1
|
Adam KY, Moses OM, Gitaka J, Walong E, Ogutu O, Ojwang SBO. Histomorphometric features of placentae from women having malaria and HIV coinfection with preterm births. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.30.23297751. [PMID: 37961170 PMCID: PMC10635241 DOI: 10.1101/2023.10.30.23297751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Malaria and HIV are associated with preterm births possibly due to partial maternal vascular malperfusion resulting from altered placental angiogenesis. There is a paucity of data describing structural changes associated with malaria and HIV coinfection in the placentae of preterm births thus limiting the understanding of biological mechanisms by which preterm birth occurs. Objectives This study aimed to determine the differences in clinical characteristics, placental parenchymal histological, and morphometric features of the terminal villous tree among women with malaria and HIV coinfection having preterm births. Methods Twenty-five placentae of preterm births with malaria and HIV coinfection (cases) were randomly selected and compared to twenty-five of those without both infections (controls). Light microscopy was used to determine histological features on H&E and MT-stained sections while histomorphometric features of the terminal villous were analyzed using image analysis software. Clinical data regarding maternal age, parity, marital status, level of education, gestational age and placental weight were compared. Results Placental weight, villous perimeter and area were significantly lower in cases as compared to controls 454g vs. 488g, 119.32μm vs. 130.47μm, and 937.93μm2 vs. 1132.88μm2 respectively. Increased syncytial knots and accelerated villous maturity were significantly increased in the cases. The relative risk of development of partial maternal vascular malperfusion was 2.1 (CI: 1.26-3.49). Conclusion These findings suggest that malaria and HIV coinfection leads to partial maternal vascular malperfusion that may lead to chronic hypoxia in the placenta and altered weight, villous perimeter and surface area. This may represent a mechanism by which malaria and HIV infection results in pre-term births.
Collapse
Affiliation(s)
- Khalil Y Adam
- Department of Obstetrics and Gynaecology, University of Nairobi. Kenya
- Basic Clinical and Translational Research Laboratory, Nairobi. Kenya
| | - Obimbo M Moses
- Department of Obstetrics and Gynaecology, University of Nairobi. Kenya
- Department of Human Anatomy and Physiology, University of Nairobi. Kenya
- Basic Clinical and Translational Research Laboratory, Nairobi. Kenya
| | - Jesse Gitaka
- College of Health Sciences, Mount Kenya University. Kenya
| | - Edwin Walong
- Department of Human Pathology, University of Nairobi. Kenya
| | - Omondi Ogutu
- Department of Obstetrics and Gynaecology, University of Nairobi. Kenya
| | | |
Collapse
|
2
|
Santiago VF, Dombrowski JG, Kawahara R, Rosa-Fernandes L, Mule SN, Murillo O, Santana TV, Coutinho JVP, Macedo-da-Silva J, Lazari LC, Peixoto EPM, Ramirez MI, Larsen MR, Marinho CRF, Palmisano G. Complement System Activation Is a Plasma Biomarker Signature during Malaria in Pregnancy. Genes (Basel) 2023; 14:1624. [PMID: 37628675 PMCID: PMC10454407 DOI: 10.3390/genes14081624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria in pregnancy (MiP) is a public health problem in malaria-endemic areas, contributing to detrimental outcomes for both mother and fetus. Primigravida and second-time mothers are most affected by severe anemia complications and babies with low birth weight compared to multigravida women. Infected erythrocytes (IE) reach the placenta, activating the immune response by placental monocyte infiltration and inflammation. However, specific markers of MiP result in poor outcomes, such as low birth weight, and intrauterine growth restriction for babies and maternal anemia in women infected with Plasmodium falciparum are limited. In this study, we identified the plasma proteome signature of a mouse model infected with Plasmodium berghei ANKA and pregnant women infected with Plasmodium falciparum infection using quantitative mass spectrometry-based proteomics. A total of 279 and 249 proteins were quantified in murine and human plasma samples, of which 28% and 30% were regulated proteins, respectively. Most of the regulated proteins in both organisms are involved in complement system activation during malaria in pregnancy. CBA anaphylatoxin assay confirmed the complement system activation by the increase in C3a and C4a anaphylatoxins in the infected plasma compared to non-infected plasma. Moreover, correlation analysis showed the association between complement system activation and reduced head circumference in newborns from Pf-infected mothers. The data obtained in this study highlight the correlation between the complement system and immune and newborn outcomes resulting from malaria in pregnancy.
Collapse
Affiliation(s)
- Veronica Feijoli Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jamille Gregorio Dombrowski
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Rebeca Kawahara
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Analytical Glycoimmunology Group, Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Simon Ngao Mule
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Oscar Murillo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Center Science at Tyler, Tyler, TX 75708, USA
| | - Thais Viggiani Santana
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Joao Victor Paccini Coutinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Lucas Cardoso Lazari
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Erika Paula Machado Peixoto
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marcel Ivan Ramirez
- Cell Biology Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | | | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
- Analytical Glycoimmunology Group, Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
3
|
Mardhiyyah K, Hariyanto T, Sardjono TW, Winarsih S, Nurseta T, Fitri LE. Fetal Growth Retardation is Associated with High Apoptotic Cells and Low VEGF Expression in Placenta of Malarial Pregnant Mice. Med Arch 2023; 77:258-262. [PMID: 37876558 PMCID: PMC10591248 DOI: 10.5455/medarh.2023.77.258-262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 10/26/2023] Open
Abstract
Background During pregnancy, pregnant women are susceptible to malaria, contributing significantly to maternal and infant mortality. Objective This research was conducted to study the effect of Plasmodium berghei infection in pregnant mice on fetal growth retardation through placental cell apoptosis and the change of local vascularization. Methods Eighteen pregnant Balb/c strain mice resulting from simultanously mating were divided into two groups those were nine pregnant mice used as non infected group and nine pregnant mice infected with Plasmodium berghei on day 9th post mating used as infected group respectively. On day 15th of post mating, all of the pregnant mice were killed. Fetal weights were measured using analytic balance. Apoptosis of placental cells and VEGF expression in the placental tissue were measured using immunohistochemistry. Results Result showed that there was sequestration of parasite-infected red blood cells (PRBCs) in intervillous space. Statistical analysis showed that the fetal weights in infected pregnant mice group was significantly lower than non infected one (p = 0.01), and the placental cell apoptosis in placental tissue of infected pregnant mice was significantly higher than the non infected one (p=0.00).There was also a significant difference on VEGF expression between infected group and non infected group (p= 0,00). Conclusion Plasmodium berghei infection in pregnant Balb/c mice can cause fetal growth retardation due to high of placental cell apoptosis and low VEGF expression.
Collapse
Affiliation(s)
- Kana Mardhiyyah
- Doctoral Program in Medical Science Faculty of Medicine Universitas Brawijaya, Malang, Indonesia
- Department of Biochemistry and Biomolecular Faculty of Medicine Universitas Brawijaya, Malang, Indonesia
| | - Tanto Hariyanto
- Department of Nursery Polytechnic Program Ministry of Health, Malang, Indonesia
| | - Teguh Wahju Sardjono
- Department of Parasitology Faculty of Medicine Universitas Brawijaya Malang, Indonesia
| | - Sri Winarsih
- Department of Pharmacy, Faculty of Medicine Universitas Brawijaya, Malang, Indonesia
| | - Tatit Nurseta
- Department of Obstetric and Gynaecology, Faculty of Medicine Universitas Brawijaya, Saiful Anwar General Hospital, Malang, Indonesia
| | - Loeki Enggar Fitri
- Department of Parasitology Faculty of Medicine Universitas Brawijaya Malang, Indonesia
| |
Collapse
|
4
|
Tran V, Weckman AM, Crowley VM, Cahill LS, Zhong K, Cabrera A, Elphinstone RE, Pearce V, Madanitsa M, Kalilani-Phiri L, Mwapasa V, Khairallah C, Conroy AL, Ter Kuile FO, Sled JG, Kain KC. The Angiopoietin-Tie2 axis contributes to placental vascular disruption and adverse birth outcomes in malaria in pregnancy. EBioMedicine 2021; 73:103683. [PMID: 34758414 PMCID: PMC8590041 DOI: 10.1016/j.ebiom.2021.103683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
Background Malaria during pregnancy is a major contributor to the global burden of adverse birth outcomes including fetal growth restriction, preterm birth, and fetal loss. Recent evidence supports a role for angiogenic dysregulation and perturbations to placental vascular development in the pathobiology of malaria in pregnancy. The Angiopoietin-Tie2 axis is critical for placental vascularization and remodeling. We hypothesized that disruption of this pathway would contribute to malaria-induced adverse birth outcomes. Methods Using samples from a previously conducted prospective cohort study of pregnant women in Malawi, we measured circulating levels of angiopoietin-1 (Angpt-1) and Angpt-2 by Luminex (n=1392). We used a preclinical model of malaria in pregnancy (Plasmodium berghei ANKA [PbA] in pregnant BALB/c mice), genetic disruption of Angpt-1 (Angpt1+/− mice), and micro-CT analysis of placental vasculature to test the hypothesis that disruptions to the Angpt-Tie2 axis by malaria during pregnancy would result in aberrant placental vasculature and adverse birth outcomes. Findings Decreased circulating levels of Angpt-1 and an increased ratio of Angpt-2/Angpt-1 across pregnancy were associated with malaria in pregnancy. In the preclinical model, PbA infection recapitulated disruptions to the Angiopoietin-Tie2 axis resulting in reduced fetal growth and viability. Malaria decreased placental Angpt-1 and Tie2 expression and acted synergistically with reduced Angpt-1 in heterozygous dams (Angpt1+/−), to worsen birth outcomes by impeding vascular remodeling required for placental function. Interpretation Collectively, these data support a mechanistic role for the Angpt-Tie2 axis in malaria in pregnancy, including a potential protective role for Angpt-1 in mitigating infection-associated adverse birth outcomes. Funding This work was supported by the Canadian Institutes of Health Research (CIHR), Canada Research Chair, and Toronto General Research Institute Postdoctoral Fellowship Award. The parent trial was supported by the European & Developing Countries Clinical Trials Partnership and the Malaria in Pregnancy Consortium, which was funded by the Bill & Melinda Gates Foundation. The funders had no role in design, analysis, or reporting of these studies.
Collapse
Affiliation(s)
- Vanessa Tran
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| | - Andrea M Weckman
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| | - Valerie M Crowley
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada
| | - Lindsay S Cahill
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - Kathleen Zhong
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada
| | - Ana Cabrera
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Canada
| | - Robyn E Elphinstone
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| | - Victoria Pearce
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada
| | - Mwayiwawo Madanitsa
- Department of Clinical Sciences, Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | | | - Victor Mwapasa
- College of Medicine, University of Malawi, Blantyre, Malawi
| | - Carole Khairallah
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrea L Conroy
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, United States
| | - Feiko O Ter Kuile
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - Kevin C Kain
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital Research Institute, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada; Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
TLR4-Endothelin Axis Controls Syncytiotrophoblast Motility and Confers Fetal Protection in Placental Malaria. Infect Immun 2021; 89:e0080920. [PMID: 34061587 DOI: 10.1128/iai.00809-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pregnancy-associated malaria is often associated with adverse pregnancy outcomes. Placental circulatory impairments are an intriguing and unsolved component of malaria pathophysiology. Here, we uncovered a Toll-like receptor 4 (TLR4)-TRIF-endothelin axis that controls trophoblast motility and is linked to fetal protection during Plasmodium infection. In a cohort of 401 pregnancies from northern Brazil, we found that infection during pregnancy reduced expression of endothelin receptor B in syncytiotrophoblasts, while endothelin expression was only affected during acute infection. We further show that quantitative expression of placental endothelin and endothelin receptor B proteins are differentially controlled by maternal and fetal TLR4 alleles. Using murine malaria models, we identified placental autonomous responses to malaria infection mediated by fetally encoded TLR4 that not only controlled placental endothelin gene expression but also correlated with fetal viability protection. In vitro assays showed that control of endothelin expression in fetal syncytiotrophoblasts exposed to Plasmodium-infected erythrocytes was dependent on TLR4 via the TRIF pathway but not MyD88 signaling. Time-lapse microscopy in syncytiotrophoblast primary cultures and cell invasion assays demonstrated that ablation of TLR4 or endothelin receptor blockade abrogates trophoblast collective motility and cell migration responses to infected erythrocytes. These results cohesively substantiate the hypothesis that fetal innate immune sensing, namely, the TRL4-TRIF pathway, exerts a fetal protective role during malaria infection by mediating syncytiotrophoblast vasoregulatory responses that counteract placental insufficiency.
Collapse
|
6
|
Dombrowski JG, Barateiro A, Peixoto EPM, Barros ABCDS, de Souza RM, Clark TG, Campino S, Wrenger C, Wunderlich G, Palmisano G, Epiphanio S, Gonçalves LA, Marinho CRF. Adverse pregnancy outcomes are associated with Plasmodium vivax malaria in a prospective cohort of women from the Brazilian Amazon. PLoS Negl Trop Dis 2021; 15:e0009390. [PMID: 33914739 PMCID: PMC8112668 DOI: 10.1371/journal.pntd.0009390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/11/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Malaria in Brazil represents one of the highest percentages of Latin America cases, where approximately 84% of infections are attributed to Plasmodium (P.) vivax. Despite the high incidence, many aspects of gestational malaria resulting from P. vivax infections remain poorly studied. As such, we aimed to evaluate the consequences of P. vivax infections during gestation on the health of mothers and their neonates in an endemic area of the Amazon. METHODS AND FINDINGS We have conducted an observational cohort study in Brazilian Amazon between January 2013 and April 2015. 600 pregnant women were enrolled and followed until delivery. After applying exclusion criteria, 329 mother-child pairs were included in the analysis. Clinical data regarding maternal infection, newborn's anthropometric measures, placental histopathological characteristics, and angiogenic and inflammatory factors were evaluated. The presence of plasma IgG against the P. vivax (Pv) MSP119 protein was used as marker of exposure and possible associations with pregnancy outcomes were analyzed. Multivariate logistic regression analysis revealed that P. vivax infections during the first trimester of pregnancy are associated with adverse gestational outcomes such as premature birth (adjusted odds ratio [aOR] 8.12, 95% confidence interval [95%CI] 2.69-24.54, p < 0.0001) and reduced head circumference (aOR 3.58, 95%CI 1.29-9.97, p = 0.01). Histopathology analysis showed marked differences between placentas from P. vivax-infected and non-infected pregnant women, especially regarding placental monocytes infiltrate. Placental levels of vasomodulatory factors such as angiopoietin-2 (ANG-2) and complement proteins such as C5a were also altered at delivery. Plasma levels of anti-PvMSP119 IgG in infected pregnant women were shown to be a reliable exposure marker; yet, with no association with improved pregnancy outcomes. CONCLUSIONS This study indicates that P. vivax malaria during the first trimester of pregnancy represents a higher likelihood of subsequent poor pregnancy outcomes associated with marked placental histologic modification and angiogenic/inflammatory imbalance. Additionally, our findings support the idea that antibodies against PvMSP119 are not protective against poor pregnancy outcomes induced by P. vivax infections.
Collapse
Affiliation(s)
| | - André Barateiro
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Taane Gregory Clark
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Susana Campino
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gerhard Wunderlich
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lígia Antunes Gonçalves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
7
|
Chua CLL, Hasang W, Rogerson SJ, Teo A. Poor Birth Outcomes in Malaria in Pregnancy: Recent Insights Into Mechanisms and Prevention Approaches. Front Immunol 2021; 12:621382. [PMID: 33790894 PMCID: PMC8005559 DOI: 10.3389/fimmu.2021.621382] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Pregnant women in malaria-endemic regions are susceptible to malaria in pregnancy, which has adverse consequences on birth outcomes, including having small for gestational age and preterm babies. These babies are likely to have low birthweights, which predisposes to infant mortality and lifelong morbidities. During malaria in pregnancy, Plasmodium falciparum-infected erythrocytes express a unique variant surface antigen, VAR2CSA, that mediates sequestration in the placenta. This process may initiate a range of host responses that contribute to placental inflammation and dysregulated placental development, which affects placental vasculogenesis, angiogenesis and nutrient transport. Collectively, these result in the impairment of placental functions, affecting fetal development. In this review, we provide an overview of malaria in pregnancy and the different pathological pathways leading to malaria in pregnancy-associated low birthweight. We also discuss current prevention and management strategies for malaria in pregnancy, and some potential therapeutic interventions that may improve birth outcomes. Lastly, we outline some priorities for future research that could bring us one step closer to reducing this health burden.
Collapse
Affiliation(s)
| | - Wina Hasang
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Teo
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Hansson H, Minja DTR, Moeller SL, Lusingu JPA, Bygbjerg IC, Yde AM, Jensen RW, Nag S, Msemo OA, Theander TG, Alifrangis M, Schmiegelow C. Reduced birth weight caused by sextuple drug resistant Plasmodium falciparum infection in early 2nd trimester. J Infect Dis 2021; 224:1605-1613. [PMID: 33684211 DOI: 10.1093/infdis/jiab117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/26/2021] [Indexed: 11/12/2022] Open
Abstract
Mutations in the Plasmodium falciparum genes Pfdhfr and Pfdhps, particularly the sextuple mutant haplotype threatens the antimalarial effectiveness of sulfadoxine-pyrimethamine as intermittent preventive treatment during pregnancy (IPTp). To explore the impact of sextuple mutant haplotype infections on outcome measures after provision of IPTp-SP, we monitored birth outcomes in women followed from prior to conception or from the first trimester until delivery. Women infected with sextuple haplotypes in early 2 nd trimester specifically, delivered newborns with a lower birth weight (-267g, 95% CI -454; -59, p=0·01) compared to women who did not have malaria during pregnancy and women infected with less SP resistant haplotypes (-461g, 95% CI -877; -44, p=0·03). Thus, sextuple haplotype infections seems to impact the effectiveness of SP for IPTp and directly impact birth outcome by lowering birth weight. Close monitoring and targeted malaria control during early pregnancy is therefore crucial to improve birth outcomes.
Collapse
Affiliation(s)
- Helle Hansson
- Department of Immunology and Microbiology, University of Copenhagen, Denmark and Department of Infectious Diseases, Copenhagen University Hospital, Blegdamsvej, Copenhagen N, Denmark
| | - Daniel T R Minja
- National Institute for Medical Research, Tanga Research Centre, Bombo Area, Tanga, Tanzania
| | - Sofie L Moeller
- Department of Immunology and Microbiology, University of Copenhagen, Denmark and Department of Infectious Diseases, Copenhagen University Hospital, Blegdamsvej, Copenhagen N, Denmark.,Global Health Section, Department of Public Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - John P A Lusingu
- National Institute for Medical Research, Tanga Research Centre, Bombo Area, Tanga, Tanzania
| | - Ib C Bygbjerg
- Department of Immunology and Microbiology, University of Copenhagen, Denmark and Department of Infectious Diseases, Copenhagen University Hospital, Blegdamsvej, Copenhagen N, Denmark.,Global Health Section, Department of Public Health, University of Copenhagen, Øster Farimagsgade, Copenhagen K, Denmark
| | - Anna-Mathilde Yde
- Department of Immunology and Microbiology, University of Copenhagen, Denmark and Department of Infectious Diseases, Copenhagen University Hospital, Blegdamsvej, Copenhagen N, Denmark
| | - Rasmus W Jensen
- Department of Immunology and Microbiology, University of Copenhagen, Denmark and Department of Infectious Diseases, Copenhagen University Hospital, Blegdamsvej, Copenhagen N, Denmark
| | - Sidsel Nag
- Department of Immunology and Microbiology, University of Copenhagen, Denmark and Department of Infectious Diseases, Copenhagen University Hospital, Blegdamsvej, Copenhagen N, Denmark
| | - Omari A Msemo
- National Institute for Medical Research, Tanga Research Centre, Bombo Area, Tanga, Tanzania
| | - Thor G Theander
- Department of Immunology and Microbiology, University of Copenhagen, Denmark and Department of Infectious Diseases, Copenhagen University Hospital, Blegdamsvej, Copenhagen N, Denmark
| | - Michael Alifrangis
- Department of Immunology and Microbiology, University of Copenhagen, Denmark and Department of Infectious Diseases, Copenhagen University Hospital, Blegdamsvej, Copenhagen N, Denmark
| | - Christentze Schmiegelow
- Department of Immunology and Microbiology, University of Copenhagen, Denmark and Department of Infectious Diseases, Copenhagen University Hospital, Blegdamsvej, Copenhagen N, Denmark
| |
Collapse
|
9
|
Moeller SL, Nyengaard JR, Larsen LG, Nielsen K, Bygbjerg IC, Msemo OA, Lusingu JPA, Minja DTR, Theander TG, Schmiegelow C. Malaria in Early Pregnancy and the Development of the Placental Vasculature. J Infect Dis 2020; 220:1425-1434. [PMID: 30590576 DOI: 10.1093/infdis/jiy735] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/26/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Pregnancy malaria has a negative impact on fetal outcome. It is uncertain whether infections in early pregnancy have a clinical impact by impeding the development of the placental vasculature. METHODS Tanzanian women (n = 138) were closely monitored during pregnancy. Placentas collected at birth were investigated using stereology to establish the characteristics of placental villi and vessels. Placental vasculature measures were compared between women infected with malaria and controls. RESULTS Compared with controls, placentas from women infected with malaria before a gestational age (GA) of 15 weeks had a decreased volume of transport villi (mean decrease [standard deviation], 12.45 [5.39] cm3; P = .02), an increased diffusion distance in diffusion vessels (mean increase, 3.33 [1.27] µm; P = .01), and a compensatory increase in diffusion vessel surface area (mean increase, 1.81 [0.74 m2]; P = .02). In women who had malaria before a GA of 15 weeks diffusion vessel surface area and transport vessel length distance were positive predictors for birth weight (multilinear regression: P = .007 and P = .055 for diffusion surface area and transport length, respectively) and GA at delivery (P = .005 and P = .04). CONCLUSIONS Malaria infection in early pregnancy impedes placental vascular development. The resulting phenotypic changes, which can be detected at delivery, are associated with birth weight and gestational length. CLINICAL TRIALS REGISTRATION NCT02191683.
Collapse
Affiliation(s)
| | - Jens R Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University
| | - Lise G Larsen
- Department of Pathology, Zealand University Hospital, Naestved, Denmark
| | | | - Ib C Bygbjerg
- Division of Global Health, Department of Public Health
| | | | - John P A Lusingu
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | | | - Thor G Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen
| | - Christentze Schmiegelow
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen
| |
Collapse
|
10
|
Liu J, Mosavati B, Oleinikov AV, Du E. Biosensors for Detection of Human Placental Pathologies: A Review of Emerging Technologies and Current Trends. Transl Res 2019; 213:23-49. [PMID: 31170377 PMCID: PMC6783355 DOI: 10.1016/j.trsl.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Substantial growth in the biosensor research has enabled novel, sensitive and point-of-care diagnosis of human diseases in the last decade. This paper presents an overview of the research in the field of biosensors that can potentially predict and diagnosis of common placental pathologies. A survey of biomarkers in maternal circulation and their characterization methods is presented, including markers of oxidative stress, angiogenic factors, placental debris, and inflammatory biomarkers that are associated with various pathophysiological processes in the context of pregnancy complications. Novel biosensors enabled by microfluidics technology and nanomaterials is then reviewed. Representative designs of plasmonic and electrochemical biosensors for highly sensitive and multiplexed detection of biomarkers, as well as on-chip sample preparation and sensing for automatic biomarker detection are illustrated. New trends in organ-on-a-chip based placental disease models are highlighted to illustrate the capability of these in vitro disease models in better understanding the complex pathophysiological processes, including mass transfer across the placental barrier, oxidative stress, inflammation, and malaria infection. Biosensor technologies that can be potentially embedded in the placental models for real time, label-free monitoring of these processes and events are suggested. Merger of cell culture in microfluidics and biosensing can provide significant potential for new developments in advanced placental models, and tools for diagnosis, drug screening and efficacy testing.
Collapse
Affiliation(s)
- Jia Liu
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Babak Mosavati
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
| | - E Du
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida; Charles E. Schmidt College of Science, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida.
| |
Collapse
|
11
|
Weckman AM, Ngai M, Wright J, McDonald CR, Kain KC. The Impact of Infection in Pregnancy on Placental Vascular Development and Adverse Birth Outcomes. Front Microbiol 2019; 10:1924. [PMID: 31507551 PMCID: PMC6713994 DOI: 10.3389/fmicb.2019.01924] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
Healthy fetal development is dependent on nutrient and oxygen transfer via the placenta. Optimal growth and function of placental vasculature is therefore essential to support in utero development. Vasculogenesis, the de novo formation of blood vessels, and angiogenesis, the branching and remodeling of existing vasculature, mediate the development and maturation of placental villi, which form the materno-fetal interface. Several lines of evidence indicate that systemic maternal infection and consequent inflammation can disrupt placental vasculogenesis and angiogenesis. The resulting alterations in placental hemodynamics impact fetal growth and contribute to poor birth outcomes including preterm delivery, small-for-gestational age (SGA), stillbirth, and low birth weight (LBW). Furthermore, pathways involved in maternal immune activation and placental vascularization parallel those involved in normal fetal development, notably neurovascular development. Therefore, immune-mediated disruption of angiogenic pathways at the materno-fetal interface may also have long-term neurological consequences for offspring. Here, we review current literature evaluating the influence of maternal infection and immune activation at the materno-fetal interface and the subsequent impact on placental vascular function and birth outcome. Immunomodulatory pathways, including chemokines and cytokines released in response to maternal infection, interact closely with the principal pathways regulating placental vascular development, including the angiopoietin-Tie-2, vascular endothelial growth factor (VEGF), and placental growth factor (PlGF) pathways. A detailed mechanistic understanding of how maternal infections impact placental and fetal development is critical to the design of effective interventions to promote placental growth and function and thereby reduce adverse birth outcomes.
Collapse
Affiliation(s)
- Andrea M Weckman
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Michelle Ngai
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Julie Wright
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Chloe R McDonald
- SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Kevin C Kain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,SAR Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada.,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Pandya Y, Penha-Gonçalves C. Maternal-Fetal Conflict During Infection: Lessons From a Mouse Model of Placental Malaria. Front Microbiol 2019; 10:1126. [PMID: 31178840 PMCID: PMC6542978 DOI: 10.3389/fmicb.2019.01126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Infections that reach the placenta via maternal blood can target the fetal-placental barrier and are associated with reduced birth weight, increased stillbirth, miscarriage and perinatal mortality. Malaria during pregnancy can lead to infection of the placental tissue and to adverse effects on the unborn child even if the parasite is successfully cleared, indicating that placental sufficiency is significantly compromised. Human samples and animal models of placental malaria have been used to unravel mechanisms contributing to this insufficiency and have implicated molecular pathways related to inflammation, innate immunity and nutrient transport. Remarkably, fetal TLR4 was found to take part in placental responses that protect the fetus, in contrast to maternal TLR4 responses that presumably preserve the mother‘s health but result in reduced fetal viability. We propose that this conflict of fetal and maternal responses is a determinant of the clinical outcomes of placental malaria and that fetally derived trophoblasts are on the front lines of this conflict.
Collapse
Affiliation(s)
- Yash Pandya
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
13
|
Impact of HIV-1 infection on the IGF-1 axis and angiogenic factors in pregnant Cameroonian women receiving antiretroviral therapy. PLoS One 2019; 14:e0215825. [PMID: 31042729 PMCID: PMC6493724 DOI: 10.1371/journal.pone.0215825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Although mother-to-child transmission of HIV has dramatically declined, the number of in utero HIV-exposed, uninfected infants is on the increase. HIV-exposed infants are at an increased risk of mortality, morbidity and slower early growth than their non-HIV exposed counterparts. Maternal HIV increases the risk of having preterm deliveries, intrauterine growth restriction and low birth weight babies. However, the mechanism underlying dysregulation of fetal growth in HIV-infected pregnant women is unknown. We sought to determine whether maternal HIV is associated with dysregulation of the insulin-like growth factor (IGF) axis, some angiogenic factors or other related biomarkers that regulate fetal growth. A total of 102 normotensive pregnant women were enrolled in a small cross-sectional study. Amongst these were thirty-one HIV-1 positive women receiving combination antiretroviral therapy (cART) (Mean age: 30.0 ± 5.1 years; % on ART: 83.9%; median plasma viral load: 683 copies/ml; median CD4 count: 350 cells/ul) and 71 HIV uninfected women (mean age: 27.3 ± 5.8) recruited at delivery. A panel of biomarkers including IGF1 and IGF binding proteins (IGFBP1, IGFBP3), angiopoietins (ANG) 1 and 2, matrix metalloproteinases (MMP) 2 and 9, and galectin 13, was measured in plasma collected from the placental intervillous space. The levels of IGF1, IGFBP1, ANG1, ANG2, MMP2, MMP9 and Gal-13 were not affected by maternal HIV, even when adjusted for maternal factors in linear regression models (all p>0.05). It was observed that HIV-infection in pregnancy did not significantly affect key markers of the IGF axis and angiogenic factors. If anything, it did not affect women. These findings highlight the importance of the use of ART during pregnancy, which maintains factors necessary for fetal development closer to those of healthy women. However, decrease in IGF1 levels might be exacerbated in women con-infected with HIV and malaria.
Collapse
|
14
|
Park MK, Ko EJ, Jeon KY, Kim H, Jo JO, Baek KW, Kang YJ, Choi YH, Hong Y, Ock MS, Cha HJ. Induction of Angiogenesis by Malarial Infection through Hypoxia Dependent Manner. THE KOREAN JOURNAL OF PARASITOLOGY 2019; 57:117-125. [PMID: 31104403 PMCID: PMC6526210 DOI: 10.3347/kjp.2019.57.2.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
Abstract
Malarial infection induces tissue hypoxia in the host through destruction of red blood cells. Tissue hypoxia in malarial infection may increase the activity of HIF1α through an intracellular oxygen-sensing pathway. Activation of HIF1α may also induce vascular endothelial growth factor (VEGF) to trigger angiogenesis. To investigate whether malarial infection actually generates hypoxia-induced angiogenesis, we analyzed severity of hypoxia, the expression of hypoxia-related angiogenic factors, and numbers of blood vessels in various tissues infected with Plasmodium berghei. Infection in mice was performed by intraperitoneal injection of 2×106 parasitized red blood cells. After infection, we studied parasitemia and survival. We analyzed hypoxia, numbers of blood vessels, and expression of hypoxia-related angiogenic factors including VEGF and HIF1α. We used Western blot, immunofluorescence, and immunohistochemistry to analyze various tissues from Plasmodium berghei-infected mice. In malaria-infected mice, parasitemia was increased over the duration of infection and directly associated with mortality rate. Expression of VEGF and HIF1α increased with the parasitemia in various tissues. Additionally, numbers of blood vessels significantly increased in each tissue type of the malaria-infected group compared to the uninfected control group. These results suggest that malarial infection in mice activates hypoxia-induced angiogenesis by stimulation of HIF1α and VEGF in various tissues.
Collapse
Affiliation(s)
- Mi-Kyung Park
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Eun-Ji Ko
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
- Department of Biological Science, Pusan National University, Busan 46241, Korea
| | - Kyung-Yoon Jeon
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Hyunsu Kim
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
- Department of Biological Science, Pusan National University, Busan 46241, Korea
| | - Jin-Ok Jo
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Kyung-Wan Baek
- Department of Parasitology, College of Medicine, Pusan National University, Busan 50612, Korea
| | - Yun-Jeong Kang
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Korea
| | - Yeonchul Hong
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Korea
| |
Collapse
|
15
|
Seitz J, Morales-Prieto DM, Favaro RR, Schneider H, Markert UR. Molecular Principles of Intrauterine Growth Restriction in Plasmodium Falciparum Infection. Front Endocrinol (Lausanne) 2019; 10:98. [PMID: 30930847 PMCID: PMC6405475 DOI: 10.3389/fendo.2019.00098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Malaria in pregnancy still constitutes a particular medical challenge in tropical and subtropical regions. Of the five Plasmodium species that are pathogenic to humans, infection with Plasmodium falciparum leads to fulminant progression of the disease with massive impact on pregnancy. Severe anemia of the mother, miscarriage, stillbirth, preterm delivery and intrauterine growth restriction (IUGR) with reduced birth weight are frequent complications that lead to more than 10,000 maternal and 200,000 perinatal deaths annually in sub-Saharan Africa alone. P. falciparum can adhere to the placenta via the expression of the surface antigen VAR2CSA, which leads to sequestration of infected erythrocytes in the intervillous space. This process induces a placental inflammation with involvement of immune cells and humoral factors. Especially, monocytes get activated and change the release of soluble mediators, including a variety of cytokines. This proinflammatory environment contributes to disorders of angiogenesis, blood flow, autophagy, and nutrient transport in the placenta and erythropoiesis. Collectively, they impair placental functions and, consequently, fetal growth. The discovery that women in endemic regions develop a certain immunity against VAR2CSA-expressing parasites with increasing number of pregnancies has redefined the understanding of malaria in pregnancy and offers strategies for the development of vaccines. The following review gives an overview of molecular processes in P. falciparum infection in pregnancy which may be involved in the development of IUGR.
Collapse
Affiliation(s)
- Johanna Seitz
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | | | - Rodolfo R. Favaro
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Henning Schneider
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Udo Rudolf Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Jena, Germany
| |
Collapse
|
16
|
de Moraes LV, Barateiro A, Sousa PM, Penha-Gonçalves C. Bradykinin Sequestration by Plasmodium berghei Infected Erythrocytes Conditions B2R Signaling and Parasite Uptake by Fetal Trophoblasts. Front Microbiol 2018; 9:3106. [PMID: 30619185 PMCID: PMC6305765 DOI: 10.3389/fmicb.2018.03106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022] Open
Abstract
Plasmodium infection during pregnancy causes placental malfunction reducing fetus sustainability and leading to abortions, stillbirths, low birth weight or premature delivery. Accumulation of infected erythrocytes (IE) in the placenta is a key factor in placental malaria pathogenesis but the role played by fetal trophoblast that contact maternal blood has been neglected. Here we explore the hypothesis that interactions between Plasmodium-IE and fetal trophoblast cells impact on vasoactive alterations underlying placental dysfunction. We screened gene expression of key mediators in vasoactive pathways. We found that mRNA of bradykinin receptor 2 (B2R) and nitric oxide synthase (eNOS), as well as levels of bradykinin (BK), were decreased in late gestation placentas of pregnant Plasmodium berghei-infected mice. Co-culturing mouse trophoblasts with IE down-regulated B2R transcription and interleukin (IL)-6 secretion in a B2R-signaling dependent manner. IE showed increased levels of surface B2R and enhanced capacity to bind BK. We propose that down-regulation of B2R signaling in the course of IE–trophoblast interactions is due to BK sequestration by IE. In corroboration, levels of BK were lower in infected placentas and the positive correlation of B2R gene expression and fetal weight was disrupted by infection. This indicates that deregulation of the BK-B2R pathway is associated to placental dysfunction provoked by malaria infection. We further found that upon inhibition of B2R signaling, trophoblasts engulf IE to a lesser extent and show reduced production of IL-6. Our data suggest that BK sequestration by P. berghei represents a strategy for the parasite to ameliorate the risk of phagocytic capture by down modulating B2R activation.
Collapse
Affiliation(s)
| | - André Barateiro
- Disease Genetics, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | |
Collapse
|
17
|
Interferon- γ and Interleukin-10 Responses during Clinical Malaria Episodes in Infants Aged 0-2 Years Prenatally Exposed to Plasmodium falciparum: Tanzanian Birth Cohort. J Trop Med 2018; 2018:6847498. [PMID: 30154871 PMCID: PMC6091450 DOI: 10.1155/2018/6847498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 06/21/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022] Open
Abstract
Background Infants born to mothers with placental malaria are prenatally exposed to Plasmodium falciparum antigens. However, the effect of that exposure to subsequent immune responses has not been fully elucidated. This study aimed at determining the effect of prenatal exposure to P. falciparum on Interleukin-10 and Interferon-γ responses during clinical malaria episodes in the first 24 months of life. Methods This prospective cohort study involved 215 infants aged 0-2 years born to mothers with or without placental malaria. Enzyme-linked immunosorbent assay (ELISA) was used to determine levels of IL-10 and IFN-γ in infants and detect IgM in cord blood. Data were analyzed using SPSS version 20. Findings Geometric mean for IFN-γ in exposed infants was 557.9 pg/ml (95% CI: 511.6-604.1) and in unexposed infants it was 634.4 pg/ml (95% CI: 618.2-668.5) (P=0.02). Mean IL-10 was 22.4 pg/ml (95% CI: 19.4-28.4) and 15.1 pg/ml (95%CI: 12.4-17.6), respectively (P=0.01). Conclusions Prenatal exposure to P. falciparum antigens significantly affects IL-10 and IFN-γ responses during clinical malaria episodes in the first two years of life.
Collapse
|
18
|
Leligdowicz A, Richard-Greenblatt M, Wright J, Crowley VM, Kain KC. Endothelial Activation: The Ang/Tie Axis in Sepsis. Front Immunol 2018; 9:838. [PMID: 29740443 PMCID: PMC5928262 DOI: 10.3389/fimmu.2018.00838] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Sepsis, a dysregulated host response to infection that causes life-threatening organ dysfunction, is a highly heterogeneous syndrome with no specific treatment. Although sepsis can be caused by a wide variety of pathogenic organisms, endothelial dysfunction leading to vascular leak is a common mechanism of injury that contributes to the morbidity and mortality associated with the syndrome. Perturbations to the angiopoietin (Ang)/Tie2 axis cause endothelial cell activation and contribute to the pathogenesis of sepsis. In this review, we summarize how the Ang/Tie2 pathway is implicated in sepsis and describe its prognostic as well as therapeutic utility in life-threatening infections.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Melissa Richard-Greenblatt
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Julie Wright
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Valerie M Crowley
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Kevin C Kain
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Severe malaria: what's new on the pathogenesis front? Int J Parasitol 2016; 47:145-152. [PMID: 27670365 DOI: 10.1016/j.ijpara.2016.08.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022]
Abstract
Plasmodium falciparum causes the most severe and fatal form of malaria in humans with over half a million deaths each year. Cerebral malaria, a complex neurological syndrome of severe falciparum malaria, is often fatal and represents a major public health burden. Despite vigorous efforts, the pathophysiology of cerebral malaria remains to be elucidated, thereby hindering the development of adjunctive therapies. In recent years, multidisciplinary and collaborative approaches have led to groundbreaking progress both in the laboratory and in the field. Here we review the latest breakthroughs in severe malaria pathogenesis, with a specific focus on new pathogenetic mechanisms leading to cerebral malaria. The most recent findings point towards specific parasite phenotypes targeting brain microvasculature, endothelial dysfunction and subsequent oedema-induced brain swelling.
Collapse
|
20
|
Agbozo F, Abubakari A, Der J, Jahn A. Prevalence of low birth weight, macrosomia and stillbirth and their relationship to associated maternal risk factors in Hohoe Municipality, Ghana. Midwifery 2016; 40:200-6. [PMID: 27474932 DOI: 10.1016/j.midw.2016.06.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/20/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION birth weight is vital to the development potential of the newborn. Abnormal birth weight (such as low birth weight and macrosomia) is an important determinant of child survival, disabilities, stunting, and long-term adverse consequences for the onset of non-communicable diseases in the life course and therefore demands appropriate public health interventions. Stillbirths are also considered one of the most important, but most poorly understood and documented adverse outcomes of pregnancy. Therefore, this study aimed to assess the prevalence of abnormal birth weight and related maternal risk factors, as well as pregnancy outcomes, such as stillbirth. METHODS a retrospective study design was used to analyze 4262 delivery records for singleton pregnancies from January 2013 to December 2014 seen at the Hohoe municipal hospital, Volta region in Ghana. The data on birth weight and related factors were derived from the delivery book. Data was analyzed using STATA. Multinomial logistic regression was used to assess the association between maternal factors such as parity, age and intermittent preventive treatment of malaria, sex of infant and abnormal birth weight. Association between stillbirth and related factors was assessed using logistic regression. RESULTS prevalence of low birth weight (<2.5kg) was 9.69% and macrosomia (≥4.0kg) was 3.03%. There was an increased risk of a first born being of low birth weight than second or third born (RR; 2.04, CI; 1.59-2.64, p<0.0001). There were also an increased risks of mothers <20 years giving birth to low-birthweight infants (RR; 1.46, CI; 1.11-1.93, p=0.007) compared to mothers who were within the age ranges of 20-30 years and also among those who took only one (RR; 1.57, CI; 1.02-2.39, p=0.039) or no intermittent preventive treatment for malaria during pregnancy (RR; 1.57, CI; 1.24-1.98, p=<0.0001) compared to those who took three doses. Risk of macrosomic birth was particularly high among 5th born (RR; 2.66, CI; 1.43-4.95, p=0.002) compared to first or second born. Stillbirth rate was 27/1000 births. Thirty-two percent of the stillbirths (n=38) had low birth weight whereas 6.8% (n=8) were macrosomic. There was a greater than fivefold (AOR; 5.6, CI; 3.6-8.7) and greater than twofold (AOR; 2.4, CI; 1.1-5.3, p=0.025) increase in odds for stillbirth among low birth weight and macrosomic infants respectively. CONCLUSION macrosomia and low birth weight co-existed among infants in Hohoe municipality, both of which are associated with adverse pregnancy outcome such as stillbirth. Given the apparent association between maternal age <20 years and increased risk, health promotion strategies aimed at preventing pregnancies among teenagers could be implemented to aid the reduction of stillbirth rates.
Collapse
Affiliation(s)
- Faith Agbozo
- Department of Family and Community Health, School of Public Health, University of Health and Allied Health Sciences, Hohoe campus, Ho, Ghana; Institute of Public Health, Medical Faculty, University of Heidelberg, Germany
| | - Abdulai Abubakari
- Institute of Public Health, Medical Faculty, University of Heidelberg, Germany; Department of Community Nutrition, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana.
| | - Joyce Der
- Department of Epidemiology and Biostatistics, University of Health and Allied Sciences, Ghana
| | - Albrecht Jahn
- Institute of Public Health, Medical Faculty, University of Heidelberg, Germany
| |
Collapse
|
21
|
Lybbert J, Gullingsrud J, Chesnokov O, Turyakira E, Dhorda M, Guerin PJ, Piola P, Muehlenbachs A, Oleinikov AV. Abundance of megalin and Dab2 is reduced in syncytiotrophoblast during placental malaria, which may contribute to low birth weight. Sci Rep 2016; 6:24508. [PMID: 27072056 PMCID: PMC4829923 DOI: 10.1038/srep24508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/30/2016] [Indexed: 11/09/2022] Open
Abstract
Placental malaria caused by Plasmodium falciparum contributes to ~200,000 child deaths annually, mainly due to low birth weight (LBW). Parasitized erythrocyte sequestration and consequent inflammation in the placenta are common attributes of placental malaria. The precise molecular details of placental changes leading to LBW are still poorly understood. We hypothesized that placental malaria may disturb maternofetal exchange of vitamins, lipids, and hormones mediated by the multi-ligand (n ~ 50) scavenging/signaling receptor megalin, which is abundantly expressed in placenta but was not previously analyzed in pregnancy outcomes. We studied abundance of megalin and its intracellular adaptor protein Dab2 by immunofluorescence microscopy in placental biopsies from Ugandan women with (n = 8) and without (n = 20) active placental malaria. We found that: (a) abundances of both megalin (p = 0.01) and Dab2 (p = 0.006) were significantly reduced in brush border of syncytiotrophoblast of infected placentas; (b) amounts of megalin and Dab2 were strongly correlated (Spearman's r = 0.53, p = 0.003); (c) abundances of megalin and Dab2 (p = 0.046) were reduced in infected placentas from women with LBW deliveries. This study provides first evidence that placental malaria infection is associated with reduced abundance of megalin transport/signaling system and indicate that these changes may contribute to the pathology of LBW.
Collapse
Affiliation(s)
- Jared Lybbert
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Olga Chesnokov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | | | - Mehul Dhorda
- Centre for Tropical Medicine and Global health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Epicentre, Mbarara, Uganda
| | - Philippe J Guerin
- Centre for Tropical Medicine and Global health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Epicentre, Mbarara, Uganda
| | | | | | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.,Seattle Biomedical Research Institute, Seattle, WA, USA
| |
Collapse
|
22
|
Yanow SK, Gavina K, Gnidehou S, Maestre A. Impact of Malaria in Pregnancy as Latin America Approaches Elimination. Trends Parasitol 2016; 32:416-427. [PMID: 26875608 DOI: 10.1016/j.pt.2016.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 11/29/2022]
Abstract
In Latin America, four million pregnancies are at risk of malaria annually, but malaria in pregnancy is largely overlooked. As countries progress toward malaria elimination, targeting reservoirs of transmission is a priority. Pregnant women are an important risk group because they harbor asymptomatic infections and dormant liver stages of Plasmodium vivax that cause relapses. Of significant concern is the discovery that most infections in pregnant women fail to be detected by routine diagnostics. We review here recent findings on malaria in pregnancy within Latin America. We focus on the Amazon basin and Northwest Colombia, areas that harbor the greatest burden of malaria, and propose that more sensitive diagnostics and active surveillance at antenatal clinics will be necessary to eliminate malaria from these final frontiers.
Collapse
Affiliation(s)
- Stephanie K Yanow
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - Kenneth Gavina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Sedami Gnidehou
- Department of Biology, Campus Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda Maestre
- Grupo Salud y Comunidad, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|