1
|
Ryan U, Hill K, Deere D. Review of generic screening level assumptions for quantitative microbial risk assessment (QMRA) for estimating public health risks from Australian drinking water sources contaminated with Cryptosporidium by recreational activities. WATER RESEARCH 2022; 220:118659. [PMID: 35635918 DOI: 10.1016/j.watres.2022.118659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/26/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
As urban communities continue to grow, demand for recreational access (including swimming) in drinking water sources have increased, yet relatively little is understood about the public health implications this poses for drinking water consumers. Preventative risk-based approaches to catchment management, informed by quantitative microbial risk assessment (QMRA), requires accurate input data to effectively model risks. A sound understanding of the knowledge gaps is also important to comprehend levels of uncertainty and help prioritise research needs. Cryptosporidium is one of the most important causes of waterborne outbreaks of gastroenteritis globally due to its resistance to chlorine. This review was undertaken by Water Research Australia to provide the most up-to-date information on current Cryptosporidium epidemiological data and underlying assumptions for exposure assessment, dose response and risk assessment for generic components of QMRA for Cryptosporidium and highlights priorities for common research. Key interim recommendations and guidelines for numerical values for relatively simple screening level QMRA modelling are provided to help support prospective studies of risks to drinking water consumers from Cryptosporidium due to body-contact recreation in source water. The review does not cover site-specific considerations, such as the levels of activity in the source water, the influence of dilution and inactivation in reservoirs, or water treatment. Although the focus is Australia, the recommendations and numerical values developed in this review, and the highlighted research priorities, are broadly applicable across all drinking source water sources that allow recreational activities.
Collapse
Affiliation(s)
- U Ryan
- Harry Butler Institute, Murdoch University, 90 South Street, Perth, Australia.
| | - Kelly Hill
- Water Research Australia, 250 Victoria Square, Adelaide, South Australia, Australia
| | - Dan Deere
- Water Futures, Sydney, Australia and Water Research Australia, Australia
| |
Collapse
|
2
|
Shi X, Li J, Huang A, Song S, Yang Z. Assessing the Outbreak Risk of Epidemics Using Fuzzy Evidential Reasoning. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:2046-2064. [PMID: 33864640 PMCID: PMC8251401 DOI: 10.1111/risa.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Epidemic diseases (EDs) present a significant but challenging risk endangering public health, evidenced by the outbreak of COVID-19. Compared to other risks affecting public health such as flooding, EDs attract little attention in terms of risk assessment in the current literature. It does not well respond to the high practical demand for advanced techniques capable of tackling ED risks. To bridge this gap, an adapted fuzzy evidence reasoning method is proposed to realize the quantitative analysis of ED outbreak risk assessment (EDRA) with high uncertainty in risk data. The novelty of this article lies in (1) taking the lead to establish the outbreak risk evaluation system of epidemics covering the whole epidemic developing process, (2) combining quantitative and qualitative analysis in the fields of epidemic risk evaluation, (3) collecting substantial first-hand data by reviewing transaction data and interviewing the frontier experts and policymakers from Chinese Centers for Disease Control and Chinese National Medical Products Administration. This work provides useful insights for the regulatory bodies to (1) understand the risk levels of different EDs in a quantitative manner and (2) the sensitivity of different EDs to the identified risk factors for their effective control. For instance, in the case study, we use real data to disclose that influenza has the highest breakout risk level in Beijing. The proposed method also provides a potential tool for evaluating the outbreak risk of COVID-19.
Collapse
Affiliation(s)
- Xianliang Shi
- School of Economics and ManagementBeijing Jiaotong UniversityBeijingChina
| | - Jiangning Li
- School of Economics and ManagementBeijing Jiaotong UniversityBeijingChina
- Chinese National Medical Products AdministrationBeijingChina
| | - Anqiang Huang
- School of Economics and ManagementBeijing Jiaotong UniversityBeijingChina
| | - Shaohua Song
- School of Economics and ManagementBeijing Jiaotong UniversityBeijingChina
| | - Zaili Yang
- School of Maritime and Mechancial EngineeringJohn Moores Liverpool UniversityLiverpoolUK
| |
Collapse
|
3
|
Forbes O, Hosking R, Mokany K, Lal A. Bayesian spatio-temporal modelling to assess the role of extreme weather, land use change and socio-economic trends on cryptosporidiosis in Australia, 2001-2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148243. [PMID: 34412375 DOI: 10.1016/j.scitotenv.2021.148243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/23/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Intensification of land use threatens to increase the emergence and prevalence of zoonotic diseases, with an adverse impact on human wellbeing. Understanding how the interaction between agriculture, natural systems, climate and socioeconomic drivers influence zoonotic disease distribution is crucial to inform policy planning and management to limit the emergence of new infections. OBJECTIVES Here we assess the relative contribution of environmental, climatic and socioeconomic factors influencing reported cryptosporidiosis across Australia from 2001 to 2018. METHODS We apply a Bayesian spatio-temporal analysis using Integrated Nested Laplace Approximation (INLA). RESULTS We find that area-level risk of reported disease are associated with the proportions of the population under 5 and over 65 years of age, socioeconomic disadvantage, annual rainfall anomaly, and the proportion of natural habitat remaining. This combination of multiple factors influencing cryptosporidiosis highlights the benefits of a sophisticated spatio-temporal statistical approach. Two key findings from our model include: an estimated 4.6% increase in the risk of reported cryptosporidiosis associated with 22.8% higher percentage of postal area covered with original habitat; and an estimated 1.8% increase in disease risk associated with a 77.99 mm increase in annual rainfall anomaly at the postal area level. DISCUSSION These results provide novel insights regarding the predictive effects of extreme rainfall and the proportion of remaining natural habitat, which add unique explanatory power to the model alongside the variance associated with other predictive variables and spatiotemporal variation in reported disease. This demonstrates the importance of including perspectives from land and water management experts for policy making and public health responses to manage environmentally mediated diseases, including cryptosporidiosis.
Collapse
Affiliation(s)
- Owen Forbes
- Research School of Population Health, Australian National University, Acton, Australia; School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia; ARC Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), Brisbane, Australia
| | - Rose Hosking
- Research School of Population Health, Australian National University, Acton, Australia
| | - Karel Mokany
- Macroecological Modelling, CSIRO Land & Water, Black Mountain Laboratories, Canberra, ACT, Australia
| | - Aparna Lal
- Research School of Population Health, Australian National University, Acton, Australia.
| |
Collapse
|
4
|
Mohammadpour R, Champour M, Tuteja F, Mostafavi E. Zoonotic implications of camel diseases in Iran. Vet Med Sci 2020; 6:359-381. [PMID: 32160657 PMCID: PMC7397890 DOI: 10.1002/vms3.239] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 05/28/2019] [Accepted: 07/07/2019] [Indexed: 12/31/2022] Open
Abstract
Approximately 60% of all human pathogens and 75% of emerging infectious diseases are zoonotic (of animal origin). Camel zoonotic diseases can be encountered in all camel-rearing countries. In this article, all studies carried out on camel zoonotic diseases in Iran are reviewed to show the importance of camels for public health in this country. More than 900 published documents were systematically searched to find relevant studies from 1,890 until late 2018. The collected articles were classified according to the aetiological agents. In this study, 19 important zoonotic diseases were reported among Iranian camels including listeriosis, leptospirosis, plague, Q fever, brucellosis, campylobacteriosis, tuberculosis, pasteurellosis, clostridiosis, salmonellosis, Escherichia coli infections, rabies, camelpox, Middle East respiratory syndrome coronavirus, Crimean-Congo haemorrhagic fever, echinococcosis, cryptosporidiosis, toxoplasmosis and dermatophytosis, most of which belong to bacterial, viral, parasitic and fungal pathogens, respectively. Results show that camels are one of the most important sources of infections and diseases in human; therefore, continuous monitoring and inspection programs are necessary to prevent the outbreak of zoonotic diseases caused by this animal in humans.
Collapse
Affiliation(s)
- Roya Mohammadpour
- Department of Epidemiology and BiostatisticsResearch Centre for Emerging and Reemerging infectious diseasesPasteur Institute of IranTehranIran
| | - Mohsen Champour
- Department of Clinical SciencesSchool of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Fateh Tuteja
- National Research Centre on CamelBikanerRajasthanIndia
| | - Ehsan Mostafavi
- Department of Epidemiology and BiostatisticsResearch Centre for Emerging and Reemerging infectious diseasesPasteur Institute of IranTehranIran
| |
Collapse
|
5
|
Cullinan L, McLean S, Dunn L. Preventing and controlling Cryptosporidium spp. in aquatic facilities: environmental health practitioners' experiences in Victoria, Australia. Aust N Z J Public Health 2020; 44:233-239. [PMID: 32459385 DOI: 10.1111/1753-6405.12984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To identify barriers and enablers to preventing and controlling Cryptosporidium spp. in aquatic facilities as perceived by environmental health practitioners (EHPs). METHODS A qualitative, constructivist study with a purposive sample of seven EHPs from Victoria, Australia, was conducted. A focus group discussion was guided by a semi-structured interview schedule using open-ended questions. The audio-recorded focus group was transcribed verbatim and analysed using thematic analysis. RESULTS Five themes represented the perceived barriers and enablers: i) pool water testing methods; ii) resources and training for EHPs; iii) knowledge and behaviour of aquatic facility operators and swimming pool users; iv) regulation; and v) aquatic facility and swimming pool design. Two key barriers within these themes included aquatic facility regulation and unhealthy swimming behaviours. CONCLUSIONS Several barriers and enablers to preventing and controlling Cryptosporidium spp. in aquatic facilities were perceived by EHPs. Suggestions to overcome perceived barriers were also identified. Further research is required to determine the impact of these findings on the incidence of cryptosporidiosis associated with aquatic facilities. Implications for public health: The findings contribute to a greater understanding of the barriers and enablers to Cryptosporidium spp. prevention and control in aquatic facilities, which may improve the effectiveness of current prevention and control strategies.
Collapse
Affiliation(s)
- Lauren Cullinan
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Victoria
| | - Sarah McLean
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Victoria
| | - Louise Dunn
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Victoria
| |
Collapse
|
6
|
Russell S, Power M, Ens E. Cryptosporidium and Giardia in feral water buffalo (Bubalus bubalis) in the South East Arnhem Land Indigenous Protected Area, Australia. Parasitol Res 2020; 119:2149-2157. [PMID: 32424553 DOI: 10.1007/s00436-020-06703-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/28/2020] [Indexed: 12/01/2022]
Abstract
Global investigations have implicated water buffalo (Bubalus bubalis) as a potential source of zoonotic Cryptosporidium and Giardia parasites which may pose a threat to human health. In Australia, buffalo are a feral pest that have colonised the floodplains, wetlands and woodlands of Indigenous owned and managed Arnhem Land, in tropical monsoonal Northern Australia. Indigenous people from the remote community Ngukurr have raised concerns about the potential threat to their health from shared use of surface waters inhabited by buffalo, in the South East Arnhem Land Indigenous Protected Area (SEAL IPA), Northern Australia. Surface waters are valued by local Indigenous people for spiritual and customary reasons, bush foods, medicines and drinking water. Here, we used molecular methods to characterise Cryptosporidium spp. and Giardia duodenalis assemblages from feral water buffalo living in the SEAL IPA to determine potential zoonotic risks to health of Indigenous people through co-use of surface water billabongs. Buffalo faecal DNA was screened for Cryptosporidium and Giardia using the 18S rRNA gene. Giardia were also screened using Glutamate hydrogenase (gdh) and βeta-giardin (β-giardin) genes. DNA sequencing identified C. ryanae in 9.9% (31/313) and G. duodenalis assemblage E 1.9% (6/313) in buffalo. Cryptosporidium ryanae is not considered zoonotic and G. duodenalis assemblage E is a livestock assemblage that has been reported in humans. Carriage of G. duodenalis assemblage E in buffalo may present a disease risk for Indigenous people utilising billabongs, according to customary practice.
Collapse
Affiliation(s)
- Shaina Russell
- Department of Environmental Sciences, Macquarie University, University Avenue, North Ryde, NSW, 2109, Australia.
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, University Avenue, North Ryde, NSW, 2109, Australia
| | - Emilie Ens
- Department of Environmental Sciences, Macquarie University, University Avenue, North Ryde, NSW, 2109, Australia
| |
Collapse
|
7
|
Greenwood KP, Reid SA. Clustering of cryptosporidiosis in Queensland, Australia, is not defined temporally or by spatial diversity. Int J Parasitol 2020; 50:209-216. [PMID: 32126239 DOI: 10.1016/j.ijpara.2019.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/10/2019] [Accepted: 11/29/2019] [Indexed: 10/24/2022]
Abstract
Cryptosporidiosis, caused by infection with Cryptosporidium spp., is a globally distributed disease that manifests as diarrhoea for which there is no effective treatment. The protozoan parasite Cryptosporidium is difficult to detect and control, and can lead to severe disease in young children and the immunocompromised. Individual outbreaks across Australia have predominately been reported in urban areas associated with recreational water, but investigation of spatiotemporal distribution of disease is limited. This study evaluated the spatial and temporal patterns of clusters of notified cases of cryptosporidiosis in the north-eastern Australian state of Queensland, which has the highest average notified cases nationally. A spatiotemporal analysis in SaTScan of 12,263 notified cases from mid 2001 to mid 2015 identified 79 statistically significant disease clusters (P < 0.05). Analyses of annual incidence and disease cluster formation across the state illustrated the substantial randomness of clustering with no clear geographic distribution. Outbreaks were observed temporally across all latitudes and in rural and urban settings, with the majority of clusters centred in major and regional cities. Whilst clusters appeared in areas of high incidence, high incidence itself was not a predictor of clusters. Clusters generally formed during the hottest months between January and April, and cases were primarily children aged 0 to <5 years. Spatiotemporal analysis at a statewide level is an important indicator of regional disease patterns and can act as a trigger for targeted epidemiological investigation.
Collapse
Affiliation(s)
- Kathryn P Greenwood
- The University of Queensland, School of Public Health, Herston, Queensland 4006, Australia
| | - Simon A Reid
- The University of Queensland, School of Public Health, Herston, Queensland 4006, Australia.
| |
Collapse
|
8
|
Mavridou A, Pappa O, Papatzitze O, Dioli C, Kefala AM, Drossos P, Beloukas A. Exotic Tourist Destinations and Transmission of Infections by Swimming Pools and Hot Springs-A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2730. [PMID: 30513967 PMCID: PMC6313699 DOI: 10.3390/ijerph15122730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/18/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
A growing number of people undertake international travel, and yet faster growth of such travel is expected in the tropics. Information on the hazards presented by pool and hot spring waters in tropical countries is very limited. This review aims to collate available information on pool water quality, alongside data on cases and outbreaks associated with swimming in pools in tropical regions affecting both local populations and travellers. Bacteria species commonly causing cases and outbreaks in the tropics as well as elsewhere in the world were excluded, and the review focuses on studies related to pathogens that, with the exception of Cryptosporidium, are unusual in more temperate climates. Studies concerning subtropical countries were included in the light of climate change. Diseases transmitted by vectors breeding in poorly maintained, neglected or abandoned pools were also included. 83 studies dealing with Microsporidia, Leptospira spp., Schistosomas spp., Cryptosporidium spp., Acanthamoeba spp., Naegleria spp., Clostridium trachomatis, viruses, and vectors breeding in swimming pool and hot tub waters, and fulfilling predefined criteria, have been included in our survey of the literature. In conclusion, prevention strategies for pool safety in the tropics are imperative. Public health authorities need to provide guidance to westerners travelling to exotic destinations on how to protect their health in swimming pools.
Collapse
Affiliation(s)
- Athena Mavridou
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece.
| | - Olga Pappa
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece.
- Central Public Health Laboratory, Hellenic Centre of Disease Control and Prevention, 15123 Maroussi, Greece.
| | - Olga Papatzitze
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece.
- West Attica General Hospital, "Santa Barbara", 12351 Santa Barbara, Greece.
| | - Chrysa Dioli
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece.
| | | | - Panagiotis Drossos
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece.
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, 12243 Egaleo, Greece.
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, UK.
| |
Collapse
|
9
|
Lal A, Konings P. Beyond reasonable drought: hotspots reveal a link between the 'Big Dry' and cryptosporidiosis in Australia's Murray Darling Basin. JOURNAL OF WATER AND HEALTH 2018; 16:1033-1037. [PMID: 30540277 DOI: 10.2166/wh.2018.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is little evidence on how the health impacts of drought vary spatially and temporally. With a focus on waterborne cryptosporidiosis, we identify spatio-temporal hotspots and by using interrupted time series analysis, examine the impact of Australia's Big Dry (2001-2009) in these disease clusters in the Murray Darling Drainage Basin. Analyses revealed a statistically significant hotspot in the north of the Australian Capital Territory (ACT) and a hotspot in the north-eastern end of the basin in Queensland. After controlling for long-term trend and seasonality in cryptosporidiosis, interrupted time series analysis of reported cases in these hotspots indicated a statistically significant link with the Big Dry. In both areas, the end of the Big Dry was associated with a lower risk of reported cryptosporidiosis; in the ACT, the estimated relative risk (RR) was 0.16 (95% confidence interval: 0.07; 0.33), and in Queensland the RR was 0.42 (95% confidence interval: 0.19; 0.42). Although these data do not establish a causal association, this research highlights the potential for drought-related health risks.
Collapse
Affiliation(s)
- Aparna Lal
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Building 62A, Canberra, 2600, Australia E-mail:
| | - Paul Konings
- National Centre for Geographic and Resource Analysis in Primary Health Care, Australian National University, Canberra, 2600, Australia
| |
Collapse
|
10
|
Ng-Hublin JSY, Combs B, Reid S, Ryan U. Comparison of three cryptosporidiosis outbreaks in Western Australia: 2003, 2007 and 2011. Epidemiol Infect 2018; 146:1413-1424. [PMID: 29974834 PMCID: PMC9133686 DOI: 10.1017/s0950268818001607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/11/2018] [Accepted: 05/22/2018] [Indexed: 11/07/2022] Open
Abstract
Cryptosporidium is a protozoan parasite that causes the diarrhoeal disease, cryptosporidiosis. Although many species have been identified, the majority of human disease worldwide is caused by two species; Cryptosporidium parvum and Cryptosporidium hominis. In Australia, data from the National Notifiable Diseases Surveillance System (NNDSS) show that cryptosporidiosis outbreaks occur every few years. To better understand the transmission, trends and nature of cryptosporidiosis outbreaks in Western Australia, epidemiological and genomic data from three cryptosporidiosis outbreaks in 2003, 2007 and 2011 were reviewed. The 2007 outbreak was the largest (n = 607) compared with the outbreaks in 2003 (n = 404) and 2011 (n = 355). All three outbreaks appeared to have occurred predominantly in the urban metropolitan area (Perth), which reported the highest number of case notifications; increases in case notifications were also observed in rural and remote areas. Children aged 0-4 years and non-Aboriginal people comprised the majority of notifications in all outbreaks. However, in the 2003 and 2007 outbreaks, a higher proportion of cases from Aboriginal people was observed in the remote areas. Molecular data were only available for the 2007 (n = 126) and 2011 (n = 42) outbreaks, with C. hominis the main species identified in both outbreaks. Subtyping at the glycoprotein 60 (gp60) locus identified subtype IbA10G2 in 46.3% and 89.5% of C. hominis isolates typed, respectively, in the 2007 and 2011 outbreaks, with the IdA15G1 subtype was identified in 33.3% of C. hominis isolates typed in the 2007 outbreak. The clustering of cases with the IdA15G1 subtype in the remote areas suggests the occurrence of a concurrent outbreak in remote areas during the 2007 outbreak, which primarily affected Aboriginal people. Both the C. hominis IbA10G2 and IdA15G1 subtypes have been implicated in cryptosporidiosis outbreaks worldwide; its occurrence indicates that the mode of transmission in both the 2007 and 2011 outbreaks was anthroponotic. To better understand the epidemiology, sources and transmission of cryptosporidiosis in Australia, genotyping data should routinely be incorporated into national surveillance programmes.
Collapse
Affiliation(s)
- J. S. Y. Ng-Hublin
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - B. Combs
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - S. Reid
- The University of Queensland, School of Public Health, Herston, Queensland 4006, Australia
| | - U. Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| |
Collapse
|
11
|
Lal A, Marshall J, Benschop J, Brock A, Hales S, Baker MG, French NP. A Bayesian spatio-temporal framework to identify outbreaks and examine environmental and social risk factors for infectious diseases monitored by routine surveillance. Spat Spatiotemporal Epidemiol 2017; 25:39-48. [PMID: 29751891 DOI: 10.1016/j.sste.2017.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 06/21/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
Abstract
Spatio-temporal disease patterns can provide clues to etiological pathways, but can be complex to model. Using a flexible Bayesian hierarchical framework, we identify previously undetected space-time clusters and environmental and socio-demographic risk factors for reported giardiasis and cryptosporidiosis at the New Zealand small area level. For giardiasis, there was no seasonal pattern in outbreak probability and an inverse association with density of dairy cattle (β^1 = -0.09, Incidence Risk Ratio (IRR) 0.90 (95% CI 0.84, 0.97) per 1 log increase in cattle/km2). In dairy farming areas, cryptosporidiosis outbreaks were observed in spring. Reported cryptosporidiosis was positively associated with dairy cattle density: β^1 = 0.12, IRR 1.13 (95% CI 1.05, 1.21) per 1 log increase in cattle/km2 and inversely associated with weekly average temperature: β^1 = -0.07, IRR 0.92 (95% CI 0.87, 0.98) per 4 °C increase. This framework can be generalized to determine the potential drivers of sporadic cases and latent outbreaks of infectious diseases of public health importance.
Collapse
Affiliation(s)
- Aparna Lal
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Jonathan Marshall
- mEpiLab, Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Jackie Benschop
- mEpiLab, Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Aleisha Brock
- School of Nursing & Midwifery, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Simon Hales
- Department of Public Health, University of Otago School of Medical and Health Sciences, Wellington, New Zealand
| | - Michael G Baker
- Department of Public Health, University of Otago School of Medical and Health Sciences, Wellington, New Zealand
| | - Nigel P French
- mEpiLab, Infectious Disease Research Centre, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
12
|
Ng-Hublin JSY, Combs B, Reid S, Ryan U. Differences in the occurrence and epidemiology of cryptosporidiosis in Aboriginal and non-Aboriginal people in Western Australia (2002-2012). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 53:100-106. [PMID: 28536073 DOI: 10.1016/j.meegid.2017.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 01/08/2023]
Abstract
Cryptosporidiosis is a diarrhoeal illness caused by the protozoan parasite Cryptosporidium. In Australia, very little is known about the epidemiology of cryptosporidiosis in Aboriginal peoples. The present study analysed long-term cryptosporidiosis patterns across Western Australia (WA) (2001-2012), combined with genotyping and subtyping data at the 18S and glycoprotein 60 (gp60) loci respectively. Comparison of cryptosporidiosis notifications between Aboriginal and non-Aboriginal people in WA, revealed that notification rates among Aboriginal people were up to 50 times higher compared to non-Aboriginal people, highlighting the burden of the disease in this population. More than 90% of notifications were in Aboriginal children aged 00-04years, who had a notification rate 20.5 times higher than non-Aboriginal children in the same age group. Cryptosporidium hominis was the predominant species infecting both Aboriginal and non-Aboriginal people. However, Aboriginal people were mainly infected with the C. hominis IdA15G1 subtype, whereas non-Aboriginal people were predominantly infected with the IbA10G2 subtype. To control cryptosporidiosis in Aboriginal populations in Australia, effective health interventions/promotions need to be a priority for public health research and action.
Collapse
Affiliation(s)
| | - Barry Combs
- OzFoodNet Communicable Disease Control Directorate, Perth, Western Australia, Australia
| | - Simon Reid
- The University of Queensland, School of Public Health, Herston, Queensland 4006, Australia
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
13
|
Yu X, Zhang H, Zhu G. Characterization of Host Cell Mutants Significantly Resistant to Cryptosporidium parvum Infection. J Eukaryot Microbiol 2017; 64:843-849. [PMID: 28432811 DOI: 10.1111/jeu.12419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 11/30/2022]
Abstract
Cryptosporidium parvum is a parasitic protist and a causative agent of mild-to-severe diarrheal diseases in humans and animals. Despite its globally recognized importance, knowledge on the mechanism of parasite invasion and molecular interactions between host cells and the parasite is limited. Here, we report the establishment of 43 mutant cell lines derived from HCT-8 cells by UV-induced mutagenesis and the characterization of three mutants with significantly reduced susceptibility to cryptosporidial infection. Based on qRT-PCR assay performed at 18 h postinfection time, the parasite loads could be reduced by ~45%, ~35%, and ~20% in mutants A05, B08, and B12, respectively (p < 0.001 in all three mutants vs. HCT-8 cells). The mutagenesis mainly affected the attachment of parasite in A05 (i.e. ~30% reduction, p < 0.001 vs. HCT-8), and intracellular development in B08 and B12. The three cell mutants may serve as valuable reagents to further investigate the mechanism of parasite invasion and intracellular development by identifying the gene mutations associated with the parasite attachment (A05) and intracellular development (B08 and B12).
Collapse
Affiliation(s)
- Xue Yu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, Texas, USA
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, Texas, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, Texas, USA
| |
Collapse
|
14
|
Ryan U, Lawler S, Reid S. Limiting swimming pool outbreaks of cryptosporidiosis - the roles of regulations, staff, patrons and research. JOURNAL OF WATER AND HEALTH 2017; 15:1-16. [PMID: 28151435 DOI: 10.2166/wh.2016.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cryptosporidium is the leading cause of swimming pool outbreaks of gastroenteritis. Transmission occurs through the ingestion of oocysts that are passed in the faeces of an infected person or animal when an accidental faecal release event occurs. Cryptosporidium parasites present specific challenges for infection control as oocysts are highly resistant to chlorine levels used for pool disinfection, infected individuals can shed large numbers of oocysts, there is a long incubation period and shedding of oocysts occurs even after symptom resolution. The purposes of this review are to identify key barriers to limiting swimming pool-associated outbreaks of cryptosporidiosis and to outline needs for research and collaboration to advance co-ordinated management practices. We reviewed swimming pool-associated cryptosporidiosis outbreaks, disinfection teachniques, current regulations and the role of staff and patrons. Key barriers to limiting swimming pool-associated outbreaks of cryptosporidiosis are a lack of uniform national and international standards, poor adherence and understanding of regulations governing staff and patron behaviour, and low levels of public knowledge and awareness.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia E-mail:
| | - Sheleigh Lawler
- The University of Queensland, School of Public Health, Herston, Queensland 4006, Australia
| | - Simon Reid
- The University of Queensland, School of Public Health, Herston, Queensland 4006, Australia
| |
Collapse
|
15
|
Bamaiyi PH, Redhuan NEM. Prevalence and risk factors for cryptosporidiosis: a global, emerging, neglected zoonosis. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.1004.493] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background
Cryptosporidiosis is a zoonotic disease caused by the important parasitic diarrheal agent Cryptosporidium spp. Cryptosporidiosis occurs in all classes of animals and man with a rapidly expanding host range and increased importance since the occurrence of human immunodeficiency virus/acquired immunodeficiency syndrome in man.
Objectives
To review the global picture of cryptosporidiosis in man and animals with emphasis on prevalence and risk factors.
Methods
Current relevant literature on cryptosporidiosis was reviewed.
Results
Cryptosporidiosis is widely distributed and the risk factors vary from one region to another with hygiene and immune status as important risk factors.
Conclusions
Cryptosporidium spp. associated mortality has not only been reported in immune-compromised patients, but also in immune-competent patients. Yet in many countries not much attention is paid to the control and prevention of this infection in animals and man. The neglect of this disease despite the serious threat it poses to animals, their husbandry, and humans, has led the World Health Organization to list it among globally neglected diseases. To control and prevent this infection more effort needs to be directed at controlling the risk factors of the infection in man and animals.
Collapse
Affiliation(s)
- Pwaveno Huladeino Bamaiyi
- Faculty of Veterinary Medicine , Universiti Malaysia Kelantan , Kelantan 16100 , Malaysia
- Department of Public Health , School of Allied Health Sciences , Kampala International University , Kampala Uganda
| | | |
Collapse
|
16
|
Lal A. Spatial Modelling Tools to Integrate Public Health and Environmental Science, Illustrated with Infectious Cryptosporidiosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:186. [PMID: 26848669 PMCID: PMC4772206 DOI: 10.3390/ijerph13020186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/11/2016] [Accepted: 01/26/2016] [Indexed: 01/12/2023]
Abstract
Contemporary spatial modelling tools can help examine how environmental exposures such as climate and land use together with socio-economic factors sustain infectious disease transmission in humans. Spatial methods can account for interactions across global and local scales, geographic clustering and continuity of the exposure surface, key characteristics of many environmental influences. Using cryptosporidiosis as an example, this review illustrates how, in resource rich settings, spatial tools have been used to inform targeted intervention strategies and forecast future disease risk with scenarios of environmental change. When used in conjunction with molecular studies, they have helped determine location-specific infection sources and environmental transmission pathways. There is considerable scope for such methods to be used to identify data/infrastructure gaps and establish a baseline of disease burden in resource-limited settings. Spatial methods can help integrate public health and environmental science by identifying the linkages between the physical and socio-economic environment and health outcomes. Understanding the environmental and social context for disease spread is important for assessing the public health implications of projected environmental change.
Collapse
Affiliation(s)
- Aparna Lal
- National Centre for Epidemiology and Population Health, Research School of Population Health, Australian National University, Acton, Canberra 2602, Australia.
| |
Collapse
|