1
|
Crilly NP, Zita MD, Beaver AK, Sysa-Shah P, Bhalodia A, Gabrielson K, Adamo L, Mugnier MR. A murine model of Trypanosoma brucei-induced myocarditis and cardiac dysfunction. Microbiol Spectr 2025; 13:e0162324. [PMID: 39791886 PMCID: PMC11792545 DOI: 10.1128/spectrum.01623-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025] Open
Abstract
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of T. brucei infection. Despite the importance of T. brucei as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of T. brucei-associated cardiomyopathy. We present the first clinically relevant, reproducible murine model of cardiac dysfunction in chronic T. brucei infection. Similar to humans, mice showed histological evidence of myocarditis and elevation of serum NT-proBNP with electrocardiographic abnormalities. Serum NT-proBNP levels were elevated prior to the development of severe ventricular dysfunction. On flow cytometry, myocarditis was associated with an increase of most myocardial immune cell populations, including multiple T cell and macrophage subsets, corroborating the notion that T. brucei-associated cardiac damage is an immune-mediated event. This novel mouse model represents a powerful and practical tool to investigate the pathogenesis of T. brucei-mediated heart damage and supports the development of therapeutic options for T. brucei-associated cardiac disease. In characterizing this model, we provide evidence that T. brucei causes cardiac disease, and we suggest that immunopathology is an important contributor to cardiac pathology. Along with other recent studies, our work demonstrates the importance of extravascular spaces, including the heart, for T. brucei pathogenesis. IMPORTANCE African trypanosomiasis is a neglected tropical disease affecting both people and cattle, which represents a major public health problem in sub-Saharan Africa with an enormous socioeconomic impact. Cardiac disease represents an underappreciated clinical manifestation of African trypanosomiasis that may lead to lifelong illness despite successful treatment of infection. However, this aspect of African trypanosomiasis remains poorly understood, partially due to a lack of well-characterized and practical animal models. In this study, we present the development and characterization of a novel, reproducible, and cost-effective mouse model of cardiac dysfunction in African trypanosomiasis. We demonstrate that this model recapitulates major features of cardiac dysfunction in natural infection, including the presence of parasites in the cardiac interstitial spaces, alterations of cardiac biomarkers, and functional changes. This model represents a resource to support the understanding of cardiac complications of trypanosomiasis and the development of new therapies to prevent and treat cardiac involvement in African trypanosomiasis.
Collapse
Affiliation(s)
- Nathan P Crilly
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marcelle Dina Zita
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander K Beaver
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Molecular Imaging Service Center and Cancer Functional Imaging Core, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Aashik Bhalodia
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kathy Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Monica R Mugnier
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
May DA, Taha F, Child MA, Ewald SE. How colonization bottlenecks, tissue niches, and transmission strategies shape protozoan infections. Trends Parasitol 2023; 39:1074-1086. [PMID: 37839913 DOI: 10.1016/j.pt.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Protozoan pathogens such as Plasmodium spp., Leishmania spp., Toxoplasma gondii, and Trypanosoma spp. are often associated with high-mortality, acute and chronic diseases of global health concern. For transmission and immune evasion, protozoans have evolved diverse strategies to interact with a range of host tissue environments. These interactions are linked to disease pathology, yet our understanding of the association between parasite colonization and host homeostatic disruption is limited. Recently developed techniques for cellular barcoding have the potential to uncover the biology regulating parasite transmission, dissemination, and the stability of infection. Understanding bottlenecks to infection and the in vivo tissue niches that facilitate chronic infection and spread has the potential to reveal new aspects of parasite biology.
Collapse
Affiliation(s)
- Dana A May
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Fatima Taha
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Matthew A Child
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Sarah E Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
3
|
Calvo-Alvarez E, Ngoune JMT, Sharma P, Cooper A, Camara A, Travaillé C, Crouzols A, MacLeod A, Rotureau B. FLAgellum Member 8 modulates extravascular distribution of African trypanosomes. PLoS Pathog 2023; 19:e1011220. [PMID: 38127941 PMCID: PMC10769064 DOI: 10.1371/journal.ppat.1011220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 01/05/2024] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
In the mammalian host, the biology of tissue-dwelling Trypanosoma brucei parasites is not completely understood, especially the mechanisms involved in their extravascular colonization. The trypanosome flagellum is an essential organelle in multiple aspects of the parasites' development. The flagellar protein termed FLAgellar Member 8 (FLAM8) acts as a docking platform for a pool of cyclic AMP response protein 3 (CARP3) that is involved in signaling. FLAM8 exhibits a stage-specific distribution suggesting specific functions in the mammalian and vector stages of the parasite. Analyses of knockdown and knockout trypanosomes in their mammalian forms demonstrated that FLAM8 is not essential in vitro for survival, growth, motility and stumpy differentiation. Functional investigations in experimental infections showed that FLAM8-deprived trypanosomes can establish and maintain an infection in the blood circulation and differentiate into insect transmissible forms. However, quantitative bioluminescence imaging and gene expression analysis revealed that FLAM8-null parasites exhibit a significantly impaired dissemination in the extravascular compartment, that is restored by the addition of a single rescue copy of FLAM8. In vitro trans-endothelial migration assays revealed significant defects in trypanosomes lacking FLAM8. FLAM8 is the first flagellar component shown to modulate T. brucei distribution in the host tissues, possibly through sensing functions, contributing to the maintenance of extravascular parasite populations in mammalian anatomical niches, especially in the skin.
Collapse
Affiliation(s)
- Estefanía Calvo-Alvarez
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jean Marc Tsagmo Ngoune
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - Parul Sharma
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, ED515 Complexité du Vivant, Paris, France
| | - Anneli Cooper
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary, and Life Sciences, Henry Wellcome Building for Comparative Medical Sciences, Glasgow, Scotland, United Kingdom
| | - Aïssata Camara
- Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea
| | - Christelle Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
- Photonic BioImaging (UTechS PBI), Institut Pasteur, Université Paris Cité, Paris, France
| | - Aline Crouzols
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary, and Life Sciences, Henry Wellcome Building for Comparative Medical Sciences, Glasgow, Scotland, United Kingdom
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, Université Paris Cité, Paris, France
- Parasitology Unit, Institut Pasteur of Guinea, Conakry, Guinea
| |
Collapse
|
4
|
Jamabo M, Mahlalela M, Edkins AL, Boshoff A. Tackling Sleeping Sickness: Current and Promising Therapeutics and Treatment Strategies. Int J Mol Sci 2023; 24:12529. [PMID: 37569903 PMCID: PMC10420020 DOI: 10.3390/ijms241512529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Human African trypanosomiasis is a neglected tropical disease caused by the extracellular protozoan parasite Trypanosoma brucei, and targeted for eradication by 2030. The COVID-19 pandemic contributed to the lengthening of the proposed time frame for eliminating human African trypanosomiasis as control programs were interrupted. Armed with extensive antigenic variation and the depletion of the B cell population during an infectious cycle, attempts to develop a vaccine have remained unachievable. With the absence of a vaccine, control of the disease has relied heavily on intensive screening measures and the use of drugs. The chemotherapeutics previously available for disease management were plagued by issues such as toxicity, resistance, and difficulty in administration. The approval of the latest and first oral drug, fexinidazole, is a major chemotherapeutic achievement for the treatment of human African trypanosomiasis in the past few decades. Timely and accurate diagnosis is essential for effective treatment, while poor compliance and resistance remain outstanding challenges. Drug discovery is on-going, and herein we review the recent advances in anti-trypanosomal drug discovery, including novel potential drug targets. The numerous challenges associated with disease eradication will also be addressed.
Collapse
Affiliation(s)
- Miebaka Jamabo
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Maduma Mahlalela
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| | - Adrienne L. Edkins
- Department of Biochemistry and Microbiology, Biomedical Biotechnology Research Centre (BioBRU), Rhodes University, Makhanda 6139, South Africa;
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda 6139, South Africa; (M.J.); (M.M.)
| |
Collapse
|
5
|
Couto LFM, Heller LM, Zapa DMB, de Moura MI, Costa GL, de Assis Cavalcante AS, Ribeiro NB, Bastos TSA, Ferreira LL, Soares VE, Lino de Souza GR, Cadioli FA, Lopes WDZ. Presence of Trypanosoma vivax DNA in cattle semen and reproductive tissues and related changes in sperm parameters. Vet Parasitol 2022; 309:109761. [PMID: 35843131 DOI: 10.1016/j.vetpar.2022.109761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 07/02/2022] [Indexed: 11/19/2022]
Abstract
The present work investigated the presence of Trypanosoma vivax in semen and reproductive tissues of experimentally infected cattle and evaluated changes in seminal parameters. Two groups of cattle were established: T01 - experimentally infected with T. vivax (n = 8) and T02 - not experimentally infected with T. vivax (n = 8). After infection, blood (every seven days until 182 days post-infection - DPI), semen (7, 14, 35, 56, 70, 120 and 182 DPI) and reproductive tissue (after euthanasia, 182 DPI) were collected to search for T. vivax using different techniques, including PCR, Woo and Brener. Seminal parameters, including turbulence, motility, concentration, and vigor, were also analyzed. Packed cell volume (PCV) of the animals was determined weekly and weight gain was calculated. The PCR revealed T. vivax DNA in 7/56 semen samples of post-infection T01 cattle. Trypanosoma vivax DNA was detected in the semen of 5/8 animals at 7, 14, 56, 70 and 120 DPI, in the testis of four, and in the epididymis and fat located around the testis of two others. Trypomastigote forms of T. vivax were not found in any semen sample. Sperm of T01 cattle had lower turbulence (p ≤ 0.05) at 7, 14, 35, 56, 120 and 182 DPI, lower vigor (p ≤ 0.05) at 120 DPI and more sperm abnormalities (p ≤ 0.05) than T02. Digital dermatitis was observed among T01 cattle. Animals of T01 had lower PCV values than did those of T02 for most of the evaluations performed and T02 animals gained more weight during the experiment. The results highlight the presence of T. vivax DNA in semen of infected cattle and the importance of this disease for male breeding cattle. Further research is needed to determine whether T. vivax can be sexually transmitted in cattle.
Collapse
Affiliation(s)
| | - Luciana Maffini Heller
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Maria Ivete de Moura
- Professor Assistente. Pontifícia Universidade Católica Universidade Católica de Goiás Goiânia, Goiás, Brazil
| | - Gustavo Lage Costa
- Professor Assistente. Pontifícia Universidade Católica Universidade Católica de Goiás Goiânia, Goiás, Brazil
| | | | - Nathalia Braz Ribeiro
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Lorena Lopes Ferreira
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Fabiano Antônio Cadioli
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Welber Daniel Zanetti Lopes
- Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Goiás, Brazil; Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
6
|
Abstract
Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). In the mammalian host, the parasite lives entirely extracellularly, in both the blood and interstitial spaces in tissues. Although most T. brucei research has focused on the biology of blood- and central nervous system (CNS)-resident parasites, a number of recent studies have highlighted parasite reservoirs in the dermis and adipose tissue, leading to a renewed interest in tissue-resident parasite populations. In light of this renewed interest, work describing tissue-resident parasites can serve as a valuable resource to inform future investigations of tissue-resident T. brucei. Here, we review this body of literature, which describes infections in humans, natural hosts, and experimental animal models, providing a wealth of information on the distribution and biology of extravascular parasites, the corresponding immune response in each tissue, and resulting host pathology. We discuss the implications of these studies and future questions in the study of extravascular T. brucei.
Collapse
Affiliation(s)
- Nathan P. Crilly
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Molecular and Comparative Pathology, Johns Hopkins School of Medicine, Baltimore Maryland, United States of America
| | - Monica R. Mugnier
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Levy DJ, Goundry A, Laires RSS, Costa TFR, Novo CM, Grab DJ, Mottram JC, Lima APCA. Role of the inhibitor of serine peptidase 2 (ISP2) of Trypanosoma brucei rhodesiense in parasite virulence and modulation of the inflammatory responses of the host. PLoS Negl Trop Dis 2021; 15:e0009526. [PMID: 34153047 PMCID: PMC8248637 DOI: 10.1371/journal.pntd.0009526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/01/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei rhodesiense is one of the causative agents of Human African Trypanosomiasis (HAT), known as sleeping sickness. The parasite invades the central nervous system and causes severe encephalitis that is fatal if left untreated. We have previously identified ecotin-like inhibitors of serine peptidases, named ISPs, in trypanosomatid parasitic protozoa. Here, we investigated the role of ISP2 in bloodstream form T. b. rhodesiense. We generated gene-deficient mutants lacking ISP2 (Δisp2), which displayed a growth profile in vitro similar to that of wild-type (WT) parasites. C57BL/6 mice infected with Δisp2 displayed lower blood parasitemia, a delayed hind leg pathological phenotype and survived longer. The immune response was examined at two time-points that corresponded with two peaks of parasitemia. At 4 days, the spleens of Δisp2-infected mice had a greater percentage of NOS2+ myeloid cells, IFN-γ+-NK cells and increased TNF-α compared to those infected with WT and parasites re-expressing ISP2 (Δisp2:ISP2). By 13 days the increased NOS2+ population was sustained in Δisp2-infected mice, along with increased percentages of monocyte-derived dendritic cells, as well as CD19+ B lymphocytes, and CD8+ and CD4+ T lymphocytes. Taken together, these findings indicate that ISP2 contributes to T. b. rhodesiense virulence in mice and attenuates the inflammatory response during early infection.
Collapse
Affiliation(s)
- David Jessula Levy
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Amy Goundry
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Raquel S. S. Laires
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Tatiana F. R. Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Carlos Mendes Novo
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Dennis J. Grab
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Ana Paula C. A. Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Naim N, Amrit FRG, McClendon TB, Yanowitz JL, Ghazi A. The molecular tug of war between immunity and fertility: Emergence of conserved signaling pathways and regulatory mechanisms. Bioessays 2020; 42:e2000103. [PMID: 33169418 DOI: 10.1002/bies.202000103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
Reproduction and immunity are energy intensive, intimately linked processes in most organisms. In women, pregnancy is associated with widespread immunological adaptations that alter immunity to many diseases, whereas, immune dysfunction has emerged as a major cause for infertility in both men and women. Deciphering the molecular bases of this dynamic association is inherently challenging in mammals. This relationship has been traditionally studied in fast-living, invertebrate species, often in the context of resource allocation between life history traits. More recently, these studies have advanced our understanding of the mechanistic underpinnings of the immunity-fertility dialogue. Here, we review the molecular connections between reproduction and immunity from the perspective of human pregnancy to mechanistic discoveries in laboratory organisms. We focus particularly on recent invertebrate studies identifying conserved signaling pathways and transcription factors that regulate resource allocation and shape the balance between reproductive status and immune health.
Collapse
Affiliation(s)
- Nikki Naim
- Departments of Pediatrics, Developmental Biology and Cell Biology and Physiology, John, G. Rangos Sr. Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Francis R G Amrit
- Departments of Pediatrics, Developmental Biology and Cell Biology and Physiology, John, G. Rangos Sr. Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - T Brooke McClendon
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Judith L Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Arjumand Ghazi
- Departments of Pediatrics, Developmental Biology and Cell Biology and Physiology, John, G. Rangos Sr. Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Abstract
Parasitic diseases, such as sleeping sickness, Chagas disease and malaria, remain a major cause of morbidity and mortality worldwide, but particularly in tropical, developing countries. Controlling these diseases requires a better understanding of host-parasite interactions, including a deep appreciation of parasite distribution in the host. The preferred accumulation of parasites in some tissues of the host has been known for many years, but recent technical advances have allowed a more systematic analysis and quantifications of such tissue tropisms. The functional consequences of tissue tropism remain poorly studied, although it has been associated with important aspects of disease, including transmission enhancement, treatment failure, relapse and clinical outcome. Here, we discuss current knowledge of tissue tropism in Trypanosoma infections in mammals, describe potential mechanisms of tissue entry, comparatively discuss relevant findings from other parasitology fields where tissue tropism has been extensively investigated, and reflect on new questions raised by recent discoveries and their potential impact on clinical treatment and disease control strategies.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Sandra Trindade
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal
| |
Collapse
|
10
|
Pardali V, Giannakopoulou E, Balourdas DI, Myrianthopoulos V, Taylor MC, Šekutor M, Mlinarić-Majerski K, Kelly JM, Zoidis G. Lipophilic Guanylhydrazone Analogues as Promising Trypanocidal Agents: An Extended SAR Study. Curr Pharm Des 2020; 26:838-866. [DOI: 10.2174/1381612826666200210150127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
In this report, we extend the SAR analysis of a number of lipophilic guanylhydrazone analogues with
respect to in vitro growth inhibition of Trypanosoma brucei and Trypanosoma cruzi. Sleeping sickness and Chagas
disease, caused by the tropical parasites T. brucei and T. cruzi, constitute a significant socioeconomic burden
in low-income countries of sub-Saharan Africa and Latin America, respectively. Drug development is underfunded.
Moreover, current treatments are outdated and difficult to administer, while drug resistance is an emerging
concern. The synthesis of adamantane-based compounds that have potential as antitrypanosomal agents is
extensively reviewed. The critical role of the adamantane ring was further investigated by synthesizing and testing
a number of novel lipophilic guanylhydrazones. The introduction of hydrophobic bulky substituents onto the
adamantane ring generated the most active analogues, illustrating the synergistic effect of the lipophilic character
of the C1 side chain and guanylhydrazone moiety on trypanocidal activity. The n-decyl C1-substituted compound
G8 proved to be the most potent adamantane derivative against T. brucei with activity in the nanomolar range
(EC50=90 nM). Molecular simulations were also performed to better understand the structure-activity relationships
between the studied guanylhydrazone analogues and their potential enzyme target.
Collapse
Affiliation(s)
- Vasiliki Pardali
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| | - Erofili Giannakopoulou
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| | - Dimitrios-Ilias Balourdas
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| | - Vassilios Myrianthopoulos
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruder Boskovic Institute, Bijenicka cesta 54, 10 000 Zagreb, Croatia
| | - Kata Mlinarić-Majerski
- Department of Organic Chemistry and Biochemistry, Ruder Boskovic Institute, Bijenicka cesta 54, 10 000 Zagreb, Croatia
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Grigoris Zoidis
- School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771 Athens, Greece
| |
Collapse
|
11
|
Mehlitz D, Molyneux D. The elimination of Trypanosoma brucei gambiense? Challenges of reservoir hosts and transmission cycles: Expect the unexpected. Parasite Epidemiol Control 2019; 6:e00113. [PMID: 31528738 PMCID: PMC6742776 DOI: 10.1016/j.parepi.2019.e00113] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/24/2022] Open
Abstract
The World Health Organisation has set the goal for elimination of Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei gambiense (gHAT), as a public health problem for 2020 and for the total interruption of transmission to humans for 2030. Targeting human carriers and potential animal reservoir infections will be critical to achieving this ambitious goal. However, there is continuing debate regarding the significance of reservoir host animals, wild and domestic, in different epidemiological contexts, whilst the extent and duration of the asymptomatic human carrier state is similarly undefined. This paper reviews the status of the knowledge of latent infections in wild and domestic animal reservoir hosts towards the goal of better understanding their role in the transmission dynamic of the disease. Focus areas include the transmission cycles in non-human hosts, the infectivity of animal reservoirs to Glossina palpalis s.l., the longevity of infection and the stability of T. b. gambiense biological characteristics in antelopes and domestic animals. There is compelling evidence that T. b. gambiense can establish and persist in experimentally infected antelopes, pigs and dogs for a period of at least two years. In particular, metacyclic transmission of T. b. gambiense has been reported in antelope-G.p.palpalis-antelope and pig-G.p.gambiensis-pig cycles. Experimental studies demonstrate that the infectiveness of latent animal reservoir infections with T. b. gambiense is retained in animal-Glossina-animal cycles (antelopes and pigs) for periods of three years and human infectivity markers (human serum resistance, zymodeme, DNA) are stable in non-human hosts for the same period. These observations shed light on the epidemiological significance of animal reservoir hosts in specific ecosystems characterized by presently active, as well as known "old" HAT foci whilst challenging the concept of total elimination of all transmission by 2030. This target is also compromised by the existence of human asymptomatic carriers of T. b. gambiense often detected outside Africa after having lived outside tsetse infested areas for many years - sometimes decades. Non-tsetse modes of transmission may also play a significant but underestimated role in the maintenance of foci and also preclude the total elimination of transmission - these include mother to child transmission and sexual transmission. Both these modes of transmission have been the subject of case reports yet their frequency in African settings remains to be ascertained when the context of residual foci are discussed yet both challenge the concept of the possibility of the total elimination of transmission.
Collapse
Affiliation(s)
- D. Mehlitz
- Institute for Parasitology and Tropical Veterinary Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - D.H. Molyneux
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
12
|
Radwanska M, Vereecke N, Deleeuw V, Pinto J, Magez S. Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction With the Innate and Adaptive Mammalian Host Immune System. Front Immunol 2018; 9:2253. [PMID: 30333827 PMCID: PMC6175991 DOI: 10.3389/fimmu.2018.02253] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 01/27/2023] Open
Abstract
Salivarian trypanosomes are single cell extracellular parasites that cause infections in a wide range of hosts. Most pathogenic infections worldwide are caused by one of four major species of trypanosomes including (i) Trypanosoma brucei and the human infective subspecies T. b. gambiense and T. b. rhodesiense, (ii) Trypanosoma evansi and T. equiperdum, (iii) Trypanosoma congolense and (iv) Trypanosoma vivax. Infections with these parasites are marked by excessive immune dysfunction and immunopathology, both related to prolonged inflammatory host immune responses. Here we review the classification and global distribution of these parasites, highlight the adaptation of human infective trypanosomes that allow them to survive innate defense molecules unique to man, gorilla, and baboon serum and refer to the discovery of sexual reproduction of trypanosomes in the tsetse vector. With respect to the immunology of mammalian host-parasite interactions, the review highlights recent findings with respect to the B cell destruction capacity of trypanosomes and the role of T cells in the governance of infection control. Understanding infection-associated dysfunction and regulation of both these immune compartments is crucial to explain the continued failures of anti-trypanosome vaccine developments as well as the lack of any field-applicable vaccine based anti-trypanosomosis intervention strategy. Finally, the link between infection-associated inflammation and trypanosomosis induced anemia is covered in the context of both livestock and human infections.
Collapse
Affiliation(s)
- Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Nick Vereecke
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Violette Deleeuw
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joar Pinto
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
13
|
Carvalho T, Trindade S, Pimenta S, Santos AB, Rijo-Ferreira F, Figueiredo LM. Trypanosoma brucei triggers a marked immune response in male reproductive organs. PLoS Negl Trop Dis 2018; 12:e0006690. [PMID: 30110342 PMCID: PMC6093638 DOI: 10.1371/journal.pntd.0006690] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
African trypanosomiasis is caused by the protozoan parasite Trypanosoma brucei, transmitted between mammals by the bite of a tsetse. It has been recently shown that parasites accumulate in large numbers in various organs and tissues, including the mouse testis. Whether parasites are protected from the immune system in the male reproductive organ or can be transmitted through sexual route remains unknown. Here we show that parasites can be detected by fine needle aspiration cytology of the male reproductive system in mice, and histopathological analysis revealed that T. brucei accumulates in the stroma of the epididymis, epididymal adipose tissue and fibrous tunics of the testis. No parasites were found in the lumen of intact epididymal ducts or seminiferous tubules of the testis, indicating that the large majority of the parasites are not located in immune-privileged sites. In fact, these parasites are associated with marked inflammatory cell infiltration, parasite degeneration, and severe tissue damage and rupture of epididymal ducts, which may be related with reduced fertility. Overall, we show that just like in the bloodstream and most other tissues, in the male reproductive organs, T. brucei are exposed to a strong immune response. The detection of a very high number of parasites in this organ and its accessibility opens the possibility of using fine needle aspiration cytology as a complementary diagnostic tool in Animal African Trypanosomiasis.
Collapse
Affiliation(s)
- Tânia Carvalho
- Instituto de Medicina Molecular–João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Trindade
- Instituto de Medicina Molecular–João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sílvia Pimenta
- Instituto de Medicina Molecular–João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana B. Santos
- Instituto de Medicina Molecular–João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Luísa M. Figueiredo
- Instituto de Medicina Molecular–João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
14
|
Büscher P, Bart JM, Boelaert M, Bucheton B, Cecchi G, Chitnis N, Courtin D, Figueiredo LM, Franco JR, Grébaut P, Hasker E, Ilboudo H, Jamonneau V, Koffi M, Lejon V, MacLeod A, Masumu J, Matovu E, Mattioli R, Noyes H, Picado A, Rock KS, Rotureau B, Simo G, Thévenon S, Trindade S, Truc P, Van Reet N. Do Cryptic Reservoirs Threaten Gambiense-Sleeping Sickness Elimination? Trends Parasitol 2018; 34:197-207. [PMID: 29396200 PMCID: PMC5840517 DOI: 10.1016/j.pt.2017.11.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/18/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
Trypanosoma brucei gambiense causes human African trypanosomiasis (HAT). Between 1990 and 2015, almost 440000 cases were reported. Large-scale screening of populations at risk, drug donations, and efforts by national and international stakeholders have brought the epidemic under control with <2200 cases in 2016. The World Health Organization (WHO) has set the goals of gambiense-HAT elimination as a public health problem for 2020, and of interruption of transmission to humans for 2030. Latent human infections and possible animal reservoirs may challenge these goals. It remains largely unknown whether, and to what extend, they have an impact on gambiense-HAT transmission. We argue that a better understanding of the contribution of human and putative animal reservoirs to gambiense-HAT epidemiology is mandatory to inform elimination strategies.
Collapse
Affiliation(s)
- Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium.
| | - Jean-Mathieu Bart
- INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France; Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Calle Sinesio Delgado 4, 28029 Madrid, Spain
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Bruno Bucheton
- INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France
| | - Giuliano Cecchi
- Sub-regional Office for Eastern Africa, Food and Agriculture Organization of the United Nations, CMC Road, Bole Sub City, Kebele 12/13, P O Box 5536, Addis Ababa, Ethiopia
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, Postfach, 4002 Basel, Switzerland; University of Basel, Switzerland
| | - David Courtin
- Université Paris Descartes, Institut de Recherche pour le Développement, Unité MERIT, Mère et enfant face aux infections tropicales, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Prof Egas Moniz, 1649-028 Lisboa, Portugal
| | - José-Ramon Franco
- Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, World Health Organization, Via Appia 20, 1202 Geneva, Switzerland
| | - Pascal Grébaut
- INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France
| | - Epco Hasker
- Department of Public Health, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Hamidou Ilboudo
- Institut de Recherche sur les Bases Biologiques de la Lutte Intégrée, Centre International de Recherche-Développement sur l'Élevage en zone Subhumide, 01 BP 454 Bobo-Dioulasso 01, Burkina Faso
| | | | - Mathurin Koffi
- Université Jean Lorougnon Guédé, BP 150 Daloa, Côte d'Ivoire
| | - Veerle Lejon
- INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France
| | - Annette MacLeod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Henry Wellcome Building, 464 Bearsden Road, Glasgow, UK
| | - Justin Masumu
- Département de Parasitologie, Institut National de Recherche Biomédicale, Avenue de la Démocratie, BP 1197 Kinshasa 1, République Démocratique du Congo
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P O Box 7062 Kampala, Uganda
| | - Raffaele Mattioli
- Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
| | - Harry Noyes
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Albert Picado
- Foundation for Innovative New Diagnostics, 9 Chemin des Mines, 1202 Geneva, Switzerland
| | - Kat S Rock
- Zeeman Institute for Systems Biology & Infectious Disease Research, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, INSERM U1201 and Department of Parasites and Insect Vectors, Institut Pasteur, 25, rue du Docteur Roux, 75015 Paris, France
| | - Gustave Simo
- Department of Biochemistry, Faculty of Science, University of Dschang, P O Box 67 Dschang, Cameroon
| | - Sophie Thévenon
- INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France; CIRAD, INTERTRYP, Montpellier, France
| | - Sandra Trindade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Prof Egas Moniz, 1649-028 Lisboa, Portugal
| | - Philippe Truc
- INTERTRYP, IRD, CIRAD, Univ Montpellier, Montpellier, France
| | - Nick Van Reet
- Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| |
Collapse
|
15
|
Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 2017; 9:28-63. [PMID: 28960132 PMCID: PMC6067836 DOI: 10.1080/21505594.2017.1371897] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traditional methods of localizing and quantifying the presence of pathogenic microorganisms in living experimental animal models of infections have mostly relied on sacrificing the animals, dissociating the tissue and counting the number of colony forming units. However, the discovery of several varieties of the light producing enzyme, luciferase, and the genetic engineering of bacteria, fungi, parasites and mice to make them emit light, either after administration of the luciferase substrate, or in the case of the bacterial lux operon without any exogenous substrate, has provided a new alternative. Dedicated bioluminescence imaging (BLI) cameras can record the light emitted from living animals in real time allowing non-invasive, longitudinal monitoring of the anatomical location and growth of infectious microorganisms as measured by strength of the BLI signal. BLI technology has been used to follow bacterial infections in traumatic skin wounds and burns, osteomyelitis, infections in intestines, Mycobacterial infections, otitis media, lung infections, biofilm and endodontic infections and meningitis. Fungi that have been engineered to be bioluminescent have been used to study infections caused by yeasts (Candida) and by filamentous fungi. Parasitic infections caused by malaria, Leishmania, trypanosomes and toxoplasma have all been monitored by BLI. Viruses such as vaccinia, herpes simplex, hepatitis B and C and influenza, have been studied using BLI. This rapidly growing technology is expected to continue to provide much useful information, while drastically reducing the numbers of animals needed in experimental studies.
Collapse
Affiliation(s)
- Pinar Avci
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA
| | - Mahdi Karimi
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,c Department of Medical Nanotechnology , School of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran , Iran.,d Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Magesh Sadasivam
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,e Amity Institute of Nanotechnology, Amity University Uttar Pradesh , Noida , India
| | - Wanessa C Antunes-Melo
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,f University of Sao Paulo , Sao Carlos-SP , Brazil
| | - Elisa Carrasco
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,g Department of Biosciences , Durham University , Durham , United Kingdom
| | - Michael R Hamblin
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA.,h Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
16
|
Tanowitz HB, Scherer PE, Mota MM, Figueiredo LM. Adipose Tissue: A Safe Haven for Parasites? Trends Parasitol 2016; 33:276-284. [PMID: 28007406 DOI: 10.1016/j.pt.2016.11.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/17/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022]
Abstract
Adipose tissue (AT) is no longer regarded as an inert lipid storage, but as an important central regulator in energy homeostasis and immunity. Three parasite species are uniquely associated with AT during part of their life cycle: Trypanosoma cruzi, the causative agent of Chagas disease; Trypanosoma brucei, the causative agent of African sleeping sickness; and Plasmodium spp., the causative agents of malaria. In AT, T. cruzi resides inside adipocytes, T. brucei is found in the interstitial spaces between adipocytes, while Plasmodium spp. infect red blood cells, which may adhere to the blood vessels supplying AT. Here, we discuss how each parasite species adapts to this tissue environment and what the implications are for pathogenesis, clinical manifestations, and therapy.
Collapse
Affiliation(s)
- Herbert B Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8549, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
17
|
Abstract
Pathogenic animal trypanosomes affecting livestock have represented a major constraint to agricultural development in Africa for centuries, and their negative economic impact is increasing in South America and Asia. Chemotherapy and chemoprophylaxis represent the main means of control. However, research into new trypanocides has remained inadequate for decades, leading to a situation where the few compounds available are losing efficacy due to the emergence of drug-resistant parasites. In this review, we provide a comprehensive overview of the current options available for the treatment and prophylaxis of the animal trypanosomiases, with a special focus on the problem of resistance. The key issues surrounding the main economically important animal trypanosome species and the diseases they cause are also presented. As new investment becomes available to develop improved tools to control the animal trypanosomiases, we stress that efforts should be directed towards a better understanding of the biology of the relevant parasite species and strains, to identify new drug targets and interrogate resistance mechanisms.
Collapse
|