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Claire T Roberts
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Karla J Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Vic, 3086, Australia
| | - Michael R Beard
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
45
|
Piyasena TBH, Setoh YX, Hobson-Peters J, Newton ND, Bielefeldt-Ohmann H, McLean BJ, Vet LJ, Khromykh AA, Hall RA. Infectious DNAs derived from insect-specific flavivirus genomes enable identification of pre- and post-entry host restrictions in vertebrate cells. Sci Rep 2017; 7:2940. [PMID: 28592864 PMCID: PMC5462777 DOI: 10.1038/s41598-017-03120-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Flaviviruses such as West Nile virus (WNV), dengue virus and Zika virus are mosquito-borne pathogens that cause significant human diseases. A novel group of insect-specific flaviviruses (ISFs), which only replicate in mosquitoes, have also been identified. However, little is known about the mechanisms of ISF host restriction. We report the generation of infectious cDNA from two Australian ISFs, Parramatta River virus (PaRV) and Palm Creek virus (PCV). Using circular polymerase extension cloning (CPEC) with a modified OpIE2 insect promoter, infectious cDNA was generated and transfected directly into mosquito cells to produce infectious virus indistinguishable from wild-type virus. When infectious PaRV cDNA under transcriptional control of a mammalian promoter was used to transfect mouse embryo fibroblasts, the virus failed to initiate replication even when cell entry steps were by-passed and the type I interferon response was lacking. We also used CPEC to generate viable chimeric viruses between PCV and WNV. Analysis of these hybrid viruses revealed that ISFs are also restricted from replication in vertebrate cells at the point of entry. The approaches described here to generate infectious ISF DNAs and chimeric viruses provide unique tools to further dissect the mechanisms of their host restriction.
Collapse
Affiliation(s)
- Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Yin X Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| |
Collapse
|
46
|
De Novo Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case. mSphere 2017; 2:mSphere00190-17. [PMID: 28529976 PMCID: PMC5437134 DOI: 10.1128/mspheredirect.00190-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses. Zika virus (ZIKV) has recently emerged and is the etiological agent of congenital Zika syndrome (CZS), a spectrum of congenital abnormalities arising from neural tissue infections in utero. Herein, we describe the de novo generation of a new ZIKV isolate, ZIKVNatal, using a modified circular polymerase extension reaction protocol and sequence data obtained from a ZIKV-infected fetus with microcephaly. ZIKVNatal thus has no laboratory passage history and is unequivocally associated with CZS. ZIKVNatal could be used to establish a fetal brain infection model in IFNAR−/− mice (including intrauterine growth restriction) without causing symptomatic infections in dams. ZIKVNatal was also able to be transmitted by Aedes aegypti mosquitoes. ZIKVNatal thus retains key aspects of circulating pathogenic ZIKVs and illustrates a novel methodology for obtaining an authentic functional viral isolate by using data from deep sequencing of infected tissues. IMPORTANCE The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses.
Collapse
|
47
|
O'Brien CA, McLean BJ, Colmant AMG, Harrison JJ, Hall-Mendelin S, van den Hurk AF, Johansen CA, Watterson D, Bielefeldt-Ohmann H, Newton ND, Schulz BL, Hall RA, Hobson-Peters J. Discovery and Characterisation of Castlerea Virus, a New Species of Negevirus Isolated in Australia. Evol Bioinform Online 2017; 13:1176934317691269. [PMID: 28469377 PMCID: PMC5395271 DOI: 10.1177/1176934317691269] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/07/2016] [Indexed: 11/17/2022] Open
Abstract
With advances in sequencing technologies, there has been an increase in the discovery of viruses that do not group with any currently described virus families. The newly described taxon Negevirus encompasses a group of viruses displaying an insect-specific phenotype which have been isolated from multiple host species on numerous continents. Using a broad-spectrum virus screening assay based on the detection of double-stranded RNA and next-generation sequencing, we have detected a novel species of negevirus, from Anopheles, Culex, and Aedes mosquitoes collected in 4 geographically separate regions of Australia. Bioinformatic analysis of the virus, tentatively named Castlerea virus, revealed that it is genetically distinct from previously described negeviruses but clusters in the newly proposed Nelorpivirus clade within this taxon. Analysis of virions confirmed the presence of 2 proteins of 24 and 40 kDa which support previous bioinformatic predictions of negevirus structural proteins.
Collapse
Affiliation(s)
- Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, QLD, Australia
| | - Cheryl A Johansen
- School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, WA, Australia.,Department of Health - Pathwest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin L Schulz
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
48
|
Hall RA, Bielefeldt-Ohmann H, McLean BJ, O'Brien CA, Colmant AMG, Piyasena TBH, Harrison JJ, Newton ND, Barnard RT, Prow NA, Deerain JM, Mah MGKY, Hobson-Peters J. Commensal Viruses of Mosquitoes: Host Restriction, Transmission, and Interaction with Arboviral Pathogens. Evol Bioinform Online 2017; 12:35-44. [PMID: 28096646 PMCID: PMC5226260 DOI: 10.4137/ebo.s40740] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023] Open
Abstract
Recent advances in virus detection strategies and deep sequencing technologies have enabled the identification of a multitude of new viruses that persistently infect mosquitoes but do not infect vertebrates. These are usually referred to as insect-specific viruses (ISVs). These novel viruses have generated considerable interest in their modes of transmission, persistence in mosquito populations, the mechanisms that restrict their host range to mosquitoes, and their interactions with pathogens transmissible by the same mosquito. In this article, we discuss studies in our laboratory and others that demonstrate that many ISVs are efficiently transmitted directly from the female mosquito to their progeny via infected eggs, and, moreover, that persistent infection of mosquito cell cultures or whole mosquitoes with ISVs can restrict subsequent infection, replication, and transmission of some mosquito-borne viral pathogens. This suggests that some ISVs may act as natural regulators of arboviral transmission. We also discuss viral and host factors that may be responsible for their host restriction.
Collapse
Affiliation(s)
- Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ross T Barnard
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.; QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Joshua M Deerain
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Marcus G K Y Mah
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.; QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
49
|
Harrison JJ, Warrilow D, McLean BJ, Watterson D, O'Brien CA, Colmant AMG, Johansen CA, Barnard RT, Hall-Mendelin S, Davis SS, Hall RA, Hobson-Peters J. A New Orbivirus Isolated from Mosquitoes in North-Western Australia Shows Antigenic and Genetic Similarity to Corriparta Virus but Does Not Replicate in Vertebrate Cells. Viruses 2016; 8:v8050141. [PMID: 27213426 PMCID: PMC4885096 DOI: 10.3390/v8050141] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/27/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
The discovery and characterisation of new mosquito-borne viruses provides valuable information on the biodiversity of vector-borne viruses and important insights into their evolution. In this study, a broad-spectrum virus screening system, based on the detection of long double-stranded RNA in inoculated cell cultures, was used to investigate the presence of novel viruses in mosquito populations of northern Australia. We detected and isolated a new virus (tentatively named Parry’s Lagoon virus, PLV) from Culex annulirostris, Culex pullus, Mansonia uniformis and Aedes normanensis mosquitoes that shares genomic sequence similarities to Corriparta virus (CORV), a member of the Orbivirus genus of the family Reoviridae. Despite moderate to high (72.2% to 92.2%) amino acid identity across all proteins when compared to CORV, and demonstration of antigenic relatedness, PLV did not replicate in several vertebrate cell lines that were permissive to CORV. This striking phenotypic difference suggests that PLV has evolved to have a very restricted host range, indicative of a mosquito-only life cycle.
Collapse
Affiliation(s)
- Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, P.O. Box 594, Archerfield 4108, Australia.
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - Cheryl A Johansen
- School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands 6009, Australia.
| | - Ross T Barnard
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - Sonja Hall-Mendelin
- Public Health Virology Laboratory, Department of Health, Queensland Government, P.O. Box 594, Archerfield 4108, Australia.
| | - Steven S Davis
- Berrimah Veterinary Laboratory, Department of Primary Industries and Fisheries, Darwin 0828, Australia.
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|
50
|
Colmant AMG, Bielefeldt-Ohmann H, Hobson-Peters J, Suen WW, O'Brien CA, van den Hurk AF, Hall RA. A newly discovered flavivirus in the yellow fever virus group displays restricted replication in vertebrates. J Gen Virol 2016; 97:1087-1093. [PMID: 26878841 DOI: 10.1099/jgv.0.000430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A novel flavivirus, provisionally named Bamaga virus (BgV), was isolated from Culex annulirostris mosquitoes collected from northern Australia. Phylogenetic analysis of the complete nucleotide sequence of the BgV genome revealed it clustered with the yellow fever virus (YFV) group, and was most closely related to Edge Hill virus (EHV), another Australian flavivirus, with 61.9 % nucleotide and 63.7 % amino acid sequence identity. Antigenic analysis of the envelope and pre-membrane proteins of BgV further revealed epitopes common to EHV, dengue and other mosquito-borne flaviviruses. However, in contrast to these viruses, BgV displayed restricted growth in a range of vertebrate cell lines with no or relatively slow replication in inoculated cultures. There was also restricted BgV replication in virus-challenged mice. Our results indicate that BgV is an evolutionary divergent member of the YFV group of flaviviruses, and represents a novel system to study mechanisms of virus host-restriction and transmission.
Collapse
Affiliation(s)
- Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Willy W Suen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew F van den Hurk
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland 4108, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|