1
|
Sadhewa A, Panggalo LV, Nanine I, Price RN, Thriemer K, Satyagraha AW, Ley B. Field evaluation of a novel semi-quantitative point-of-care diagnostic for G6PD deficiency in Indonesia. PLoS One 2024; 19:e0301506. [PMID: 38687748 PMCID: PMC11060553 DOI: 10.1371/journal.pone.0301506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/17/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The WHO recommends routine testing of G6PD activity to guide radical cure in patients with Plasmodium vivax malaria. Females may have intermediate G6PD enzyme activity and to date, only complex diagnostics are able to reliably identify them. The semi-quantitative G6PD diagnostic "One Step G6PD Test" (Humasis, RoK; "RDT") is a lateral flow assay that can distinguish deficient, intermediate, and normal G6PD status and offers a simpler diagnostic alternative. METHODS G6PD status of participants enrolled in Malinau and Nunukan Regencies and the capital Jakarta was assessed with the RDT, and G6PD activity was measured in duplicate by reference spectrophotometry. The adjusted male median (AMM) of the spectrophotometry measurements was defined as 100% activity; 70% and 30% of the AMM were defined as thresholds for intermediate and deficient G6PD status, respectively. Results were compared to those derived from spectrophotometry at the clinically relevant G6PD activity thresholds of 30% and 70%. RESULTS Of the 161 participants enrolled, 10 (6.2%) were G6PD deficient and 12 (7.5%) had intermediate G6PD activity by spectrophotometry. At the 30% threshold, the sensitivity of the RDT was 10.0% (95%CI: 0.3-44.5%) with a specificity of 99.3% (95%CI: 96.4-100.0%); the positive predictive value was 50.0% (95%CI: 1.3-98.7%) and the negative predictive value 94.3% (95%CI: 89.5-97.4%). The corresponding figures at the 70% threshold were 22.7% (95%CI: 7.8-45.4%), 100.0% (95%CI: 97.4-100.0%), 100.0% (95%CI: 47.8-100.0%) and 89.1% (95%CI: 83.1-93.5%), respectively. CONCLUSION While there is a dire need for an easy-to-use, economical, semi-quantitative diagnostic for the point of care, the observed performance of the "One Step G6PD Test" in its current form was insufficient to guide antimalarial treatment.
Collapse
Affiliation(s)
- Arkasha Sadhewa
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | | | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ari W. Satyagraha
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Indonesia
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Division of Education, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
2
|
Dysoley L, Callery JJ, Bunreth V, Vanna M, Davoeung C, Sovann Y, You S, Ol S, Tripura R, Chew R, Chandna A, Christiansen-Jucht C, Hughes J, Sokomar N, Sophornarann T, Rideout J, Veyvath T, Sarith O, Puthy T, Sothearoth H, An SS, Zaman SI, von Seidlein L, Vanthy L, Sodavuth P, Vannak C, Dondorp AM, Lubell Y, Maude RJ, Peto TJ, Adhikari B. Expanding the roles of community health workers to sustain programmes during malaria elimination: a meeting report on operational research in Southeast Asia. Malar J 2024; 23:2. [PMID: 38166839 PMCID: PMC10759643 DOI: 10.1186/s12936-023-04828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
In Southeast Asia malaria elimination is targeted by 2030. Cambodia aims to achieve this by 2025, driven in large part by the urgent need to control the spread of artemisinin-resistant falciparum malaria infections. Rapid elimination depends on sustaining early access to diagnosis and effective treatment. In much of Cambodia, rapid elimination will rely on a village malaria worker (VMW) network. Yet as malaria declines and is no longer a common cause of febrile illness, VMWs may become less popular with febrile patients, as VMWs do not diagnose or treat other conditions at present. There is a risk that VMWs become inactive and malaria rebounds before the complete interruption of transmission is achieved.During 2021-23 a large-scale operational research study was conducted in western Cambodia to explore how a VMW network could be sustained by including health activities that cover non-malarial illnesses to encourage febrile patients to continue to attend. 105 VMWs received new rapid diagnostic tests (including dengue antigen-antibody and combined malaria/C-reactive protein tests), were trained in electronic data collection, and attended health education packages on hygiene and sanitation, disease surveillance and first aid, management of mild illness, and vaccination and antenatal care.In August 2023 the National Malaria Control Programme of Cambodia convened a stakeholder meeting in Battambang, Cambodia. Findings from the study were reviewed in the context of current malaria elimination strategies. The discussions informed policy options to sustain the relevance of the VMW network in Cambodia, and the potential for its integration with other health worker networks. This expansion could ensure VMWs remain active and relevant until malaria elimination is accomplished.
Collapse
Affiliation(s)
- Lek Dysoley
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
- National Institute for Public Health, Phnom Penh, Cambodia.
| | - James J Callery
- Mahidol‑Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | | | - Moul Vanna
- Action for Health Development, Battambang, Cambodia
| | | | - Yok Sovann
- Provincial Health Department, Pailin, Cambodia
| | - Sles You
- Provincial Health Department, Battambang, Cambodia
| | - Sam Ol
- Action for Health Development, Battambang, Cambodia
- President's Malaria Initiative, Phnom Penh, Cambodia
| | - Rupam Tripura
- Mahidol‑Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Rusheng Chew
- Mahidol‑Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Arjun Chandna
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | | | - Jayme Hughes
- Clinton Health Access Initiative, Phnom Penh, Cambodia
| | - Nguon Sokomar
- Cambodia Malaria Elimination Project 2, Phnom Penh, Cambodia
- University Research Company Ltd, Phnom Penh, Cambodia
- United States Agency for International Development, Phnom Penh, Cambodia
| | - Top Sophornarann
- Cambodia Malaria Elimination Project 2, Phnom Penh, Cambodia
- University Research Company Ltd, Phnom Penh, Cambodia
- United States Agency for International Development, Phnom Penh, Cambodia
| | - Jeanne Rideout
- Cambodia Malaria Elimination Project 2, Phnom Penh, Cambodia
- University Research Company Ltd, Phnom Penh, Cambodia
- United States Agency for International Development, Phnom Penh, Cambodia
| | - Tat Veyvath
- Provincial Health Department, Battambang, Cambodia
| | - Oum Sarith
- Provincial Health Department, Pailin, Cambodia
| | - Thaung Puthy
- Provincial Health Department, Battambang, Cambodia
| | | | - Sen Sam An
- Cambodia Malaria Elimination Project 2, Phnom Penh, Cambodia
- University Research Company Ltd, Phnom Penh, Cambodia
- United States Agency for International Development, Phnom Penh, Cambodia
| | - Sazid Ibna Zaman
- Mahidol‑Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lorenz von Seidlein
- Mahidol‑Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Lim Vanthy
- Action for Health Development, Battambang, Cambodia
| | - Preap Sodavuth
- United Nations Office for Project Services, Phnom Penh, Cambodia
| | - Chrun Vannak
- United Nations Office for Project Services, Phnom Penh, Cambodia
| | - Arjen M Dondorp
- Mahidol‑Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Yoel Lubell
- Mahidol‑Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Richard J Maude
- Mahidol‑Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- The Open University, Milton Keynes, UK
| | - Thomas J Peto
- Mahidol‑Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Bipin Adhikari
- Mahidol‑Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Kosasih A, James R, Chau NH, Karman MM, Panggalo LV, Wini L, Thanh NV, Obadia T, Satyagraha AW, Asih PBS, Syafruddin D, Taylor WRJ, Mueller I, Sutanto I, Karunajeewa H, Pasaribu AP, Baird JK. Case Series of Primaquine-Induced Haemolytic Events in Controlled Trials with G6PD Screening. Pathogens 2023; 12:1176. [PMID: 37764985 PMCID: PMC10537757 DOI: 10.3390/pathogens12091176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Primaquine for radical cure of Plasmodium vivax malaria poses a potentially life-threatening risk of haemolysis in G6PD-deficient patients. Herein, we review five events of acute haemolytic anaemia following the administration of primaquine in four malaria trials from Indonesia, the Solomon Islands, and Vietnam. Five males aged 9 to 48 years were improperly classified as G6PD-normal by various screening procedures and included as subjects in trials of anti-relapse therapy with daily primaquine. Routine safety monitoring by physical examination, urine inspection, and blood haemoglobin (Hb) assessment were performed in all those trials. Early signs of acute haemolysis, i.e., dark urine and haemoglobin drop >20%, occurred only after day 3 and as late as day 8 of primaquine dosing. All patients were hospitalized and fully recovered, all but one following blood transfusion rescue. Hb nadir was 4.7 to 7.9 g/dL. Hospitalization was for 1 to 7 days. Hb levels returned to baseline values 3 to 10 days after transfusion. Failed G6PD screening procedures in these trials led G6PD-deficient patients to suffer harmful exposures to primaquine. The safe application of primaquine anti-relapse therapy requires G6PD screening and anticipation of its failure with a means of prompt detection and rescue from the typically abrupt haemolytic crisis.
Collapse
Affiliation(s)
- Ayleen Kosasih
- Oxford University Clinical Research Unit Indonesia, Jakarta 10430, Indonesia; (A.K.); (M.M.K.); (J.K.B.)
| | - Robert James
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (R.J.); (I.M.)
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Nguyen Hoang Chau
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City 749000, Vietnam; (N.H.C.); (N.V.T.)
| | - Michelle M. Karman
- Oxford University Clinical Research Unit Indonesia, Jakarta 10430, Indonesia; (A.K.); (M.M.K.); (J.K.B.)
| | | | - Lyndes Wini
- Vector-Borne Disease Control (VBDC) Division, Solomon Islands Ministry of Health and Medical Services, Honiara P.O. Box R113, Solomon Islands;
| | - Ngo Viet Thanh
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City 749000, Vietnam; (N.H.C.); (N.V.T.)
| | - Thomas Obadia
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France;
- Institut Pasteur, Université Paris Cité, G5 Infectious Diseases Epidemiology and Analytics, F-75015 Paris, France
| | - Ari Winasti Satyagraha
- Exeins Health Initiative, Jakarta 12870, Indonesia; (L.V.P.); (A.W.S.)
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong 16911, Indonesia; (P.B.S.A.); (D.S.)
| | - Puji Budi Setia Asih
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong 16911, Indonesia; (P.B.S.A.); (D.S.)
| | - Din Syafruddin
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong 16911, Indonesia; (P.B.S.A.); (D.S.)
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Hasanuddin University Medical Research Center, Makassar 90245, Indonesia
| | - Walter R. J. Taylor
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (R.J.); (I.M.)
| | - Inge Sutanto
- Department of Parasitology, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia;
| | - Harin Karunajeewa
- Department of Medicine, Western Health, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | | | - J. Kevin Baird
- Oxford University Clinical Research Unit Indonesia, Jakarta 10430, Indonesia; (A.K.); (M.M.K.); (J.K.B.)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
4
|
Pfeffer DA, Satyagraha AW, Sadhewa A, Alam MS, Bancone G, Boum Y, Brito M, Cui L, Deng Z, Domingo GJ, He Y, Khan WA, Kibria MG, Lacerda M, Menard D, Monteiro W, Pal S, Parikh S, Roca-Feltrer A, Roh M, Sirdah MM, Wang D, Huang Q, Howes RE, Price RN, Ley B. Genetic Variants of Glucose-6-Phosphate Dehydrogenase and Their Associated Enzyme Activity: A Systematic Review and Meta-Analysis. Pathogens 2022; 11:1045. [PMID: 36145477 PMCID: PMC9502867 DOI: 10.3390/pathogens11091045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023] Open
Abstract
Low glucose-6-phosphate dehydrogenase enzyme (G6PD) activity is a key determinant of drug-induced haemolysis. More than 230 clinically relevant genetic variants have been described. We investigated the variation in G6PD activity within and between different genetic variants. In this systematic review, individual patient data from studies reporting G6PD activity measured by spectrophotometry and corresponding the G6PD genotype were pooled (PROSPERO: CRD42020207448). G6PD activity was converted into percent normal activity applying study-specific definitions of 100%. In total, 4320 individuals from 17 studies across 10 countries were included, where 1738 (40.2%) had one of the 24 confirmed G6PD mutations, and 61 observations (3.5%) were identified as outliers. The median activity of the hemi-/homozygotes with A-(c.202G>A/c.376A>G) was 29.0% (range: 1.7% to 76.6%), 10.2% (range: 0.0% to 32.5%) for Mahidol, 16.9% (range 3.3% to 21.3%) for Mediterranean, 9.0% (range: 2.9% to 23.2%) for Vanua Lava, and 7.5% (range: 0.0% to 18.3%) for Viangchan. The median activity in heterozygotes was 72.1% (range: 16.4% to 127.1%) for A-(c.202G>A/c.376A>G), 54.5% (range: 0.0% to 112.8%) for Mahidol, 37.9% (range: 20.7% to 80.5%) for Mediterranean, 53.8% (range: 10.9% to 82.5%) for Vanua Lava, and 52.3% (range: 4.8% to 78.6%) for Viangchan. A total of 99.5% of hemi/homozygotes with the Mahidol mutation and 100% of those with the Mediterranean, Vanua Lava, and Viangchan mutations had <30% activity. For A-(c.202G>A/c.376A>G), 55% of hemi/homozygotes had <30% activity. The G6PD activity for each variant spanned the current classification thresholds used to define clinically relevant categories of enzymatic deficiency.
Collapse
Affiliation(s)
- Daniel A. Pfeffer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | | | - Arkasha Sadhewa
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka 1212, Bangladesh
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Yap Boum
- Médecins sans Frontières Epicentre, Mbarara Research Centre, Mbarara, Uganda
- Mbarara University of Science and Technology, Mbarara 1956, Uganda
| | - Marcelo Brito
- Fundaçāo de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Zeshuai Deng
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming 650032, China
| | | | - Yongshu He
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming 650032, China
| | - Wasif A. Khan
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka 1212, Bangladesh
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka 1212, Bangladesh
| | - Marcus Lacerda
- Fundaçāo de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
| | - Didier Menard
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, 75015 Paris, France
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Federation of Translational Medicine, University of Strasbourg, 67081 Strasbourg, France
| | - Wuelton Monteiro
- Fundaçāo de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
| | - Sampa Pal
- Diagnostics Program, PATH, Seattle, WA 98121, USA
| | - Sunil Parikh
- Yale School of Public Health, New Haven, CT 06520, USA
| | - Arantxa Roca-Feltrer
- Malaria Consortium, Phnom Penh Center, Street Sothearos, Tonle Basac, Chamkarmorn, Building “H”, 1st Floor, Room No. 192, Phnom Penh, Cambodia
| | - Michelle Roh
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Duoquan Wang
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200000, China
- Chinese Center for Tropical Diseases Research, School of Global Health, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuying Huang
- School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| |
Collapse
|
5
|
Ali Albsheer MM, Lover AA, Eltom SB, Omereltinai L, Mohamed N, Muneer MS, Mohamad AO, Abdel Hamid MM. Prevalence of glucose-6-phosphate dehydrogenase deficiency (G6PDd), CareStart qualitative rapid diagnostic test performance, and genetic variants in two malaria-endemic areas in Sudan. PLoS Negl Trop Dis 2021; 15:e0009720. [PMID: 34699526 PMCID: PMC8547650 DOI: 10.1371/journal.pntd.0009720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is the most common enzymopathy globally, and deficient individuals may experience severe hemolysis following treatment with 8-aminoquinolines. With increasing evidence of Plasmodium vivax infections throughout sub-Saharan Africa, there is a pressing need for population-level data at on the prevalence of G6PDd. Such evidence-based data will guide the expansion of primaquine and potentially tafenoquine for radical cure of P. vivax infections. This study aimed to quantify G6PDd prevalence in two geographically distinct areas in Sudan, and evaluating the performance of a qualitative CareStart rapid diagnostic test as a point-of-care test. Blood samples were analyzed from 491 unrelated healthy persons in two malaria-endemic sites in eastern and central Sudan. A pre-structured questionnaire was used which included demographic data, risk factors and treatment history. G6PD levels were measured using spectrophotometry (SPINREACT) and first-generation qualitative CareStart rapid tests. G6PD variants (202 G>A; 376 A>G) were determined by PCR/RFLP, with a subset confirmed by Sanger sequencing. The prevalence of G6PDd by spectrophotometry was 5.5% (27/491; at 30% of adjusted male median, AMM); 27.3% (134/491; at 70% of AMM); and 13.1% (64/490) by qualitative CareStart rapid diagnostic test. The first-generation CareStart rapid diagnostic test had an overall sensitivity of 81.5% (95%CI: 61.9 to 93.7) and negative predictive value of 98.8% (97.3 to 99.6). All persons genotyped across both study sites were wild type for the G6PD G202 variant. For G6PD A376G all participants in New Halfa had wild type AA (100%), while in Khartoum the AA polymorphism was found in 90.7%; AG in 2.5%; and GG in 6.8%. Phenotypic G6PD B was detected in 100% of tested participants in New Halfa while in Khartoum, the phenotypes observed were B (96.2%), A (2.8%), and AB (1%). The African A- phenotype was not detected in this study population. Overall, G6PDd prevalence in Sudan is low-to-moderate but highly heterogeneous. Point-of-care testing with the qualitative CareStart rapid diagnostic test demonstrated moderate performance with moderate sensitivity and specificity but high negative predicative value. The two sites harbored primarily the African B phenotype. A country-wide survey is recommended to understand GP6PD deficiencies more comprehensively in Sudan.
Collapse
Affiliation(s)
- Musab M. Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Faculty of Medical Laboratory Sciences, Sinnar University, Sennar, Sudan
| | - Andrew A. Lover
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts-Amherst; Amherst, Massachusetts, United States of America
| | - Sara B. Eltom
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Leena Omereltinai
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Nouh Mohamed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile University, Khartoum, Sudan
| | - Mohamed S. Muneer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Abdelrahim O. Mohamad
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
6
|
Dynamics of G6PD activity in patients receiving weekly primaquine for therapy of Plasmodium vivax malaria. PLoS Negl Trop Dis 2021; 15:e0009690. [PMID: 34495956 PMCID: PMC8452019 DOI: 10.1371/journal.pntd.0009690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/20/2021] [Accepted: 07/28/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute Plasmodium vivax malaria is associated with haemolysis, bone marrow suppression, reticulocytopenia, and post-treatment reticulocytosis leading to haemoglobin recovery. Little is known how malaria affects glucose-6-phosphate dehydrogenase (G6PD) activity and whether changes in activity when patients present may lead qualitative tests, like the fluorescent spot test (FST), to misdiagnose G6PD deficient (G6PDd) patients as G6PD normal (G6PDn). Giving primaquine or tafenoquine to such patients could result in severe haemolysis. METHODS We investigated the G6PD genotype, G6PD enzyme activity over time and the baseline FST phenotype in Cambodians with acute P. vivax malaria treated with 3-day dihydroartemisinin piperaquine and weekly primaquine, 0·75 mg/kg x8 doses. RESULTS Of 75 recruited patients (males 63), aged 5-63 years (median 24), 15 were G6PDd males (14 Viangchan, 1 Canton), 3 were G6PD Viangchan heterozygous females, and 57 were G6PDn; 6 patients had α/β-thalassaemia and 26 had HbE. Median (range) Day0 G6PD activities were 0·85 U/g Hb (0·10-1·36) and 11·4 U/g Hb (6·67-16·78) in G6PDd and G6PDn patients, respectively, rising significantly to 1·45 (0·36-5·54, p<0.01) and 12·0 (8·1-17·4, p = 0.04) U/g Hb on Day7, then falling to ~Day0 values by Day56. Day0 G6PD activity did not correlate (p = 0.28) with the Day0 reticulocyte counts but both correlated over time. The FST diagnosed correctly 17/18 G6PDd patients, misclassifying one heterozygous female as G6PDn. CONCLUSIONS In Cambodia, acute P. vivax malaria did not elevate G6PD activities in our small sample of G6PDd patients to levels that would result in a false normal qualitative test. Low G6PDd enzyme activity at disease presentation increases upon parasite clearance, parallel to reticulocytosis. More work is needed in G6PDd heterozygous females to ascertain the effect of P. vivax on their G6PD activities. TRIAL REGISTRATION The trial was registered (ACTRN12613000003774) with the Australia New Zealand Clinical trials (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=363399&isReview=true).
Collapse
|
7
|
Satyagraha AW, Sadhewa A, Panggalo LV, Subekti D, Elyazar I, Soebianto S, Mahpud N, Harahap AR, Baird JK. Genotypes and phenotypes of G6PD deficiency among Indonesian females across diagnostic thresholds of G6PD activity guiding safe primaquine therapy of latent malaria. PLoS Negl Trop Dis 2021; 15:e0009610. [PMID: 34270547 PMCID: PMC8318249 DOI: 10.1371/journal.pntd.0009610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/28/2021] [Accepted: 06/30/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Plasmodium vivax occurs as a latent infection of liver and a patent infection of red blood cells. Radical cure requires both blood schizontocidal and hypnozoitocidal chemotherapies. The hypnozoitocidal therapies available are primaquine and tafenoquine, 8-aminoquinoline drugs that can provoke threatening acute hemolytic anemia in patients having an X-linked G6PD-deficiency. Heterozygous females may screen as G6PD-normal prior to radical cure and go on to experience hemolytic crisis. METHODS & FINDINGS This study examined G6PD phenotypes in 1928 female subjects living in malarious Sumba Island in eastern Indonesia to ascertain the prevalence of females vulnerable to diagnostic misclassification as G6PD-normal. All 367 (19%) females having <80% G6PD normal activity were genotyped. Among those, 103 (28%) were G6PD wild type, 251 (68·4%) were heterozygous, three (0·8%) were compound heterozygotes, and ten (2·7%) were homozygous deficient. The variants Vanua Lava, Viangchan, Coimbra, Chatham, and Kaiping occurred among them. Below the 70% of normal G6PD activity threshold, just 18 (8%) were G6PD-normal and 214 (92%) were G6PD-deficient. Among the 31 females with <30% G6PD normal activity were all ten homozygotes, all three compound heterozygotes, and just 18 were heterozygotes (7% of those). CONCLUSIONS In this population, most G6PD heterozygosity in females occurred between 30% and 70% of normal (69·3%; 183/264). The prevalence of females at risk of G6PD misclassification as normal by qualitative screening was 9·5% (183/1928). Qualitative G6PD screening prior to 8-aminoquinoline therapies against P. vivax may leave one in ten females at risk of hemolytic crisis, which may be remedied by point-of-care quantitative tests.
Collapse
Affiliation(s)
| | | | | | - Decy Subekti
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Iqbal Elyazar
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Saraswati Soebianto
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Nunung Mahpud
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | | | - J. Kevin Baird
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Murta FLG, Marques LLG, Santos APC, Batista TSB, Mendes MO, Silva ED, Neto AVS, Fabiano M, Rodovalho SR, Monteiro WM, Lacerda MVG. Perceptions about malaria among Brazilian gold miners in an Amazonian border area: perspectives for malaria elimination strategies. Malar J 2021; 20:286. [PMID: 34174880 PMCID: PMC8236171 DOI: 10.1186/s12936-021-03820-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 12/03/2022] Open
Abstract
Background Mining in the Amazon exposes gold miners to various diseases, including malaria, whose control is still a major challenge. The environment of the mines contributes to the proliferation of vector mosquitoes and the precarious housing conditions facilitate transmission of the disease. Understanding gold miners’ perceptions is essential for the formulation of strategies to fight malaria. A qualitative study was carried out in the municipality of Calçoene, state of Amapá, Brazilian Amazon adjointining the municipality of Oiapoque, that is in the border area with French Guiana and Suriname. Methods A semi-structured interview was applied to an intentional sample of 29 miners, a number determined by the theoretical saturation criterion. Thematic analysis was adopted to obtain the results and the Cohen's Kappa index was calculated to verify the agreement between observers during coding. Results The agreement between observers was verified by a Cohen's Kappa index of 0.82. Analysis of the interviews showed that gold miners were subjected to prejudice from the community due to forest diseases that they can transmit, and their activities are often associated with crime. When the miners return to their hometown after a period of mining, the urban population blames them for the onset of diseases such as malaria. Most participants in the survey did not know how malaria transmission occurs, and associated its occurrence with contaminated water and food. Participants reported not being afraid of the disease, trusting the diagnosis and available treatment, though this depends on where they are treated. The use of therapeutic resources, such as medicinal plants and medicines acquired in the illegal market, is very common in this population. Despite the challenges identified by the research subjects, they believe that the disease can be controlled, or the cases reduced, but there was low acceptability for a possible mass drug administration (MDA) intervention. Conclusion Despite a recent reduction in malaria prevalence in Brazil, there are still vulnerable populations, such as gold miners, who help to perpetuate the existence of the disease in the Amazon. The lack of knowledge regarding how the transmission of malaria occurs, associated with myths regarding this and the use of traditional health practices and illegal drugs for the treatment of the disease without a specific diagnosis, jeopardizes the country’s efforts to eliminate malaria. It is necessary to implement control programmes in these populations, especially those who frequently travel around the border region and to remote locations, which are difficult regions for health teams to access, thus hindering diagnostic and treatment actions. For this reason, understanding the perceptions of these individuals as well as their customs, beliefs and lifestyle, can assist in the production of targeted educational material and adoption of strategies in the elimination of malaria in the country. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03820-0.
Collapse
Affiliation(s)
- Felipe L G Murta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil. .,Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.
| | - Leonardo L G Marques
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Alicia P C Santos
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Talita S B Batista
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Maxwell O Mendes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Elair D Silva
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Alexandre V S Neto
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Marcio Fabiano
- Fundação Para o Desenvolvimento Científico e Tecnológico em Saúde, Rio de Janeiro, Brazil
| | - Sheila R Rodovalho
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.,Pan American Health Organization - PAHO, World Health Organization, Brasilia, Brazil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil.,Fundação Oswaldo Cruz, Instituto Leônidas e Maria Deane (FIOCRUZ-Amazonas), Manaus, Brazil
| |
Collapse
|
9
|
Boonyuen U, Songdej D, Tanyaratsrisakul S, Phuanukoonnon S, Chamchoy K, Praoparotai A, Pakparnich P, Sudsumrit S, Edwards T, Williams CT, Byrne RL, Adams ER, Imwong M. Glucose-6-phosphate dehydrogenase mutations in malaria endemic area of Thailand by multiplexed high-resolution melting curve analysis. Malar J 2021; 20:194. [PMID: 33879156 PMCID: PMC8056697 DOI: 10.1186/s12936-021-03731-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymopathy in humans, is prevalent in tropical and subtropical areas where malaria is endemic. Anti-malarial drugs, such as primaquine and tafenoquine, can cause haemolysis in G6PD-deficient individuals. Hence, G6PD testing is recommended before radical treatment against vivax malaria. Phenotypic assays have been widely used for screening G6PD deficiency, but in heterozygous females, the random lyonization causes difficulty in interpreting the results. Over 200 G6PD variants have been identified, which form genotypes associated with differences in the degree of G6PD deficiency and vulnerability to haemolysis. This study aimed to assess the frequency of G6PD mutations using a newly developed molecular genotyping test. Methods A multiplexed high-resolution melting (HRM) assay was developed to detect eight G6PD mutations, in which four mutations can be tested simultaneously. Validation of the method was performed using 70 G6PD-deficient samples. The test was then applied to screen 725 blood samples from people living along the Thai–Myanmar border. The enzyme activity of these samples was also determined using water-soluble tetrazolium salts (WST-8) assay. Then, the correlation between genotype and enzyme activity was analysed. Results The sensitivity of the multiplexed HRM assay for detecting G6PD mutations was 100 % [95 % confidence interval (CI): 94.87–100 %] with specificity of 100 % (95 % CI: 87.66–100 %). The overall prevalence of G6PD deficiency in the studied population as revealed by phenotypic WST-8 assay was 20.55 % (149/725). In contrast, by the multiplexed HRM assay, 27.17 % (197/725) of subjects were shown to have G6PD mutations. The mutations detected in this study included four single variants, G6PD Mahidol (187/197), G6PD Canton (4/197), G6PD Viangchan (3/197) and G6PD Chinese-5 (1/197), and two double mutations, G6PD Mahidol + Canton (1/197) and G6PD Chinese-4 + Viangchan (1/197). A broad range of G6PD enzyme activities were observed in individuals carrying G6PD Mahidol, especially in females. Conclusions The multiplexed HRM-based assay is sensitive and reliable for detecting G6PD mutations. This genotyping assay can facilitate the detection of heterozygotes, which could be useful as a supplementary approach for high-throughput screening of G6PD deficiency in malaria endemic areas before the administration of primaquine and tafenoquine.
Collapse
Affiliation(s)
- Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Duantida Songdej
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | | | - Suparat Phuanukoonnon
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Kamonwan Chamchoy
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Aun Praoparotai
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Phonchanan Pakparnich
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Sirapapha Sudsumrit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Thomas Edwards
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Christopher T Williams
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Rachel L Byrne
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Emily R Adams
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
10
|
Sulistyaningrum N, Arlinda D, Hutagalung J, Sunarno S, Oktoberia IS, Handayani S, Ekowatiningsih R, Yusnita EA, Prasetyorini B, Rizki A, Tjitra E, Na-Bangchang K, Chaijaroenkul W. Prevalence of Glucose 6-Phosphate Dehydrogenase Variants in Malaria-Endemic Areas of South Central Timor, Eastern Indonesia. Am J Trop Med Hyg 2020; 103:760-766. [PMID: 32602432 DOI: 10.4269/ajtmh.19-0780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Primaquine is an effective anti-hypnozoite drug for Plasmodium vivax and Plasmodium ovale. However, it can trigger erythrocyte hemolysis in people with glucose 6-phosphate dehydrogenase (G6PD) deficiency. In a previous report from South Central Timor (SCT), Indonesia, we described the prevalence of Vanua Lava, Chatham, and Viangchan variants; in this study, other G6PD variants (Kaiping, Coimbra, Gaohe, Canton, and Mahidol) were subsequently analyzed. For clarity, all of these results are described together. The 381 DNA samples from the previous study during 2013-2014 were analyzed for G6PD variants by using PCR-restriction fragment length polymorphism (RFLP). The prevalence of G6PD deficiency in SCT was 6.3% (24/381 cases), including 4.2% (16/381 cases), 0.5% (2/381 cases), and 1.6% (6/381 cases) for Coimbra, Kaiping, and Vanua Lava variants, respectively. No other variants were found in this population. A significant association was found between ethnicity and the distribution of G6PD Kaiping in female subjects. A positive association was shown between G6PD activity and heterozygous females carrying Coimbra genotype, hemizygous males carrying Vanua Lava, Plasmodium falciparum infection in female subjects, and P. vivax infection in male subjects. Further molecular analysis of heterozygous females, particularly in malaria-endemic areas, is needed for mapping distribution of G6PD deficiency status in Indonesia.
Collapse
Affiliation(s)
- Novi Sulistyaningrum
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia.,Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Campus), Patum Thani, Thailand
| | - Dona Arlinda
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia.,Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Campus), Patum Thani, Thailand
| | - Jontari Hutagalung
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Sunarno Sunarno
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Intan Sari Oktoberia
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Sarwo Handayani
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Riyanti Ekowatiningsih
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Endah Ariyanti Yusnita
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Budi Prasetyorini
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | - Aulia Rizki
- National Institute of Health Research and Development, Ministry of Health, Republic of Indonesia, Jakarta, Indonesia
| | | | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Campus), Patum Thani, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Campus), Patum Thani, Thailand
| |
Collapse
|
11
|
Swastika M, Harahap AR, Panggalo LV, Jusman SWA, Satyagraha AW. Determining a critical threshold for G6PD activity below which red blood cell response to oxidative stress is poor. Malar J 2020; 19:208. [PMID: 32552815 PMCID: PMC7302344 DOI: 10.1186/s12936-020-03272-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/29/2020] [Indexed: 01/25/2023] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme disorder in the world. Its main function is to generate NADPH that is required for anti-oxidative pathway in the cells especially in red blood cells (RBC). G6PD deficiency is X-linked and thus subject to random X-chromosome inactivation in women giving them mosaic expression of G6PD activities in their individual cells. This phenomenon makes it difficult for diagnosis with the currently available G6PD qualitative diagnostic tests. With the rolling out of newly marketed anti-malarial drug tafenoquine, which has a long half-life, screening for G6PD deficiency becomes a necessity where those with < 70% G6PD activity cannot receive this drug. Thus, evidence for a quantitative cut-off for G6PD activity is needed to ensure safe drug administration. Methods RBC models were developed to analyse the effect of oxidant on RBC oxidative markers namely total glutathione (GSH)and malondialdehyde (MDA). G6PD activity was measured using quantitative assay from Trinity Biotech and was correlated with cytofluorometric assay. RBC from two G6PD heterozygous women with different G6PD activities were also analysed for comparison. Results There was a negative correlation between G6PD activity and CuCl concentration and a strong association between G6PD activities and proportion of G6PD normal RBC in CuCl-treated models and in ex vivo RBC. However, in terms of oxidative stress markers analyses, unlike the hypothesis where the lower G6PD activity, the higher MDA and the lower GSH level, the CuCl RBC model showed that in low G6PD activities (10–30%) cells, the MDA level is lower compared to the rest of the models (p < 0.05). The ex vivo models however were in line with the hypothesis, although the result was not significant (p = 0.5). There was a significant difference between RBC with < 60% and those with > 80% G6PD activities in CuCl RBC model, but not in ex vivo RBC (p = 0.5). Genotyping heterozygous subjects showed G6PDViangchan variant with 2.97 U/gHb (33% activity) and 6.58 U/gHb (74% activity). Conclusions The GSH analysis has pointed to the 60% G6PD activity cut-off and this data is supportive of the old World Health Organization threshold for intermediate upper limit of 60% G6PD activity. However, there are significant limitations in using MDA assay with CuCl RBC model because the RBC was already stressed due to the copper treatment and thus present a different result when compared to the ex vivo model.
Collapse
Affiliation(s)
- Maria Swastika
- Red Blood Cell Enzymes and Membrane Disorders Laboratory, Eijkman Institute of Molecular Biology, Jakarta, 10430, Indonesia.,Master Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Alida R Harahap
- Red Blood Cell Enzymes and Membrane Disorders Laboratory, Eijkman Institute of Molecular Biology, Jakarta, 10430, Indonesia
| | - Lydia V Panggalo
- Red Blood Cell Enzymes and Membrane Disorders Laboratory, Eijkman Institute of Molecular Biology, Jakarta, 10430, Indonesia
| | - Sri Widia A Jusman
- Master Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.,Departement of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Ari W Satyagraha
- Red Blood Cell Enzymes and Membrane Disorders Laboratory, Eijkman Institute of Molecular Biology, Jakarta, 10430, Indonesia.
| |
Collapse
|
12
|
Pfeffer DA, Ley B, Howes RE, Adu P, Alam MS, Bansil P, Boum Y, Brito M, Charoenkwan P, Clements A, Cui L, Deng Z, Egesie OJ, Espino FE, von Fricken ME, Hamid MMA, He Y, Henriques G, Khan WA, Khim N, Kim S, Lacerda M, Lon C, Mekuria AH, Menard D, Monteiro W, Nosten F, Oo NN, Pal S, Palasuwan D, Parikh S, Pitaloka Pasaribu A, Poespoprodjo JR, Price DJ, Roca-Feltrer A, Roh ME, Saunders DL, Spring MD, Sutanto I, Ley-Thriemer K, Weppelmann TA, von Seidlein L, Satyagraha AW, Bancone G, Domingo GJ, Price RN. Quantification of glucose-6-phosphate dehydrogenase activity by spectrophotometry: A systematic review and meta-analysis. PLoS Med 2020; 17:e1003084. [PMID: 32407380 PMCID: PMC7224463 DOI: 10.1371/journal.pmed.1003084] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/13/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The radical cure of Plasmodium vivax and P. ovale requires treatment with primaquine or tafenoquine to clear dormant liver stages. Either drug can induce haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, necessitating screening. The reference diagnostic method for G6PD activity is ultraviolet (UV) spectrophotometry; however, a universal G6PD activity threshold above which these drugs can be safely administered is not yet defined. Our study aimed to quantify assay-based variation in G6PD spectrophotometry and to explore the diagnostic implications of applying a universal threshold. METHODS AND FINDINGS Individual-level data were pooled from studies that used G6PD spectrophotometry. Studies were identified via PubMed search (25 April 2018) and unpublished contributions from contacted authors (PROSPERO: CRD42019121414). Studies were excluded if they assessed only individuals with known haematological conditions, were family studies, or had insufficient details. Studies of malaria patients were included but analysed separately. Included studies were assessed for risk of bias using an adapted form of the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Repeatability and intra- and interlaboratory variability in G6PD activity measurements were compared between studies and pooled across the dataset. A universal threshold for G6PD deficiency was derived, and its diagnostic performance was compared to site-specific thresholds. Study participants (n = 15,811) were aged between 0 and 86 years, and 44.4% (7,083) were women. Median (range) activity of G6PD normal (G6PDn) control samples was 10.0 U/g Hb (6.3-14.0) for the Trinity assay and 8.3 U/g Hb (6.8-15.6) for the Randox assay. G6PD activity distributions varied significantly between studies. For the 13 studies that used the Trinity assay, the adjusted male median (AMM; a standardised metric of 100% G6PD activity) varied from 5.7 to 12.6 U/g Hb (p < 0.001). Assay precision varied between laboratories, as assessed by variance in control measurements (from 0.1 to 1.5 U/g Hb; p < 0.001) and study-wise mean coefficient of variation (CV) of replicate measures (from 1.6% to 14.9%; p < 0.001). A universal threshold of 100% G6PD activity was defined as 9.4 U/g Hb, yielding diagnostic thresholds of 6.6 U/g Hb (70% activity) and 2.8 U/g Hb (30% activity). These thresholds diagnosed individuals with less than 30% G6PD activity with study-wise sensitivity from 89% (95% CI: 81%-94%) to 100% (95% CI: 96%-100%) and specificity from 96% (95% CI: 89%-99%) to 100% (100%-100%). However, when considering intermediate deficiency (<70% G6PD activity), sensitivity fell to a minimum of 64% (95% CI: 52%-75%) and specificity to 35% (95% CI: 24%-46%). Our ability to identify underlying factors associated with study-level heterogeneity was limited by the lack of availability of covariate data and diverse study contexts and methodologies. CONCLUSIONS Our findings indicate that there is substantial variation in G6PD measurements by spectrophotometry between sites. This is likely due to variability in laboratory methods, with possible contribution of unmeasured population factors. While an assay-specific, universal quantitative threshold offers robust diagnosis at the 30% level, inter-study variability impedes performance of universal thresholds at the 70% level. Caution is advised in comparing findings based on absolute G6PD activity measurements across studies. Novel handheld quantitative G6PD diagnostics may allow greater standardisation in the future.
Collapse
Affiliation(s)
- Daniel A. Pfeffer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- * E-mail:
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Rosalind E. Howes
- Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - Patrick Adu
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Pooja Bansil
- Diagnostics Program, PATH, Seattle, Washington, United States of America
| | - Yap Boum
- Médecins sans Frontières Epicentre, Mbarara Research Centre, Mbarara, Uganda
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Marcelo Brito
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil
| | - Pimlak Charoenkwan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Archie Clements
- Faculty of Health Sciences, Curtin University, Bentley, Australia
- Telethon Kids Institute, Nedlands, Australia
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Zeshuai Deng
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Ochaka Julie Egesie
- Department of Hematology and Blood Transfusion, Faculty of Medical Sciences, University of Jos and Jos University Teaching Hospital, Jos, Plateau State, Nigeria
| | - Fe Esperanza Espino
- Department of Parasitology, Research Institute for Tropical Medicine, Department of Health, Alabang, Muntinlupa City, Philippines
| | - Michael E. von Fricken
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, United States of America
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Republic of the Sudan
| | - Yongshu He
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming, Yunnan Province, China
| | - Gisela Henriques
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Wasif Ali Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Marcus Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil
| | - Chanthap Lon
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Didier Menard
- Malaria Genetics and Resistance Group, Institut Pasteur, Paris, France
| | - Wuelton Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brasil
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nwe Nwe Oo
- Department of Medical Research, Lower Myanmar, Yangon, Myanmar
| | - Sampa Pal
- Diagnostics Program, PATH, Seattle, Washington, United States of America
| | - Duangdao Palasuwan
- Oxidation in Red Cell Disorders and Health Research Unit, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sunil Parikh
- Yale School of Public Health, New Haven, Connecticut, United States of America
| | | | | | - David J. Price
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | | | - Michelle E. Roh
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, San Francisco, United States of America
| | - David L. Saunders
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- US Army Medical Materiel Development Activity, Fort Detrick, Maryland, United States of America
| | - Michele D. Spring
- Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Kamala Ley-Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Thomas A. Weppelmann
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, United States of America
| | - Lorenz von Seidlein
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gonzalo J. Domingo
- Diagnostics Program, PATH, Seattle, Washington, United States of America
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
White D, Keramane M, Capretta A, Brennan JD. A paper-based biosensor for visual detection of glucose-6-phosphate dehydrogenase from whole blood. Analyst 2020; 145:1817-1824. [DOI: 10.1039/c9an02219h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paper-based, colorimetric, visual detection of G6PD from whole blood without need for equipment.
Collapse
Affiliation(s)
- Dawn White
- Biointerfaces Institute
- McMaster University
- Canada
| | | | | | | |
Collapse
|
14
|
Ley B, Winasti Satyagraha A, Rahmat H, von Fricken ME, Douglas NM, Pfeffer DA, Espino F, von Seidlein L, Henriques G, Oo NN, Menard D, Parikh S, Bancone G, Karahalios A, Price RN. Performance of the Access Bio/CareStart rapid diagnostic test for the detection of glucose-6-phosphate dehydrogenase deficiency: A systematic review and meta-analysis. PLoS Med 2019; 16:e1002992. [PMID: 31834890 PMCID: PMC6910667 DOI: 10.1371/journal.pmed.1002992] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/08/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND To reduce the risk of drug-induced haemolysis, all patients should be tested for glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDd) prior to prescribing primaquine (PQ)-based radical cure for the treatment of vivax malaria. This systematic review and individual patient meta-analysis assessed the utility of a qualitative lateral flow assay from Access Bio/CareStart (Somerset, NJ) (CareStart Screening test for G6PD deficiency) for the diagnosis of G6PDd compared to the gold standard spectrophotometry (International Prospective Register of Systematic Reviews [PROSPERO]: CRD42019110994). METHODS AND FINDINGS Articles published on PubMed between 1 January 2011 and 27 September 2019 were screened. Articles reporting performance of the standard CSG from venous or capillary blood samples collected prospectively and considering spectrophotometry as gold standard (using kits from Trinity Biotech PLC, Wicklow, Ireland) were included. Authors of articles fulfilling the inclusion criteria were contacted to contribute anonymized individual data. Minimal data requested were sex of the participant, CSG result, spectrophotometry result in U/gHb, and haemoglobin (Hb) reading. The adjusted male median (AMM) was calculated per site and defined as 100% G6PD activity. G6PDd was defined as an enzyme activity of less than 30%. Pooled estimates for sensitivity and specificity, unconditional negative predictive value (NPV), positive likelihood ratio (LR+), and negative likelihood ratio (LR-) were calculated comparing CSG results to spectrophotometry using a random-effects bivariate model. Of 11 eligible published articles, individual data were available from 8 studies, 6 from Southeast Asia, 1 from Africa, and 1 from the Americas. A total of 5,815 individual participant data (IPD) were available, of which 5,777 results (99.3%) were considered for analysis, including data from 3,095 (53.6%) females. Overall, the CSG had a pooled sensitivity of 0.96 (95% CI 0.90-0.99) and a specificity of 0.95 (95% CI 0.92-0.96). When the prevalence of G6PDd was varied from 5% to 30%, the unconditional NPV was 0.99 (95% CI 0.94-1.00), with an LR+ and an LR- of 18.23 (95% CI 13.04-25.48) and 0.05 (95% CI 0.02-0.12), respectively. Performance was significantly better in males compared to females (p = 0.027) but did not differ significantly between samples collected from capillary or venous blood (p = 0.547). Limitations of the study include the lack of wide geographical representation of the included data and that the CSG results were generated under research conditions, and therefore may not reflect performance in routine settings. CONCLUSIONS The CSG performed well at the 30% threshold. Its high NPV suggests that the test is suitable to guide PQ treatment, and the high LR+ and low LR- render the test suitable to confirm and exclude G6PDd. Further operational studies are needed to confirm the utility of the test in remote endemic settings.
Collapse
Affiliation(s)
- Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- * E-mail:
| | | | - Hisni Rahmat
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Michael E. von Fricken
- Department of Global and Community Health, George Mason University, Fairfax, Virginia, United States of America
| | - Nicholas M. Douglas
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Daniel A. Pfeffer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Fe Espino
- Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Philippines
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Gisela Henriques
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nwe Nwe Oo
- Department of Medical Research (Lower Myanmar), Yangon, Republic of the Union of Myanmar
| | - Didier Menard
- Malaria Genetics and Resistance Unit, Institut Pasteur, Paris, France
| | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Amalia Karahalios
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Val F, Costa FT, King L, Brito-Sousa JD, Bassat Q, Monteiro WM, Siqueira AM, Luzzatto L, Lacerda MV. Tafenoquine for the prophylaxis, treatment and elimination of malaria: eagerness must meet prudence. Future Microbiol 2019; 14:1261-1279. [PMID: 31596137 DOI: 10.2217/fmb-2019-0202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Malaria puts more than 3 billion people at risk of infection and causes high morbidity and mortality. Plasmodium vivax forms hypnozoites, which may initiate recurrences, even in the absence of reinfection or superinfection. Until recently, the only drug available for eliminating hypnozoites was primaquine (PQ), which, given its short half-life, requires a relatively long course of treatment. Tafenoquine (TQ) is a PQ analog with a longer half-life. This enables radical cure of malaria with a single dose and overcomes adherence issues associated with PQ, thereby increasing effectiveness in real-life settings. Clinical studies have provided sound evidence for TQ's safety and efficacy against malaria, which recently led to its approval by the US FDA. Here, we review aspects of TQ, including how to avoid hemolytic anemia in G6PD deficient patients. We believe that TQ promises to be a major advance toward malaria elimination.
Collapse
Affiliation(s)
- Fernando Val
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil
| | - Fabio Tm Costa
- Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Liam King
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jose D Brito-Sousa
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Escola Superior de Ciências da Saúde,Universidade do Estado do Amazonas, Manaus, Amazonas, 69065-001, Brazil
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, 08036, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Distrito da Manhiça, CP 1929, Maputo, Mozambique.,ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, 08950, Spain
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Escola Superior de Ciências da Saúde,Universidade do Estado do Amazonas, Manaus, Amazonas, 69065-001, Brazil
| | - André M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Lucio Luzzatto
- Department of Hematology & Blood Transfusion, Muhimbili University of Health & Allied Sciences, Dar-es-Salaam, Tanzania
| | - Marcus Vg Lacerda
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, Amazonas, 69040-000, Brazil.,Instituto Leônidas e Maria Deane, FIOCRUZ-AM, Manaus, Amazonas, 69057-070, Brazil
| |
Collapse
|
16
|
Prevalence of inherited blood disorders and associations with malaria and anemia in Malawian children. Blood Adv 2019; 2:3035-3044. [PMID: 30425067 DOI: 10.1182/bloodadvances.2018023069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022] Open
Abstract
In sub-Saharan Africa, inherited causes of anemia are common, but data are limited regarding the geographical prevalence and coinheritance of these conditions and their overall contributions to childhood anemia. To address these questions in Malawi, we performed a secondary analysis of the 2015-2016 Malawi Micronutrient Survey, a nationally and regionally representative survey that estimated the prevalence of micronutrient deficiencies and evaluated both inherited and noninherited determinants of anemia. Children age 6 to 59 months were sampled from 105 clusters within the 2015-2016 Malawi Demographic Health Survey. Hemoglobin, ferritin, retinol binding protein, malaria, and inflammatory biomarkers were measured from venous blood. Molecular studies were performed using dried blood spots to determine the presence of sickle cell disease or trait, α-thalassemia trait, and glucose-6-phosphate dehydrogenase (G6PD) deficiency. Of 1279 eligible children, 1071 were included in the final analysis. Anemia, iron deficiency, and malaria were common, affecting 30.9%, 21.5%, and 27.8% of the participating children, respectively. α-Thalassemia trait was common (>40% of children demonstrating deletion of 1 [33.1%] or 2 [10.0%] α-globin genes) and associated with higher prevalence of anemia (P < .001). Approximately 20% of males had G6PD deficiency, which was associated with a 1.0 g/dL protection in hemoglobin decline during malaria infection (P = .02). These data document that inherited blood disorders are common and likely play an important role in the prevalence of anemia and malaria in Malawian children.
Collapse
|
17
|
Abstract
The technical genesis and practice of 8-aminoquinoline therapy of latent malaria offer singular scientific, clinical, and public health insights. The 8-aminoquinolines brought revolutionary scientific discoveries, dogmatic practices, benign neglect, and, finally, enduring promise against endemic malaria. The clinical use of plasmochin-the first rationally synthesized blood schizontocide and the first gametocytocide, tissue schizontocide, and hypnozoitocide of any kind-commenced in 1926. Plasmochin became known to sometimes provoke fatal hemolytic crises. World War II delivered a newer 8-aminoquinoline, primaquine, and the discovery of glucose-6-phosphate dehydrogenase (G6PD) deficiency as the basis of its hemolytic toxicity came in 1956. Primaquine nonetheless became the sole therapeutic option against latent malaria. After 40 years of fitful development, in 2018 the U.S. Food and Drug Administration registered the 8-aminoquinoline called tafenoquine for the prevention of all malarias and the treatment of those that relapse. Tafenoquine also cannot be used in G6PD-unknown or -deficient patients. The hemolytic toxicity of the 8-aminoquinolines impedes their great potential, but this problem has not been a research priority. This review explores the complex technical dimensions of the history of 8-aminoquinolines. The therapeutic principles thus examined may be leveraged in improved practice and in understanding the bright prospect of discovery of newer drugs that cannot harm G6PD-deficient patients.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Djigo OKM, Bollahi MA, Hasni Ebou M, Ould Ahmedou Salem MS, Tahar R, Bogreau H, Basco L, Ould Mohamed Salem Boukhary A. Assessment of glucose-6-phosphate dehydrogenase activity using CareStart G6PD rapid diagnostic test and associated genetic variants in Plasmodium vivax malaria endemic setting in Mauritania. PLoS One 2019; 14:e0220977. [PMID: 31525211 PMCID: PMC6746352 DOI: 10.1371/journal.pone.0220977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background Primaquine is recommended by the World Health Organization (WHO) for radical treatment of Plasmodium vivax malaria. This drug is known to provoke acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Due to lack of data on G6PD deficiency, the use of primaquine has been limited in Africa. In the present study, G6PD deficiency was investigated in blood donors of various ethnic groups living in Nouakchott, a P. vivax endemic area in Mauritania. Methodology/Principal findings Venous blood samples from 443 healthy blood donors recruited at the National Transfusion Center in Nouakchott were screened for G6PD activity using the CareStart G6PD deficiency rapid diagnostic test. G6PD allelic variants were investigated using DiaPlexC G6PD genotyping kit that detects African (A-) and Mediterranean (B-) variants. Overall, 50 of 443 (11.3%) individuals (49 [11.8%] men and 1 [3.7%] woman) were phenotypically deficient. Amongst men, Black Africans had the highest prevalence of G6PD deficiency (15 of 100 [15%]) and White Moors the lowest (10 of 168, [5.9%]). The most commonly observed G6PD allelic variants among 44 tested G6PD-deficient men were the African variant A- (202A/376G) in 14 (31.8%), the Mediterranean variant B- (563T) in 13 (29.5%), and the Betica-Selma A- (376G/968C) allelic variant in 6 (13.6%). The Santamaria A- variant (376G/542T) and A variant (376G) were observed in only one and two individuals, respectively. None of the expected variants was observed in 8 (18.2%) of the tested phenotypically G6PD-deficient men. Conclusion This is the first published data on G6PD deficiency in Mauritanians. The prevalence of phenotypic G6PD deficiency was relatively high (11.3%). It was mostly associated with either African or Mediterranean variants, in agreement with diverse Arab and Black African origins of the Mauritanian population.
Collapse
Affiliation(s)
- Oum kelthoum Mamadou Djigo
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
| | | | - Moina Hasni Ebou
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
| | - Mohamed Salem Ould Ahmedou Salem
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
| | - Rachida Tahar
- UMR 216 MERIT, IRD, Faculté de Pharmacie, Univ. Paris Descartes, Paris, France
| | - Hervé Bogreau
- Unité de Parasitologie et d’Entomologie, Institut de Recherche Biomédicale des Armées, IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Centre National de Référence du Paludisme, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
| | - Leonardo Basco
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Nouveau Campus Universitaire, Nouakchott, Mauritania
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- * E-mail:
| |
Collapse
|
19
|
Avalos S, Mejia RE, Banegas E, Salinas C, Gutierrez L, Fajardo M, Galo S, Pinto A, Mejia A, Fontecha G. G6PD deficiency, primaquine treatment, and risk of haemolysis in malaria-infected patients. Malar J 2018; 17:415. [PMID: 30409136 PMCID: PMC6225638 DOI: 10.1186/s12936-018-2564-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/01/2018] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The incidence of malaria in the Americas has decreased markedly in recent years. Honduras and the other countries of Mesoamerica and the island of Hispaniola have set the goal of eliminating native malaria by the year 2020. To achieve this goal, Honduras has recently approved national regulations to expand the possibilities of a shortened double dose primaquine (PQ) treatment for vivax malaria. Considering this new shortened anti-malarial treatment, the high frequency of G6PDd genotypes in Honduras, and the lack of routinely assessment of the G6PD deficiency status, this study aimed at investigating the potential association between the intake of PQ and haemolysis in malaria-infected G6PDd subjects. METHODS This was a prospective cohort and open-label study. Participants with malaria were recruited. Plasmodium vivax infection was treated with 0.25 mg/kg of PQ daily for 14 days. Safety and signs of haemolysis were evaluated by clinical criteria and laboratory values before and during the 3rd and 7th day of PQ treatment. G6PD status was assessed by a rapid test (CareStart™) and two molecular approaches. RESULTS Overall 55 participants were enrolled. The frequency of G6PD deficient genotypes was 7/55 (12.7%), where 5/7 (71.4%) were hemizygous A- males and 2/7 (28.6%) heterozygous A- females. Haemoglobin concentrations were compared between G6PD wild type (B) and G6PDd A- subjects, showing a significant difference between the means of both groups in the 3rd and 7th days. Furthermore, a statistically significant difference was evident in the change in haemoglobin concentration between the 3rd day and the 1st day for both genotypes, but there was no statistical difference for the change in haemoglobin concentration between the 7th day and the 1st day. Besides these changes in the haemoglobin concentrations, none of the patients showed signs or symptoms associated with severe haemolysis, and none needed to be admitted to a hospital for further medical attention. CONCLUSIONS The findings support that the intake of PQ during 14 days of treatment against vivax malaria is safe in patients with a class III variant of G6PDd. In view of the new national regulations in the shortened treatment of vivax malaria for 7 days, it is advisable to be alert of potential cases of severe haemolysis that could occur among G6PD deficient hemizygous males with a class II mutation such as the Santamaria variant, previously reported in the country.
Collapse
Affiliation(s)
- Sara Avalos
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Rosa E Mejia
- Pan American Health Organization, Tegucigalpa, Honduras
| | - Engels Banegas
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Cesar Salinas
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Lester Gutierrez
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Marcela Fajardo
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Suzeth Galo
- National Department of Surveillance, Ministry of Health, Tegucigalpa, Honduras
| | - Alejandra Pinto
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Angel Mejia
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras
| | - Gustavo Fontecha
- Microbiology Research Institute, National Autonomous University of Honduras, Tegucigalpa, Honduras.
| |
Collapse
|
20
|
White MT, Walker P, Karl S, Hetzel MW, Freeman T, Waltmann A, Laman M, Robinson LJ, Ghani A, Mueller I. Mathematical modelling of the impact of expanding levels of malaria control interventions on Plasmodium vivax. Nat Commun 2018; 9:3300. [PMID: 30120250 PMCID: PMC6097992 DOI: 10.1038/s41467-018-05860-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023] Open
Abstract
Plasmodium vivax poses unique challenges for malaria control and elimination, notably the potential for relapses to maintain transmission in the face of drug-based treatment and vector control strategies. We developed an individual-based mathematical model of P. vivax transmission calibrated to epidemiological data from Papua New Guinea (PNG). In many settings in PNG, increasing bed net coverage is predicted to reduce transmission to less than 0.1% prevalence by light microscopy, however there is substantial risk of rebounds in transmission if interventions are removed prematurely. In several high transmission settings, model simulations predict that combinations of existing interventions are not sufficient to interrupt P. vivax transmission. This analysis highlights the potential options for the future of P. vivax control: maintaining existing public health gains by keeping transmission suppressed through indefinite distribution of interventions; or continued development of strategies based on existing and new interventions to push for further reduction and towards elimination.
Collapse
Affiliation(s)
- Michael T White
- Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France.
| | - Patrick Walker
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, Norfolk Place, W2 1PG, UK
| | - Stephan Karl
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang 511, Papua New Guinea
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Melbourne University, Melbourne, VIC, 3052, Australia
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Tim Freeman
- Rotarians Against Malaria, Port Moresby 121, Papua New Guinea
| | - Andreea Waltmann
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Melbourne University, Melbourne, VIC, 3052, Australia
| | - Moses Laman
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang 511, Papua New Guinea
| | - Leanne J Robinson
- Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang 511, Papua New Guinea
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Melbourne University, Melbourne, VIC, 3052, Australia
- Burnet Institute, Melbourne, VIC, 3004, Australia
| | - Azra Ghani
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, Norfolk Place, W2 1PG, UK
| | - Ivo Mueller
- Malaria: Parasites and Hosts, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, Melbourne University, Melbourne, VIC, 3052, Australia
| |
Collapse
|
21
|
Henriques G, Phommasone K, Tripura R, Peto TJ, Raut S, Snethlage C, Sambo I, Sanann N, Nguon C, Adhikari B, Pongvongsa T, Imwong M, von Seidlein L, Day NP, White NJ, Dondorp AM, Newton P, Ley B, Mayxay M. Comparison of glucose-6 phosphate dehydrogenase status by fluorescent spot test and rapid diagnostic test in Lao PDR and Cambodia. Malar J 2018; 17:243. [PMID: 29929514 PMCID: PMC6013858 DOI: 10.1186/s12936-018-2390-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/13/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy worldwide. Primaquine is the only licensed drug that effectively removes Plasmodium vivax hypnozoites from the human host and prevents relapse. While well tolerated by most recipients, primaquine can cause haemolysis in G6PD deficient individuals and is, therefore, underused. Rapid diagnostic tests (RDTs) could permit ascertainment of G6PD status outside of laboratory settings and hence safe treatment in remote areas. The performance of the fluorescent spot test (Trinity, Ireland; FST) and a G6PD RDT (Carestart, USA) against spectrophotometry were assessed. METHODS Participants were enrolled during cross-sectional surveys in Laos and by purposive sampling in Cambodia. FST and RDT were performed during village surveys and 3 mL of venous blood was collected for subsequent G6PD measurement by spectrophotometry. RESULTS A total of 757 participants were enrolled in Laos and 505 in Cambodia. FST and RDT performed best at 30% cut-off activity and performed significantly better in Laos than in Cambodia. When defining intermediate results as G6PD deficient, the FST had a sensitivity of 100% (95%CI 90-100) and specificity of 90% (95%CI 87.7-92.2) in Laos and sensitivity of 98% (94.1-99.6) and specificity of 71% (95%CI 66-76) in Cambodia (p < 0.001). The RDT had sensitivity and specificity of 100% (95%CI 90-100) and 99% (95%CI 97-99) in Laos and sensitivity and specificity of 91% (86-96) and 93% (90-95) in Cambodia (p < 0.001). The RDT performed significantly better (all p < 0.05) than the FST when intermediate FST results were defined as G6PD deficient. CONCLUSION The interpretation of RDT results requires some training but is a good alternative to the FST. Trial registration clinicaltrials.gov; NCT01872702; 06/27/2013; https://clinicaltrials.gov/ct2/show/NCT01872702.
Collapse
Affiliation(s)
- Gisela Henriques
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Life Science, Imperial College London, London, UK
| | - Koukeo Phommasone
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Thomas J Peto
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Shristi Raut
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR
| | - Coco Snethlage
- School of Medicine, Amsterdam University, Amsterdam, The Netherlands
| | - Im Sambo
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nou Sanann
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chea Nguon
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Bipin Adhikari
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tiengkham Pongvongsa
- Savannakhet Provincial Station of Malariology, Parasitology and Entomology, Savannakhet, Savannakhet Province, Lao PDR
| | - Mallika Imwong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| | - Nicholas P Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Paul Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Benedikt Ley
- Menzies School of Health Research, Darwin, Australia
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Lao PDR.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Faculty of Postgraduate Studies, University of Health Sciences, Vientiane, Lao PDR
| |
Collapse
|
22
|
Watson J, Taylor WRJ, Bancone G, Chu CS, Jittamala P, White NJ. Implications of current therapeutic restrictions for primaquine and tafenoquine in the radical cure of vivax malaria. PLoS Negl Trop Dis 2018; 12:e0006440. [PMID: 29677199 PMCID: PMC5931686 DOI: 10.1371/journal.pntd.0006440] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/02/2018] [Accepted: 04/10/2018] [Indexed: 12/02/2022] Open
Abstract
Background The 8-aminoquinoline antimalarials, the only drugs which prevent relapse of vivax and ovale malaria (radical cure), cause dose-dependent oxidant haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Patients with <30% and <70% of normal G6PD activity are not given standard regimens of primaquine and tafenoquine, respectively. Both drugs are currently considered contraindicated in pregnant and lactating women. Methods Quantitative G6PD enzyme activity data from 5198 individuals were used to estimate the proportions of heterozygous females who would be ineligible for treatment at the 30% and 70% activity thresholds, and the relationship with the severity of the deficiency. This was used to construct a simple model relating allele frequency in males to the potential population coverage of tafenoquine and primaquine under current prescribing restrictions. Findings Independent of G6PD deficiency, the current pregnancy and lactation restrictions will exclude ~13% of females from radical cure treatment. This could be reduced to ~4% if 8-aminoquinolines can be prescribed to women breast-feeding infants older than 1 month. At a 30% activity threshold, approximately 8–19% of G6PD heterozygous women are ineligible for primaquine treatment; at a 70% threshold, 50–70% of heterozygous women and approximately 5% of G6PD wild type individuals are ineligible for tafenoquine treatment. Thus, overall in areas where the G6PDd allele frequency is >10% more than 15% of men and more than 25% of women would be unable to receive tafenoquine. In vivax malaria infected patients these proportions will be lowered by any protective effect against P. vivax conferred by G6PD deficiency. Conclusion If tafenoquine is deployed for radical cure, primaquine will still be needed to obtain high population coverage. Better radical cure antimalarial regimens are needed. More than half of the malaria outside of Sub-Saharan Africa is caused by the parasite Plasmodium vivax which is characterised by multiple relapses of malaria from parasites which persist in the liver. The only drugs which prevent these relapses (radical cure) are the 8-aminoquinolines primaquine and tafenoquine, and they both cause haemolytic anaemia in G6PD deficiency, the most common enzymopathy of man. Neither can currently be prescribed in pregnancy or lactation. Tafenoquine is given as a single dose regimen and is a significant advance over primaquine (recommended as a 14 day regimen). However, a greater number of individuals, mostly females, will be ineligible for tafenoquine treatment due to a tighter restriction on the minimum G6PD enzyme activity considered safe for use of the drug. Using enzyme activity data from over 5000 individuals, we estimate the proportions ineligible due to G6PD deficiency as a function of the deficient allele prevalence. Adding this to simple estimates of pregnancy and lactation, we estimate the proportions of populations who cannot receive either tafenoquine or primaquine radical cure. For the elimination of vivax malaria in areas with a high prevalence of G6PD deficiency, then if tafenoquine is deployed primaquine will still be needed, so better regimens should be developed.
Collapse
Affiliation(s)
- James Watson
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- * E-mail:
| | - Walter R. J. Taylor
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy S. Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Podjanee Jittamala
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J. White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
| |
Collapse
|
23
|
Recht J, Ashley EA, White NJ. Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: Divergent policies and practices in malaria endemic countries. PLoS Negl Trop Dis 2018; 12:e0006230. [PMID: 29672516 PMCID: PMC5908060 DOI: 10.1371/journal.pntd.0006230] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Primaquine is the only available antimalarial drug that kills dormant liver stages of Plasmodium vivax and Plasmodium ovale malarias and therefore prevents their relapse (‘radical cure’). It is also the only generally available antimalarial that rapidly sterilises mature P. falciparum gametocytes. Radical cure requires extended courses of primaquine (usually 14 days; total dose 3.5–7 mg/kg), whereas transmissibility reduction in falciparum malaria requires a single dose (formerly 0.75 mg/kg, now a single low dose [SLD] of 0.25 mg/kg is recommended). The main adverse effect of primaquine is dose-dependent haemolysis in glucose 6-phosphate dehydrogenase (G6PD) deficiency, the most common human enzymopathy. X-linked mutations conferring varying degrees of G6PD deficiency are prevalent throughout malaria-endemic regions. Phenotypic screening tests usually detect <30% of normal G6PD activity, identifying nearly all male hemizygotes and female homozygotes and some heterozygotes. Unfortunately, G6PD deficiency screening is usually unavailable at point of care, and, as a consequence, radical cure is greatly underused. Both haemolytic risk (determined by the prevalence and severity of G6PD deficiency polymorphisms) and relapse rates vary, so there has been considerable uncertainty in both policies and practices related to G6PD deficiency testing and use of primaquine for radical cure. Review of available information on the prevalence and severity of G6PD variants together with countries’ policies for the use of primaquine and G6PD deficiency testing confirms a wide range of practices. There remains lack of consensus on the requirement for G6PD deficiency testing before prescribing primaquine radical cure regimens. Despite substantially lower haemolytic risks, implementation of SLD primaquine as a P. falciparum gametocytocide also varies. In Africa, a few countries have recently adopted SLD primaquine, yet many with areas of low seasonal transmission do not use primaquine as an antimalarial at all. Most countries that recommended the higher 0.75 mg/kg single primaquine dose for falciparum malaria (e.g., most countries in the Americas) have not changed their recommendation. Some vivax malaria–endemic countries where G6PD deficiency testing is generally unavailable have adopted the once-weekly radical cure regimen (0.75 mg/kg/week for 8 weeks), known to be safer in less severe G6PD deficiency variants. There is substantial room for improvement in radical cure policies and practices.
Collapse
Affiliation(s)
- Judith Recht
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth A. Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Lee J, Kim TI, Kang JM, Jun H, Lê HG, Thái TL, Sohn WM, Myint MK, Lin K, Kim TS, Na BK. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among malaria patients in Upper Myanmar. BMC Infect Dis 2018; 18:131. [PMID: 29548282 PMCID: PMC5857094 DOI: 10.1186/s12879-018-3031-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/01/2018] [Indexed: 11/13/2022] Open
Abstract
Background Glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) deficiency is one of the most common X-linked recessive hereditary disorders in the world. Primaquine (PQ) has been used for radical cure of P. vivax to prevent relapse. Recently, it is also used to reduce P. falciparum gametocyte carriage to block transmission. However, PQ metabolites oxidize hemoglobin and generate excessive reactive oxygen species which can trigger acute hemolytic anemia in malaria patients with inherited G6PD deficiency. Methods A total of 252 blood samples collected from malaria patients in Myanmar were used in this study. G6PD variant was analysed by a multiplex allele specific PCR kit, DiaPlexC™ G6PD Genotyping Kit [Asian type]. The accuracy of the multiplex allele specific PCR was confirmed by sequencing analysis. Results Prevalence and distribution of G6PD variants in 252 malaria patients in Myanmar were analysed. Six different types of G6PD allelic variants were identified in 50 (7 females and 43 males) malaria patients. The predominant variant was Mahidol (68%, 34/50), of which 91.2% (31/34) and 8.8% (3/34) were males and females, respectively. Other G6PD variants including Kaiping (18%, 9/50), Viangchan (6%, 3/50), Mediterranean (4%, 2/50), Union (2%, 1/50) and Canton (2%, 1/50) were also observed. Conclusions Results of this study suggest that more concern for proper and safe use of PQ as a radical cure of malaria in Myanmar is needed by combining G6PD deficiency test before PQ prescription. Establishment of a follow-up system to monitor potential PQ toxicity in malaria patients who are given PQ is also required.
Collapse
Affiliation(s)
- Jinyoung Lee
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,Present address: Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Tae Im Kim
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,Present address: Planning and Management Division, Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Hojong Jun
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea
| | - Hương Giang Lê
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Thị Lam Thái
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea.,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea
| | - Moe Kyaw Myint
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Khin Lin
- Department of Medical Research Pyin Oo Lwin Branch, Pyin Oo Lwin, Myanmar
| | - Tong-Soo Kim
- Department of Tropical Medicine, and Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, 22212, Republic of Korea.
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, Republic of Korea. .,BK21Plus Team for Anti-aging Biotechnology and Industry, Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
25
|
|
26
|
Awab GR, Imwong M, Bancone G, Jeeyapant A, Day NPJ, White NJ, Woodrow CJ. Chloroquine-Primaquine versus Chloroquine Alone to Treat Vivax Malaria in Afghanistan: An Open Randomized Superiority Trial. Am J Trop Med Hyg 2017; 97:1782-1787. [PMID: 29141719 PMCID: PMC5805052 DOI: 10.4269/ajtmh.17-0290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/04/2017] [Indexed: 11/18/2022] Open
Abstract
Afghanistan's national guidelines recommend primaquine (PQ) for radical treatment of Plasmodium vivax malaria, but this is rarely implemented because of concerns over potential hemolysis in patients who have G6PD deficiency. Between August 2009 and February 2014, we conducted an open-label, randomized controlled trial of chloroquine (CQ) alone versus chloroquine plus primaquine (0.25 mg base/kg/day for 14 days) (CQ+PQ) in patients aged 6 months and older with microscopy confirmed P. vivax infection. In the CQ+PQ group, G6PD deficiency was excluded by fluorescent spot testing. The primary outcome was P. vivax recurrence assessed by survival analysis over one year follow-up. Of 593 patients enrolled, 570 attended at or after 14 days of follow-up. Plasmodium vivax recurrences occurred in 37 (13.1%) of 282 patients in the CQ+PQ arm versus 86 (29.9%) of 288 in the CQ arm (Cox proportional hazard ratio [HR] 0.37, 95% confidence interval [CI] 0.25-0.54) (intention-to-treat analysis). Protection against recurrence was greater in the first 6 months of follow-up (HR 0.082; 95% CI 0.029-0.23) than later (HR 0.65, 95% CI 0.41-1.03). Five of seven patients requiring hospital admission were considered possible cases of PQ-related hemolysis, and PQ was stopped in a further six; however, in none of these cases did hemoglobin fall by ≥ 2 g/dL or to below 7 g/dL, and genotyping did not detect any cases of Mediterranean variant G6PD deficiency. PQ 0.25 mg/kg/day for 14 days prevents relapse of P. vivax in Afghanistan. Patient visits during the first week may improve adherence. Implementation will require deployment of point-of-care phenotypic tests for G6PD deficiency.
Collapse
Affiliation(s)
- Ghulam Rahim Awab
- Medical Faculty, Nangarhar University, Jalalabad, Afghanistan
- Ministry of Public Health, Islamic Republic of Afghanistan, Kabul, Afghanistan
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Atthanee Jeeyapant
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Charles J. Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Elella SA, Tawfik M, Barseem N, Moustafa W. Prevalence of glucose-6-phosphate dehydrogenase deficiency in neonates in Egypt. Ann Saudi Med 2017; 37:362-365. [PMID: 28988250 PMCID: PMC6074198 DOI: 10.5144/0256-4947.2017.362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked disorder which causes neonatal jaundice in most cases, and under certain conditions, can cause a spectrum of hemolytic manifestations. OBJECTIVE To determine the local prevalence of G6PD deficiency in newborns. DESIGN Cross-sectional. SETTING University hospital. METHODS Infants born during 2015 were prospectively screened for G6PD deficiency. Dried blood spot samples on filter paper were collected in collaboration with the central laboratories of the Ministry of Health. Quantitative measurement of G6PD enzyme activity was measured from the blood samples using fluorometric analysis. A value.
Collapse
Affiliation(s)
| | | | | | - Wafaa Moustafa
- Correspondence: Dr. Wafaa Moustafa Department of Pediatrics, Manoufia University Faculty of Medicine, Shebin El-Kom, Cairo 00020, Egypt T: + 2001145388818 ORCID: http://orcid.org/0000-0001-7317-6507
| |
Collapse
|
28
|
Laouini N, Sahli CA, Jouini L, Haloui S, Fredj SH, Daboubi R, Siala H, Ouali F, Becher M, Toumi N, Bibi A, Messsaoud T. Determination of glucose-6-phosphate dehydrogenase cut-off values in a Tunisian population. ACTA ACUST UNITED AC 2017; 55:1193-1201. [DOI: 10.1515/cclm-2016-0253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/22/2016] [Indexed: 11/15/2022]
Abstract
AbstractBackground:Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the commonest enzymopathy worldwide. The incidence depends essentially on the methods used for the assessment. In this respect, we attempted in this study to set cut-off values of G6PD activity to discriminate among normal, heterozygous, and deficient individuals using the World Health Organization (WHO) classification and the receiver operating characteristics (ROC) curve analysis.Methods:Blood samples from 250 female and 302 male subjects were enrolled in this study. The G6PD activity was determined using a quantitative assay. The common G6PD mutations in Tunisia were determined using the amplification refractory mutation system (ARMS-PCR) method. The ROC curve was used to choice the best cut-off.Results:Normal G6PD values were 7.69±2.37, 7.86±2.39, and 7.51±2.35 U/g Hb for the entire, male, and female groups, respectively. Cut-off values for the total, male, and female were determined using the WHO classification and ROC curves analysis. In the male population, both cut-offs established using ROC curve analysis (4.00 U/g Hb) and the 60% level (3.82 U/g Hb), respectively are sensitive and specific resulting in a good efficiency of discrimination between deficient and normal males. For the female group the ROC cut-off (5.84 U/g Hb) seems better than the 60% level cut-off (3.88 U/g Hb) to discriminate between normal and heterozygote or homozygote women with higher Youden Index.Conclusions:The establishment of the normal values for a population is important for a better evaluation of the assay result. The ROC curve analysis is an alternative method to determine the status of patients since it correlates DNA analysis and G6PD activity.
Collapse
|
29
|
Devine A, Parmiter M, Chu CS, Bancone G, Nosten F, Price RN, Lubell Y, Yeung S. Using G6PD tests to enable the safe treatment of Plasmodium vivax infections with primaquine on the Thailand-Myanmar border: A cost-effectiveness analysis. PLoS Negl Trop Dis 2017; 11:e0005602. [PMID: 28542194 PMCID: PMC5460895 DOI: 10.1371/journal.pntd.0005602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 06/06/2017] [Accepted: 04/26/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Primaquine is the only licensed antimalarial for the radical cure of Plasmodium vivax infections. Many countries, however, do not administer primaquine due to fear of hemolysis in those with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In other settings, primaquine is given without G6PD testing, putting patients at risk of hemolysis. New rapid diagnostic tests (RDTs) offer the opportunity to screen for G6PD deficiency prior to treatment with primaquine. Here we assessed the cost-effectiveness of using G6PD RDTs on the Thailand-Myanmar border and provide the model as an online tool for use in other settings. METHODS/PRINCIPAL FINDINGS Decision tree models for the management of P. vivax malaria evaluated the costs and disability-adjusted life-years (DALYs) associated with recurrences and primaquine-induced hemolysis from a health care provider perspective. Screening with G6PD RDTs before primaquine use was compared to (1) giving chloroquine alone and (2) giving primaquine without screening. Data were taken from a recent study on the impact of primaquine on P. vivax recurrences and a literature review. Compared to the use of chloroquine alone, the screening strategy had similar costs while averting 0.026 and 0.024 DALYs per primary infection in males and females respectively. Compared to primaquine administered without screening, the screening strategy provided modest cost savings while averting 0.011 and 0.004 DALYs in males and females respectively. The probabilistic sensitivity analyses resulted in a greater than 75% certainty that the screening strategy was cost-effective at a willingness to pay threshold of US$500, which is well below the common benchmark of per capita gross domestic product for Myanmar. CONCLUSIONS/SIGNIFICANCE In this setting G6PD RDTs could avert DALYs by reducing recurrences and reducing hemolytic risk in G6PD deficient patients at low costs or cost savings. The model results are limited by the paucity of data available in the literature for some parameter values, including the mortality rates for both primaquine-induced hemolysis and P. vivax. The online model provides an opportunity to use different parameter estimates to examine the validity of these findings in other settings.
Collapse
Affiliation(s)
- Angela Devine
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Minnie Parmiter
- Boyd Orr Centre, University of Glasgow, Glasgow, United Kingdom
| | - Cindy S. Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
| | - Ric N. Price
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Yoel Lubell
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Shunmay Yeung
- Faculty of Infectious and Tropical Disease, The London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
30
|
Challenges for achieving safe and effective radical cure of Plasmodium vivax: a round table discussion of the APMEN Vivax Working Group. Malar J 2017; 16:141. [PMID: 28381261 PMCID: PMC5382417 DOI: 10.1186/s12936-017-1784-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 03/18/2017] [Indexed: 01/12/2023] Open
Abstract
The delivery of safe and effective radical cure for Plasmodium vivax is one of the greatest challenges for achieving malaria elimination from the Asia-Pacific by 2030. During the annual meeting of the Asia Pacific Malaria Elimination Network Vivax Working Group in October 2016, a round table discussion was held to discuss the programmatic issues hindering the widespread use of primaquine (PQ) radical cure. Participants included 73 representatives from 16 partner countries and 33 institutional partners and other research institutes. In this meeting report, the key discussion points are presented and grouped into five themes: (i) current barriers for glucose-6-phosphate deficiency (G6PD) testing prior to PQ radical cure, (ii) necessary properties of G6PD tests for wide scale deployment, (iii) the promotion of G6PD testing, (iv) improving adherence to PQ regimens and (v) the challenges for future tafenoquine (TQ) roll out. Robust point of care (PoC) G6PD tests are needed, which are suitable and cost-effective for clinical settings with limited infrastructure. An affordable and competitive test price is needed, accompanied by sustainable funding for the product with appropriate training of healthcare staff, and robust quality control and assurance processes. In the absence of quantitative PoC G6PD tests, G6PD status can be gauged with qualitative diagnostics, however none of the available tests is currently sensitive enough to guide TQ treatment. TQ introduction will require overcoming additional challenges including the management of severely and intermediately G6PD deficient individuals. Robust strategies are needed to ensure that effective treatment practices can be deployed widely, and these should ensure that the caveats are outweighed by the benefits of radical cure for both the patients and the community. Widespread access to quality controlled G6PD testing will be critical.
Collapse
|
31
|
Defining the next generation of Plasmodium vivax diagnostic tests for control and elimination: Target product profiles. PLoS Negl Trop Dis 2017; 11:e0005516. [PMID: 28369085 PMCID: PMC5391123 DOI: 10.1371/journal.pntd.0005516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/13/2017] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
The global prevalence of malaria has decreased over the past fifteen years, but similar gains have not been realized against Plasmodium vivax because this species is less responsive to conventional malaria control interventions aimed principally at P. falciparum. Approximately half of all malaria cases outside of Africa are caused by P. vivax. This species places dormant forms in human liver that cause repeated clinical attacks without involving another mosquito bite. The diagnosis of acute patent P. vivax malaria relies primarily on light microscopy. Specific rapid diagnostic tests exist but typically perform relatively poorly compared to those for P. falciparum. Better diagnostic tests are needed for P. vivax. To guide their development, FIND, in collaboration with P. vivax experts, identified the specific diagnostic needs associated with this species and defined a series of three distinct target product profiles, each aimed at a particular diagnostic application: (i) point-of-care of acutely ill patients for clinical care purposes; (ii) point-of-care asymptomatic and otherwise sub-patent residents for public health purposes, e.g., mass screen and treat campaigns; and (iii) ultra-sensitive not point-of-care diagnosis for epidemiological research/surveillance purposes. This report presents and discusses the rationale for these P. vivax-specific diagnostic target product profiles. These contribute to the rational development of fit-for-purpose diagnostic tests suitable for the clinical management, control and elimination of P. vivax malaria. Plasmodium vivax is the second most prevalent Plasmodium species amongst the five that can infect humans and cause malaria. The control and elimination of P. vivax is complicated by its specific biology, such as hard-to-detect low densities of blood-circulating parasites in infected individuals, the existence of persistent liver forms causing relapse, or the early appearance of sexual stages of the parasite during the course of an infection, which facilitates its transmission. These difficulties are reinforced by the fact that most antimalarial tools have been developed primarily for P. falciparum, the most prevalent malaria species, and are not always as effective for P. vivax. Current tools for the diagnosis of P. vivax are of limited effectiveness. Rapid diagnostic tests exist but show, in average, lower performance than similar test for P. falciparum. P. vivax diagnosis often relies on light microscopy which is challenging to maintain at a high quality and not sensitive enough to detect a large fraction of all infections. Recognizing that better diagnostic tools for P. vivax are needed, we report in this study the development of new target product profiles to define the specific characteristics of such tests. The establishment of these consensus-based documents is an important first step to guide research and development efforts toward better diagnostic solutions for P. vivax malaria and to accelerate the elimination of this species alongside P. falciparum.
Collapse
|
32
|
Watson J, Taylor WR, Menard D, Kheng S, White NJ. Modelling primaquine-induced haemolysis in G6PD deficiency. eLife 2017; 6. [PMID: 28155819 PMCID: PMC5330681 DOI: 10.7554/elife.23061] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Primaquine is the only drug available to prevent relapse in vivax malaria. The main adverse effect of primaquine is erythrocyte age and dose-dependent acute haemolytic anaemia in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd). As testing for G6PDd is often unavailable, this limits the use of primaquine for radical cure. A compartmental model of the dynamics of red blood cell production and destruction was designed to characterise primaquine-induced haemolysis using a holistic Bayesian analysis of all published data and was used to predict a safer alternative to the currently recommended once weekly 0.75 mg/kg regimen for G6PDd. The model suggests that a step-wise increase in daily administered primaquine dose would be relatively safe in G6PDd. If this is confirmed, then were this regimen to be recommended for radical cure patients would not require testing for G6PDd in areas where G6PDd Viangchan or milder variants are prevalent. DOI:http://dx.doi.org/10.7554/eLife.23061.001 Malaria is the most important parasitic disease that affects humans. Over half of the malaria cases in Asia and South America are caused by a species of malaria parasite called Plasmodium vivax (known as vivax malaria). This form of malaria results in repeated illness because dormant parasites in the liver wake at intervals to infect the blood. The only available drug that can stop these relapses is a drug called primaquine, which was developed seventy years ago. Unfortunately, primaquine causes dangerous side effects in certain individuals who are deficient in an enzyme called G6PD, which helps defend red blood cells against stresses. Primaquine damages these cells so that they burst, leading to anaemia. This is a major problem because G6PD deficiency is common in regions where malaria is present: in some areas up to 30% of the population may be G6PD deficient. Since G6PD testing is not widely available, doctors often avoid prescribing primaquine to treat malaria, which results in more cases of disease relapse. Failing to prevent vivax relapses causes extensive illness and hinders efforts to eliminate malaria. Is there a way to give this drug to patients that would be safer for people with G6PD deficiency? Primaquine destroys older rather than younger red blood cells. Watson et al. used mathematical modelling to see whether it is possible to develop a primaquine treatment strategy that would allow a gradual destruction of older red blood cells in individuals with G6PD deficiency, which would be safer. The mathematical model incorporates data from previous studies in malaria patients and healthy volunteers with G6PD deficiency and combines this with knowledge of how red blood cells are produced and destroyed. Watson et al. predicted that giving primaquine over 20 days in a steadily increasing dose was safer than current recommendations. Mathematical models are simplifications of real world processes. The only way to test these findings properly will be to run a clinical trial that gives healthy volunteers who are G6PD deficient a course of primaquine treatment with a steadily increasing dose. DOI:http://dx.doi.org/10.7554/eLife.23061.002
Collapse
Affiliation(s)
- James Watson
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Walter Rj Taylor
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Didier Menard
- Unité d'Epidémiologie Moléculaire du Paludisme, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sim Kheng
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Baird JK, Valecha N, Duparc S, White NJ, Price RN. Diagnosis and Treatment of Plasmodium vivax Malaria. Am J Trop Med Hyg 2016; 95:35-51. [PMID: 27708191 PMCID: PMC5198890 DOI: 10.4269/ajtmh.16-0171] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/19/2016] [Indexed: 11/07/2022] Open
Abstract
The diagnosis and treatment of Plasmodium vivax malaria differs from that of Plasmodium falciparum malaria in fundamentally important ways. This article reviews the guiding principles, practices, and evidence underpinning the diagnosis and treatment of P. vivax malaria.
Collapse
Affiliation(s)
- J Kevin Baird
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia
| | - Neena Valecha
- National Institute for Malaria Research, New Delhi, India
| | | | - Nicholas J White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ric N Price
- Division of Global and Tropical Health, Menzies School of Health Research-Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Roh ME, Oyet C, Orikiriza P, Wade M, Mwanga-Amumpaire J, Boum Y, Kiwanuka GN, Parikh S. Screening for Glucose-6-Phosphate Dehydrogenase Deficiency Using Three Detection Methods: A Cross-Sectional Survey in Southwestern Uganda. Am J Trop Med Hyg 2016; 95:1094-1099. [PMID: 27672207 DOI: 10.4269/ajtmh.16-0552] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/12/2016] [Indexed: 11/07/2022] Open
Abstract
Despite the potential benefit of primaquine in reducing Plasmodium falciparum transmission and radical cure of Plasmodium vivax and Plasmodium ovale infections, concerns over risk of hemolytic toxicity in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd) have hampered its deployment. A cross-sectional survey was conducted in 2014 to assess the G6PDd prevalence among 631 children between 6 and 59 months of age in southwestern Uganda, an area where primaquine may be a promising control measure. G6PDd prevalence was determined using three detection methods: a quantitative G6PD enzyme activity assay (Trinity Biotech® G-6-PDH kit), a qualitative point-of-care test (CareStart™ G6PD rapid diagnostic test [RDT]), and molecular detection of the G6PD A- G202A allele. Qualitative tests were compared with the gold standard quantitative assay. G6PDd prevalence was higher by RDT (8.6%) than by quantitative assay (6.8%), using a < 60% activity threshold. The RDT performed optimally at a < 60% threshold and demonstrated high sensitivity (≥ 90%) and negative predictive values (100%) across three activity thresholds (below 60%, 30%, and 40%). G202A allele frequency was 6.4%, 7.9%, and 6.8% among females, males, and overall, respectively. Notably, over half of the G202A homo-/hemizygous children expressed ≥ 60% enzyme activity. Overall, the CareStart™ G6PD RDT appears to be a viable screening test to accurately identify individuals with enzyme activities below 60%. The low prevalence of G6PDd across all three diagnostic modalities and absence of severe deficiency in our study suggests that there is little barrier to the use of single-dose primaquine in this region.
Collapse
Affiliation(s)
- Michelle E Roh
- Yale School of Public Health, New Haven, Connecticut.,University of California, San Francisco, California
| | - Caesar Oyet
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Orikiriza
- Mbarara University of Science and Technology, Mbarara, Uganda.,Médecins sans Frontières Epicentre, Mbarara Research Centre, Mbarara, Uganda
| | - Martina Wade
- Yale School of Public Health, New Haven, Connecticut
| | - Juliet Mwanga-Amumpaire
- Mbarara University of Science and Technology, Mbarara, Uganda.,Médecins sans Frontières Epicentre, Mbarara Research Centre, Mbarara, Uganda
| | - Yap Boum
- Mbarara University of Science and Technology, Mbarara, Uganda.,Médecins sans Frontières Epicentre, Mbarara Research Centre, Mbarara, Uganda
| | | | - Sunil Parikh
- Yale School of Public Health, New Haven, Connecticut.
| |
Collapse
|