1
|
Alibrahim AOE, Elkholy WA, El‐Derbawy MM, Zahran NF, Alexiou A, Papadakis M, Batiha GE. Schistosomiasis Chemotherapy, Chemoprevention, and Vaccines: History, Progress, and Priorities. Immun Inflamm Dis 2024; 12:e70054. [PMID: 39560407 PMCID: PMC11574878 DOI: 10.1002/iid3.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Schistosomiasis is a major human disease of public health importance. Freshwater snails serving as intermediary hosts and human interaction with surface water tainted by feces or urine are both necessary components of the transmission cycle. Schistosoma haematobium, Schistosoma mansoni, and Schistosoma japonicum are the primary pathogen species. Over 250 million individuals are infected globally, according to the World Health Organization, causing significant morbidity and an estimated loss of 1.9 million disability-adjusted life years, a number that is probably underestimated. Immunological protection is slowly built up through complex immunological systems, although innate factors also play a role. Chronic schistosomiasis affects mainly individuals residing in poor rural area. Vaccination is considered as one of the most sustainable options for the control of any pathogen, but schistosomiasis vaccine for humans or animals is not available till now despite the discovery of numerous potentially promising schistosome vaccine antigens. OBJECTIVE To provide an overview of the schistosomiasis chemotherapy, chemoprevention, and vaccines history and progress. DESIGN Review article. DATA SOURCES PubMed, ISI Web of Science, Science Direct, and the World Health Organization database. CONCLUSION Favorably praziquantel (PZQ) is a medication with excellent chemopreventive treatment compliance. Due to the extensive usage of PZQ, there is a great deal of debate surrounding the emergence of drug resistance. PZQ is effective against all species of schistosomes, schistosomiasis prevalence has remained largely unaffected, due to reinfection in high transmission areas and growing juvenile worms that were not affected by the drug, even though the need for a schistosomiasis vaccine is even more pressing.
Collapse
Affiliation(s)
| | - Walaa A. Elkholy
- Department of ParasitologyFaculty of Medicine for Girls, Al‐Azhar UniversityCairoEgypt
| | - Mona M. El‐Derbawy
- Department of ParasitologyFaculty of Medicine for Girls, Al‐Azhar UniversityNew Damietta CityEgypt
| | - Noha F. Zahran
- Department of ParasitologyFaculty of Medicine for Girls, Al‐Azhar UniversityNew Damietta CityEgypt
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and TherapeuticsFaculty of Veterinary Medicine, Damanhour UniversityDamanhourAlBeheiraEgypt
| |
Collapse
|
2
|
Zumuk CP, Jones MK, Navarro S, Gray DJ, You H. Transmission-Blocking Vaccines against Schistosomiasis Japonica. Int J Mol Sci 2024; 25:1707. [PMID: 38338980 PMCID: PMC10855202 DOI: 10.3390/ijms25031707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Control of schistosomiasis japonica, endemic in Asia, including the Philippines, China, and Indonesia, is extremely challenging. Schistosoma japonicum is a highly pathogenic helminth parasite, with disease arising predominantly from an immune reaction to entrapped parasite eggs in tissues. Females of this species can generate 1000-2200 eggs per day, which is about 3- to 15-fold greater than the egg output of other schistosome species. Bovines (water buffalo and cattle) are the predominant definitive hosts and are estimated to generate up to 90% of parasite eggs released into the environment in rural endemic areas where these hosts and humans are present. Here, we highlight the necessity of developing veterinary transmission-blocking vaccines for bovines to better control the disease and review potential vaccine candidates. We also point out that the approach to producing efficacious transmission-blocking animal-based vaccines before moving on to human vaccines is crucial. This will result in effective and feasible public health outcomes in agreement with the One Health concept to achieve optimum health for people, animals, and the environment. Indeed, incorporating a veterinary-based transmission vaccine, coupled with interventions such as human mass drug administration, improved sanitation and hygiene, health education, and snail control, would be invaluable to eliminating zoonotic schistosomiasis.
Collapse
Affiliation(s)
- Chika P. Zumuk
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
| | - Malcolm K. Jones
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Severine Navarro
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- Faculty of Medicine, The University of Queensland, Herston, QLD 4006, Australia
- Centre for Childhood Nutrition Research, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Darren J. Gray
- Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (C.P.Z.); (M.K.J.); (S.N.)
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
3
|
Li H, Chen Y, Zhu Y, Feng Y, Qian Y, Ye X, Xu J, Yang H, Yu J, Chen J, Chen K. Exploring the immune interactions between Oncomelania hupensis and Schistosoma japonicum, with a cross-comparison of immunological research progress in other intermediate host snails. Parasit Vectors 2023; 16:453. [PMID: 38093363 PMCID: PMC10717515 DOI: 10.1186/s13071-023-06011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/11/2023] [Indexed: 12/17/2023] Open
Abstract
Schistosomiasis, the second largest parasitic disease in the world after malaria, poses a significant threat to human health and causes public health issues. The disease primarily affects populations in economically underdeveloped tropical regions, earning it the title of "neglected tropical disease". Schistosomiasis is difficult to eradicate globally if medication alone is used. One of the essential elements of thorough schistosomiasis prevention and control is the management and disruption of the life cycle of intermediate host snails. The key approach to controlling the transmission of schistosomiasis is to control the intermediate hosts of the schistosome to disrupt its life cycle. We believe that approaching it from the perspective of the intermediate host's immunity could be an environmentally friendly and potentially effective method. Currently, globally significant intermediate host snails for schistosomes include Oncomelania hupensis, Biomphalaria glabrata, and Bulinus truncatus. The immune interaction research between B. glabrata and Schistosoma mansoni has a history of several decades, and the complete genome sequencing of both B. glabrata and B. truncatus has been accomplished. We have summarized the immune-related factors and research progress primarily studied in B. glabrata and B. truncatus and compared them with several humoral immune factors that O. hupensis research focuses on: macrophage migration inhibitory factor (MIF), Toll-like receptors (TLRs), and thioredoxin (Trx). We believe that continued exploration of the immune interactions between O. hupensis and Schistosoma japonicum is valuable. This comparative analysis can provide some direction and clues for further in-depth research. Comparative immunological studies between them not only expand our understanding of the immune defense responses of snails that act as intermediaries for schistosomes but also facilitate the development of more comprehensive and integrated strategies for schistosomiasis prevention and control. Furthermore, it offers an excellent opportunity to study the immune system of gastropods and their co-evolution with pathogenic organisms.
Collapse
Affiliation(s)
- Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China.
- Ocean College, Beibu Gulf University, Qinzhou, China.
| | - Yihan Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoyu Ye
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiatong Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hanyu Yang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiawei Yu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingyu Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China.
| |
Collapse
|
4
|
Zhu P, Wu K, Zhang C, Batool SS, Li A, Yu Z, Huang J. Advances in new target molecules against schistosomiasis: A comprehensive discussion of physiological structure and nutrient intake. PLoS Pathog 2023; 19:e1011498. [PMID: 37498810 PMCID: PMC10374103 DOI: 10.1371/journal.ppat.1011498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Schistosomiasis, a severe parasitic disease, is primarily caused by Schistosoma mansoni, Schistosoma japonicum, or Schistosoma haematobium. Currently, praziquantel is the only recommended drug for human schistosome infection. However, the lack of efficacy of praziquantel against juvenile worms and concerns about the emergence of drug resistance are driving forces behind the research for an alternative medication. Schistosomes are obligatory parasites that survive on nutrients obtained from their host. The ability of nutrient uptake depends on their physiological structure. In short, the formation and maintenance of the structure and nutrient supply are mutually reinforcing and interdependent. In this review, we focus on the structural features of the tegument, esophagus, and intestine of schistosomes and their roles in nutrient acquisition. Moreover, we introduce the significance and modes of glucose, lipids, proteins, and amino acids intake in schistosomes. We linked the schistosome structure and nutrient supply, introduced the currently emerging targets, and analyzed the current bottlenecks in the research and development of drugs and vaccines, in the hope of providing new strategies for the prevention and control of schistosomiasis.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaobin Zhang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Anqiao Li
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
5
|
Ogongo P, Nyakundi RK, Chege GK, Ochola L. The Road to Elimination: Current State of Schistosomiasis Research and Progress Towards the End Game. Front Immunol 2022; 13:846108. [PMID: 35592327 PMCID: PMC9112563 DOI: 10.3389/fimmu.2022.846108] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The new WHO Roadmap for Neglected Tropical Diseases targets the global elimination of schistosomiasis as a public health problem. To date, control strategies have focused on effective diagnostics, mass drug administration, complementary and integrative public health interventions. Non-mammalian intermediate hosts and other vertebrates promote transmission of schistosomiasis and have been utilized as experimental model systems. Experimental animal models that recapitulate schistosomiasis immunology, disease progression, and pathology observed in humans are important in testing and validation of control interventions. We discuss the pivotal value of these models in contributing to elimination of schistosomiasis. Treatment of schistosomiasis relies heavily on mass drug administration of praziquantel whose efficacy is comprised due to re-infections and experimental systems have revealed the inability to kill juvenile schistosomes. In terms of diagnosis, nonhuman primate models have demonstrated the low sensitivity of the gold standard Kato Katz smear technique. Antibody assays are valuable tools for evaluating efficacy of candidate vaccines, and sera from graded infection experiments are useful for evaluating diagnostic sensitivity of different targets. Lastly, the presence of Schistosomes can compromise the efficacy of vaccines to other infectious diseases and its elimination will benefit control programs of the other diseases. As the focus moves towards schistosomiasis elimination, it will be critical to integrate treatment, diagnostics, novel research tools such as sequencing, improved understanding of disease pathogenesis and utilization of experimental models to assist with evaluating performance of new approaches.
Collapse
Affiliation(s)
- Paul Ogongo
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Ruth K. Nyakundi
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Gerald K. Chege
- Primate Unit & Delft Animal Centre, South African Medical Research Council, Cape Town, South Africa
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
- Department of Environmental Health, School of Behavioural and Lifestyle Sciences, Faculty of Health Sciences, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
6
|
Rawlinson KA, Reid AJ, Lu Z, Driguez P, Wawer A, Coghlan A, Sankaranarayanan G, Buddenborg SK, Soria CD, McCarthy C, Holroyd N, Sanders M, Hoffmann KF, Wilcockson D, Rinaldi G, Berriman M. Daily rhythms in gene expression of the human parasite Schistosoma mansoni. BMC Biol 2021; 19:255. [PMID: 34852797 PMCID: PMC8638415 DOI: 10.1186/s12915-021-01189-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background The consequences of the earth’s daily rotation have led to 24-h biological rhythms in most organisms. Even some parasites are known to have daily rhythms, which, when in synchrony with host rhythms, can optimise their fitness. Understanding these rhythms may enable the development of control strategies that take advantage of rhythmic vulnerabilities. Recent work on protozoan parasites has revealed 24-h rhythms in gene expression, drug sensitivity and the presence of an intrinsic circadian clock; however, similar studies on metazoan parasites are lacking. To address this, we investigated if a metazoan parasite has daily molecular oscillations, whether they reveal how these longer-lived organisms can survive host daily cycles over a lifespan of many years and if animal circadian clock genes are present and rhythmic. We addressed these questions using the human blood fluke Schistosoma mansoni that lives in the vasculature for decades and causes the tropical disease schistosomiasis. Results Using round-the-clock transcriptomics of male and female adult worms collected from experimentally infected mice, we discovered that ~ 2% of its genes followed a daily pattern of expression. Rhythmic processes included a stress response during the host’s active phase and a ‘peak in metabolic activity’ during the host’s resting phase. Transcriptional profiles in the female reproductive system were mirrored by daily patterns in egg laying (eggs are the main drivers of the host pathology). Genes cycling with the highest amplitudes include predicted drug targets and a vaccine candidate. These 24-h rhythms may be driven by host rhythms and/or generated by a circadian clock; however, orthologs of core clock genes are missing and secondary clock genes show no 24-h rhythmicity. Conclusions There are daily rhythms in the transcriptomes of adult S. mansoni, but they appear less pronounced than in other organisms. The rhythms reveal temporally compartmentalised internal processes and host interactions relevant to within-host survival and between-host transmission. Our findings suggest that if these daily rhythms are generated by an intrinsic circadian clock then the oscillatory mechanism must be distinct from that in other animals. We have shown which transcripts oscillate at this temporal scale and this will benefit the development and delivery of treatments against schistosomiasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01189-9.
Collapse
Affiliation(s)
| | - Adam J Reid
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Zhigang Lu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Patrick Driguez
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - Anna Wawer
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | | | | | | | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mandy Sanders
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Karl F Hoffmann
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - David Wilcockson
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | |
Collapse
|
7
|
McManus DP. The Search for a Schistosomiasis Vaccine: Australia's Contribution. Vaccines (Basel) 2021; 9:vaccines9080872. [PMID: 34451997 PMCID: PMC8402410 DOI: 10.3390/vaccines9080872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Schistosomiasis, a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, results in considerable human morbidity in sub-Saharan Africa, in particular, but also parts of the Middle East, South America, and Southeast Asia. The anti-schistosome drug praziquantel is efficacious and safe against the adult parasites of all Schistosoma species infecting humans; however, it does not prevent reinfection and the development of drug resistance is a constant concern. The need to develop an effective vaccine is of great importance if the health of many in the developing world is to be improved. Indeed, vaccination, in combination with other public health measures, can provide an invaluable tool to achieve lasting control, leading to schistosomiasis elimination. Australia has played a leading role in schistosomiasis vaccine research over many years and this review presents an overview of some of the significant contributions made by Australian scientists in this important area.
Collapse
Affiliation(s)
- Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| |
Collapse
|
8
|
Wu K, Zhai X, Huang S, Jiang L, Yu Z, Huang J. Protein Kinases: Potential Drug Targets Against Schistosoma japonicum. Front Cell Infect Microbiol 2021; 11:691757. [PMID: 34277472 PMCID: PMC8282181 DOI: 10.3389/fcimb.2021.691757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Schistosoma japonicum (S. japonicum) infection can induce serious organ damage and cause schistosomiasis japonica which is mainly prevalent in Asia and currently one of the most seriously neglected tropical diseases. Treatment of schistosomiasis largely depends on the drug praziquantel (PZQ). However, PZQ exhibits low killing efficacy on juvenile worms and the potential emergence of its drug resistance is a continual concern. Protein kinases (PKs) are enzymes that catalyze the phosphorylation of proteins and can participate in many signaling pathways in vivo. Recent studies confirmed the essential roles of PKs in the growth and development of S. japonicum, as well as in schistosome-host interactions, and researches have screened drug targets about PKs from S. japonicum (SjPKs), which provide new opportunities of developing new treatments on schistosomiasis. The aim of this review is to present the current progress on SjPKs from classification, different functions and their potential to become drug targets compared with other schistosomes. The efficiency of related protein kinase inhibitors on schistosomes is highlighted. Finally, the current challenges and problems in the study of SjPKs are proposed, which can provide future guidance for developing anti-schistosomiasis drugs and vaccines.
Collapse
Affiliation(s)
- Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Xingyu Zhai
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuaiqin Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Liping Jiang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Zheng Yu
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
9
|
Tang CL, Zhang RH, Li R, Li XR, Pan Q, Li L, Xiao JL. EFFECT OF ADENYLATE KINASE 1 ON THE GROWTH AND DEVELOPMENT OF SCHISTOSOMA JAPONICUM SCHISTOSOMULUM. J Parasitol 2021; 107:472-480. [PMID: 34153095 DOI: 10.1645/19-113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We investigated the effect of Schistosoma japonicum adenylate kinase 1 (Sjak1) on the growth and development of schistosomula. Quantitative real-time PCR showed that Sjak1 mRNA was expressed in 3-, 10-, 14-, 18-, and 21-day-old schistosomula, and its levels increased gradually with the development of S. japonicum. Using immunohistochemical techniques, ak1 protein was found to be mainly distributed in the tegument and some parenchymal tissues of the schistosomula. Double-stranded RNA-mediated knockdowns of ak1 decreased ak1 mRNA transcripts by more than 90%, and western blot results showed that expression of ak1 protein was decreased by 66%. Scanning electron microscopy following the RNA-mediated ak1 knockdown showed that the sensory papillae did not develop. Transmission electron microscopy showed a lower mean thickness of the tegument in the Sjak1 interference group than in the negative control group. Terminal deoxynucleotidyl transferase dUTP nick-end labeling suggested higher apoptosis in the interference group than the negative control group. These results showed that ak1 may be involved in the growth and development of S. japonicum schistosomula and especially in the development of the integument. Consequently, ak1 may be a potential target in developing prevention methods for schistosomiasis in the future.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Ru Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Xiu-Rong Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Qun Pan
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Li Li
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Jin-Lei Xiao
- Wuchang Hospital affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| |
Collapse
|
10
|
Osakunor DNM, Mduluza T, Osei-Hyiaman D, Burgess K, Woolhouse MEJ, Mutapi F. Schistosoma haematobium infection is associated with alterations in energy and purine-related metabolism in preschool-aged children. PLoS Negl Trop Dis 2020; 14:e0008866. [PMID: 33315875 PMCID: PMC7735607 DOI: 10.1371/journal.pntd.0008866] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
Helminths are parasitic worms that infect over a billion people worldwide. The pathological consequences from infection are due in part, to parasite-induced changes in host metabolic pathways. Here, we analyse the changes in host metabolic profiles, in response to the first Schistosoma haematobium infection and treatment in Zimbabwean children. A cohort of 83 schistosome-negative children (2-5 years old) as determined by parasitological examination, guardian interviews and examination of medical records, was recruited at baseline. Children were followed up after three months for parasitological diagnosis of their first S. haematobium infection, by detection of parasite eggs excreted in urine. Children positive for infection were treated with the antihelminthic drug praziquantel, and treatment efficacy checked three months after treatment. Blood samples were taken at each time point, and capillary electrophoresis mass spectrometry in conjunction with multivariate analysis were used to compare the change in serum metabolite profiles in schistosome-infected versus uninfected children. Following baseline at the three-month follow up, 11 children had become infected with S. haematobium (incidence = 13.3%). Our results showed that infection with S. haematobium was associated with significant increases (>2-fold) in discriminatory metabolites, linked primarily with energy (G6P, 3-PG, AMP, ADP) and purine (AMP, ADP) metabolism. These observed changes were commensurate with schistosome infection intensity, and levels of the affected metabolites were reduced following treatment, albeit not significantly. This study demonstrates that early infection with S. haematobium is associated with alterations in host energy and purine metabolism. Taken together, these changes are consistent with parasite-related clinical manifestations of malnutrition, poor growth and poor physical and cognitive performance observed in schistosome-infected children.
Collapse
Affiliation(s)
- Derick N. M. Osakunor
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
- * E-mail:
| | - Takafira Mduluza
- Biochemistry Department, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Douglas Osei-Hyiaman
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
- Metabolomics Research Division, Human Metabolome Technologies Inc., Tsuruoka, Yamagata, Japan
- Department of Systems Neurophysiology, Graduate School of Medical & Dental Science, Tokyo Medical and Dental University, Bunkyo City, Tokyo, Japan
| | - Karl Burgess
- Centre for Synthetic and Systems Biology, University of Edinburgh, CH Waddington Building, King’s Buildings, Edinburgh, United Kingdom
| | - Mark E. J. Woolhouse
- Usher Institute, University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
- NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA), University of Edinburgh, Ashworth Laboratories, King’s Buildings, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Taenia solium insulin receptors: promising candidates for cysticercosis treatment and prevention. Acta Trop 2020; 209:105552. [PMID: 32485167 DOI: 10.1016/j.actatropica.2020.105552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/23/2022]
Abstract
Insulin signaling pathway is an ancient and highly conserved pathway known to play critical roles in cell growth, control and metabolic regulation. In this study, we identified and characterized two insulin receptor genes (TsIR-1316 and TsIR-4810) from Taenia solium. TsIR-1316 was grouped with E. multilocularis insulin receptor (EmIR-1) and TsIR-4810 was closer to Taenia pisiformis insulin-like growth factor receptor (TpIR) on the same branch with a very high bootstrap value. TsIR-1316 was located on the integument of larvae and adult worms, as well as the ovary of adults and eggs. Alternatively, TsIR-4810 was located in the parenchyma and reproductive organs of the adult worms. By using in vitro cultivation systems with Cysticercus pisiformis as a model, we demonstrated that anti-TsIRs-LBD antibodies could effectively block the insulin signaling pathway, resulting in reduced phosphorylation of the insulin receptor as well as lower levels of glucose uptake and glycogen synthesis. The rabbits immunized with TsIR-1316-LBD, TsIR-4810-LBD and TsIR-1316-LBD + TsIR-4810-LBD produced protection against infection of T. pisiformis as demonstrated by a 94.6%, 96% and 80% reduction of establishment of larvae, respectively. These data suggested that TsIR-1316-LBD and TsIR-4810-LBD are promising vaccine candidates or novel drug targets against swine cysticercosis.
Collapse
|
12
|
Cheng WJ, Gu MJ, Ye F, Zhang YD, Zhong QP, Dong HF, Liu R, Jiang H. Prohibitin 1 (PHB1) controls growth and development and regulates proliferation and apoptosis in Schistosoma japonicum. FASEB J 2020; 34:11030-11046. [PMID: 32627884 DOI: 10.1096/fj.201902787rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 01/22/2023]
Abstract
Schistosomiasis is a zoonotic parasitic disease caused by the trematode blood flukes of the genus Schistosoma. The prodigious egg output of females is the main cause of the disease in definitive hosts, while the female worm relies on continuous pairing with the male worm to fuel the growth and maturation of the reproductive organs and egg production. Prohibitin, which contains the functionally interdependent PHB1 and PHB2 subunits in human and some other species, has been proposed to participate in the cell proliferation and apoptosis regulation in mammals. However, little is known about the function of PHB homolog in the growth and reproductive development of schistosomes. Here, we reported the Phb1 gene that was structurally and evolutionarily conserved in Schistosoma japonicum when compared with that of other species from Caenorhabditis elegans to human. Real-time PCR detected that SjPhb1 was highly transcribed in the vitellaria of female worms. SjPhb1 knockdown achieved through the dsRNA-mediated RNAi in vivo resulted in retarded growth, decreased pairing, and fecundity in adult worms, as well as attenuated pathogenicity or virulence of worms to their hosts. Cell proliferation and apoptosis examination found decreased cell proliferation and increased cell apoptosis in SjPhb1 dsRNA-treated worms. Therefore, our study provides the first characterization of S. japonicum PHB1 and reveals its fundamental role in the regulation of growth and development of S. japonicum by specific dsRNA-mediated RNAi in vivo. Our findings prompt for a promising molecular of schistosomes that can be targeted to effectively retard the growth and development of the schistosomes.
Collapse
Affiliation(s)
- Wen-Jun Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Meng-Jie Gu
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Feng Ye
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Yao-Dan Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Qin-Ping Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Hui-Fen Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| | - Hong Jiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
13
|
Role of adenylate kinase 1 in the integument development of Schistosoma japonicum schistosomula. Acta Trop 2020; 207:105467. [PMID: 32277925 DOI: 10.1016/j.actatropica.2020.105467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 03/14/2020] [Accepted: 03/29/2020] [Indexed: 11/21/2022]
Abstract
Schistosomula antigens play an important role in the growth and development of Schistosoma japonicum. We investigated the role of S. japonicum adenylate kinase 1 (SjAK1) in the growth and development of schistosomula. Quantitative real-time PCR showed that SjAK1 mRNA was expressed in all schistosomula stages, but increased gradually with the development of S. japonicum schistosomula. Using immunohistochemical techniques, the AK1 protein was found to be mainly distributed in the tegument and in some parenchymal tissues of the schistosomula. Double-stranded RNA-mediated knockdown of AK1 reduced AK1 mRNA transcripts by more than 90%; western blot analysis demonstrated that AK1 protein expression decreased by 66%. Scanning electron microscopy following RNA-mediated AK1 knockdown demonstrated that the sensory papillae degenerated significantly. Transmission electron microscopy demonstrated that the mean thickness of the tegument in the SjAK1 interference group was lower than that in the negative control group. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) suggested that, compared with the negative control group, apoptosis increased in the interference group. These results show that AK1 may be involved in the growth and development of S. japonicum schistosomula, and thus may be a target when developing treatments for schistosomiasis.
Collapse
|
14
|
Hirst NL, Nebel JC, Lawton SP, Walker AJ. Deep phosphoproteome analysis of Schistosoma mansoni leads development of a kinomic array that highlights sex-biased differences in adult worm protein phosphorylation. PLoS Negl Trop Dis 2020; 14:e0008115. [PMID: 32203512 PMCID: PMC7089424 DOI: 10.1371/journal.pntd.0008115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
Although helminth parasites cause enormous suffering worldwide we know little of how protein phosphorylation, one of the most important post-translational modifications used for molecular signalling, regulates their homeostasis and function. This is particularly the case for schistosomes. Herein, we report a deep phosphoproteome exploration of adult Schistosoma mansoni, providing one of the richest phosphoprotein resources for any parasite so far, and employ the data to build the first parasite-specific kinomic array. Complementary phosphopeptide enrichment strategies were used to detect 15,844 unique phosphopeptides mapping to 3,176 proteins. The phosphoproteins were predicted to be involved in a wide range of biological processes and phosphoprotein interactome analysis revealed 55 highly interconnected clusters including those enriched with ribosome, proteasome, phagosome, spliceosome, glycolysis, and signalling proteins. 93 distinct phosphorylation motifs were identified, with 67 providing a ‘footprint’ of protein kinase activity; CaMKII, PKA and CK1/2 were highly represented supporting their central importance to schistosome function. Within the kinome, 808 phosphorylation sites were matched to 136 protein kinases, and 68 sites within 37 activation loops were discovered. Analysis of putative protein kinase-phosphoprotein interactions revealed canonical networks but also novel interactions between signalling partners. Kinomic array analysis of male and female adult worm extracts revealed high phosphorylation of transformation:transcription domain associated protein by both sexes, and CDK and AMPK peptides by females. Moreover, eight peptides including protein phosphatase 2C gamma, Akt, Rho2 GTPase, SmTK4, and the insulin receptor were more highly phosphorylated by female extracts, highlighting their possible importance to female worm function. We envision that these findings, tools and methodology will help drive new research into the functional biology of schistosomes and other helminth parasites, and support efforts to develop new therapeutics for their control. Schistosomes are formidable parasites that cause the debilitating and life-threatening disease human schistosomiasis. We need to better understand the cellular biology of these parasites to develop novel strategies for their control. Within cells, a process called protein phosphorylation controls many aspects of molecular communication or ‘signalling’ and is central to cellular function and homeostasis. Here, using complementary strategies, we have performed the first in-depth characterisation and functional annotation of protein phosphorylation events in schistosomes, providing one of the richest phosphoprotein resources for any parasite to date. Using this knowledge, we have developed a novel tool to simultaneously evaluate signalling processes in these worms and highlight sex-biased differences in adult worm protein phosphorylation. Several proteins were found to be more greatly phosphorylated by female worm extracts, suggesting their possible importance to female worm function. This work will help drive new research into the fundamental biology of schistosomes, as well as related parasites, and will support efforts to develop new drug or vaccine-based therapeutics for their control.
Collapse
Affiliation(s)
- Natasha L. Hirst
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
| | - Jean-Christophe Nebel
- School of Computer Science and Mathematics, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
| | - Scott P. Lawton
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
| | - Anthony J. Walker
- School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Schistosomiasis-from immunopathology to vaccines. Semin Immunopathol 2020; 42:355-371. [PMID: 32076812 PMCID: PMC7223304 DOI: 10.1007/s00281-020-00789-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Schistosomiasis (bilharzia) is a neglected tropical disease caused by trematode worms of the genus Schistosoma. The transmission cycle involves human (or other mammalian) water contact with surface water contaminated by faeces or urine, as well as specific freshwater snails acting as intermediate hosts. The main disease-causing species are S. haematobium, S. mansoni and S. japonicum. According to the World Health Organisation, over 250 million people are infected worldwide, leading to considerable morbidity and the estimated loss of 1.9 million disability-adjusted life years (DALYs), a likely underestimated figure. Schistosomiasis is characterised by focal epidemiology and an over-dispersed population distribution, with higher infection rates in children. Complex immune mechanisms lead to the slow acquisition of immune resistance, but innate factors also play a part. Acute schistosomiasis, a feverish syndrome, is most evident in travellers following a primary infection. Chronic schistosomiasis affects mainly individuals with long-standing infections residing in poor rural areas. Immunopathological reactions against schistosome eggs trapped in host tissues lead to inflammatory and obstructive disease in the urinary system (S. haematobium) or intestinal disease, hepatosplenic inflammation and liver fibrosis (S. mansoni and S. japonicum). An effective drug—praziquantel—is available for treatment but, despite intensive efforts, no schistosomiasis vaccines have yet been accepted for public use. In this review, we briefly introduce the schistosome parasites and the immunopathogenic manifestations resulting from schistosomiasis. We then explore aspects of the immunology and host-parasite interplay in schistosome infections paying special attention to the current status of schistosomiasis vaccine development highlighting the advancement of a new controlled human challenge infection model for testing schistosomiasis vaccines.
Collapse
|
16
|
Comparative serum metabolomics between SCID mice and BALB/c mice with or without Schistosoma japonicum infection: Clues to the abnormal growth and development of schistosome in SCID mice. Acta Trop 2019; 200:105186. [PMID: 31542371 DOI: 10.1016/j.actatropica.2019.105186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
Abstract
The small blood flukes of genus Schistosoma, which cause one of the most prevalent and serious parasitic zoonosis schistosomiasis, are dependent on immune-related factors of their mammalian host to facilitate their growth and development, and the formation of granulomatous pathology caused by eggs deposited in host's liver and intestinal wall. Schistosome development is hampered in the mice lacking just T cells, and is even more heavily retarded in the severe combined immunodeficient (SCID) mice lacking both T and B lymphocytes. Nevertheless, it's still not clear about the underlying regulatory molecular mechanisms of schistosome growth and development by host's immune system. This study, therefore, detected and compared the serum metabolic profiles between the immunodeficient mice and immunocompetent mice (SCID mice vs. BALB/c mice) before and after S. japonicum infection (on the thirty-fifth day post infection using liquid chromatography-mass spectrometry (LC-MS). Totally, 705 ion features in electrospray ionization in positive-ion mode (ESI+) and 242 ion features in ESI- mode were identified, respectively. First, distinct serum metabolic profiles were identified between SCID mice and BALB/c mice without S. japonicum worms infection. Second, uniquely perturbed serum metabolites and their enriched pathways were also obtained between SCID mice and BALB/c mice after S. japonicum infection, which included differential metabolites due to both species differences and differential responses to S. japonicum infection. The metabolic pathways analysis revealed that arachidonic acid metabolism, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, alpha-linolenic acid metabolism, glycerophospholipid metabolism, sphingolipid metabolism and purine metabolism were enriched based on the differential serum metabolites between SCID mice and BALB/c mice after S. japonicum infection, which was addressed to be related to the retarded growth and development of S. japonicum in SCID mice. These findings provide new clues to the underlying molecular events of host's systemic metabolic changes on the growth and development of S. japonicum worms, and also provide quite promising candidates for exploitation of drugs or vaccines against schistosome and schistosomiasis.
Collapse
|
17
|
McKenzie M, Kirk RS, Walker AJ. Glucose Uptake in the Human Pathogen Schistosoma mansoni Is Regulated Through Akt/Protein Kinase B Signaling. J Infect Dis 2019; 218:152-164. [PMID: 29309602 PMCID: PMC5989616 DOI: 10.1093/infdis/jix654] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
Background In Schistosoma mansoni, the facilitated glucose transporter SGTP4, which is expressed uniquely in the apical surface tegumental membranes of the parasite, imports glucose from host blood to support its growth, development, and reproduction. However, the molecular mechanisms that underpin glucose uptake in this blood fluke are not understood. Methods In this study we employed techniques including Western blotting, immunolocalization, confocal laser scanning microscopy, pharmacological assays, and RNA interference to functionally characterize and map activated Akt in S mansoni. Results We find that Akt, which could be activated by host insulin and l-arginine, was active in the tegument layer of both schistosomules and adult worms. Blockade of Akt attenuated the expression and evolution of SGTP4 at the surface of the host-invading larval parasite life-stage, and suppressed SGTP4 expression at the tegument in adults; concomitant glucose uptake by the parasite was also attenuated in both scenarios. Conclusions These findings shed light on crucial mechanistic signaling processes that underpin the energetics of glucose uptake in schistosomes, which may open up novel avenues for antischistosome drug development.
Collapse
Affiliation(s)
- Maxine McKenzie
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Ruth S Kirk
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston upon Thames, Surrey, United Kingdom
| |
Collapse
|
18
|
Tebeje BM, Harvie M, You H, Rivera V, McManus DP. T cell-mediated immunity in CBA mice during Schistosoma japonicum infection. Exp Parasitol 2019; 204:107725. [PMID: 31306646 DOI: 10.1016/j.exppara.2019.107725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/23/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
Characterisation of the cellular immune response to schistosomiasis is well established for Schistosoma mansoni but a comprehensive description of T cell-mediated immune responses against S. japonicum infection is lacking. Accordingly, 20 CBA mice were infected with cercariae of S. japonicum and the immune response at different time points was determined. Mouse spleen and liver lymphocytes were isolated from the mice and stimulated with schistosomal adult worm antigen preparation (SWAP) and schistosomal soluble egg antigen (SEA). There was a relatively higher Th1 immune response to SWAP compared to SEA at the early phase of infection (up to week 5 post challenge). However, a Th2 immune response directed against SEA was dominant at week 6 post-infection, a time point when the highest IgG response against both SWAP and, especially, SEA was generated. The regulatory immune response was highest at the early phase of the immune response (up to week 5 post challenge) followed by a rapid decline at week 6-post infection. Before egg-laying, S. japonicum induced a regulatory T cell immune response which may limit the early Th1-mediated immune response that is believed to be protective in murine schistosomiasis. Following egg laying, the immune response was polarized to a Th2 immune response mainly directed against the eggs and this may contribute to parasite survival.
Collapse
Affiliation(s)
- Biniam Mathewos Tebeje
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 300 Herston Road, Brisbane, QLD, 4006, Australia; School of Public Health, University of Queensland, Brisbane, Australia.
| | - Marina Harvie
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Vanessa Rivera
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 300 Herston Road, Brisbane, QLD, 4006, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
19
|
Du X, Jones MK, Nawaratna SSK, Ranasinghe S, Xiong C, Cai P, McManus DP, You H. Gene Expression in Developmental Stages of Schistosoma japonicum Provides Further Insight into the Importance of the Schistosome Insulin-Like Peptide. Int J Mol Sci 2019; 20:ijms20071565. [PMID: 30925781 PMCID: PMC6480100 DOI: 10.3390/ijms20071565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
We showed previously that the Schistosoma japonicum insulin-like peptide (SjILP) binds the worm insulin receptors, thereby, activating the parasite’s insulin pathway and emphasizing its important role in regulating uptake of glucose, a nutrient essential for parasite survival. Here we show that SjILP is differentially expressed in the schistosome life cycle and is especially highly transcribed in eggs, miracidia, and adult female worms. RNA inference was employed to knockdown SjILP in adults in vitro, with suppression confirmed by significantly reduced protein production, declined adenosine diphosphate levels, and reduction in glucose consumption. Immunolocalization showed that SjILP is located to lateral gland cells of mature intra-ovular miracidia in the schistosome egg, and is distributed on the ciliated epithelium and internal cell masses of newly transformed miracidia. In schistosomula, SjILP is present on the tegument in two antero-lateral points, indicating highly polarized expression during cercarial transformation. Analysis of serum from S. japonicum-infected mice by ELISA using a recombinant form of SjILP as an antigen revealed IgG immunoreactivity to this molecule at 7 weeks post-infection indicating it is likely secreted from mature eggs into the host circulation. These findings provide further insights on ILP function in schistosomes and its essential roles in parasite survival and growth in different development stages.
Collapse
Affiliation(s)
- Xiaofeng Du
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| | - Malcolm K Jones
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia.
| | - Sujeevi S K Nawaratna
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
- School of Medicine, Griffith University, Gold Coast 4222, Australia.
| | - Shiwanthi Ranasinghe
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| | - Chunrong Xiong
- Key Laboratory of National Health and Family Planning Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214000, China.
| | - Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland 4006, Australia.
| |
Collapse
|
20
|
Liu R, Cheng WJ, Tang HB, Zhong QP, Ming ZP, Dong HF. Comparative Metabonomic Investigations of Schistosoma japonicum From SCID Mice and BALB/c Mice: Clues to Developmental Abnormality of Schistosome in the Immunodeficient Host. Front Microbiol 2019; 10:440. [PMID: 30915055 PMCID: PMC6423161 DOI: 10.3389/fmicb.2019.00440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/20/2019] [Indexed: 12/04/2022] Open
Abstract
The growth and development of schistosome has been affected in the immunodeficient hosts. But it remains unresolved about the molecular mechanisms involved in the development and reproduction regulation of schistosomes. This study tested and compared the metabolic profiles of the male and female Schistosoma japonicum worms collected from SCID mice and BALB/c mice at 5 weeks post infection using liquid chromatography tandem mass spectrometry (LC-MS/MS) platform, in which the worms from SCID mice were the investigated organisms and the worms from BALB/c mice were used as the controls. There were 1015 ion features in ESI+ mode and 342 ion features in ESI- mode were identified after filtration by false discovery rate. Distinct metabolic profiles were found to clearly differentiate both male and female worms in SCID mice from those in BALB/c mice using multivariate modeling methods including the Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). There were more differential metabolites in female worms than in male worms between SCID mice and BALB/c mice. And common and uniquely perturbed metabolites and pathways were identified among male and female worms from SCID mice when compared with BALB/c mice. The enriched metabolite sets of the differential metabolites in male worms between SCID mice and BALB/c mice included bile acid biosynthesis, taurine and hypotaurine metabolism, sphingolipid metabolism, retinol metabolism, purine metabolism, etc. And the enriched metabolite sets of differential metabolites in female worms included retinol metabolism, alpha linolenic acid and linoleic acid metabolism, purine metabolism, sphingolipid metabolism, glutamate metabolism, etc. Further detection and comparison in transcript abundance of genes of the perturbed retinol metabolism and its associated meiosis process in worms identified clues suggesting accumulated retinyl ester and perturbed meiotic process. These findings suggested an association between the schistosome with retarded growth and development in SCID mice and their perturbed metabolites and metabolic pathways, and provided a new insight into the growth and development regulation of S. japonicum worms from the metabolic level, which indicated great clues for discovery of drugs or vaccines against the parasites and disease with more researches.
Collapse
Affiliation(s)
- Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Jun Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hong-Bin Tang
- Laboratory Animal Center, School of Medicine, Wuhan University, Wuhan, China
| | - Qin-Ping Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhen-Ping Ming
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui-Fen Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Tang CL, Zhou HH, Zhu YW, Huang J, Wang GB. Glutathione S-transferase influences the fecundity of Schistosoma japonicum. Acta Trop 2019; 191:8-12. [PMID: 30578749 DOI: 10.1016/j.actatropica.2018.12.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the effect of Schistosoma japonicum glutathione S-transferase (SjGST) on the developmental stages of the parasite. We found that the mRNA levels of GST were higher in schistosomula obtained from the host and the eggs than that in other developmental stages. SjGST was mainly distributed in the egg shells, teguments of the worms, and part of the parenchyma of the worms. GST knockdown with RNA interference in S. japonicum worms resulted in a silencing rate higher than 80%. The egg reduction rate (18%) and abnormal egg ratio (28%) were significantly higher (P < 0.05) in the GST-silenced group than in the negative control group. These results indicate that SjGST plays an important role in the fecundity of S. japonicum, specifically in egg formation.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Hong-Hua Zhou
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Jin Huang
- Department of Clinical Laboratory, Wuhan Fourth Hospital, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China.
| | - Guo-Bo Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
22
|
Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU, McManus DP. Circulating miRNAs as footprints for liver fibrosis grading in schistosomiasis. EBioMedicine 2018; 37:334-343. [PMID: 30482723 PMCID: PMC6286190 DOI: 10.1016/j.ebiom.2018.10.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/03/2018] [Accepted: 10/18/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Chronic infection with Schistosoma japonicum or S. mansoni results in hepatic fibrosis of the human host. Staging fibrosis is crucial for the prognosis and to determine the rapid need of treatment in patients with schistosomiasis. METHODS To establish whether there is a correlation between circulating microRNA (miRNA) level and fibrosis progression in schistosomiasis, ten miRNAs were selected to assess their potential in grading schistosomiasis liver fibrosis. This was done firstly in two mouse strains (C57BL/6 and BALB/c) to determine the temporal expression profiles in serum over the course of S. japonicum infection, and then within a cohort of 163 schistosomiasis japonica patients with different grades of liver fibrosis. FINDING Four miRNAs (miR-150-5p, let-7a-5p, let-7d-5p and miR-146a-5p) were able to distinguish patients with mild versus severe fibrosis. The level of serum miR-150-5p showed the most promising potential for grading hepatic fibrosis in schistosomiasis. The diagnostic performance of miR-150-5p in discriminating mild from severe fibrosis is comparable with that of the ELF test and serum HA level. In addition, the serum levels of the four miRNAs rebounded in infected C57BL/6 mice, after 6 months post treatment, following the regression of liver fibrosis, thereby providing further support for the utility of these miRNAs in grading schistosomal hepatic fibrosis. INTERPRETATION Circulating miRNAs can be a supplementary tool for assessing hepatic fibrosis in human schistosomiasis. FUND: National Health and Medical Research Council (NHMRC) of Australia (APP1102926, APP1037304 and APP1098244).
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Yi Mu
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Remigio M Olveda
- Department of Health, Research Institute for Tropical Medicine, Manila, Philippines
| | - Allen G Ross
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia; icddr b, Dhaka, Bangladesh
| | - David U Olveda
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
23
|
You H, Harvie M, Du X, Rivera V, Zhang P, McManus DP. Protective Immune Responses Generated in a Murine Model Following Immunization with Recombinant Schistosoma japonicum Insulin Receptor. Int J Mol Sci 2018; 19:ijms19103088. [PMID: 30304851 PMCID: PMC6213549 DOI: 10.3390/ijms19103088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023] Open
Abstract
There is a pressing need to develop vaccines for schistosomiasis given the current heavy dependency on praziquantel as the only available drug for treatment. We previously showed the ligand domain of the Schistosoma japonicum insulin receptor 1 and 2 (rSjLD1 and 2) fusion proteins conferred solid protection in mice against challenge infection with S. japonicum. To improve vaccine efficacy, we compared the immunogenicity and protective efficacy of rSjLD1 on its own and in combination with S. japonicum triose-phosphate isomerase (SjTPI), formulated with either of two adjuvants (QuilA and montanide ISA 720VG) in murine vaccine trials against S. japonicum challenge. The level of protection was higher in mice vaccinated only with rSjLD1 formulated with either adjuvant; rSjTPI or the rSjTPI-rSjLD1 combination resulted in a lower level of protection. Mirroring our previous results, there were significant reductions in the number of female worms (30–44%), faecal eggs (61–68%), liver eggs (44–56%), intestinal eggs (46–48%) and mature intestinal eggs (58–63%) in the rSjLD1-vaccinated mice compared with the adjuvant only groups. At 6-weeks post-cercarial challenge, a significantly increased production of interferon gamma (IFNγ) in rSjLD1-stimulated splenic CD4+ T cells was observed in the rSjLD1-vaccinated mice suggesting a Th1-type response is associated with the generated level of protective efficacy.
Collapse
Affiliation(s)
- Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane QLD4006, Queensland, Australia.
| | - Marina Harvie
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane QLD4006, Queensland, Australia.
| | - Xiaofeng Du
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane QLD4006, Queensland, Australia.
| | - Vanessa Rivera
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane QLD4006, Queensland, Australia.
| | - Ping Zhang
- Translational Cancer Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Brisbane QLD4006, Queensland, Australia.
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane QLD4006, Queensland, Australia.
| |
Collapse
|
24
|
Phuphisut O, Ajawatanawong P, Limpanont Y, Reamtong O, Nuamtanong S, Ampawong S, Chaimon S, Dekumyoy P, Watthanakulpanich D, Swierczewski BE, Adisakwattana P. Transcriptomic analysis of male and female Schistosoma mekongi adult worms. Parasit Vectors 2018; 11:504. [PMID: 30201055 PMCID: PMC6131826 DOI: 10.1186/s13071-018-3086-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Background Schistosoma mekongi is one of five major causative agents of human schistosomiasis and is endemic to communities along the Mekong River in southern Lao People’s Democratic Republic (Laos) and northern Cambodia. Sporadic cases of schistosomiasis have been reported in travelers and immigrants who have visited endemic areas. Schistosoma mekongi biology and molecular biology is poorly understood, and few S. mekongi gene and transcript sequences are available in public databases. Results Transcriptome sequencing (RNA-Seq) of male and female S. mekongi adult worms (a total of three biological replicates for each sex) were analyzed and the results demonstrated that approximately 304.9 and 363.3 million high-quality clean reads with quality Q30 (> 90%) were obtained from male and female adult worms, respectively. A total of 119,604 contigs were assembled with an average length of 1273 nt and an N50 of 2017 nt. From the contigs, 20,798 annotated protein sequences and 48,256 annotated transcript sequences were obtained using BLASTP and BLASTX searches against the UniProt Trematoda database. A total of 4658 and 3509 transcripts were predominantly expressed in male and female worms, respectively. Male-biased transcripts were mostly involved in structural organization while female-biased transcripts were typically involved in cell differentiation and egg production. Interestingly, pathway enrichment analysis suggested that genes involved in the phosphatidylinositol signaling pathway may play important roles in the cellular processes and reproductive systems of S. mekongi worms. Conclusions We present comparative transcriptomic analyses of male and female S. mekongi adult worms, which provide a global view of the S. mekongi transcriptome as well as insights into differentially-expressed genes associated with each sex. This work provides valuable information and sequence resources for future studies of gene function and for ongoing whole genome sequencing efforts in S. mekongi. Electronic supplementary material The online version of this article (10.1186/s13071-018-3086-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pravech Ajawatanawong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supaporn Nuamtanong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Salisa Chaimon
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dorn Watthanakulpanich
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Brett E Swierczewski
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
25
|
Li J, Xiang M, Zhang R, Xu B, Hu W. RNA interference in vivo in Schistosoma japonicum: Establishing and optimization of RNAi mediated suppression of gene expression by long dsRNA in the intra-mammalian life stages of worms. Biochem Biophys Res Commun 2018; 503:1004-1010. [PMID: 29935182 DOI: 10.1016/j.bbrc.2018.06.109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 01/27/2023]
Abstract
Schistosomes are parasitic platyhelminths that threaten over 600 million people globally. In recent years, RNA interference (RNAi) has been widely used as a molecular tool in research into the genomic function of parasites. We aim to develop effective protocols for application of RNAi technology in the intra-mammalian life stages of Schistosoma japonicum. In this work, the expression of the parasite gene encoding cathepsin B1 (SjCB1) was targeted by exposing the worms to 10 μg of long dsRNA dissolved in 0.1 ml of 0.7% NaCl injected into the tail vein of infected mice. This method was effective and specific for eliciting SjCB1 gene suppression in both male and female adult worms in vivo (>79.4% in male and >91.5% in female knockdown relative to control). In 60 cercaria infected mice, RNAi suppression of gene expression was best achieved by using 10 μg of target dsRNA for at least 4 days. The recommended procedure for interference producing long-term suppression was an injection of dsRNA on the first day of infection with booster injections administered every 4 days for up to 26 days. Long-term suppression of three published functional genes (peroxiredoxin-1, mago nashi, insulin receptor) in S. japonicum provided more information about the role of the expression of these genes in producing particular phenotypes. The protocols described here may be more convenient, economical and applicable, than currently available technology and have contributed to the observation of more phenotypes during worm development from schistosomula to adult. These approaches may promote and facilitate further studies into functional schistosome genomics.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Manyu Xiang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ruixiang Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bin Xu
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.
| |
Collapse
|
26
|
Zhang R, Li J, Xiang M, Hong Q, Xu B, Hu W. Identification and characterization of the zinc finger protein SjZF in Schistosoma japonicum. Biochem Biophys Res Commun 2018; 501:920-926. [PMID: 29772240 DOI: 10.1016/j.bbrc.2018.05.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 01/07/2023]
Abstract
Schistosomiasis represents one of the most prevalent parasitic infections affecting over 249 million people worldwide. The pathological damage is mainly caused by the eggs laid by female schistosomes. Zinc finger proteins (ZFPs) usually play critical roles in many biological functions. In this study, we cloned, identified and characterized the zinc finger protein SjZF of Schistosoma japonicum. SjZF ortholog proteins were also identified in S. mansoni, S. haematobium, Opisthorchis viverrini and O. sinensis. Fluorescence localization showed that SjZF was particularly expressed in the worm gut of both genders and the vitelline glands of females. In vitro RNAi assay indicated that decreased expression of SjZF could affect the survival rate of adult worms. The immune protection assay indicated that rSjZF did partially protect mice with 54.8% reduction in the worm burden and 34.1% reduction in the liver eggs. Taken in concert, our preliminary results suggest that SjZF may be a potential vaccine candidate for schistosomiasis and may further provide evidence for a possible role of SjZF in the development of schistosomes.
Collapse
Affiliation(s)
- Ruixiang Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Manyu Xiang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qinghua Hong
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bin Xu
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China; Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China.
| |
Collapse
|
27
|
Torben W, Molehin AJ, Blair RV, Kenway C, Shiro F, Roslyn D, Chala B, Gutu D, Kebede MA, Ahmad G, Zhang W, Aye P, Mohan M, Lackner A, Siddiqui AA. The self-curing phenomenon of schistosome infection in rhesus macaques: insight from in vitro studies. Ann N Y Acad Sci 2017; 1408:79-89. [PMID: 29239481 DOI: 10.1111/nyas.13565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/26/2022]
Abstract
A reduction in the burden of schistosomiasis is potentially achievable by integrating a schistosomiasis vaccine with current control measures. Here, we determine parasite-specific in vitro responses of B, T, and NK cells from naive uninfected rhesus macaques to Schistosoma mansoni (Sm) egg (SmEA) and worm antigen (SmWA) preparations isolated from infected baboons. Pronounced B cell responses to SmEA and NK cell responses to both SmEA and SmWA were observed. High levels of IL-2 and IL-21 responses against Sm antigens were observed in T and non-T cells of lymph nodes (LNs) and gut lamina propria-derived lymphocytes (LPLs). Data analysis showed multifunctionality of LN-derived CD4+ , CD8+ , and CD4+ CD8+ double positive T cells against either SmWA or SmWA+SmEA antigen preparations. Distinct SmEA-specific multifunctional responses were observed in gut LPLs, suggesting simultaneous responses against egg antigens. These data provide insight into the immune effectors involved in schistosome responses by rhesus macaques.
Collapse
Affiliation(s)
- Workineh Torben
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Robert V Blair
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Carys Kenway
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Faith Shiro
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Davis Roslyn
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Bayissa Chala
- Department of Applied Biology, Adama Science and Technology University, School of Applied Natural Sciences, Adama, Ethiopia
| | - Dereje Gutu
- Department of Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Michael A Kebede
- Department of Epidemiology & Biostatistics, George Washington University, Washington, DC
| | - Gul Ahmad
- Department of Biology, Peru State College, Peru, Nebraska
| | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Pyone Aye
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Mahesh Mohan
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Andrew Lackner
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
28
|
Signalling pathways in schistosomes: novel targets for control interventions against schistosomiasis. Emerg Top Life Sci 2017; 1:633-639. [PMID: 33525854 DOI: 10.1042/etls20170093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022]
Abstract
Over the last decade, there has been accumulating evidence showing that signalling pathways are involved in extensive biological and physiological processes in the human blood fluke schistosomes, playing essential roles in environmental sensing, host penetration, growth, development, maturation, embryogenesis, tissue self-renewal and survival. Owing to the likelihood of resistance developing against praziquantel, the only drug currently available that is effective against all the human schistosome species, there is an urgent requirement for an alternative treatment, arguing for continuing research into novel or repurposed anti-schistosomal drugs. An increasing number of anticancer drugs are being developed which block abnormal signalling pathways, a feature that has stimulated interest in developing novel interventions against human schistosomiasis by targeting key cell signalling components. In this review, we discuss the functional characterization of signal transduction pathways in schistosomes and consider current challenges and future perspectives in this important area of research.
Collapse
|
29
|
Kinases: Molecular Stage Directors for Schistosome Development and Differentiation. Trends Parasitol 2017; 34:246-260. [PMID: 29276074 DOI: 10.1016/j.pt.2017.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 01/03/2023]
Abstract
Understanding schistosome biology is still a challenging mission. The reproductive biology of this parasitic trematode is closely associated with the pathologic consequences of schistosomiasis, the devastating infectious disease caused by members of the family Schistosomatidae worldwide. Recent studies of signaling mechanisms confirmed the prominent roles of protein kinases (PKs) in directing schistosome biology, and first evidence was obtained for an additional contribution of kinases with substrates different from proteins (non-PKs). This review provides an overview of the Schistosoma mansoni kinome in the context of male-female interaction and summarizes recent studies of kinases controlling development and differentiation. Due to their importance for schistosome biology, kinases represent Achilles' heels and are therefore of high value also for translational research.
Collapse
|
30
|
Elhenawy AA, Ashour RH, Nabih N, Shalaby NM, El-karef AA, Abou-El-Wafa HS. Insulin growth factor inhibitor as a potential new anti-schistosoma drug: An in vivo experimental study. Biomed Pharmacother 2017; 95:1346-1358. [PMID: 28946182 DOI: 10.1016/j.biopha.2017.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 01/24/2023] Open
|
31
|
Petersen RL. Strategies Using Bio-Layer Interferometry Biosensor Technology for Vaccine Research and Development. BIOSENSORS-BASEL 2017; 7:bios7040049. [PMID: 29088096 PMCID: PMC5746772 DOI: 10.3390/bios7040049] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022]
Abstract
Bio-layer interferometry (BLI) real-time, label-free technology has greatly contributed to advances in vaccine research and development. BLI Octet platforms offer high-throughput, ease of use, reliability, and high precision analysis when compared with common labeling techniques. Many different strategies have been used to immobilize the pathogen or host molecules on BLI biosensors for real-time kinetics and affinity analysis, quantification, or high-throughput titer. These strategies can be used in multiple applications and shed light onto the structural and functional aspects molecules play during pathogen-host interactions. They also provide crucial information on how to achieve protection. This review summarizes some key BLI strategies used in human vaccine research and development.
Collapse
|
32
|
Han Q, Jia B, Hong Y, Cao X, Zhai Q, Lu K, Li H, Zhu C, Fu Z, Shi Y, Lin J. Suppression of VAMP2 Alters Morphology of the Tegument and Affects Glucose uptake, Development and Reproduction of Schistosoma japonicum. Sci Rep 2017; 7:5212. [PMID: 28701752 PMCID: PMC5507895 DOI: 10.1038/s41598-017-05602-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/31/2017] [Indexed: 01/17/2023] Open
Abstract
Schistosomiasis caused by schsitosomes is a serious global public health concern. The tegument that surrounds the worm is critical to the schistosomes survival. The tegument apical membrane undergoes a continuous process of rupture and repair owing to membranous vacuoles fusing with the plasma membrane. Vesicle-associated membrane protein 2 (VAMP2), a member of soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNAREs) is required for membrane fusion. Here, we used RNA interference (RNAi) to knock down the expression of VAMP2 of Schistosoma japonicum (SjVAMP2), and both real-time PCR and western blot analysis confirmed the suppression of this molecule, as well as the suppression of the transcript levels of schistosome glucose transporters (SGTP1 and SGTP4), and insulin receptors (SjIR1 and SjIR2). SjVAMP2-suppressed worms exhibited a lower viability, and phenotypic alterations were also observed in the tegument. Moreover, the glucose consumption of SjVAMP2-suppressed worms decreased significantly in 4 and 6 days, respectively, as well as a significant reduction in egg production. We also observed a significant reduction in worm burden and hepatic eggs burden in two independent RNAi experiment in vivo, and minor pathological changes in mice treated with SjVAMP2 specific small interfering (si)RNA. These findings reveal that SjVAMP2 may play important roles in the maintenance of tegument, glucose uptake, worm development and egg production in schistosomes.
Collapse
Affiliation(s)
- Qian Han
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Bingguang Jia
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yang Hong
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Xiaodan Cao
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Qi Zhai
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Ke Lu
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Hao Li
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Chuangang Zhu
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Zhiqiang Fu
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yonghong Shi
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Jiaojiao Lin
- Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
33
|
Protasio AV, van Dongen S, Collins J, Quintais L, Ribeiro DM, Sessler F, Hunt M, Rinaldi G, Collins JJ, Enright AJ, Berriman M. MiR-277/4989 regulate transcriptional landscape during juvenile to adult transition in the parasitic helminth Schistosoma mansoni. PLoS Negl Trop Dis 2017; 11:e0005559. [PMID: 28542189 PMCID: PMC5459504 DOI: 10.1371/journal.pntd.0005559] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/05/2017] [Accepted: 04/05/2017] [Indexed: 01/06/2023] Open
Abstract
Schistosomes are parasitic helminths that cause schistosomiasis, a disease affecting circa 200 million people, primarily in underprivileged regions of the world. Schistosoma mansoni is the most experimentally tractable schistosome species due to its ease of propagation in the laboratory and the high quality of its genome assembly and annotation. Although there is growing interest in microRNAs (miRNAs) in trematodes, little is known about the role these molecules play in the context of developmental processes. We use the completely unaware "miRNA-blind" bioinformatics tool Sylamer to analyse the 3'-UTRs of transcripts differentially expressed between the juvenile and adult stages. We show that the miR-277/4989 family target sequence is the only one significantly enriched in the transition from juvenile to adult worms. Further, we describe a novel miRNA, sma-miR-4989 showing that its proximal genomic location to sma-miR-277 suggests that they form a miRNA cluster, and we propose hairpin folds for both miRNAs compatible with the miRNA pathway. In addition, we found that expression of sma-miR-277/4989 miRNAs are up-regulated in adults while their predicted targets are characterised by significant down-regulation in paired adult worms but remain largely undisturbed in immature "virgin" females. Finally, we show that sma-miR-4989 is expressed in tegumental cells located proximal to the oesophagus gland and also distributed throughout the male worms' body. Our results indicate that sma-miR-277/4989 might play a dominant role in post-transcriptional regulation during development of juvenile worms and suggest an important role in the sexual development of female schistosomes.
Collapse
Affiliation(s)
- Anna V. Protasio
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Stijn van Dongen
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Julie Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Leonor Quintais
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Diogo M. Ribeiro
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Florian Sessler
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Martin Hunt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gabriel Rinaldi
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Anton J. Enright
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
34
|
Gao Y, Zhou X, Wang H, Liu R, Ye Q, Zhao Q, Ming Z, Dong H. Immunization with recombinant schistosome adenylate kinase 1 partially protects mice against Schistosoma japonicum infection. Parasitol Res 2017; 116:1665-1674. [PMID: 28455627 DOI: 10.1007/s00436-017-5441-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/12/2017] [Indexed: 12/22/2022]
Abstract
Highly effective and safe prophylactic vaccines are urgently needed to sustainably control schistosomiasis, one of the most serious endemic zoonoses in China. In this study, we characterized adenylate kinase 1 from Schistosoma japonicum (SjAK1), a phosphotransferase that regulates cellular energy and metabolism, and evaluated its potential as a recombinant vaccine. Based on real-time quantitative PCR, western blot, and immunolocalization, SjAK1 is active throughout the life of the worm, although its expression is higher in 21-day-old schistosomula, adult worms, and eggs deposited in the host liver. Further, the enzyme accumulates in the eggshell, intestinal epithelium, integument of adult worms and in the vitellaria tissue in female worms. A 594-bp full-length complementary DNA (cDNA) encoding SjAK1 was synthesized from total RNA of 3-day-old schistosomes, and immunization with recombinant SjAK1 reduced worm burden by 50%, decreased the density of eggs deposited in the host liver by 40%, and reduced the area of granulomas in the host liver by 56%. ELISA results showed that recombinant SjAK1 also stimulated Th1 cytokines such as IL-2 and IFN-γ, but not IL-5 and IL-4. Collectively, a recombinant form of the enzyme SjAK1 elicits partial protective immunity against Schistosoma japonicum infection and the induction of Th1 cytokines. Thus, the enzyme has potential as a component of a multivalent vaccine against schistosomiasis.
Collapse
Affiliation(s)
- Yanru Gao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China.,Department of Physiology, School of Basic Medicine Sciences, Hubei University of Science and Technology, Xianning, Hubei Province, 437000, China
| | - Xiaoshan Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Huan Wang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Rong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Qing Ye
- Renmin Hospital, Wuhan University, Wuhan, Hubei Province, 430000, China
| | - Qinping Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Zhenping Ming
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Parasitology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei Province, 430071, China.
| |
Collapse
|
35
|
Du X, McManus DP, Cai P, Hu W, You H. Identification and functional characterisation of a Schistosoma japonicum insulin-like peptide. Parasit Vectors 2017; 10:181. [PMID: 28407789 PMCID: PMC5391603 DOI: 10.1186/s13071-017-2095-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/18/2017] [Indexed: 02/07/2023] Open
Abstract
Background Previous studies have shown that insulin receptors in schistosomes, triggered by host insulin, play an important role in parasite growth, development and fecundity by regulating glucose metabolism. However, limited information is available on the recently identified endogenous insulin-like peptide (ILP) in blood flukes. Results We isolated ILPs from Schistosoma japonicum (SjILP) and S. recognised (SmILP) and present results of their molecular and structural analysis. SjILP shares 63% amino acid identity with SmILP, but only 18% identity with human insulin. There is high cross immunological reactivity between the S. japonicum and S. mansoni ILPs as observed in western blots using an anti-SjILP polyclonal antibody. ADP binding/hydrolysis ability was observed in both SjILP and SmILP, but not in human insulin, suggesting a parasite-specific role for ILP compared with host insulin. Protein binding assays using the Octet-RED system showed SjILP binds S. japonicum IRs (SjIR1 and SjIR2) strongly. An anti-phospho antibody against extracellular signal-regulated kinase (Erk) recognised a 44-kDa target band in an extract of adult worms after stimulation by rSjILP in vitro, suggesting an important role for SjILP in activating SjIRs and in regulating downstream signal transduction. Immunolocalisation showed SjILP is located on the tegument and the underlying musculature, similar to that observed for SjIR1, but it is also present throughout the parenchyma of males and in the vitelline cells of females, the same locations as SjIR2 described in an earlier published study of ours. The same localisation of SjILP and the SjIRs is suggestive of an interaction between the insulin-like peptide and the IRs. In addition to binding host insulin, schistosomes also can express their own endogenous ILPs, which can activate the parasite insulin signal pathway, thereby playing a critical role in worm growth, development and fertility. Conclusions These findings shed new light on ILPs in schistosomes, providing further insight into the distinct and specialised functions of SjIR1 and 2 in S. japonicum and their interaction with host insulin. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2095-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofeng Du
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Pengfei Cai
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Wei Hu
- School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 207 Ruijin Er Road, Shanghai, 200025, China
| | - Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
36
|
Ressurreição M, Elbeyioglu F, Kirk RS, Rollinson D, Emery AM, Page NM, Walker AJ. Molecular characterization of host-parasite cell signalling in Schistosoma mansoni during early development. Sci Rep 2016; 6:35614. [PMID: 27762399 PMCID: PMC5071895 DOI: 10.1038/srep35614] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/04/2016] [Indexed: 02/04/2023] Open
Abstract
During infection of their human definitive host, schistosomes transform rapidly from free-swimming infective cercariae in freshwater to endoparasitic schistosomules. The 'somules' next migrate within the skin to access the vasculature and are surrounded by host molecules that might activate intracellular pathways that influence somule survival, development and/or behaviour. However, such 'transactivation' by host factors in schistosomes is not well defined. In the present study, we have characterized and functionally localized the dynamics of protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) activation during early somule development in vitro and demonstrate activation of these protein kinases by human epidermal growth factor, insulin, and insulin-like growth factor I, particularly at the parasite surface. Further, we provide evidence that support the existence of specialized signalling domains called lipid rafts in schistosomes and propose that correct signalling to ERK requires proper raft organization. Finally, we show that modulation of PKC and ERK activities in somules affects motility and reduces somule survival. Thus, PKC and ERK are important mediators of host-ligand regulated transactivation events in schistosomes, and represent potential targets for anti-schistosome therapy aimed at reducing parasite survival in the human host.
Collapse
Affiliation(s)
- Margarida Ressurreição
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| | - Firat Elbeyioglu
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| | - Ruth S. Kirk
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| | - David Rollinson
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, United Kingdom
| | - Aidan M. Emery
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, United Kingdom
| | - Nigel M. Page
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| | - Anthony J. Walker
- Molecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, KT1 2EE, United Kingdom
| |
Collapse
|
37
|
Tebeje BM, Harvie M, You H, Loukas A, McManus DP. Schistosomiasis vaccines: where do we stand? Parasit Vectors 2016; 9:528. [PMID: 27716365 PMCID: PMC5045607 DOI: 10.1186/s13071-016-1799-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis, caused mainly by S. mansoni, S. haematobium and S. japonicum, continues to be a serious tropical disease and public health problem resulting in an unacceptably high level of morbidity in countries where it is endemic. Praziquantel, the only drug currently available for treatment, is unable to kill developing schistosomes, it does not prevent re-infection and its continued extensive use may result in the future emergence of drug-resistant parasites. This scenario provides impetus for the development and deployment of anti-schistosome vaccines to be used as part of an integrated approach for the prevention, control and eventual elimination of schistosomiasis. This review considers the present status of candidate vaccines for schistosomiasis, and provides some insight on future vaccine discovery and design.
Collapse
Affiliation(s)
- Biniam Mathewos Tebeje
- QIMR Berghofer Medical Research Institute, Brisbane, Australia. .,School of Public Health, University of Queensland, Brisbane, Australia. .,Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Marina Harvie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Hong You
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | | |
Collapse
|
38
|
Identification of Host Insulin Binding Sites on Schistosoma japonicum Insulin Receptors. PLoS One 2016; 11:e0159704. [PMID: 27441998 PMCID: PMC4956214 DOI: 10.1371/journal.pone.0159704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
Schistosoma japonicum insulin receptors (SjIRs) have been identified as encouraging vaccine candidates. Interrupting or blocking the binding between host insulin and the schistosome insulin receptors (IRs) may result in reduced glucose uptake leading to starvation and stunting of worms with a reduction in egg output. To further understand how schistosomes are able to exploit host insulin for development and growth, and whether these parasites and their mammalian hosts compete for the same insulin source, we identified insulin binding sites on the SjIRs. Based on sequence analysis and the predicted antigenic structure of the primary sequences of the SjIRs, we designed nine and eleven peptide analogues from SjIR-1 and SjIR-2, respectively. Using the Octet RED system, we identified analogues derived from SjIR-1 (10) and SjIR-2 (20, 21 and 22) with insulin-binding sequences specific for S. japonicum. Nevertheless, the human insulin receptor (HIR) may compete with the SjIRs in binding human insulin in other positions which are important for HIR binding to insulin. However, no binding occurred between insulin and parasite analogues derived from SjIR-1 (2, 7 and 8) and SjIR-2 (14, 16 and 18) at the same locations as HIR sequences which have been shown to have strong insulin binding affinities. Importantly, we found two analogues (1 and 3), derived from SjIR-1, and two analogues (13 and 15) derived from SjIR-2, were responsible for the major insulin binding affinity in S. japonicum. These peptide analogues were shown to have more than 10 times (in KD value) stronger binding capacity for human insulin compared with peptides derived from the HIR in the same sequence positions. Paradoxically, analogues 1, 3, 13 and 15 do not appear to contain major antigenic determinants which resulted in poor antibody responses to native S. japonicum protein. This argues against their future development as peptide-vaccine candidates.
Collapse
|
39
|
Cai P, Gobert GN, You H, McManus DP. The Tao survivorship of schistosomes: implications for schistosomiasis control. Int J Parasitol 2016; 46:453-63. [PMID: 26873753 DOI: 10.1016/j.ijpara.2016.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 01/06/2023]
Abstract
Schistosomiasis, caused by blood flukes of the genus Schistosoma, is a major public health problem which contributes substantially to the economic and financial burdens of many nations in the developing world. An array of survival strategies, such as the unique structure of the tegument which acts as a major host-parasite interface, immune modulation mechanisms, gene regulation, and apoptosis and self-renewal have been adopted by schistosome parasites over the course of long-term evolution with their mammalian definitive hosts. Recent generation of complete schistosome genomes together with numerous biological, immunological, high-throughput "-omics" and gene function studies have revealed the Tao or strategies that schistosomes employ not only to promote long-term survival, but also to ensure effective life cycle transmission. New scenarios for the future control of this important neglected tropical disease will present themselves as our understanding of these Tao increases.
Collapse
Affiliation(s)
- Pengfei Cai
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Geoffrey N Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| |
Collapse
|
40
|
Mo AX, Colley DG. Workshop report: Schistosomiasis vaccine clinical development and product characteristics. Vaccine 2015; 34:995-1001. [PMID: 26721329 DOI: 10.1016/j.vaccine.2015.12.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 11/30/2022]
Abstract
A schistosomiasis vaccine meeting was organized to evaluate the utility of a vaccine in public health programs, to discuss clinical development paths, and to define basic product characteristics for desirable vaccines to be used in the context of schistosomiasis control and elimination programs. It was concluded that clinical evaluation of a schistosomiasis vaccine is feasible with appropriate trial design and tools. Some basic Preferred Product Characteristics (PPC) for a human schistosomiasis vaccine and for a veterinary vaccine for bovine use were also proposed.
Collapse
Affiliation(s)
- Annie X Mo
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA.
| | - Daniel G Colley
- Center for Tropical and Emerging Global Diseases and the Department of Microbiology, University of Georgia, Athens, GA, USA
| |
Collapse
|
41
|
Abstract
Mass drug administration using praziquantel is the backbone of the current strategy for the control of schistosomiasis. As the theoretical plans have moved into practical application, certain challenges with this approach have surfaced, and it is likely that annual mass drug administration alone may not be sufficient to achieve program goals. However, mass drug administration is still the only available intervention that can be readily used in the wide variety of settings where schistosomiasis is endemic. The task then becomes how to improve this approach and identify what adjuncts to mass drug administration are effective, as programs move from morbidity control to elimination goals. Other aspects worthy of consideration include how best to employ new diagnostic tools to more easily identify where treatment is needed, and new formulations of praziquantel to extend the availability of treatment to all age groups. The aim of this review is to highlight both areas of challenge and of opportunity to improve the public health impact of schistosomiasis control programs.
Collapse
Affiliation(s)
- W Evan Secor
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| |
Collapse
|
42
|
Nawaratna SSK, Gobert GN, Willis C, Mulvenna J, Hofmann A, McManus DP, Jones MK. Lysosome-associated membrane glycoprotein (LAMP)--preliminary study on a hidden antigen target for vaccination against schistosomiasis. Sci Rep 2015; 5:15069. [PMID: 26472258 PMCID: PMC4607944 DOI: 10.1038/srep15069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022] Open
Abstract
Our previously reported gene atlasing of schistosome tissues revealed transcripts that were highly enriched in the digestive tract of Schistosoma mansoni. From these, we selected two candidates, Sm-LAMP and Sm-NPC2 for testing as vaccine targets. The two molecules were selected on the basis of relatively high expression in the gastrodermis, their potentially important biological function, divergence from homologous molecules of the host and possible apical membrane expression in the gastrodermis. Bacterially expressed recombinant peptides corresponding to regions excluding trans-membrane domains of the selected vaccine targets were used in blinded vaccine trials in CBA mice using alum-CpG as adjuvant. Vaccine trials using the recombinant insoluble Sm-LAMP protein showed 16-25% significant reduction in total worm burden. Faecal egg count reduction was 52% and 60% in two trials, respectively, with similar results for the solubly expressed protein. Liver egg burden was reduced significantly (20% and 38%) with an insoluble recombinant Sm-LAMP in two trials, but not with the soluble recombinant form. Parasite fecundity was not affected by either Sm-LAMP protein preparations in the trials. It is concluded that Sm-LAMP may provide limited protection towards S. mansoni infections but could be used in combination with other vaccine candidates, to provide more comprehensive protection.
Collapse
Affiliation(s)
- Sujeevi S. K. Nawaratna
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton Qld, 4343, Australia
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Geoffrey N. Gobert
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Charlene Willis
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Qld 4111, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Donald P. McManus
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Malcolm K. Jones
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton Qld, 4343, Australia
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| |
Collapse
|