1
|
Holt CI, Dunning Hotopp JC. Updated annotation and meta-analysis of Brugia malayi transcriptomics data reveals consistent transcriptional profiles across time and space with some study-specific differences in adult female worm transcriptional profiles. PLoS Negl Trop Dis 2024; 18:e0012511. [PMID: 39325836 PMCID: PMC11460672 DOI: 10.1371/journal.pntd.0012511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/08/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Genomics, transcriptomics, and proteomics have significantly advanced our understanding of obligately host-associated microbes, where interrogation of the biology is often limited by the complexity of the biological system and limited tools. This includes the causative agents of many neglected tropical diseases, including filarial nematodes. Therefore, numerous transcriptomics studies have been undertaken on filarial nematodes. Most of these transcriptomics studies focus on Brugia malayi, which causes lymphatic filariasis and is a laboratory model for human filarial disease. Here, we undertook a meta-analysis of the publicly available B. malayi transcriptomics data enabling the direct cross comparison of samples from almost a dozen studies. This reanalysis highlights the consistency of transcriptomics results across many different studies and experimental designs from across the globe for over a decade of research, across many different generations of a sequencing technology, library preparation protocols, and differential expression tools. Males and microfilariae across samples had similar expression profiles. However, female samples were clustered into two differential expression patterns that were significantly different from one another. Largely, we confirm previous results for all studies reanalyzed including tissue-specific gene expression and anti-Wolbachia doxycycline treatment of microfilaria. However, we did not detect previously reported differential expression upon in vitro or in vivo treatment with ivermectin, albendazole, and DEC, instead identifying a consistent lack of transcriptomic change upon exposure to these anthelminthic drugs. Updated annotation has been provided that denotes poorly supported genes including those overlapping rRNAs.
Collapse
Affiliation(s)
- Christopher I. Holt
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Marriott AE, Dagley JL, Hegde S, Steven A, Fricks C, DiCosty U, Mansour A, Campbell EJ, Wilson CM, Gusovsky F, Ward SA, Hong WD, O'Neill P, Moorhead A, McCall S, McCall JW, Taylor MJ, Turner JD. Dirofilariasis mouse models for heartworm preclinical research. Front Microbiol 2023; 14:1208301. [PMID: 37426014 PMCID: PMC10324412 DOI: 10.3389/fmicb.2023.1208301] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Dirofilariasis, including heartworm disease, is a major emergent veterinary parasitic infection and a human zoonosis. Currently, experimental infections of cats and dogs are used in veterinary heartworm preclinical drug research. Methods As a refined alternative in vivo heartworm preventative drug screen, we assessed lymphopenic mouse strains with ablation of the interleukin-2/7 common gamma chain (γc) as susceptible to the larval development phase of Dirofilaria immitis. Results Non-obese diabetic (NOD) severe combined immunodeficiency (SCID)γc-/- (NSG and NXG) and recombination-activating gene (RAG)2-/-γc-/- mouse strains yielded viable D. immitis larvae at 2-4 weeks post-infection, including the use of different batches of D. immitis infectious larvae, different D. immitis isolates, and at different laboratories. Mice did not display any clinical signs associated with infection for up to 4 weeks. Developing larvae were found in subcutaneous and muscle fascia tissues, which is the natural site of this stage of heartworm in dogs. Compared with in vitro-propagated larvae at day 14, in vivo-derived larvae had completed the L4 molt, were significantly larger, and contained expanded Wolbachia endobacteria titres. We established an ex vivo L4 paralytic screening system whereby assays with moxidectin or levamisole highlighted discrepancies in relative drug sensitivities in comparison with in vitro-reared L4 D. immitis. We demonstrated effective depletion of Wolbachia by 70%-90% in D. immitis L4 following 2- to 7-day oral in vivo exposures of NSG- or NXG-infected mice with doxycycline or the rapid-acting investigational drug, AWZ1066S. We validated NSG and NXG D. immitis mouse models as a filaricide screen by in vivo treatments with single injections of moxidectin, which mediated a 60%-88% reduction in L4 larvae at 14-28 days. Discussion Future adoption of these mouse models will benefit end-user laboratories conducting research and development of novel heartworm preventatives via increased access, rapid turnaround, and reduced costs and may simultaneously decrease the need for experimental cat or dog use.
Collapse
Affiliation(s)
- A. E. Marriott
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - J. L. Dagley
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - S. Hegde
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - A. Steven
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - C. Fricks
- TRS Laboratories Inc, Athens, GA, United States
| | - U. DiCosty
- TRS Laboratories Inc, Athens, GA, United States
| | - A. Mansour
- TRS Laboratories Inc, Athens, GA, United States
| | - E. J. Campbell
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - C. M. Wilson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - F. Gusovsky
- Eisai Global Health, Cambridge, MA, United States
| | - S. A. Ward
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - W. D. Hong
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - P. O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - A. Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - S. McCall
- TRS Laboratories Inc, Athens, GA, United States
| | - J. W. McCall
- TRS Laboratories Inc, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - M. J. Taylor
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - J. D. Turner
- Department of Tropical Disease Biology, Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
3
|
Gallo KJ, Wheeler NJ, Elmi AM, Airs PM, Zamanian M. Pharmacological Profiling of a Brugia malayi Muscarinic Acetylcholine Receptor as a Putative Antiparasitic Target. Antimicrob Agents Chemother 2023; 67:e0118822. [PMID: 36602350 PMCID: PMC9872666 DOI: 10.1128/aac.01188-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
The diversification of anthelmintic targets and mechanisms of action will help ensure the sustainable control of nematode infections in response to the growing threat of drug resistance. G protein-coupled receptors (GPCRs) are established drug targets in human medicine but remain unexploited as anthelmintic substrates despite their important roles in nematode neuromuscular and physiological processes. Bottlenecks in exploring the druggability of parasitic nematode GPCRs include a limited helminth genetic toolkit and difficulties establishing functional heterologous expression. In an effort to address some of these challenges, we profile the function and pharmacology of muscarinic acetylcholine receptors in the human parasite Brugia malayi, an etiological agent of human lymphatic filariasis. While acetylcholine-gated ion channels are intensely studied as targets of existing anthelmintics, comparatively little is known about metabotropic receptor contributions to parasite cholinergic signaling. Using multivariate phenotypic assays in microfilariae and adults, we show that nicotinic and muscarinic compounds disparately affect parasite fitness traits. We identify a putative G protein-linked acetylcholine receptor of B. malayi (Bma-GAR-3) that is highly expressed across intramammalian life stages and adapt spatial RNA in situ hybridization to map receptor transcripts to critical parasite tissues. Tissue-specific expression of Bma-gar-3 in Caenorhabditis elegans (body wall muscle, sensory neurons, and pharynx) enabled receptor deorphanization and pharmacological profiling in a nematode physiological context. Finally, we developed an image-based feeding assay as a reporter of pharyngeal activity to facilitate GPCR screening in parasitized strains. We expect that these receptor characterization approaches and improved knowledge of GARs as putative drug targets will further advance the study of GPCR biology across medically important nematodes.
Collapse
Affiliation(s)
- Kendra J. Gallo
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Abdifatah M. Elmi
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Marriott AE, Furlong Silva J, Pionnier N, Sjoberg H, Archer J, Steven A, Kempf D, Taylor MJ, Turner JD. A mouse infection model and long-term lymphatic endothelium co-culture system to evaluate drugs against adult Brugia malayi. PLoS Negl Trop Dis 2022; 16:e0010474. [PMID: 35671324 PMCID: PMC9205518 DOI: 10.1371/journal.pntd.0010474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/17/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022] Open
Abstract
The development of new drugs targeting adult-stage lymphatic filarial nematodes is hindered by the lack of a robust long-term in vitro culture model. Testing potential direct-acting and anti-Wolbachia therapeutic candidates against adult lymphatic filariae in vitro requires their propagation via chronic infection of gerbils. We evaluated Brugia malayi parasite burden data from male Mongolian gerbils compared with two immune-deficient mouse strains highly susceptible to B. malayi: CB.17 Severe-Combined Immmuno-Deficient (SCID) and interleukin-4 receptor alpha, interleukin-5 double knockout (IL-4Rα-/-IL-5-/-) mice. Adult worms generated in IL-4Rα-/-IL-5-/- mice were tested with different feeder cells (human embryonic kidney cells, human adult dermal lymphatic endothelial cells and human THP-1 monocyte differentiated macrophages) and comparative cell-free conditions to optimise and validate a long-term in vitro culture system. Cultured parasites were compared against those isolated from mice using motility scoring, metabolic viability assay (MTT), ex vivo microfilariae release assay and Wolbachia content by qPCR. A selected culture system was validated as a drug screen using reference anti-Wolbachia (doxycycline, ABBV-4083 / flubentylosin) or direct-acting compounds (flubendazole, suramin). BALB/c IL-4Rα-/-IL-5-/- or CB.17 SCID mice were superior to Mongolian gerbils in generating adult worms and supporting in vivo persistence for periods of up to 52 weeks. Adult females retrieved from BALB/c IL-4Rα-/-IL-5-/- mice could be cultured for up to 21 days in the presence of a lymphatic endothelial cell co-culture system with comparable motility, metabolic activity and Wolbachia titres to those maintained in vivo. Drug studies confirmed significant Wolbachia depletions or direct macrofilaricidal activities could be discerned when female B. malayi were cultured for 14 days. We therefore demonstrate a novel methodology to generate adult B. malayi in vivo and accurately evaluate drug efficacy ex vivo which may be adopted for drug screening with the dual benefit of reducing overall animal use and improving anti-filarial drug development.
Collapse
Affiliation(s)
- Amy E. Marriott
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Julio Furlong Silva
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Nicolas Pionnier
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Hanna Sjoberg
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - John Archer
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Andrew Steven
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Dale Kempf
- Pharmaceutical R&D, AbbVie, North Chicago, Illinois, United States of America
| | - Mark J. Taylor
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Joseph D. Turner
- Centre for Drugs and Diagnostics & Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Tuersong W, Zhou C, Wu S, Qin P, Wang C, Di W, Liu L, Liu H, Hu M. Comparative analysis on transcriptomics of ivermectin resistant and susceptible strains of Haemonchus contortus. Parasit Vectors 2022; 15:159. [PMID: 35524281 PMCID: PMC9077910 DOI: 10.1186/s13071-022-05274-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ivermectin (IVM) is one of the most important and widely used anthelmintics in veterinary medicine. However, its efficacy is increasingly compromised by widespread resistance, and the exact mechanism of IVM resistance remains unclear for most parasitic nematodes, including Haemonchus contortus, a blood-sucking parasitic nematode of small ruminants. Methods In this study, an H. contortus IVM-resistant strain from Zhaosu, Xinjiang, China, was isolated and assessed by the control test, faecal egg count reduction test (FECRT) and the larval development assay (LDA). Subsequently, comparative analyses on the transcriptomics of IVM-susceptible and IVM-resistant adult worms of this parasite were carried out using RNA sequencing (RNA-seq) and bioinformatics. Results In total, 543 (416 known, 127 novel) and 359 (309 known, 50 novel) differentially expressed genes (DEGs) were identified in male and female adult worms of the resistant strain compared with those of the susceptible strain, respectively. In addition to several previously known candidate genes which were supposed to be associated with IVM resistance and whose functions were involved in receptor activity, transport, and detoxification, we found some new potential target genes, including those related to lipid metabolism, structural constituent of cuticle, and important pathways such as antigen processing and presentation, lysosome, autophagy, apoptosis, and NOD1-like receptor signalling pathways. Finally, the results of quantitative real-time polymerase chain reaction confirmed that the transcriptional profiles of selected DEGs (male: 8 genes, female: 10 genes) were consistent with those obtained by the RNA-seq. Conclusions Our results indicate that IVM has multiple effects, including both neuromuscular and non-neuromuscular targets, and provide valuable information for further studies on the IVM resistance mechanism in H. contortus. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05274-y.
Collapse
Affiliation(s)
- Waresi Tuersong
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Caixian Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Simin Wu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Peixi Qin
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hui Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
6
|
Airs PM, Vaccaro K, Gallo KJ, Dinguirard N, Heimark ZW, Wheeler NJ, He J, Weiss KR, Schroeder NE, Huisken J, Zamanian M. Spatial transcriptomics reveals antiparasitic targets associated with essential behaviors in the human parasite Brugia malayi. PLoS Pathog 2022; 18:e1010399. [PMID: 35390105 PMCID: PMC9017939 DOI: 10.1371/journal.ppat.1010399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/19/2022] [Accepted: 02/25/2022] [Indexed: 01/24/2023] Open
Abstract
Lymphatic filariasis (LF) is a chronic debilitating neglected tropical disease (NTD) caused by mosquito-transmitted nematodes that afflicts over 60 million people. Control of LF relies on routine mass drug administration with antiparasitics that clear circulating larval parasites but are ineffective against adults. The development of effective adulticides is hampered by a poor understanding of the processes and tissues driving parasite survival in the host. The adult filariae head region contains essential tissues that control parasite feeding, sensory, secretory, and reproductive behaviors, which express promising molecular substrates for the development of antifilarial drugs, vaccines, and diagnostics. We have adapted spatial transcriptomic approaches to map gene expression patterns across these prioritized but historically intractable head tissues. Spatial and tissue-resolved data reveal distinct biases in the origins of known drug targets and secreted antigens. These data were used to identify potential new drug and vaccine targets, including putative hidden antigens expressed in the alimentary canal, and to spatially associate receptor subunits belonging to druggable families. Spatial transcriptomic approaches provide a powerful resource to aid gene function inference and seed antiparasitic discovery pipelines across helminths of relevance to human and animal health.
Collapse
Affiliation(s)
- Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kathy Vaccaro
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kendra J. Gallo
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary W. Heimark
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jiaye He
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Kurt R. Weiss
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Nathan E. Schroeder
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jan Huisken
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
7
|
Atkinson LE, McCoy CJ, Crooks BA, McKay FM, McVeigh P, McKenzie D, Irvine A, Harrington J, Rosa BA, Mitreva M, Marks NJ, Maule AG, Mousley A. Phylum-Spanning Neuropeptide GPCR Identification and Prioritization: Shaping Drug Target Discovery Pipelines for Nematode Parasite Control. Front Endocrinol (Lausanne) 2021; 12:718363. [PMID: 34659113 PMCID: PMC8515059 DOI: 10.3389/fendo.2021.718363] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 11/24/2022] Open
Abstract
Nematode parasites undermine human health and global food security. The frontline anthelmintic portfolio used to treat parasitic nematodes is threatened by the escalation of anthelmintic resistance, resulting in a demand for new drug targets for parasite control. Nematode neuropeptide signalling pathways represent an attractive source of novel drug targets which currently remain unexploited. The complexity of the nematode neuropeptidergic system challenges the discovery of new targets for parasite control, however recent advances in parasite 'omics' offers an opportunity for the in silico identification and prioritization of targets to seed anthelmintic discovery pipelines. In this study we employed Hidden Markov Model-based searches to identify ~1059 Caenorhabditis elegans neuropeptide G-protein coupled receptor (Ce-NP-GPCR) encoding gene homologs in the predicted protein datasets of 10 key parasitic nematodes that span several phylogenetic clades and lifestyles. We show that, whilst parasitic nematodes possess a reduced complement of Ce-NP-GPCRs, several receptors are broadly conserved across nematode species. To prioritize the most appealing parasitic nematode NP-GPCR anthelmintic targets, we developed a novel in silico nematode parasite drug target prioritization pipeline that incorporates pan-phylum NP-GPCR conservation, C. elegans-derived reverse genetics phenotype, and parasite life-stage specific expression datasets. Several NP-GPCRs emerge as the most attractive anthelmintic targets for broad spectrum nematode parasite control. Our analyses have also identified the most appropriate targets for species- and life stage- directed chemotherapies; in this context we have identified several NP-GPCRs with macrofilaricidal potential. These data focus functional validation efforts towards the most appealing NP-GPCR targets and, in addition, the prioritization strategy employed here provides a blueprint for parasitic nematode target selection beyond NP-GPCRs.
Collapse
Affiliation(s)
- Louise E. Atkinson
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ciaran J. McCoy
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Bethany A. Crooks
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Fiona M. McKay
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paul McVeigh
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Darrin McKenzie
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Allister Irvine
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - John Harrington
- Boehringer Ingelheim Animal Health, Athens, GA, United States
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| | - Nikki J. Marks
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Aaron G. Maule
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Angela Mousley
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- *Correspondence: Angela Mousley,
| |
Collapse
|
8
|
Wheeler NJ, Heimark ZW, Airs PM, Mann A, Bartholomay LC, Zamanian M. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLoS Biol 2020; 18:e3000723. [PMID: 32511224 PMCID: PMC7302863 DOI: 10.1371/journal.pbio.3000723] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 06/18/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
Lymphatic filariasis (LF) afflicts over 60 million people worldwide and leads to severe pathological outcomes in chronic cases. The nematode parasites (Nematoda: Filarioidea) that cause LF require both arthropod (mosquito) intermediate hosts and mammalian definitive hosts for their propagation. The invasion and migration of filarial worms through host tissues are complex and critical to survival, yet little is known about the receptors and signaling pathways that mediate directed migration in these medically important species. In order to better understand the role of chemosensory signaling in filarial worm taxis, we employ comparative genomics, transcriptomics, reverse genetics, and chemical approaches to identify putative chemosensory receptor proteins and perturb chemotaxis phenotypes in filarial worms. We find that chemoreceptor family size is correlated with the presence of environmental (extrahost) stages in nematode life cycles, and that filarial worms contain compact and highly diverged chemoreceptor complements and lineage-specific ion channels that are predicted to operate downstream of chemoreceptor activation. In Brugia malayi, an etiological agent of LF, chemoreceptor expression patterns correspond to distinct parasite migration events across the life cycle. To interrogate the role of chemosensation in the migration of larval worms, arthropod and mammalian infectious stage Brugia parasites were incubated in nicotinamide, an agonist of the nematode transient receptor potential (TRP) channel OSM-9. Exposure of microfilariae to nicotinamide alters intramosquito migration, and exposure of L3s reduces chemotaxis toward host-associated cues in vitro. Nicotinamide also potently modulates thermosensory responses in L3s, suggesting a polymodal sensory role for Brugia osm-9. Reverse genetic studies implicate both Brugia osm-9 and the cyclic nucleotide-gated (CNG) channel subunit tax-4 in larval chemotaxis toward host serum, and these ion channel subunits partially rescue sensory defects in Caenorhabditis elegans osm-9 and tax-4 knock-out strains. Together, these data reveal genetic and functional diversification of chemosensory signaling proteins in filarial worms and encourage a more thorough investigation of clade- and parasite-specific facets of nematode sensory receptor biology.
Collapse
Affiliation(s)
- Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary W. Heimark
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexis Mann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lyric C. Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
9
|
Quintana JF, Kumar S, Ivens A, Chow FWN, Hoy AM, Fulton A, Dickinson P, Martin C, Taylor M, Babayan SA, Buck AH. Comparative analysis of small RNAs released by the filarial nematode Litomosoides sigmodontis in vitro and in vivo. PLoS Negl Trop Dis 2019; 13:e0007811. [PMID: 31770367 PMCID: PMC6903752 DOI: 10.1371/journal.pntd.0007811] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/10/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background The release of small non-coding RNAs (sRNAs) has been reported in parasitic nematodes, trematodes and cestodes of medical and veterinary importance. However, little is known regarding the diversity and composition of sRNAs released by different lifecycle stages and the portion of sRNAs that persist in host tissues during filarial infection. This information is relevant to understanding potential roles of sRNAs in parasite-to-host communication, as well as to inform on the location within the host and time point at which they can be detected. Methodology and principal findings We have used small RNA (sRNA) sequencing analysis to identify sRNAs in replicate samples of the excretory-secretory (ES) products of developmental stages of the filarial nematode Litomosoides sigmodontis in vitro and compare this to the parasite-derived sRNA detected in host tissues. We show that all L. sigmodontis developmental stages release RNAs in vitro, including ribosomal RNA fragments, 5’-derived tRNA fragments (5’-tRFs) and, to a lesser extent, microRNAs (miRNAs). The gravid adult females (gAF) produce the largest diversity and abundance of miRNAs in the ES compared to the adult males or microfilariae. Analysis of sRNAs detected in serum and macrophages from infected animals reveals that parasite miRNAs are preferentially detected in vivo, compared to their low levels in the ES products, and identifies miR-92-3p and miR-71-5p as L. sigmodontis miRNAs that are stably detected in host cells in vivo. Conclusions Our results suggest that gravid adult female worms secrete the largest diversity of extracellular sRNAs compared to adult males or microfilariae. We further show differences in the parasite sRNA biotype distribution detected in vitro versus in vivo. We identify macrophages as one reservoir for parasite sRNA during infection, and confirm the presence of parasite miRNAs and tRNAs in host serum during patent infection. Lymphatic and visceral filariasis, as well as loiasis and onchocerciasis, are parasitic infections caused by filarial nematodes that can cause extensive and diverse clinical manifestations, including edemas of the lower limbs and visual impairment. These parasites successfully maintain a crosstalk with the immune system of their host and one potential mediator of this communication is extracellular small non-coding RNAs (sRNAs) released by the parasite. However, little is known of the mechanisms of sRNA export, how the exported sRNAs differ between lifecycle stages, and how the parasite microenvironment (e.g. in vitro vs. in vivo) contributes to the composition of sRNAs that can be detected. In this report, we show that all the developmental stages of the filarial parasite Litomosoides sigmodontis release sRNAs, which include tRNA fragments and miRNAs, in vitro. A subset of the miRNAs are differentially represented in the ES products between adult stages (males and gravid females) and larval stages (microfilariae) in vitro, however all of the miRNAs detected in serum or macrophages in vivo are present in the ES from all life stages. We show that the parasite-derived miRNAs are protected from degradation in vitro and are stable in vivo, as they are readily detectable in the serum of infected jirds. Several parasite miRNAs are also detected within macrophages purified from infected hosts, consistent with parasite RNAs having a yet unidentified functional role in host cells.
Collapse
Affiliation(s)
- Juan F. Quintana
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sujai Kumar
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Franklin W. N. Chow
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna M. Hoy
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Fulton
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Dickinson
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Coralie Martin
- Unite Molecules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universites, Museum national d’Histoire naturelle, CNRS, CP52, Paris, France
| | - Matthew Taylor
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon A. Babayan
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Amy H. Buck
- Institute of Immunology and Infection Research and Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Effects of diethylcarbamazine and ivermectin treatment on Brugia malayi gene expression in infected gerbils ( Meriones unguiculatus). ACTA ACUST UNITED AC 2019; 5. [PMID: 33777408 PMCID: PMC7994942 DOI: 10.1017/pao.2019.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lymphatic filariasis (LF) threatens nearly 20% of the world’s population and has handicapped one-third of the 120 million people currently infected. Current control and elimination programs for LF rely on mass drug administration of albendazole plus diethylcarbamazine (DEC) or ivermectin. Only the mechanism of action of albendazole is well understood. To gain a better insight into antifilarial drug action in vivo, we treated gerbils harbouring patent Brugia malayi infections with 6 mg kg−1 DEC, 0.15 mg kg−1 ivermectin or 1 mg kg−1 albendazole. Treatments had no effect on the numbers of worms present in the peritoneal cavity of treated animals, so effects on gene expression were a direct result of the drug and not complicated by dying parasites. Adults and microfilariae were collected 1 and 7 days post-treatment and RNA isolated for transcriptomic analysis. The experiment was repeated three times. Ivermectin treatment produced the most differentially expressed genes (DEGs), 113. DEC treatment yielded 61 DEGs. Albendazole treatment resulted in little change in gene expression, with only 6 genes affected. In total, nearly 200 DEGs were identified with little overlap between treatment groups, suggesting that these drugs may interfere in different ways with processes important for parasite survival, development, and reproduction.
Collapse
|
11
|
Anderson TJC, LoVerde PT, Le Clec'h W, Chevalier FD. Genetic Crosses and Linkage Mapping in Schistosome Parasites. Trends Parasitol 2018; 34:982-996. [PMID: 30150002 DOI: 10.1016/j.pt.2018.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Linkage mapping - utilizing experimental genetic crosses to examine cosegregation of phenotypic traits with genetic markers - is now 100 years old. Schistosome parasites are exquisitely well suited to linkage mapping approaches because genetic crosses can be conducted in the laboratory, thousands of progeny are produced, and elegant experimental work over the last 75 years has revealed heritable genetic variation in multiple biomedically important traits such as drug resistance, host specificity, and virulence. Application of this approach is timely because the improved genome assembly for Schistosoma mansoni and developing molecular toolkit for schistosomes increase our ability to link phenotype with genotype. We describe current progress and potential future directions of linkage mapping in schistosomes.
Collapse
Affiliation(s)
| | | | - Winka Le Clec'h
- Texas Biomedical Research Institute, San Antonio, Texas 78227, USA
| | | |
Collapse
|
12
|
Shepherd C, Wangchuk P, Loukas A. Of dogs and hookworms: man's best friend and his parasites as a model for translational biomedical research. Parasit Vectors 2018; 11:59. [PMID: 29370855 PMCID: PMC5785905 DOI: 10.1186/s13071-018-2621-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
We present evidence that the dog hookworm (Ancylostoma caninum) is underutilised in the study of host-parasite interactions, particularly as a proxy for the human-hookworm relationship. The inability to passage hookworms through all life stages in vitro means that adult stage hookworms have to be harvested from the gut of their definitive hosts for ex vivo research. This makes study of the human-hookworm interface difficult for technical and ethical reasons. The historical association of humans, dogs and hookworms presents a unique triad of positive evolutionary pressure to drive the A. caninum-canine interaction to reflect that of the human-hookworm relationship. Here we discuss A. caninum as a proxy for human hookworm infection and situate this hookworm model within the current research agenda, including the various 'omics' applications and the search for next generation biologics to treat a plethora of human diseases. Historically, the dog hookworm has been well described on a physiological and biochemical level, with an increasing understanding of its role as a human zoonosis. With its similarity to human hookworm, the recent publications of hookworm genomes and other omics databases, as well as the ready availability of these parasites for ex vivo culture, the dog hookworm presents itself as a valuable tool for discovery and translational research.
Collapse
Affiliation(s)
- Catherine Shepherd
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| | - Phurpa Wangchuk
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
| |
Collapse
|
13
|
Abstract
In the last 2 decades, renewed attention to neglected tropical diseases (NTDs) has spurred the development of antiparasitic agents, especially in light of emerging drug resistance. The need for new drugs has required in vitro screening methods using parasite culture. Furthermore, clinical laboratories sought to correlate in vitro susceptibility methods with treatment outcomes, most notably with malaria. Parasites with their various life cycles present greater complexity than bacteria, for which standardized susceptibility methods exist. This review catalogs the state-of-the-art methodologies used to evaluate the effects of drugs on key human parasites from the point of view of drug discovery as well as the need for laboratory methods that correlate with clinical outcomes.
Collapse
|
14
|
Bennuru S, O'Connell EM, Drame PM, Nutman TB. Mining Filarial Genomes for Diagnostic and Therapeutic Targets. Trends Parasitol 2017; 34:80-90. [PMID: 29031509 DOI: 10.1016/j.pt.2017.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 02/04/2023]
Abstract
Filarial infections of humans cause some of the most important neglected tropical diseases. The global efforts for eliminating filarial infections by mass drug administration programs may require additional tools (safe macrofilaricidal drugs, vaccines, and diagnostic biomarkers). The accurate and sensitive detection of viable parasites is essential for diagnosis and for surveillance programs. Current community-wide treatment modalities do not kill the adult filarial worms effectively; hence, there is a need to identify and develop safe macrofilaricidal drugs. High-throughput sequencing, mass spectroscopy methods and advances in computational biology have greatly accelerated the discovery process. Here, we describe post-genomic developments toward the identification of diagnostic biomarkers and drug targets for the filarial infection of humans.
Collapse
Affiliation(s)
- Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Elise M O'Connell
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Papa M Drame
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Affiliation(s)
- Sara Lustigman
- Molecular Parasitology, New York Blood Center, New York, NY, United States of America
- * E-mail:
| | - Alexandra Grote
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, United States of America
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, United States of America
- College of Global Public Health, New York University, New York, NY, United States of America
| |
Collapse
|
16
|
Rosa BA, McNulty SN, Mitreva M, Jasmer DP. Direct experimental manipulation of intestinal cells in Ascaris suum, with minor influences on the global transcriptome. Int J Parasitol 2017; 47:271-279. [PMID: 28223178 DOI: 10.1016/j.ijpara.2016.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
Ascaris suum provides a powerful model for studying parasitic nematodes, including individual tissues such as the intestine, an established target for anthelmintic treatments. Here, we add a valuable experimental component to our existing functional, proteomic, transcriptomic and phylogenomic studies of the Ascaris suum intestine, by developing a method to manipulate intestinal cell functions via direct delivery of experimental treatments (in this case, double-stranded (ds)RNA) to the apical intestinal membrane. We developed an intestinal perfusion method for direct, controlled delivery of dsRNA/heterogeneous small interfering (hsi) RNA into the intestinal lumen for experimentation. RNA-Seq (22 samples) was used to assess influences of the method on global intestinal gene expression. Successful mRNA-specific knockdown in intestinal cells of adult A. suum was accomplished with this new experimental method. Global transcriptional profiling confirmed that targeted transcripts were knocked down more significantly than any others, with only 12 (0.07% of all genes) or 238 (1.3%) off-target gene transcripts consistently differentially regulated by dsRNA treatment or the perfusion experimental design, respectively (after 24h). The system supports controlled, effective delivery of treatments (dsRNA/hsiRNA) to the apical intestinal membrane with relatively minor off-target effects, and builds on our experimental model to dissect A. suum intestinal cell functions with broad relevance to parasitic nematodes.
Collapse
Affiliation(s)
- Bruce A Rosa
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Samantha N McNulty
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Makedonka Mitreva
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Douglas P Jasmer
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
17
|
O'Neill M, Ballesteros C, Tritten L, Burkman E, Zaky WI, Xia J, Moorhead A, Williams SA, Geary TG. Profiling the macrofilaricidal effects of flubendazole on adult female Brugia malayi using RNAseq. Int J Parasitol Drugs Drug Resist 2016; 6:288-296. [PMID: 27733308 PMCID: PMC5196492 DOI: 10.1016/j.ijpddr.2016.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 11/30/2022]
Abstract
The use of microfilaricidal drugs for the control of onchocerciasis and lymphatic filariasis (LF) necessitates prolonged yearly dosing. Prospects for elimination or eradication of these diseases would be enhanced by the availability of a macrofilaricidal drug. Flubendazole (FLBZ), a benzimidazole anthelmintic, is an appealing candidate. FLBZ has demonstrated potent macrofilaricidal effects in a number of experimental rodent models and in one human trial. Unfortunately, FLBZ was deemed unsatisfactory for use in mass drug administration campaigns due to its limited oral bioavailability. A new formulation that enables sufficient bioavailability following oral administration could render FLBZ an effective treatment for onchocerciasis and LF. Identification of drug-derived effects is important in ascertaining a dosage regimen which is predicted to be lethal to the parasite in situ. In previous histological studies, exposure to FLBZ induced damage to tissues required for reproduction and survival at pharmacologically relevant concentrations. However, more precise and quantitative indices of drug effects are needed. This study assessed drug effects using a transcriptomic approach to confirm effects observed histologically and to identify genes which were differentially expressed in treated adult female Brugia malayi. Comparative analysis across different concentrations (1 μM and 5 μM) and durations (48 and 120 h) provided an overview of the processes which are affected by FLBZ exposure. Genes with dysregulated expression were consistent with the reproductive effects observed via histology in our previous studies. This study revealed transcriptional changes in genes involved in embryo development. Additionally, significant downregulation was observed in genes encoding cuticle components, which may reflect changes in developing embryos, the adult worm cuticle or both. These data support the hypothesis that FLBZ acts predominantly on rapidly dividing cells, and provides a basis for selecting molecular markers of drug-induced damage which may be of use in predicting efficacious FLBZ regimens.
Collapse
Affiliation(s)
- Maeghan O'Neill
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Cristina Ballesteros
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Lucienne Tritten
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Erica Burkman
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA; Filariasis Research Reagent Resource Center, Smith College, Northampton, MA 01063, USA
| | - Weam I Zaky
- Filariasis Research Reagent Resource Center, Smith College, Northampton, MA 01063, USA; Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Jianguo Xia
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada; Department of Animal Science, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Andrew Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA; Filariasis Research Reagent Resource Center, Smith College, Northampton, MA 01063, USA
| | - Steven A Williams
- Filariasis Research Reagent Resource Center, Smith College, Northampton, MA 01063, USA; Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Timothy G Geary
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
18
|
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite - a comprehensive resource for helminth genomics. Mol Biochem Parasitol 2016; 215:2-10. [PMID: 27899279 PMCID: PMC5486357 DOI: 10.1016/j.molbiopara.2016.11.005] [Citation(s) in RCA: 412] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 12/02/2022]
Abstract
WormBase ParaSite is a new resource for helminth genomics. The resource provides access to over 100 nematode and platyhelminth genomes. The genomes are consistently annotated, organised and presented. A variety of views and tools for exploring and querying the data are provided.
The number of publicly available parasitic worm genome sequences has increased dramatically in the past three years, and research interest in helminth functional genomics is now quickly gathering pace in response to the foundation that has been laid by these collective efforts. A systematic approach to the organisation, curation, analysis and presentation of these data is clearly vital for maximising the utility of these data to researchers. We have developed a portal called WormBase ParaSite (http://parasite.wormbase.org) for interrogating helminth genomes on a large scale. Data from over 100 nematode and platyhelminth species are integrated, adding value by way of systematic and consistent functional annotation (e.g. protein domains and Gene Ontology terms), gene expression analysis (e.g. alignment of life-stage specific transcriptome data sets), and comparative analysis (e.g. orthologues and paralogues). We provide several ways of exploring the data, including genome browsers, genome and gene summary pages, text search, sequence search, a query wizard, bulk downloads, and programmatic interfaces. In this review, we provide an overview of the back-end infrastructure and analysis behind WormBase ParaSite, and the displays and tools available to users for interrogating helminth genomic data.
Collapse
Affiliation(s)
- Kevin L Howe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Bruce J Bolt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Myriam Shafie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Paul Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
19
|
Ballesteros C, Tritten L, O’Neill M, Burkman E, Zaky WI, Xia J, Moorhead A, Williams SA, Geary TG. The Effects of Ivermectin on Brugia malayi Females In Vitro: A Transcriptomic Approach. PLoS Negl Trop Dis 2016; 10:e0004929. [PMID: 27529747 PMCID: PMC4986938 DOI: 10.1371/journal.pntd.0004929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/26/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Lymphatic filariasis and onchocerciasis are disabling and disfiguring neglected tropical diseases of major importance in developing countries. Ivermectin is the drug of choice for mass drug administration programs for the control of onchocerciasis and lymphatic filariasis in areas where the diseases are co-endemic. Although ivermectin paralyzes somatic and pharyngeal muscles in many nematodes, these actions are poorly characterized in adult filariae. We hypothesize that paralysis of pharyngeal pumping by ivermectin in filariae could result in deprivation of essential nutrients, especially iron, inducing a wide range of responses evidenced by altered gene expression, changes in metabolic pathways, and altered developmental states in embryos. Previous studies have shown that ivermectin treatment significantly reduces microfilariae release from females within four days of exposure in vivo, while not markedly affecting adult worms. However, the mechanisms responsible for reduced production of microfilariae are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We analyzed transcriptomic profiles from Brugia malayi adult females, an important model for other filariae, using RNAseq technology after exposure in culture to ivermectin at various concentrations (100 nM, 300 nM and 1 μM) and time points (24, 48, 72 h, and 5 days). Our analysis revealed drug-related changes in expression of genes involved in meiosis, as well as oxidative phosphorylation, which were significantly down-regulated as early as 24 h post-exposure. RNA interference phenotypes of the orthologs of these down-regulated genes in C. elegans include "maternal sterile", "embryonic lethal", "larval arrest", "larval lethal" and "sick". CONCLUSION/SIGNIFICANCE These changes provide insight into the mechanisms involved in ivermectin-induced reduction in microfilaria output and impaired fertility, embryogenesis, and larval development.
Collapse
Affiliation(s)
- Cristina Ballesteros
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Lucienne Tritten
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Maeghan O’Neill
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Erica Burkman
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Filariasis Research Reagent Resource Center, Smith College, Northampton, Massachusetts, United States of America
| | - Weam I. Zaky
- Filariasis Research Reagent Resource Center, Smith College, Northampton, Massachusetts, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Jianguo Xia
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Andrew Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Filariasis Research Reagent Resource Center, Smith College, Northampton, Massachusetts, United States of America
| | - Steven A. Williams
- Filariasis Research Reagent Resource Center, Smith College, Northampton, Massachusetts, United States of America
| | - Timothy G. Geary
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|