1
|
Prajeeth CK, Zdora I, Saletti G, Friese J, Gerlach T, Wilken L, Beicht J, Kubinski M, Puff C, Baumgärtner W, Kortekaas J, Wichgers Schreur PJ, Osterhaus ADME, Rimmelzwaan GF. Immune correlates of protection of the four-segmented Rift Valley fever virus candidate vaccine in mice. Emerg Microbes Infect 2024; 13:2373313. [PMID: 38946528 PMCID: PMC11238650 DOI: 10.1080/22221751.2024.2373313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease caused by RVF virus (RVFV). RVFV infections in humans are usually asymptomatic or associated with mild febrile illness, although more severe cases of haemorrhagic disease and encephalitis with high mortality also occur. Currently, there are no licensed human vaccines available. The safety and efficacy of a genetically engineered four-segmented RVFV variant (hRVFV-4s) as a potential live-attenuated human vaccine has been tested successfully in mice, ruminants, and marmosets though the correlates of protection of this vaccine are still largely unknown. In the present study, we have assessed hRVFV-4s-induced humoral and cellular immunity in a mouse model of RVFV infection. Our results confirm that a single dose of hRVFV-4s is highly efficient in protecting naïve mice from developing severe disease following intraperitoneal challenge with a highly virulent RVFV strain and data show that virus neutralizing (VN) serum antibody titres in a prime-boost regimen are significantly higher compared to the single dose. Subsequently, VN antibodies from prime-boost-vaccinated recipients were shown to be protective when transferred to naïve mice. In addition, hRVFV-4s vaccination induced a significant virus-specific T cell response as shown by IFN-γ ELISpot assay, though these T cells did not provide significant protection upon passive transfer to naïve recipient mice. Collectively, this study highlights hRVFV-4s-induced VN antibodies as a major correlate of protection against lethal RVFV infection.
Collapse
MESH Headings
- Animals
- Rift Valley fever virus/immunology
- Rift Valley fever virus/genetics
- Rift Valley Fever/prevention & control
- Rift Valley Fever/immunology
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Mice
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Female
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Disease Models, Animal
- Immunity, Cellular
- T-Lymphocytes/immunology
- Immunity, Humoral
- Mice, Inbred BALB C
- Interferon-gamma/immunology
- Vaccination
Collapse
Affiliation(s)
- Chittappen K Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Julia Friese
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Lucas Wilken
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
- Boehringer Ingelheim Animal Health, Global Innovation, Saint Priest, France
| | - Paul J Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
- BunyaVax B.V., Lelystad, The Netherlands
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
2
|
Sadeghi B, Groschup MH, Eiden M. In silico identification of novel pre-microRNA genes in Rift valley fever virus suggest new pathomechanisms for embryo-fetal dysgenesis. Virulence 2024; 15:2329447. [PMID: 38548679 PMCID: PMC10984114 DOI: 10.1080/21505594.2024.2329447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/06/2024] [Indexed: 04/02/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the post-transcriptional expression of target genes. Virus-encoded miRNAs play an important role in the replication of viruses, modulate gene expression in both the virus and host, and affect their persistence and immune evasion in hosts. This renders viral miRNAs as potential targets for therapeutic applications, especially against pathogenic viruses that infect humans and animals. Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic RNA virus that causes severe disease in both humans and livestock. High mortality among newborn lambs and abortion storms are key characteristics of an RVF outbreak. To date, limited information is available on RVFV-derived miRNAs. In this study, computational methods were used to analyse the RVFV genome for putative pre-miRNA genes, which were then analysed for the presence of mature miRNAs. We detected 19 RVFV-encoded miRNAs and identified their potential mRNAs targets in sheep (Ovis aries), the most susceptible host. The identification of significantly enriched O. aries genes in association with RVFV miRNAs will help elucidate the molecular mechanisms underlying RVFV pathogenesis and potentially uncover novel drug targets for RVFV.
Collapse
Affiliation(s)
- Balal Sadeghi
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin H. Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
3
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
4
|
McMillen CM, Megli C, Radisic R, Skvarca LB, Hoehl RM, Boyles DA, McGaughey JJ, Bird BH, McElroy AK, Hartman AL. Vaccine strains of Rift Valley fever virus exhibit attenuation at the maternal-fetal placental interface. J Virol 2024; 98:e0098324. [PMID: 39016561 PMCID: PMC11334480 DOI: 10.1128/jvi.00983-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Rift Valley fever virus (RVFV) infection causes abortions in ruminant livestock and is associated with an increased likelihood of miscarriages in women. Using sheep and human placenta explant cultures, we sought to identify tissues at the maternal-fetal interface targeted by RVFV. Sheep villi and fetal membranes were highly permissive to RVFV infection resulting in markedly higher virus titers than human cultures. Sheep cultures were most permissive to wild-type RVFV and ΔNSm infection, while live-attenuated RVFV vaccines (LAVs; MP-12, ΔNSs, and ΔNSs/ΔNSm) exhibited reduced replication. The human fetal membrane restricted wild-type and LAV replication, and when infection occurred, it was prominent on the maternal-facing side. Type I and type III interferons were induced in human villi exposed to LAVs lacking the NSs protein. This study supports the use of sheep and human placenta explants to understand vertical transmission of RVFV in mammals and whether LAVs are attenuated at the maternal-fetal interface.IMPORTANCEA direct comparison of replication of Rift Valley fever virus (RVFV) in sheep and human placental explants reveals comparative efficiencies and permissivity to infection and replication. Vaccine strains of RVFV demonstrated reduced infection and replication capacity in the mammalian placenta. This study represents the first direct cross-host comparison of the vertical transmission capacity of this high-priority emerging mosquito-transmitted virus.
Collapse
Affiliation(s)
- Cynthia M. McMillen
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Christina Megli
- Division of Maternal-Fetal Medicine, Division of Reproductive Infectious Disease, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and the Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Rebecca Radisic
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Lauren B. Skvarca
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan M. Hoehl
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
| | - Devin A. Boyles
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
| | - Jackson J. McGaughey
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
| | - Brian H. Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Anita K. McElroy
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Division of Pediatric Infectious Disease, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy L. Hartman
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Borrego B, Alonso C, Moreno S, de la Losa N, Sánchez-Cordón PJ, Brun A. The Rift Valley fever (RVF) vaccine candidate 40Fp8 shows an extreme attenuation in IFNARKO mice following intranasal inoculation. PLoS Negl Trop Dis 2024; 18:e0012011. [PMID: 39159263 PMCID: PMC11361746 DOI: 10.1371/journal.pntd.0012011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/29/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024] Open
Abstract
Rift Valley fever (RVF) is an important zoonotic viral disease affecting several species of domestic and wild ruminants, causing major economic losses and dozens of human deaths in various geographical areas of Africa, where it is endemic. Although it is not present in Europe, there is a risk of its introduction and spread linked to globalisation and climate change. At present, the only measure that could help to prevent the disease is vaccination of flocks in areas at risk of RVF. Available live attenuated vaccines are an effective means of controlling the disease, but their use is often questioned due to residual virulence, particularly in susceptible hosts such as pregnant sheep. On the other hand, no vaccine is currently licensed for use in humans. The development of safe and effective vaccines is therefore a major area of research. In previous studies, we selected under selective mutagenic pressure a highly attenuated RVFV 56/74 virus variant called 40Fp8. This virus showed an extremely attenuated phenotype in both wild-type and immunodeficient A129 (IFNARKO) mice, yet was still able to induce protective immunity after a single inoculation, thus supporting its use as a safe, live attenuated vaccine. To further investigate its safety, in this work we have analysed the attenuation level of 40Fp8 in immunosuppressed mice (A129) when administered by the intranasal route, and compared it with other attenuated RVF viruses that are the basis of vaccines in use or in development. Our results show that 40Fp8 has a much higher attenuated level than these other viruses and confirm its potential as a candidate for safe RVF vaccine development.
Collapse
Affiliation(s)
- Belén Borrego
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Celia Alonso
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Sandra Moreno
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Nuria de la Losa
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Pedro José Sánchez-Cordón
- Department of INFECTIOUS DISEASES AND GLOBAL HEALTH, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| | - Alejandro Brun
- Department of IMMUNOLOGY, PATHOLOGY AND CONTROL OF INFECTIOUS DISEASES, Centro de Investigación en Sanidad Animal CISA INIA/CSIC, Valdeolmos, Madrid, Spain
| |
Collapse
|
6
|
Nsengimana I, Juma J, Roesel K, Gasana MN, Ndayisenga F, Muvunyi CM, Hakizimana E, Hakizimana JN, Eastwood G, Chengula AA, Bett B, Kasanga CJ, Oyola SO. Genomic Epidemiology of Rift Valley Fever Virus Involved in the 2018 and 2022 Outbreaks in Livestock in Rwanda. Viruses 2024; 16:1148. [PMID: 39066310 PMCID: PMC11281637 DOI: 10.3390/v16071148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Rift Valley fever (RVF), a mosquito-borne transboundary zoonosis, was first confirmed in Rwanda's livestock in 2012 and since then sporadic cases have been reported almost every year. In 2018, the country experienced its first large outbreak, which was followed by a second one in 2022. To determine the circulating virus lineages and their ancestral origin, two genome sequences from the 2018 outbreak, and thirty-six, forty-one, and thirty-eight sequences of small (S), medium (M), and large (L) genome segments, respectively, from the 2022 outbreak were generated. All of the samples from the 2022 outbreak were collected from slaughterhouses. Both maximum likelihood and Bayesian-based phylogenetic analyses were performed. The findings showed that RVF viruses belonging to a single lineage, C, were circulating during the two outbreaks, and shared a recent common ancestor with RVF viruses isolated in Uganda between 2016 and 2019, and were also linked to the 2006/2007 largest East Africa RVF outbreak reported in Kenya, Tanzania, and Somalia. Alongside the wild-type viruses, genetic evidence of the RVFV Clone 13 vaccine strain was found in slaughterhouse animals, demonstrating a possible occupational risk of exposure with unknown outcome for people working in meat-related industry. These results provide additional evidence of the ongoing wide spread of RVFV lineage C in Africa and emphasize the need for an effective national and international One Health-based collaborative approach in responding to RVF emergencies.
Collapse
Affiliation(s)
- Isidore Nsengimana
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro P.O. Box 3000, Tanzania
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro P.O. Box 3297, Tanzania
- Rwanda Inspectorate, Competition and Consumer Protection Authority, Kigali P.O. Box 375, Rwanda
- Department of Entomology, and Center for Emerging Zoonotic & Arthropod-Borne Pathogens (CeZAP), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - John Juma
- International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709, Kenya
| | - Kristina Roesel
- International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709, Kenya
| | - Methode N. Gasana
- Department of Animal Resource Research and Technology Transfer, Rwanda Agriculture and Animal Resources Development Board (RAB), Huye P.O. Box 5016, Rwanda
| | - Fabrice Ndayisenga
- Department of Animal Resource Research and Technology Transfer, Rwanda Agriculture and Animal Resources Development Board (RAB), Huye P.O. Box 5016, Rwanda
| | | | | | - Jean N. Hakizimana
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro P.O. Box 3297, Tanzania
| | - Gillian Eastwood
- Department of Entomology, and Center for Emerging Zoonotic & Arthropod-Borne Pathogens (CeZAP), Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Augustino A. Chengula
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro P.O. Box 3000, Tanzania
| | - Bernard Bett
- International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709, Kenya
| | - Christopher J. Kasanga
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro P.O. Box 3000, Tanzania
| | - Samuel O. Oyola
- International Livestock Research Institute (ILRI), Nairobi P.O. Box 30709, Kenya
| |
Collapse
|
7
|
Kimble JB, Noronha L, Trujillo JD, Mitzel D, Richt JA, Wilson WC. Rift Valley Fever. Vet Clin North Am Food Anim Pract 2024; 40:293-304. [PMID: 38453549 DOI: 10.1016/j.cvfa.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease that affects domestic and wild ruminants such as cattle, sheep, goats, camels, and buffaloes. Rift valley fever virus (RVFV), the causative agent of RVF, can also infect humans. RVFV is an arthropod-borne virus (arbovirus) that is primarily spread through the bites of infected mosquitoes or exposure to infected blood. RVFV was first isolated and characterized in the Rift Valley of Kenya in 1931 and is endemic throughout sub-Saharan Africa, including Comoros and Madagascar, the Arabian Peninsula (Saudi Arabia and Yemen), and Mayotte.
Collapse
Affiliation(s)
- J Brian Kimble
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA
| | - Leela Noronha
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA
| | - Jessie D Trujillo
- Diganostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Dana Mitzel
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA
| | - Juergen A Richt
- Diganostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - William C Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA.
| |
Collapse
|
8
|
McMillen CM, Megli C, Radisic R, Skvarca LB, Hoehl RM, Boyles DA, McGaughey JJ, Bird BH, McElroy AK, Hartman AL. Vaccine strains of Rift Valley fever virus exhibit attenuation at the maternal-fetal placental interface. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596800. [PMID: 38854055 PMCID: PMC11160702 DOI: 10.1101/2024.05.31.596800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Rift Valley fever virus (RVFV) infection causes abortions in ruminant livestock and is associated with an increased likelihood of miscarriages in women. Using sheep and human placenta explant cultures, we sought to identify tissues at the maternal-fetal interface targeted by RVFV. Sheep villi and fetal membranes were highly permissive to RVFV infection resulting in markedly higher virus titers than human cultures. Sheep cultures were most permissive to wild-type RVFV and ΔNSm infection, while live attenuated RVFV vaccines (LAVs; MP-12, ΔNSs, and ΔNSs/ΔNSm) exhibited reduced replication. The human fetal membrane restricted wild-type and LAV replication, and when infection occurred, it was prominent in the maternal-facing side. Type-I and type-III interferons were induced in human villi exposed to LAVs lacking the NSs protein. This study supports the use of sheep and human placenta explants to understand vertical transmission of RVFV in mammals and whether LAVs are attenuated at the maternal-fetal interface.
Collapse
Affiliation(s)
- Cynthia M. McMillen
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Infectious Diseases and Microbiology, School of Public Health, Pittsburgh, PA, USA
| | - Christina Megli
- University of Pittsburgh School of Medicine and the Magee-Womens Research Institute, Division of Maternal-Fetal Medicine, Division of Reproductive Infectious Disease, Department of Obstetrics, Gynecology and Reproductive Sciences, Pittsburgh, PA, USA
| | - Rebecca Radisic
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Lauren B. Skvarca
- University of Pittsburgh School of Medicine, Department of Pathology, Pittsburgh, PA, USA
| | - Ryan M. Hoehl
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
| | - Devin A. Boyles
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
| | | | - Brian H. Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Anita K. McElroy
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
- University of Pittsburgh School of Medicine, Department of Pediatrics, Division of Pediatric Infectious Disease, Pittsburgh, PA, USA
| | - Amy L. Hartman
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Infectious Diseases and Microbiology, School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Moreno S, Lorenzo G, López-Valiñas Á, de la Losa N, Alonso C, Charro E, Núñez JI, Sánchez-Cordón PJ, Borrego B, Brun A. Safety and Efficacy upon Infection in Sheep with Rift Valley Fever Virus ZH548-rA2, a Triple Mutant Rescued Virus. Viruses 2024; 16:87. [PMID: 38257787 PMCID: PMC10819402 DOI: 10.3390/v16010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The introduction of three single nucleotide mutations into the genome of the virulent RVFV ZH548 strain allows for the rescue of a fully attenuated virus in mice (ZH548-rA2). These mutations are located in the viral genes encoding the RdRp and the non-structural protein NSs. This paper shows the results obtained after the subcutaneous inoculation of ZH548-rA2 in adult sheep and the subsequent challenge with the parental virus (ZH548-rC1). Inoculation with the ZH548-rA2 virus caused no detectable clinical or pathological effect in sheep, whereas inoculation of the parental rC1 virus caused lesions compatible with viral infection characterised by the presence of scattered hepatic necrosis. Viral infection was confirmed via immunohistochemistry, with hepatocytes within the necrotic foci appearing as the main cells immunolabelled against viral antigen. Furthermore, the inoculation of sheep with the rA2 virus prevented the liver damage expected after rC1 virus inoculation, suggesting a protective efficacy in sheep which correlated with the induction of both humoral and cell-mediated immune responses.
Collapse
Affiliation(s)
- Sandra Moreno
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - Álvaro López-Valiñas
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Bellaterra, 08193 Barcelona, Spain (J.I.N.)
| | - Nuria de la Losa
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - Celia Alonso
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - Elena Charro
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - José I. Núñez
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Bellaterra, 08193 Barcelona, Spain (J.I.N.)
| | - Pedro J. Sánchez-Cordón
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Valdeolmos, 28130 Madrid, Spain; (S.M.); (G.L.); (P.J.S.-C.)
| |
Collapse
|
10
|
Alkan C, Jurado-Cobena E, Ikegami T. Advancements in Rift Valley fever vaccines: a historical overview and prospects for next generation candidates. NPJ Vaccines 2023; 8:171. [PMID: 37925544 PMCID: PMC10625542 DOI: 10.1038/s41541-023-00769-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease transmitted by mosquitoes and causes abortion storms, fetal malformations, and newborn animal deaths in livestock ruminants. In humans, RVF can manifest as hemorrhagic fever, encephalitis, or retinitis. Outbreaks of RVF have been occurring in Africa since the early 20th century and continue to pose a threat to both humans and animals in various regions such as Africa, Madagascar, the Comoros, Saudi Arabia, and Yemen. The development of RVF vaccines is crucial in preventing mortality and morbidity and reducing the spread of the virus. While several veterinary vaccines have been licensed in endemic countries, there are currently no licensed RVF vaccines for human use. This review provides an overview of the existing RVF vaccines, as well as potential candidates for future studies on RVF vaccine development, including next-generation vaccines that show promise in combating the disease in both humans and animals.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Eduardo Jurado-Cobena
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
11
|
Coler B, Cervantes O, Li M, Coler C, Li A, Shivakumar M, Every E, Schwartz D, Adams Waldorf KM. Common pathways targeted by viral hemorrhagic fever viruses to infect the placenta and increase the risk of stillbirth. Placenta 2023; 141:2-9. [PMID: 36939178 PMCID: PMC10102255 DOI: 10.1016/j.placenta.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/19/2022] [Accepted: 10/02/2022] [Indexed: 01/06/2023]
Abstract
Viral hemorrhagic fevers (VHF) are endemic to Africa, South America and Asia and contribute to significant maternal and fetal morbidity and mortality. Viruses causing VHFs are typically zoonotic, spreading to humans through livestock, wildlife, or mosquito vectors. Some of the most lethal VHF viruses also impart a high-risk of stillbirth including ebolaviruses, Marburg virus (MARV), Lassa virus (LASV), and Rift Valley Fever Virus (RVFV). Large outbreaks and epidemics are common, though the impact on the mother, fetus and placenta is understudied from a public health, clinical and basic science perspective. Notably, these viruses utilize ubiquitous cellular surface entry receptors critical for normal placental function to enable viral invasion into multiple key cell types of the placenta and set the stage for maternal-fetal transmission and stillbirth. We employ insights from molecular virology and viral immunology to discuss how trophoblast expression of viral entry receptors for VHF viruses may increase the risk for viral transmission to the fetus and stillbirth. As the frequency of VHF outbreaks is expected to increase with worsening climate change, understanding the pathogenesis of VHF-related diseases in the placenta is paramount to predicting the impact of emerging viruses on the placenta and perinatal outcomes.
Collapse
Affiliation(s)
- Brahm Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Orlando Cervantes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Department of Biological Sciences, Columbia University, New York City, NY, USA
| | | | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Case Western Reserve, Cleveland, OH, USA
| | - Megana Shivakumar
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Emma Every
- School of Medicine, University of Washington, Seattle, WA, USA
| | | | - Kristina M Adams Waldorf
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Nair N, Osterhaus ADME, Rimmelzwaan GF, Prajeeth CK. Rift Valley Fever Virus-Infection, Pathogenesis and Host Immune Responses. Pathogens 2023; 12:1174. [PMID: 37764982 PMCID: PMC10535968 DOI: 10.3390/pathogens12091174] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Rift Valley Fever Virus is a mosquito-borne phlebovirus causing febrile or haemorrhagic illness in ruminants and humans. The virus can prevent the induction of the antiviral interferon response through its NSs proteins. Mutations in the NSs gene may allow the induction of innate proinflammatory immune responses and lead to attenuation of the virus. Upon infection, virus-specific antibodies and T cells are induced that may afford protection against subsequent infections. Thus, all arms of the adaptive immune system contribute to prevention of disease progression. These findings will aid the design of vaccines using the currently available platforms. Vaccine candidates have shown promise in safety and efficacy trials in susceptible animal species and these may contribute to the control of RVFV infections and prevention of disease progression in humans and ruminants.
Collapse
|
13
|
McMillen CM, Chapman NS, Hoehl RM, Skvarca LB, Schwarz MM, Handal LS, Crowe JE, Hartman AL. A highly potent human neutralizing antibody prevents vertical transmission of Rift Valley fever virus in a rat model. Nat Commun 2023; 14:4507. [PMID: 37495594 PMCID: PMC10372071 DOI: 10.1038/s41467-023-40187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging mosquito-transmitted virus that circulates in livestock and humans in Africa and the Middle East. Outbreaks lead to high rates of miscarriages in domesticated livestock. Women are also at risk of vertical virus transmission and late-term miscarriages. MAb RVFV-268 is a highly potent recombinant neutralizing human monoclonal antibody that targets RVFV. Here we show that mAb RVFV-268 reduces viral replication in rat placenta explant cultures and prevents vertical transmission in a rat model of congenital RVF. Passive transfer of mAb RVFV-268 from mother to fetus occurs as early as 6 h after administration and persists through 24 h. Administering mAb RVFV-268 2 h prior to RVFV challenge or 24 h post-challenge protects the dams and offspring from RVFV infection. These findings support mAb RVFV-268 as a pre- and post-infection treatment to subvert RVFV infection and vertical transmission, thus protecting the mother and offspring.
Collapse
Affiliation(s)
- Cynthia M McMillen
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Infectious Diseases and Microbiology, School of Public Health, Pittsburgh, PA, USA
| | - Nathaniel S Chapman
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Ryan M Hoehl
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
| | - Lauren B Skvarca
- University of Pittsburgh Medical Center, Magee-Womens Hospital, Department of Pathology, Pittsburgh, PA, USA
| | - Madeline M Schwarz
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA
- University of Pittsburgh, Department of Infectious Diseases and Microbiology, School of Public Health, Pittsburgh, PA, USA
| | - Laura S Handal
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, TN, USA
| | - James E Crowe
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, TN, USA.
- Vanderbilt University Medical Center, Department of Pediatrics, Nashville, TN, USA.
| | - Amy L Hartman
- University of Pittsburgh, Center for Vaccine Research, Pittsburgh, PA, USA.
- University of Pittsburgh, Department of Infectious Diseases and Microbiology, School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Chen T, Ding Z, Lan J, Wong G. Advances and perspectives in the development of vaccines against highly pathogenic bunyaviruses. Front Cell Infect Microbiol 2023; 13:1174030. [PMID: 37274315 PMCID: PMC10234439 DOI: 10.3389/fcimb.2023.1174030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Increased human activities around the globe and the rapid development of once rural regions have increased the probability of contact between humans and wild animals. A majority of bunyaviruses are of zoonotic origin, and outbreaks may result in the substantial loss of lives, economy contraction, and social instability. Many bunyaviruses require manipulation in the highest levels of biocontainment, such as Biosafety Level 4 (BSL-4) laboratories, and the scarcity of this resource has limited the development speed of vaccines for these pathogens. Meanwhile, new technologies have been created, and used to innovate vaccines, like the mRNA vaccine platform and bioinformatics-based antigen design. Here, we summarize current vaccine developments for three different bunyaviruses requiring work in the highest levels of biocontainment: Crimean-Congo Hemorrhagic Fever Virus (CCHFV), Rift Valley Fever Virus (RVFV), and Hantaan virus (HTNV), and provide perspectives and potential future directions that can be further explored to advance specific vaccines for humans and livestock.
Collapse
Affiliation(s)
- Tong Chen
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Ding
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Lan
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
15
|
Wichgers Schreur PJ, Bird BH, Ikegami T, Bermúdez-Méndez E, Kortekaas J. Perspectives of Next-Generation Live-Attenuated Rift Valley Fever Vaccines for Animal and Human Use. Vaccines (Basel) 2023; 11:vaccines11030707. [PMID: 36992291 DOI: 10.3390/vaccines11030707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Live-attenuated Rift Valley fever (RVF) vaccines transiently replicate in the vaccinated host, thereby effectively initiating an innate and adaptive immune response. Rift Valley fever virus (RVFV)-specific neutralizing antibodies are considered the main correlate of protection. Vaccination with classical live-attenuated RVF vaccines during gestation in livestock has been associated with fetal malformations, stillbirths, and fetal demise. Facilitated by an increased understanding of the RVFV infection and replication cycle and availability of reverse genetics systems, novel rationally-designed live-attenuated candidate RVF vaccines with improved safety profiles have been developed. Several of these experimental vaccines are currently advancing beyond the proof-of-concept phase and are being evaluated for application in both animals and humans. We here provide perspectives on some of these next-generation live-attenuated RVF vaccines and highlight the opportunities and challenges of these approaches to improve global health.
Collapse
Affiliation(s)
- Paul J Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- BunyaVax B.V., 8221 RA Lelystad, The Netherlands
| | - Brian H Bird
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Erick Bermúdez-Méndez
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Wageningen University & Research, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
16
|
Ayers VB, Huang YJS, Dunlop JI, Kohl A, Brennan B, Higgs S, Vanlandingham DL. Immunogenicity of a Candidate Live Attenuated Vaccine for Rift Valley Fever Virus with a Two-Segmented Genome. Viral Immunol 2023; 36:33-40. [PMID: 36399689 PMCID: PMC9885543 DOI: 10.1089/vim.2022.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging arbovirus that affects both ruminants and humans. RVFV causes severe and recurrent outbreaks in Africa and the Arabian Peninsula with a significant risk for emergence into new locations. Although there are a variety of RVFV veterinary vaccines for use in endemic areas, there is currently no licensed vaccine for human use; therefore, there is a need to develop and assess new vaccines. Herein, we report a live-attenuated recombinant vaccine candidate for RVFV, based on the previously described genomic reconfiguration of the conditionally licensed MP12 vaccine. There are two general strategies used to develop live-attenuated RVFV vaccines, one being serial passage of wild-type RVFV strains to select attenuated mutants such as Smithburn, Clone 13, and MP12 vaccine strains. The second strategy has utilized reverse genetics to attenuate RVFV strains by introducing deletions or insertions within the viral genome. The novel candidate vaccine characterized in this report contains a two-segmented genome that lacks the medium viral segment (M) and two virulence genes (nonstructural small and nonstructural medium). The vaccine candidate, named r2segMP12, was evaluated for the production of neutralizing antibodies to RVFV in outbred CD-1 mice. The immune response induced by the r2segMP12 vaccine candidate was directly compared to the immune response induced by the rMP12 parental strain vaccine. Our study demonstrated that a single immunization with the r2segMP12 vaccine candidate at 105 plaque-forming units elicited a higher neutralizing antibody response than the rMP12 vaccine at the same vaccination titer without the need for a booster.
Collapse
Affiliation(s)
- Victoria B. Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - James I. Dunlop
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Benjamin Brennan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, USA.,Address correspondence to: Dr. Dana L. Vanlandingham, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
17
|
Morrill JC, Peters CJ, Bettinger GE, Palermo PM, Smith DR, Watts DM. Rift Valley fever MP-12 vaccine elicits an early protective immune response in mice. Vaccine 2022; 40:7255-7261. [PMID: 36333222 DOI: 10.1016/j.vaccine.2022.10.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Rift Valley fever virus (RVFV) is an important mosquito-borne pathogen that causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. The development of an effective veterinary and human vaccine to protect against Rift Valley fever (RVF) disease remains a high priority. The live attenuated RVFV MP-12 is a promising vaccine candidate for the prevention of RVF in both human and domestic ruminants. The aim of this study was to determine the onset of protective immunity elicted in mice by a single dose of this vaccine. Groups of CD-1 mice were vaccinated intraperitoneally with RVFV MP-12 vaccine and challenged on days 2, 5, 6 and 7 post-vaccination (PV) with a lethal dose of virulent RVFV. The mice were observed once daily for terminal morbidity and blood samples were obtained from the retro-orbital sinus complex on days 23 and 28 PV of surviving mice to determine RVFV neutralizing antibody titers. In one test, 2 of 3 mice challenged on day 2 PV survived and all 3 mice challenged at days 5 and 7 PV also survived. A second test of 10 mice per group was performed, and half (5) of those challenged at day 2 PV survived while all (10) survived challenge at day 4 and 6 PV. All surviving animals develop antibody that ranged from 1:80 to 1:1,280 PV. In a separate experiment, RVFV MP-12 vaccinated CD-1 mice, but not challenged developed a low viremia for the first 3 days PV and neutralzing antibody was detected on days 5 through day 28 PV. These findings demonstrated that the RVFV MP-12 vaccine elicited a rapid protective immune response in mice as early as 2 days PV, thus further supporting the effectiveness of this vaccine candidate for preventing RVF among humans and domestic ruminants.
Collapse
Affiliation(s)
- J C Morrill
- Departmentof Microbiology and Immunology, University of Texas Medical Branch at Galveston, TX 77555, United States.
| | - C J Peters
- Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch at Galveston, TX 77555, United States.
| | - G E Bettinger
- Dept. of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, United States
| | - P M Palermo
- Dept. of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, United States.
| | - D R Smith
- Department of Microbiology and Immunology, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, MD 21702, United States.
| | - D M Watts
- Dept. of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
18
|
Bian T, Wang B, Fu G, Hao M, Chen Y, Fang T, Liu S, Yu C, Li J, Chen W. Single-dose of a replication-competent adenovirus-vectored vaccine provides sterilizing protection against Rift Valley fever virus challenge. Front Immunol 2022; 13:907675. [PMID: 36439179 PMCID: PMC9691644 DOI: 10.3389/fimmu.2022.907675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Rift Valley fever virus (RVFV) is one of the most important virulent pathogens causing severe disease in animals and humans. However, there is currently no approved vaccine to prevent RVFV infection in humans. The use of human adenovirus serotype 4 (Ad4) as a vector for an RVFV vaccine has not been reported. Here, we report the generation of a replication-competent recombinant Ad4 vector expressing codon-optimized forms of the RVFV glycoproteins Gn and Gc (named Ad4-GnGc). Intramuscular immunization with Ad4-GnGc elicited robust neutralizing antibodies against RVFV and cellular immune responses in mice. A single low-dose vaccination with Ad4-GnGc completely protected interferon-α/β receptor-deficient A129 mice from lethal RVFV infection. More importantly, Ad4-GnGc efficacy was not affected by pre-existing immunity to adenovirus serotype 5, which currently exists widely in populations. These results suggest that Ad4-GnGc is a promising vaccine candidate against RVFV.
Collapse
Affiliation(s)
- Ting Bian
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Busen Wang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Guangcheng Fu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Meng Hao
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Yi Chen
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Ting Fang
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Shuling Liu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Changming Yu
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| | - Jianmin Li
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
- Frontier Biotechnology Laboratory, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Wei Chen
- Beijing Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Intranasal Exposure to Rift Valley Fever Virus Live-Attenuated Strains Leads to High Mortality Rate in Immunocompetent Mice. Viruses 2022; 14:v14112470. [PMID: 36366567 PMCID: PMC9694885 DOI: 10.3390/v14112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a pathogenic arthropod-borne virus that can cause serious illness in both ruminants and humans. The virus can be transmitted by an arthropod bite or contact with contaminated fluids or tissues. Two live-attenuated veterinary vaccines-the Smithburn (SB) and Clone 13 (Cl.13)-are currently used during epizootic events in Africa. However, their residual pathogenicity (i.e., SB) or potential of reversion (i.e., Cl.13) causes important adverse effects, strongly limiting their use in the field. In this study, we infected immunocompetent mice with SB or Cl.13 by a subcutaneous or an intranasal inoculation. Interestingly, we found that, unlike the subcutaneous infection, the intranasal inoculation led to a high mortality rate. In addition, we detected high titers and viral N antigen levels in the brain of both the SB- and Cl.13-infected mice. Overall, we unveil a clear correlation between the pathogenicity and the route of administration of both SB and Cl.13, with the intranasal inoculation leading to a stronger neurovirulence and higher mortality rate than the subcutaneous infection.
Collapse
|
20
|
Campbell CL, Snell TK, Bennett S, Wyckoff JH, Heaslip D, Flatt J, Harris EK, Hartman DA, Lian E, Bird BH, Stenglein MD, Bowen RA, Kading RC. Safety study of Rift Valley Fever human vaccine candidate (DDVax) in mosquitoes. Transbound Emerg Dis 2022; 69:2621-2633. [PMID: 34890118 PMCID: PMC9788258 DOI: 10.1111/tbed.14415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne pathogen with significant human and veterinary health consequences that periodically emerges in epizootics. RVFV causes fetal loss and death in ruminants and in humans can lead to liver and renal disease, delayed-onset encephalitis, retinitis, and in some cases severe haemorrhagic fever. A live attenuated vaccine candidate (DDVax), was developed by the deletion of the virulence factors NSs and NSm from a clinical isolate, ZH501, and has proven safe and immunogenic in rodents, pregnant sheep and non-human primates. Deletion of NSm also severely restricted mosquito midgut infection and inhibited vector-borne transmission. To demonstrate environmental safety, this study investigated the replication, dissemination and transmission efficiency of DDVax in mosquitoes following oral exposure compared to RVFV strains MP-12 and ZH501. Infection and dissemination profiles were also measured in mosquitoes 7 days after they fed on goats inoculated with DDvax or MP-12. We hypothesized that DDVax would infect mosquitoes at significantly lower rates than other RVFV strains and, due to lack of NSm, be transmission incompetent. Exposure of Ae. aegypti and Cx. tarsalis to 8 log10 plaque forming units (PFU)/ml DDVax by artificial bloodmeal resulted in significantly reduced DDVax infection rates in mosquito bodies compared to controls. Plaque assays indicated negligible transmission of infectious DDVax in Cx. tarsalis saliva (1/140 sampled) and none in Ae. aegypti saliva (0/120). Serum from goats inoculated with DDVax or MP-12 did not harbour detectable infectious virus by plaque assay at 1, 2 or 3 days post-inoculation. Infectious virus was, however, recovered from Aedes and Culex bodies that fed on goats vaccinated with MP-12 (13.8% and 4.6%, respectively), but strikingly, DDvax-positive mosquito bodies were greatly reduced (4%, and 0%, respectively). Furthermore, DDVax did not disseminate to legs/wings in any of the goat-fed mosquitoes. Collectively, these results are consistent with a beneficial environmental safety profile.
Collapse
Affiliation(s)
- Corey L. Campbell
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Trey K. Snell
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Susi Bennett
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - John H. Wyckoff
- BioMARC, Infectious Diseases Research Center, Colorado State UniversityFort CollinsColorado
| | - Darragh Heaslip
- BioMARC, Infectious Diseases Research Center, Colorado State UniversityFort CollinsColorado
| | - Jordan Flatt
- BioMARC, Infectious Diseases Research Center, Colorado State UniversityFort CollinsColorado
| | - Emma K. Harris
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Daniel A. Hartman
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Elena Lian
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Brian H. Bird
- School of Veterinary MedicineOne Health InstituteUniversity of CaliforniaDavisCalifornia
| | - Mark D. Stenglein
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Richard A. Bowen
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Rebekah C. Kading
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| |
Collapse
|
21
|
Borrego B, Moreno S, López-Valiñas Á, de la Losa N, Weber F, Núñez JI, Brun A. Identification of Single Amino Acid Changes in the Rift Valley Fever Virus Polymerase Core Domain Contributing to Virus Attenuation In Vivo. Front Cell Infect Microbiol 2022; 12:875539. [PMID: 35573791 PMCID: PMC9096444 DOI: 10.3389/fcimb.2022.875539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever (RVF) is an arboviral zoonotic disease affecting many African countries with the potential to spread to other geographical areas. RVF affects sheep, goats, cattle and camels, causing a high rate of abortions and death of newborn lambs. Also, humans can be infected, developing a usually self-limiting disease that can turn into a more severe illness in a low percentage of cases. Although different veterinary vaccines are available in endemic areas in Africa, to date no human vaccine has been licensed. In previous works, we described the selection and characterization of a favipiravir-mutagenized RVFV variant, termed 40Fp8, with potential as a RVF vaccine candidate due to the strong attenuation shown in immunocompromised animal models. Compared to the parental South African 56/74 viral strain, 40Fp8 displayed 7 amino acid substitutions in the L-protein, three of them located in the central region corresponding to the catalytic core of the RNA-dependent RNA polymerase (RdRp). In this work, by means of a reverse genetics system, we have analyzed the effect on virulence of these amino acid changes, alone or combined, both in vitro and in vivo. We found that the simultaneous introduction of two changes (G924S and A1303T) in the heterologous ZH548-RVFV Egyptian strain conferred attenuated phenotypes to the rescued viruses as shown in infected mice without affecting virus immunogenicity. Our results suggest that both changes induce resistance to favipiravir likely associated to some fitness cost that could be the basis for the observed attenuation in vivo. Conversely, the third change, I1050V, appears to be a compensatory mutation increasing viral fitness. Altogether, these results provide relevant information for the safety improvement of novel live attenuated RVFV vaccines.
Collapse
Affiliation(s)
- Belén Borrego
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
- *Correspondence: Belén Borrego, ; Alejandro Brun,
| | - Sandra Moreno
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
| | - Álvaro López-Valiñas
- Centre de Recerca en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA) Institut de Recerca en Tecnologies Agroalimentàries (IRTA), Barcelona, Spain
| | - Nuria de la Losa
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
| | - Friedemann Weber
- Institut für Virologie, FB10-Veterinary Medicine, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - José Ignacio Núñez
- Centre de Recerca en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA) Institut de Recerca en Tecnologies Agroalimentàries (IRTA), Barcelona, Spain
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, CISA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC)), Madrid, Spain
- *Correspondence: Belén Borrego, ; Alejandro Brun,
| |
Collapse
|
22
|
Sindato C, Karimuribo ED, Swai ES, Mboera LEG, Rweyemamu MM, Paweska JT, Salt J. Safety, Immunogenicity and Antibody Persistence of Rift Valley Fever Virus Clone 13 Vaccine in Sheep, Goats and Cattle in Tanzania. Front Vet Sci 2022; 8:779858. [PMID: 34977212 PMCID: PMC8718550 DOI: 10.3389/fvets.2021.779858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Vaccination is considered to be the best approach to control Rift Valley fever (RVF) in animals and consequently in humans. This study assessed the efficacy and safety of the RVF virus (RVFV) Clone 13 vaccine under field conditions. Methodology: A vaccine trial was conducted in sheep (230), goats (230), and cattle (140) in Ngorongoro district, Tanzania. Half of each of the animal species were vaccinated and the other half received the placebo. Animals were clinically monitored and bled before vaccination and at days 15, 30, 60, 180 and 360 (+/– 10) post-vaccination to measure Immunoglobulin M (IgM) and IgG antibody responses to RVFV. Survival analysis was conducted using cox-proportional hazard regression model to measure the time until an event of interest had occurred and to compare the cumulative proportion of events over time. Results: Of 600 animals included in the study, 120 animals were lost during the study, leaving a total of 480 (243 in the vaccinated group and 237 in the control group) for complete follow-up sampling. There was no adverse reaction reported at the injection site of the vaccine/placebo in all animals. Abortions, deaths, or body temperature variations were not associated with vaccination (p > 0.05). By day 15 post-inoculation, the IgG seroconversion in vaccinated goats, cattle and sheep was 27.0% (n = 115), 20.0% (n = 70) and 10.4% (n = 115), respectively. By day 30 post-inoculation, it was 75.0% (n = 113), 74.1% (n = 112) and 57.1% (n = 70) in vaccinated sheep, goats and cattle, respectively. By day 60 post-inoculation, IgG seroconversion in sheep, goats and cattle was 88.1% (n = 109), 84.3% (n = 108) and 64.60% (n = 65), respectively. By day 180, the IgG seroconversion in sheep, goats and cattle was 88.0% (n = 108), 83.8% (n = 105) and 66.1% (n = 62), respectively. By day 360, the IgG seroconversion in sheep, goats and cattle was 87.2% (n = 94), 85.6% (n = 90) and 66.1% (n = 59), respectively. Only five animals from the vaccinated group were RVFV IgM positive, which included four sheep and a goat. Conclusion: RVFV Clone 13 vaccine was well tolerated by sheep, goats, and cattle. The vaccine induced detectable, but variable levels of IgG responses, and of different duration. The vaccine is considered safe, with high immunogenicity in sheep and goats and moderate in cattle.
Collapse
Affiliation(s)
- Calvin Sindato
- National Institute for Medical Research, Tabora Research Centre, Tabora, Tanzania.,SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Esron D Karimuribo
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.,College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Leonard E G Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Mark M Rweyemamu
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Janusz T Paweska
- SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro, Tanzania.,National Health Laboratory Service, Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Sandringham, South Africa.,Department of Medical Virology, Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Faculty of Health Sciences, School of Pathology, University of Witwatersrand, Johannesburg, South Africa
| | - Jeremy Salt
- Global Alliance for Livestock Veterinary Medicines, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Rift Valley Fever Virus Propagates in Human Villous Trophoblast Cell Lines and Induces Cytokine mRNA Responses Known to Provoke Miscarriage. Viruses 2021; 13:v13112265. [PMID: 34835071 PMCID: PMC8625252 DOI: 10.3390/v13112265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023] Open
Abstract
The mosquito-borne Rift Valley fever (RVF) is a prioritised disease that has been listed by the World Health Organization for urgent research and development of counteraction. Rift Valley fever virus (RVFV) can cause a cytopathogenic effect in the infected cell and induce hyperimmune responses that contribute to pathogenesis. In livestock, the consequences of RVFV infection vary from mild symptoms to abortion. In humans, 1–3% of patients with RVFV infection develop severe disease, manifested as, for example, haemorrhagic fever, encephalitis or blindness. RVFV infection has also been associated with miscarriage in humans. During pregnancy, there should be a balance between pro-inflammatory and anti-inflammatory mediators to create a protective environment for the placenta and foetus. Many viruses are capable of penetrating that protective environment and infecting the foetal–maternal unit, possibly via the trophoblasts in the placenta, with potentially severe consequences. Whether it is the viral infection per se, the immune response, or both that contribute to the pathogenesis of miscarriage remains unknown. To investigate how RVFV could contribute to pathogenesis during pregnancy, we infected two human trophoblast cell lines, A3 and Jar, representing normal and transformed human villous trophoblasts, respectively. They were infected with two RVFV variants (wild-type RVFV and RVFV with a deleted NSs protein), and the infection kinetics and 15 different cytokines were analysed. The trophoblast cell lines were infected by both RVFV variants and infection caused upregulation of messenger RNA (mRNA) expression for interferon (IFN) types I–III and inflammatory cytokines, combined with cell line-specific mRNA expression of transforming growth factor (TGF)-β1 and interleukin (IL)-10. When comparing the two RVFV variants, we found that infection with RVFV lacking NSs function caused a hyper-IFN response and inflammatory response, while the wild-type RVFV suppressed the IFN I and inflammatory response. The induction of certain cytokines by RVFV infection could potentially lead to teratogenic effects that disrupt foetal and placental developmental pathways, leading to birth defects and other pregnancy complications, such as miscarriage.
Collapse
|
24
|
Preliminary Evaluation of a Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Providing Full Protection against Heterologous Virulent Challenge in Cattle. Vaccines (Basel) 2021; 9:vaccines9070748. [PMID: 34358166 PMCID: PMC8310273 DOI: 10.3390/vaccines9070748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen that causes periodic outbreaks of abortion in ruminant species and hemorrhagic disease in humans in sub-Saharan Africa. These outbreaks have a significant impact on veterinary and public health. Its introduction to the Arabian Peninsula in 2003 raised concerns of further spread of this transboundary pathogen to non-endemic areas. These concerns are supported by the presence of competent vectors in many non-endemic countries. There is no licensed RVF vaccine available for humans and only a conditionally licensed veterinary vaccine available in the United States. Currently employed modified live attenuated virus vaccines in endemic countries lack the ability for differentiating infected from vaccinated animals (DIVA). Previously, the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins, derived from the 1977 human RVFV isolate ZH548, was demonstrated in sheep. In the current study, cattle were vaccinated subcutaneously with the Gn only, or Gn and Gc combined, with either one or two doses of the vaccine and then subjected to heterologous virus challenge with the virulent Kenya-128B-15 RVFV strain, isolated from Aedes mosquitoes in 2006. The elicited immune responses by some vaccine formulations (one or two vaccinations) conferred complete protection from RVF within 35 days after the first vaccination. Vaccines given 35 days prior to RVFV challenge prevented viremia, fever and RVFV-associated histopathological lesions. This study indicates that a recombinant RVFV glycoprotein-based subunit vaccine platform is able to prevent and control RVFV infections in target animals.
Collapse
|
25
|
Host Cell Restriction Factors of Bunyaviruses and Viral Countermeasures. Viruses 2021; 13:v13050784. [PMID: 33925004 PMCID: PMC8146327 DOI: 10.3390/v13050784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
The Bunyavirales order comprises more than 500 viruses (generally defined as bunyaviruses) classified into 12 families. Some of these are highly pathogenic viruses infecting different hosts, including humans, mammals, reptiles, arthropods, birds, and/or plants. Host cell sensing of infection activates the innate immune system that aims at inhibiting viral replication and propagation. Upon recognition of pathogen-associated molecular patterns (PAMPs) by cellular pattern recognition receptors (PRRs), numerous signaling cascades are activated, leading to the production of interferons (IFNs). IFNs act in an autocrine and paracrine manner to establish an antiviral state by inducing the expression of hundreds of IFN-stimulated genes (ISGs). Some of these ISGs are known to restrict bunyavirus infection. Along with other constitutively expressed host cellular factors with antiviral activity, these proteins (hereafter referred to as “restriction factors”) target different steps of the viral cycle, including viral entry, genome transcription and replication, and virion egress. In reaction to this, bunyaviruses have developed strategies to circumvent this antiviral response, by avoiding cellular recognition of PAMPs, inhibiting IFN production or interfering with the IFN-mediated response. Herein, we review the current knowledge on host cellular factors that were shown to restrict infections by bunyaviruses. Moreover, we focus on the strategies developed by bunyaviruses in order to escape the antiviral state developed by the infected cells.
Collapse
|
26
|
Odendaal L, Davis AS, Venter EH. Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses 2021; 13:v13040709. [PMID: 33923863 PMCID: PMC8073615 DOI: 10.3390/v13040709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) infects humans and a wide range of ungulates and historically has caused devastating epidemics in Africa and the Arabian Peninsula. Lesions of naturally infected cases of Rift Valley fever (RVF) have only been described in detail in sheep with a few reports concerning cattle and humans. The most frequently observed lesion in both ruminants and humans is randomly distributed necrosis, particularly in the liver. Lesions supportive of vascular endothelial injury are also present and include mild hydropericardium, hydrothorax and ascites; marked pulmonary congestion and oedema; lymph node congestion and oedema; and haemorrhages in many tissues. Although a complete understanding of RVF pathogenesis is still lacking, antigen-presenting cells in the skin are likely the early targets of the virus. Following suppression of type I IFN production and necrosis of dermal cells, RVFV spreads systemically, resulting in infection and necrosis of other cells in a variety of organs. Failure of both the innate and adaptive immune responses to control infection is exacerbated by apoptosis of lymphocytes. An excessive pro-inflammatory cytokine and chemokine response leads to microcirculatory dysfunction. Additionally, impairment of the coagulation system results in widespread haemorrhages. Fatal outcomes result from multiorgan failure, oedema in many organs (including the lungs and brain), hypotension, and circulatory shock. Here, we summarize current understanding of RVF cellular tropism as informed by lesions caused by natural infections. We specifically examine how extant knowledge informs current understanding regarding pathogenesis of the haemorrhagic fever form of RVF, identifying opportunities for future research.
Collapse
Affiliation(s)
- Lieza Odendaal
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Correspondence: (L.O.); (A.S.D.)
| | - A Sally Davis
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0002, South Africa
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (L.O.); (A.S.D.)
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria 0002, South Africa;
- College of Public Health Medical and Veterinary Sciences, Discipline Veterinary Science, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
27
|
Rift Valley Fever: a Threat to Pregnant Women Hiding in Plain Sight? J Virol 2021; 95:JVI.01394-19. [PMID: 33597209 DOI: 10.1128/jvi.01394-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/18/2022] Open
Abstract
The potential for emerging mosquito-borne viruses to cause fetal infection in pregnant women was overlooked until the Zika fever outbreak several years ago. Rift Valley fever virus (RVFV) is an emerging arbovirus with a long history of fetal infection and death in pregnant livestock. The effect of RVFV infection on pregnant women is not well understood. This Gem examines the effects that this important emerging pathogen has during pregnancy, its potential impact on pregnant women, and the current research efforts designed to understand and mitigate adverse effects of RVFV infection during pregnancy.
Collapse
|
28
|
Borrego B, Brun A. A Hyper-Attenuated Variant of Rift Valley Fever Virus Generated by a Mutagenic Drug (Favipiravir) Unveils Potential Virulence Markers. Front Microbiol 2021; 11:621463. [PMID: 33633696 PMCID: PMC7900410 DOI: 10.3389/fmicb.2020.621463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes Rift Valley fever (RVF), a zoonotic disease of wild and domestic ruminants, causing serious economic losses and a threat to human health that could be controlled by vaccination. Though RVF vaccines are available for livestock, no RVF vaccines have been licensed for veterinary use in non-endemic countries nor for human populations in RVF risk areas. In a recent work, we showed that favipiravir, a promising drug with antiviral activity against a number of RNA viruses, led to the extinction of RVFV from infected cell cultures. Nevertheless, certain drug concentrations allowed the recovery of a virus variant showing increased resistance to favipiravir. In this work, we characterized this novel resistant variant both at genomic and phenotypic level in vitro and in vivo. Interestingly, the resistant virus displayed reduced growth rates in C6/36 insect cells but not in mammalian cell lines, and was highly attenuated but still immunogenic in vivo. Some amino acid substitutions were identified in the viral RNA-dependent RNA-polymerase (RdRp) gene and in the virus encoded type I-interferon (IFN-I) antagonist NSs gene, in catalytic core motifs and nuclear localization associated positions, respectively. These data may help to characterize novel potential virulence markers, offering additional strategies for further safety improvements of RVF live attenuated vaccine candidates.
Collapse
Affiliation(s)
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
29
|
A single vaccination with four-segmented rift valley fever virus prevents vertical transmission of the wild-type virus in pregnant ewes. NPJ Vaccines 2021; 6:8. [PMID: 33420095 PMCID: PMC7794363 DOI: 10.1038/s41541-020-00271-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-transmitted bunyavirus that causes severe outbreaks among wild and domesticated ruminants, of which sheep are the most susceptible. Outbreaks are characterised by high mortality rates among new-born lambs and abortion storms, in which all pregnant ewes in a flock may abort their foetuses. In endemic areas, Rift Valley fever (RVF) can be controlled by vaccination with either inactivated or live-attenuated vaccines. Inactivated vaccines are safe for animals during all physiological stages, including pregnancy. However, optimal efficacy of these vaccines depends on multiple vaccinations and yearly re-vaccination. Live-attenuated vaccines are generally highly efficacious after a single vaccination, but currently available live-attenuated vaccines may transmit to the ovine foetus, resulting in stillbirths, congenital malformations or abortion. We have previously reported the development of a novel live-attenuated RVFV vaccine, named RVFV-4s. This vaccine virus was created by splitting the M genome segment and deleting the major virulence determinant NSs, and was shown to be safe even for the most susceptible species, including pregnant ewes. The demonstrated efficacy and safety profile suggests that RVFV-4s holds promise for veterinary and human application. The RVFV-4s vaccine for veterinary application, here referred to as vRVFV-4s, was shown to provide complete protection after a single vaccination of lambs, goats and cattle. In this work, we evaluated the efficacy of the vRVFV-4s vaccine in pregnant ewes. Anticipating on the extremely high susceptibility of pregnant ewes for RVFV, both a single vaccination and double vaccination were evaluated in two independent experiments. The combined results suggest that a single vaccination with vRVFV-4s is sufficient to protect pregnant ewes and to prevent transmission to the ovine foetus.
Collapse
|
30
|
Boumart Z, Bamouh Z, Hamdi J, Safini N, Tadlaoui K, Bettinger G, Watts D, Elharrak M. Safety and immunogenicity of the Rift Valley fever arMP-12 ΔNSm21/384 candidate vaccine in pregnant ewes. Vaccine X 2020; 6:100070. [PMID: 32793877 PMCID: PMC7415414 DOI: 10.1016/j.jvacx.2020.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 11/18/2022] Open
Abstract
Rift Valley fever virus causes abortion, teratogenicity and mortality in domestic ruminants. Safety and immunogenicity RVFV arMP-12ΔNSm21/384 vaccine was determined in pregnant ewes. Vaccine was safe and immunogenic last stages of pregnancy, but may caused malformed lambs early stage. Pregnant sheep should not be vaccinated with the RVFV vaccine during the first month of gestation.
Rift Valley fever (RVF) poses a threat to human and animal health as well as economic losses due to abortion, new-born teratogenic effect and mortality. Safe and effective vaccines are critically needed to prevent the disease in humans and livestock. The objective of this study was to assess safety and immunogenicity of the Rift Valley fever virus (RVFV) arMP-12DNSm21/384 attenuated vaccine in 32 pregnant ewes at different stages of pregnancy including 17 ewes vaccinated during the early stage (G1) of pregnancy (<35 days) and 15 ewes vaccinated during the last two stages (G2) of pregnancy (>35 days). Ewes were monitored for clinical observations, rectal temperature and abortions and lambs were monitored for general health and rectal temperature. Vaccinated ewes and lambs were periodically sampled for their neutralizing antibody response to RVFV vaccination. All ewes were positive for antibody two weeks post-vaccination and 79% of ewes were positive at delivery. None of the 32 ewes aborted during pregnancy and all ewes vaccinated during the G2 stages of pregnancy gave birth to healthy lambs. However, among the 17 ewes vaccinated during the G1 stage of pregnancy, 2 ewes gave birth to 2 lambs with fore limb malformations that died at 1-day of age. One ewe gave birth to 2 punny twins that died at 2 days of age. Another ewe, gave birth to one lamb with a deformed tail that died at 20 days of age. At post-mortem, tissues of dead lambs (spleen, lung, brain and long bone) were negative for RVFV by PCR assay. While the findings did not link the malformed lambs directly to infection by the vaccine virus, these results indicated that pregnant sheep should not be vaccinated with the RVFV arMP-12DNSm21/384 vaccine during the first month of gestation.
Collapse
Affiliation(s)
- Z. Boumart
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - Z. Bamouh
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - J. Hamdi
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - N. Safini
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - K.O. Tadlaoui
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| | - G. Bettinger
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, United States
| | - D.M. Watts
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, United States
- Corresponding author.
| | - M. Elharrak
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco
| |
Collapse
|
31
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Pasquali P, Roberts HC, Sihvonen LH, Stahl K, Calvo AV, Viltrop A, Winckler C, Gubbins S, Antoniou S, Broglia A, Abrahantes JC, Dhollander S, Van der Stede Y. Rift Valley Fever - assessment of effectiveness of surveillance and control measures in the EU. EFSA J 2020; 18:e06292. [PMID: 33193869 PMCID: PMC7642843 DOI: 10.2903/j.efsa.2020.6292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Effectiveness of surveillance and control measures against Rift Valley Fever (RVF) in Mayotte (overseas France) and in continental EU were assessed using mathematical models. Surveillance for early detection of RVF virus circulation implies very low design prevalence values and thus sampling a high number of animals, so feasibility issues may rise. Passive surveillance based on notified abortions in ruminants is key for early warning and at present the only feasible surveillance option. The assessment of vaccination and culling against RVF in Mayotte suggests that vaccination is more effective when quickly implemented throughout the population, e.g. at a rate of 200 or 2,000 animals vaccinated per day. Test and cull is not an option for RVF control in Mayotte given the high number of animals that would need to be tested. If the risk of RVFV introduction into the continental EU increases, ruminant establishments close to possible points of disease incursion should be included in the surveillance. An enhanced surveillance on reproductive disorders should be applied during summer in risk areas. Serosurveillance targets of 0.3% animals should be at least considered. RVF control measures possibly applied in the continental EU have been assessed in the Netherlands, as an example. Culling animals on farms within a 20 km radius of detected farms appears as the most effective measure to control RVF spread, although too many animals should be culled. Alternative measures are vaccination in a 50 km radius around detection, ring vaccination between 20 and 50 km and culling of detected farms. The assessment of zoning showed that, following RVFV introduction and considering an R0 = 2, a mean vector dispersal of 10 km and 10 farms initially detected, RVFV would spread beyond a radius of up to 100 km or 50 km from the infected area with 10% or 55% probability, respectively.
Collapse
|
32
|
Odendaal L, Clift SJ, Fosgate GT, Davis AS. Ovine Fetal and Placental Lesions and Cellular Tropism in Natural Rift Valley Fever Virus Infections. Vet Pathol 2020; 57:791-806. [PMID: 32885745 DOI: 10.1177/0300985820954549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infection with Rift Valley fever phlebovirus (RVFV) causes abortion storms and a wide variety of outcomes for both ewes and fetuses. Sheep fetuses and placenta specimens were examined during the 2010-2011 River Valley fever (RVF) outbreak in South Africa. A total of 72 fetuses were studied of which 58 were confirmed positive for RVF. Placenta specimens were available for 35 cases. Macroscopic lesions in fetuses were nonspecific and included marked edema and occasional hemorrhages in visceral organs. Microscopically, multifocal hepatic necrosis was present in 48 of 58 cases, and apoptotic bodies, foci of liquefactive hepatic necrosis (primary foci), and eosinophilic intranuclear inclusions in hepatocytes were useful diagnostic features. Lymphocytolysis was present in all lymphoid organs examined with the exception of thymus and Peyer's patches, and pyknosis or karyorrhexis was often present in renal glomeruli. The most significant histologic lesion in the placenta was necrosis of trophoblasts and endothelial cells in the cotyledonary and intercotyledonary chorioallantois. Immunolabeling for RVFV was most consistent in trophoblasts of the cotyledon or caruncle. Other antigen-positive cells included hepatocytes, renal tubular epithelial, juxtaglomerular and extraglomerular mesangial cells, vascular smooth muscle, endothelial and adrenocortical cells, cardiomyocytes, Purkinje fibers, and macrophages. Fetal organ samples for diagnosis must minimally include liver, kidney, and spleen. From the placenta, the minimum recommended specimens for histopathology include the cotyledonary units and caruncles from the endometrium, if available. The diagnostic investigation of abortion in endemic areas should always include routine testing for RVFV, and a diagnosis during interepidemic periods might be missed if only limited specimens are available for examination.
Collapse
Affiliation(s)
- Lieza Odendaal
- 56410University of Pretoria, Onderstepoort, Pretoria, South Africa
| | - Sarah J Clift
- 56410University of Pretoria, Onderstepoort, Pretoria, South Africa
| | | | - A Sally Davis
- 56410University of Pretoria, Onderstepoort, Pretoria, South Africa.,5308Kansas State University, Manhattan, KS, USA
| |
Collapse
|
33
|
Wichgers Schreur PJ, Oreshkova N, van Keulen L, Kant J, van de Water S, Soós P, Dehon Y, Kollár A, Pénzes Z, Kortekaas J. Safety and efficacy of four-segmented Rift Valley fever virus in young sheep, goats and cattle. NPJ Vaccines 2020; 5:65. [PMID: 32728479 PMCID: PMC7382487 DOI: 10.1038/s41541-020-00212-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/02/2020] [Indexed: 01/02/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and recurrent outbreaks on the African continent and the Arabian Peninsula and continues to expand its habitat. RVFV induces severe disease in newborns and abortion in pregnant ruminants. The viral genome consists of a small (S), medium (M) and large (L) RNA segment of negative polarity. The M segment encodes a glycoprotein precursor protein that is co-translationally cleaved into the two structural glycoproteins Gn and Gc, which are involved in receptor attachment and cell entry. We previously constructed a four-segmented RVFV (RVFV-4s) by splitting the M genome segment into two M-type segments encoding either Gn or Gc. RVFV-4s replicates efficiently in cell culture but was shown to be completely avirulent in mice, lambs and pregnant ewes. Here, we show that a RVFV-4s candidate vaccine for veterinary use (vRVFV-4s) does not disseminate in vaccinated animals, is not shed or spread to the environment and does not revert to virulence. Furthermore, a single vaccination of lambs, goat kids and calves was shown to induce protective immunity against a homologous challenge. Finally, the vaccine was shown to provide full protection against a genetically distinct RVFV strain. Altogether, we demonstrate that vRVFV-4s optimally combines efficacy with safety, holding great promise as a next-generation RVF vaccine.
Collapse
Affiliation(s)
- Paul J Wichgers Schreur
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,BunyaVax B.V., Lelystad, The Netherlands
| | - Nadia Oreshkova
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Lucien van Keulen
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jet Kant
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Sandra van de Water
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Pál Soós
- Ceva Animal Health, Ceva-Phylaxia, Budapest, Hungary
| | - Yves Dehon
- Ceva Animal Health, Ceva-Phylaxia, Budapest, Hungary
| | - Anna Kollár
- Ceva Animal Health, Ceva-Phylaxia, Budapest, Hungary
| | - Zoltán Pénzes
- Ceva Animal Health, Ceva-Phylaxia, Budapest, Hungary
| | - Jeroen Kortekaas
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands.,BunyaVax B.V., Lelystad, The Netherlands.,Laboratory of Virology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
34
|
Kroeker AL, Smid V, Embury-Hyatt C, Collignon B, Pinette M, Babiuk S, Pickering B. Increased Susceptibility of Cattle to Intranasal RVFV Infection. Front Vet Sci 2020; 7:137. [PMID: 32411730 PMCID: PMC7200984 DOI: 10.3389/fvets.2020.00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
Rift Valley Fever virus (RVFV) is a zoonotic mosquito-borne virus that belongs to the Phenuiviridae family. Infections in animal herds cause abortion storms, high mortality rates in neonates, and mild to severe symptoms. Infected animals can also transmit the virus to people, particularly people who live or work in close contact with livestock. There is currently an ongoing effort to produce safe and efficacious veterinary vaccines against RVFV in livestock to protect against both primary infection in animals and zoonotic infections in people. To test the efficacy of these vaccines it is essential to have a reliable challenge model in relevant target species, including ruminants. In this study we evaluated three routes of inoculation (intranasal, intradermal and a combination of routes) in Holstein cattle using an infectious dose of 107 pfu/ml and a virus strain from the 2006-2007 outbreak in Kenya and Sudan. Our results demonstrated that all routes of inoculation were effective at producing viremia in all animals; however, the intranasal route induced the highest levels and longest duration of viremia, the most noticeable clinical signs, and the most widespread infection of tissues. We therefore recommend using the intranasal inoculation for future vaccine and challenge studies.
Collapse
Affiliation(s)
- Andrea L Kroeker
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Valerie Smid
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Carissa Embury-Hyatt
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Brad Collignon
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Mathieu Pinette
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Bradley Pickering
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
35
|
Monath TP, Kortekaas J, Watts DM, Christofferson RC, Desiree LaBeaud A, Gowen B, Peters CJ, Smith DR, Swanepoel R, Morrill JC, Ksiazek TG, Pittman PR, Bird BH, Bettinger G. Theoretical risk of genetic reassortment should not impede development of live, attenuated Rift Valley fever (RVF) vaccines commentary on the draft WHO RVF Target Product Profile. Vaccine X 2020; 5:100060. [PMID: 32337506 PMCID: PMC7176985 DOI: 10.1016/j.jvacx.2020.100060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/08/2020] [Accepted: 03/21/2020] [Indexed: 11/29/2022] Open
Abstract
WHO published draft Target Product Profiles (TPPs) for Rift Valley Fever virus (RVFV) vaccines. The TPPs contain restrictive requirements aimed at reducing the risk of genetic reassortment. We find no evidence for reassortment despite use of live RVFV vaccines. If genetic reassortment occurred with wild-type RVFV it would be of no consequence. The hypothetical risks of reassortment do not outweigh the benefits of vaccination
In November 2019, The World Health Organization (WHO) issued a draft set of Target Product Profiles (TPPs) describing optimal and minimally acceptable targets for vaccines against Rift Valley fever (RVF), a Phlebovirus with a three segmented genome, in both humans and ruminants. The TPPs contained rigid requirements to protect against genomic reassortment of live, attenuated vaccines (LAVs) with wild-type RVF virus (RVFV), which place undue constraints on development and regulatory approval of LAVs. We review the current LAVs in use and in development, and conclude that there is no evidence that reassortment between LAVs and wild-type RVFV has occurred during field use, that such a reassortment event if it occurred would have no untoward consequence, and that the TPPs should be revised to provide a more balanced assessment of the benefits versus the theoretical risks of reassortment.
Collapse
Affiliation(s)
- Thomas P Monath
- Managing Partner and Chief Scientific Officer, Crozet BioPharma LLC, Devens, MA, USA
| | - Jeroen Kortekaas
- Professor of Veterinary Arbovirology, Department of Virology, Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Douglas M Watts
- Executive Director of Vet Services, and Director of Biosafety Level 3 Laboratory and Co-Director of BBRC Infectious Disease and Immunology, University of Texas at El Paso, El Paso, TX, USA
| | - Rebecca C Christofferson
- Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine, Baton Rouge, LA, USA
| | - Angelle Desiree LaBeaud
- Professor of Pediatrics (Infectious Diseases), Stanford University School of Medicine, Senior Fellow at the Woods Institute for the Environment and Professor of Health Research and Policy (Epidemiology) at the Lucile Salter Packard Children's Hospital, Stanford, CA, USA
| | | | - Clarence J Peters
- Professor (Emeritus) Departments of Microbiology & Immunology and Pathology Director (Emeritus) for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Darci R Smith
- Immunodiagnostics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, MD, USA
| | - Robert Swanepoel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Gauteng, South Africa
| | - John C Morrill
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Phillip R Pittman
- U.S. Army Medical Research Institute of Infectious Diseases, Medical Research and Materiel Command, Fort Detrick, Frederick, MD, USA
| | - Brian H Bird
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.,University of California, Davis, One Health Institute, School of Veterinary Medicine, Davis 956164, CA, USA
| | - George Bettinger
- USAID Rift Valley Fever Vaccine Project at The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
36
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin-Bastuji B, Rojas JLG, Schmidt CG, Michel V, Chueca MÁM, Roberts HC, Sihvonen LH, Stahl K, Calvo AV, Viltrop A, Winckler C, Bett B, Cetre-Sossah C, Chevalier V, Devos C, Gubbins S, Monaco F, Sotiria-Eleni A, Broglia A, Abrahantes JC, Dhollander S, Stede YVD, Zancanaro G. Rift Valley Fever - epidemiological update and risk of introduction into Europe. EFSA J 2020; 18:e06041. [PMID: 33020705 PMCID: PMC7527653 DOI: 10.2903/j.efsa.2020.6041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rift Valley fever (RVF) is a vector-borne disease transmitted by a broad spectrum of mosquito species, especially Aedes and Culex genus, to animals (domestic and wild ruminants and camels) and humans. Rift Valley fever is endemic in sub-Saharan Africa and in the Arabian Peninsula, with periodic epidemics characterised by 5-15 years of inter-epizootic periods. In the last two decades, RVF was notified in new African regions (e.g. Sahel), RVF epidemics occurred more frequently and low-level enzootic virus circulation has been demonstrated in livestock in various areas. Recent outbreaks in a French overseas department and some seropositive cases detected in Turkey, Tunisia and Libya raised the attention of the EU for a possible incursion into neighbouring countries. The movement of live animals is the most important pathway for RVF spread from the African endemic areas to North Africa and the Middle East. The movement of infected animals and infected vectors when shipped by flights, containers or road transport is considered as other plausible pathways of introduction into Europe. The overall risk of introduction of RVF into EU through the movement of infected animals is very low in all the EU regions and in all MSs (less than one epidemic every 500 years), given the strict EU animal import policy. The same level of risk of introduction in all the EU regions was estimated also considering the movement of infected vectors, with the highest level for Belgium, Greece, Malta, the Netherlands (one epidemic every 228-700 years), mainly linked to the number of connections by air and sea transports with African RVF infected countries. Although the EU territory does not seem to be directly exposed to an imminent risk of RVFV introduction, the risk of further spread into countries neighbouring the EU and the risks of possible introduction of infected vectors, suggest that EU authorities need to strengthen their surveillance and response capacities, as well as the collaboration with North African and Middle Eastern countries.
Collapse
|
37
|
Oymans J, Wichgers Schreur PJ, van Keulen L, Kant J, Kortekaas J. Rift Valley fever virus targets the maternal-foetal interface in ovine and human placentas. PLoS Negl Trop Dis 2020; 14:e0007898. [PMID: 31961862 PMCID: PMC6994196 DOI: 10.1371/journal.pntd.0007898] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 01/31/2020] [Accepted: 11/01/2019] [Indexed: 01/10/2023] Open
Abstract
Background Rift Valley fever virus (RVFV) is an arbovirus of the order Bunyavirales that causes severe disease in ruminants and humans. Outbreaks in sheep herds are characterised by newborn fatalities and abortion storms. The association of RVFV infections with abortions of ovines and other ruminants is well recognized, whereas the pathology resulting in abortion has remained undescribed. Accumulating evidence suggests that RVFV is abortogenic in humans as well, warranting more research on the interaction of RVFV with the ruminant and human placenta. Methodology/Principal findings Pregnant ewes were inoculated with a highly virulent strain of RVFV and necropsied at different days post infection. Tissues were collected and analysed by PCR, virus isolation, and immunohistochemistry. The results show that RVFV replicates efficiently in maternal placental epithelial cells before the virus infects foetal trophoblasts. Moreover, the virus was shown to bypass the maternal epithelial cell layer by directly targeting foetal trophoblasts in the haemophagous zone, a region of the ovine placenta where maternal blood is in direct contact with foetal cells. Abortion was associated with widespread necrosis of placental tissues accompanied with severe haemorrhages. Experiments with human placental explants revealed that the same virus strain replicates efficiently in both cyto- and syncytiotrophoblasts. Conclusions/Significance This study demonstrates that RVFV targets the foetal-maternal interface in both ovine and human placentas. The virus was shown to cross the ovine placental barrier via two distinct routes, ultimately resulting in placental and foetal demise followed by abortion. Our finding that RVFV replicates efficiently in human trophoblasts underscores the risk of RVFV infection for human pregnancy. Rift Valley fever virus (RVFV) is a mosquito-borne RNA virus that causes severe disease in ruminants, wildlife and humans in Africa and the Arabian Peninsula. Outbreaks are characterised by high mortality rates among newborn lambs and abortion storms in sheep herds. The severe outcome of RVFV infection during pregnancy in livestock is well documented, whereas the pathological changes that result in abortion have not yet been described. To investigate how RVFV crosses the placenta and how infection results in abortion, pregnant ewes were infected with RVFV and target cells in maternal and foetal tissues were identified at different time points after inoculation. We show that epithelial cells of the ovine placenta and foetal trophoblasts are primary target cells of RVFV and that placental demise is the primary cause of abortion. The same RVFV strain was shown to replicate efficiently in human placental explants, targeting both cyto- and syncytiotrophoblasts.
Collapse
Affiliation(s)
- Judith Oymans
- Wageningen Bioveterinary Research, Houtribweg, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Lucien van Keulen
- Wageningen Bioveterinary Research, Houtribweg, Lelystad, The Netherlands
| | - Jet Kant
- Wageningen Bioveterinary Research, Houtribweg, Lelystad, The Netherlands
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Houtribweg, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
38
|
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral disease, principally of ruminants, that is endemic to Africa. The causative Phlebovirus, Rift Valley fever virus (RVFV), has a broad host range and, as such, also infects humans to cause primarily a self-limiting febrile illness. A small number of human cases will also develop severe complications, including haemorrhagic fever, encephalitis and visual impairment. In parts of Africa, it is a major disease of domestic ruminants, causing epidemics of abortion and mortality. It infects and can be transmitted by a broad range of mosquitos, with those of the genus Aedes and Culex thought to be the major vectors. Therefore, the virus has the potential to become established beyond Africa, including in Australia, where competent vector hosts are endemic. Vaccines for humans have not yet been developed to the commercial stage. This review examines the threat of this virus, with particular reference to Australia, and assesses gaps in our knowledge that may benefit from research focus.
Collapse
|
39
|
Stedman A, Wright D, Wichgers Schreur PJ, Clark MHA, Hill AVS, Gilbert SC, Francis MJ, van Keulen L, Kortekaas J, Charleston B, Warimwe GM. Safety and efficacy of ChAdOx1 RVF vaccine against Rift Valley fever in pregnant sheep and goats. NPJ Vaccines 2019; 4:44. [PMID: 31646004 PMCID: PMC6802222 DOI: 10.1038/s41541-019-0138-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a zoonotic mosquito-borne virus that was first discovered in Kenya in 1930 and has since spread to become endemic in much of Africa and the Arabian Peninsula. Rift Valley fever (RVF) causes recurrent outbreaks of febrile illness associated with high levels of mortality and poor outcomes during pregnancy-including foetal malformations, spontaneous abortion and stillbirths-in livestock, and associated with miscarriage in humans. No vaccines are available for human use and those licensed for veterinary use have potential drawbacks, including residual virulence that may contraindicate their use in pregnancy. To address this gap, we previously developed a simian adenovirus vectored vaccine, ChAdOx1 RVF, that encodes RVFV envelope glycoproteins. ChAdOx1 RVF is fully protective against RVF in non-pregnant livestock and is also under development for human use. Here, we now demonstrate that when administered to pregnant sheep and goats, ChAdOx1 RVF is safe, elicits high titre RVFV neutralizing antibody, and provides protection against viraemia and foetal loss, although this protection is not as robust for the goats. In addition, we provide a description of RVFV challenge in pregnant goats and contrast this to the pathology observed in pregnant sheep. Together, our data further support the ongoing development of ChAdOx1 RVF vaccine for use in livestock and humans.
Collapse
Affiliation(s)
- Anna Stedman
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF UK
| | - Daniel Wright
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | | | - Madeleine H. A. Clark
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF UK
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Adrian V. S. Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Sarah C. Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ UK
| | - Michael J. Francis
- BioVacc Consulting Ltd, The Red House, 10 Market Square, Amersham, HP7 0DQ UK
| | - Lucien van Keulen
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bryan Charleston
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF UK
| | - George M. Warimwe
- Centre for Tropical Medicine and Global Health, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford, OX3 7FZ UK
- KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, 80108 Kenya
| |
Collapse
|
40
|
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that was first discovered in Kenya in 1930 and is now endemic throughout multiple African countries and the Arabian Peninsula. RVF virus primarily infects domestic livestock (sheep, goats, cattle) causing high rates of neonatal mortality and abortion, with human infection resulting in a wide variety of clinical outcomes, ranging from self-limiting febrile illness to life-threatening haemorrhagic diatheses, and miscarriage in pregnant women. Since its discovery, RVF has caused many outbreaks in Africa and the Arabian Peninsula with major impacts on human and animal health. However, options for the control of RVF outbreaks are limited by the lack of licensed human vaccines or therapeutics. For this reason, RVF is prioritized by the World Health Organization for urgent research and development of countermeasures for the prevention and control of future outbreaks. In this review, we highlight the current understanding of RVF, including its epidemiology, pathogenesis, clinical manifestations and status of vaccine development.
Collapse
Affiliation(s)
- Daniel Wright
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- The Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Thomas A. Bowden
- Wellcome Centre for Human Genetics, Division of Structural Biology, University of Oxford, Oxford OX1 2JD, UK
| | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
41
|
Boumart Z, Daouam S, Bamouh Z, Jazouli M, Tadlaoui KO, Dungu B, Bettinger G, Watts DM, Elharrak M. Safety and immunogenicity of a live attenuated Rift Valley Fever recombinant arMP-12ΔNSm21/384 vaccine candidate for sheep, goats and calves. Vaccine 2019; 37:1642-1650. [PMID: 30773401 DOI: 10.1016/j.vaccine.2019.01.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/03/2023]
Abstract
Rift Valley fever (RVF) causes serious health and economic losses to the livestock industry as well as a significant cause of human disease. The prevention of RVF in Africa is a global priority, however, available vaccines have only been partially effective. Therefore, the objective of this study was to evaluate the safety and immunogenicity of a live, attenuated recombinant RVFV arMP-12ΔNSm21/384 nucleotide deletion vaccine candidate in domestic ruminants. Evaluation involved testing to determine the infectivity titer of the vaccine virus in Vero cells for industrial scale up vaccine production. Safety experiments were conducted to determine the potential of the vaccine virus to revert to virulence by serial passages in sheep, the possibility of virus spread from vaccinated sheep and calves to unvaccinated animals, and the potential health effects of administering overdoses of the vaccine to sheep, goats and calves. The immunogenicity of 3 doses of 104, 105 and 106 Tissue Culture Infectious Doses50% (TCID50) of the vaccine was assessed in 3 groups of 10 sheep and 3 groups of 10 goats, and doses of 105, 106 and 107 TCID50 was evaluated in 3 groups of 10 calves subcutaenous vaccintation. The results showed that the infectivity titer of the vaccine virus was 108.4 TCID50/ml, that the vaccine did not spread from vaccinated to un-vaccinated animals, there was no evidence of reversion to virulence in sheep and the vaccine overdoses did not cause any adverse effects. The immunogenicity among sheep, goats and calves indicated that doses of 104-106 TCID50 elicited detectable antibody by day 7 post-vaccination (PV) with antibody titers ranging from 0.6 log to 2.1 log on day 14 PV with sustained titers through day 28 PV. Overall, these findings indicated that the RVFV arMP-12ΔNSm21/384 vaccine is a promising candidate for the prevention of RVF among domestic ruminants.
Collapse
Affiliation(s)
- Z Boumart
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco.
| | - S Daouam
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco.
| | - Z Bamouh
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco.
| | - M Jazouli
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco.
| | - K O Tadlaoui
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco.
| | - B Dungu
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco.
| | - G Bettinger
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - D M Watts
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA.
| | - M Elharrak
- Research and Development Dept., Multi-Chemical Industry, Lot. 157, Z I, Sud-Ouest (ERAC) B.P.: 278, Mohammedia 28810, Morocco.
| |
Collapse
|
42
|
The One Health Approach is Necessary for the Control of Rift Valley Fever Infections in Egypt: A Comprehensive Review. Viruses 2019; 11:v11020139. [PMID: 30736362 PMCID: PMC6410127 DOI: 10.3390/v11020139] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 11/17/2022] Open
Abstract
Rift Valley fever (RVF) is an emerging transboundary, mosquito-borne, zoonotic viral disease caused high morbidity and mortality in both human and ruminant populations. It is considered an important threat to both agriculture and public health in African and the Middle Eastern countries including Egypt. Five major RVF epidemics have been reported in Egypt (1977, 1993, 1994, 1997, and 2003). The virus is transmitted in Egypt by different mosquito’s genera such as Aedes, Culex, Anopheles, and Mansonia, leading to abortions in susceptible animal hosts especially sheep, goat, cattle, and buffaloes. Recurrent RVF outbreaks in Egypt have been attributed in part to the lack of routine surveillance for the virus. These periodic epizootics have resulted in severe economic losses. We posit that there is a critical need for new approaches to RVF control that will prevent or at least reduce future morbidity and economic stress. One Health is an integrated approach for the understanding and management of animal, human, and environmental determinants of complex problems such as RVF. Employing the One Health approach, one might engage local communities in surveillance and control of RVF efforts, rather than continuing their current status as passive victims of the periodic RVF incursions. This review focuses upon endemic and epidemic status of RVF in Egypt, the virus vectors and their ecology, transmission dynamics, risk factors, and the ecology of the RVF at the animal/human interface, prevention, and control measures, and the use of environmental and climate data in surveillance systems to predict disease outbreaks.
Collapse
|
43
|
Nyundo S, Adamson E, Rowland J, Palermo PM, Matiko M, Bettinger GE, Wambura P, Morrill JC, Watts DM. Safety and immunogenicity of Rift Valley fever MP-12 and arMP-12ΔNSm21/384 vaccine candidates in goats (Capra aegagrus hircus) from Tanzania. ACTA ACUST UNITED AC 2019; 86:e1-e8. [PMID: 30843406 PMCID: PMC6407455 DOI: 10.4102/ojvr.v86i1.1683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022]
Abstract
Vaccination of domestic ruminants is considered to be an effective strategy for protecting these animals against Rift Valley fever (RVF), but available vaccines have limitations. Therefore, the aim of this study was to determine the safety and immunogenicity of RVF virus (RVFV) mutagenesis passage 12 (MP-12) and arMP-12ΔNSm21/384 vaccine candidates in goats (Capra aegagrus hircus) in Tanzania. Goats were vaccinated intramuscularly with RVFV MP-12 or arMP-12ΔNSm21/384, and then on Day 87 post-vaccination (PV) all animals were revaccinated using the RVFV MP-12 vaccine candidate. Serum samples were collected from the animals before and after vaccination at various intervals to test for RVFV using a Vero cell culture assay and reverse transcription polymerase chain reaction and for RVFV-neutralising antibody using a plaque reduction neutralisation assay. Serum samples collected before vaccination on Days -14 and 0, and on Days 3, 4 and 5 PV were negative for RVFV and neutralising antibody. All animals remained healthy, and viremia was not detected in any of the animals. Rift Valley fever virus antibody was first detected on Day 5 PV at a 1:10 dilution in five of five animals vaccinated with the MP-12 vaccine and in five of eight animals vaccinated with arMP-12ΔNSm21/384. Titres then increased and were sustained at 1:40 to 1:640 through to Day 87 PV. All animals that were revaccinated on Day 87 PV with MP-12 developed antibody titres ranging from 1:160 to as high as 1:10 240 on Days 14 and 21 PV. Although the antibody titres for goats vaccinated with RVF MP-12 were slightly higher than titres elicited by the arMP-12ΔNSm21/384 vaccine, these findings demonstrated that both vaccines are promising candidates for the prevention of RVF among Tansanian goats.
Collapse
Affiliation(s)
- Salama Nyundo
- Department of Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McMillen CM, Arora N, Boyles DA, Albe JR, Kujawa MR, Bonadio JF, Coyne CB, Hartman AL. Rift Valley fever virus induces fetal demise in Sprague-Dawley rats through direct placental infection. SCIENCE ADVANCES 2018; 4:eaau9812. [PMID: 30525107 PMCID: PMC6281433 DOI: 10.1126/sciadv.aau9812] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/06/2018] [Indexed: 05/27/2023]
Abstract
Rift Valley fever virus (RVFV) infections in pregnant livestock cause high rates of fetal demise; miscarriage in pregnant women has also been associated with RVFV infection. To address how RVFV infection during pregnancy causes detrimental effects on the fetus, we developed a pregnant rodent model of RVFV infection. We found that pregnant rats were more susceptible to RVFV-induced death than their nonpregnant counterparts and that RVFV infection resulted in intrauterine fetal death and severe congenital abnormalities, even in pups from infected asymptomatic pregnant rats. Virus distribution in infected dams was widespread, with a previously unrecognized preference for infection, replication, and tissue damage in the placenta. In human mid-gestation placental tissue, RVFV directly infected placental chorionic villi, with replication detected in the outermost syncytial layer. Our work identifies direct placental infection by RVFV as a mechanism for vertical transmission. This is the first study to show vertical transmission of RVFV with a lethal outcome in a species other than livestock. This study highlights the potential impact of a future epidemic of this emerging mosquito-borne virus.
Collapse
Affiliation(s)
- Cynthia M. McMillen
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Nitin Arora
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Devin A. Boyles
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Joseph R. Albe
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Michael R. Kujawa
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Jeffrey F. Bonadio
- Department of Pathology, Magee Women’s Hospital of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Carolyn B. Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Center for Microbial Pathogenesis, Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Amy L. Hartman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
45
|
A Rift Valley fever virus Gn ectodomain-based DNA vaccine induces a partial protection not improved by APC targeting. NPJ Vaccines 2018; 3:14. [PMID: 29707242 PMCID: PMC5910381 DOI: 10.1038/s41541-018-0052-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/26/2018] [Accepted: 03/28/2018] [Indexed: 01/20/2023] Open
Abstract
Rift Valley fever virus, a phlebovirus endemic in Africa, causes serious diseases in ruminants and humans. Due to the high probability of new outbreaks and spread to other continents where competent vectors are present, vaccine development is an urgent priority as no licensed vaccines are available outside areas of endemicity. In this study, we evaluated in sheep the protective immunity induced by DNA vaccines encoding the extracellular portion of the Gn antigen which was either or not targeted to antigen-presenting cells. The DNA encoding untargeted antigen was the most potent at inducing IgG responses, although not neutralizing, and conferred a significant clinical and virological protection upon infectious challenge, superior to DNA vaccines encoding the targeted antigen. A statistical analysis of the challenge parameters supported that the anti-eGn IgG, rather than the T-cell response, was instrumental in protection. Altogether, this work shows that a DNA vaccine encoding the extracellular portion of the Gn antigen confers substantial—although incomplete—protective immunity in sheep, a natural host with high preclinical relevance, and provides some insights into key immune correlates useful for further vaccine improvements against the Rift Valley fever virus. A vaccine made from the genome of Rift Valley fever virus (RVFV) offers partial protection, but pieces of the puzzle are missing, say scientists. French and Spanish researchers, led by the French National Institute for Agricultural Research’s Isabelle Schwartz-Cornil, tested in sheep three slightly-differing vaccine candidates using RVFV genes. Such DNA vaccines are designed to generate proteins which a host’s immune system can use to arm itself against a genuine viral infection. Two of the candidates, designed to target cells that would present the viral proteins to the host’s immune system, provided some benefit to the vaccinated sheep. However, the third untargeted candidate, was the most efficient at protecting sheep, although not completely, and at boosting antibody levels despite not neutralizing the virus. These results provide hope for DNA vaccines against RVFV, and offer direction for future research effort.
Collapse
|
46
|
Abstract
Rift Valley fever (RVF) is a zoonotic mosquito-borne bunyaviral disease associated with high abortion rates, neonatal deaths, and fetal malformations in ruminants, and mild to severe disease in humans. Outbreaks of RVF cause huge economic losses and public health impacts in endemic countries in Africa and the Arabian Peninsula. A proper vaccination strategy is important for preventing or minimizing outbreaks. Vaccination against RVF is not practiced in many countries, however, due to absence or irregular occurrences of outbreaks, despite serological evidence of RVF viral activity. Nonetheless, effective vaccination strategies, and functional national and international multi-disciplinary networks, remain crucial for ensuring availability of vaccines and supporting execution of vaccination in high risk areas for efficient response to RVF alerts and outbreaks.
Collapse
Affiliation(s)
| | - Baratang A Lubisi
- Onderstepoort Veterinary Institute, Onderstepoort, Pretoria, South Africa
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
47
|
Lorenzo G, López-Gil E, Ortego J, Brun A. Efficacy of different DNA and MVA prime-boost vaccination regimens against a Rift Valley fever virus (RVFV) challenge in sheep 12 weeks following vaccination. Vet Res 2018; 49:21. [PMID: 29467018 PMCID: PMC5822472 DOI: 10.1186/s13567-018-0516-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of this work was to evaluate the immunogenicity and efficacy of DNA and MVA vaccines encoding the RVFV glycoproteins Gn and Gc in an ovine model of RVFV infection. Adult sheep of both sexes were challenged 12 weeks after the last immunization and clinical, virological, biochemical and immunological consequences, were analyzed. Strategies based on immunization with homologous DNA or heterologous DNA/MVA prime-boost were able to induce a rapid in vitro neutralizing antibody response as well as IFNγ production after in vitro virus specific re-stimulation. In these animals we observed reduced viremia levels and less clinical signs when compared with mock-immunized controls. In contrast, sheep inoculated with a homologous MVA prime-boost showed increased viremia correlating with the absence of detectable neutralizing antibody responses, despite of inducing cellular responses after the last immunization. However, faster induction of neutralizing antibodies and IFNγ production after challenge were found in this group when compared to the mock vaccinated group, indicative of a primed immune response. In conclusion, these results suggest that vaccination strategies based on DNA priming were able to mount and maintain specific anti-RVFV glycoprotein immune responses upon homologous or heterologous booster doses, warranting further optimization in large animal models of infection.
Collapse
Affiliation(s)
- Gema Lorenzo
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130, Madrid, Spain
| | - Elena López-Gil
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130, Madrid, Spain
| | - Javier Ortego
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130, Madrid, Spain
| | - Alejandro Brun
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Centro de Investigación en Sanidad Animal (CISA), Valdeolmos, 28130, Madrid, Spain.
| |
Collapse
|
48
|
Noronha LE, Wilson WC. Comparison of two zoonotic viruses from the order Bunyavirales. Curr Opin Virol 2017; 27:36-41. [PMID: 29128744 DOI: 10.1016/j.coviro.2017.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
A comparison of two geographicallly distinct viruses in the order Bunyavirales that are zoonotic and known to cause congenital abnormalities in ruminant livestock was performed. One of these viruses, Cache Valley fever virus, is found in the Americas and is primarily associated with disease in sheep. The other, Rift Valley fever virus, is found in Sub-Saharan Africa and is associated with disease in camels, cattle, goats and sheep. Neither virus has been associated with teratogenicity in humans to date. These two viruses are briefly reviewed and potential for genetic changes especially if introduced into new ecology that could affect pathogenicity are discussed.
Collapse
Affiliation(s)
- Leela E Noronha
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, USDA, Manhattan, KS, United States
| | - William C Wilson
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, USDA, Manhattan, KS, United States.
| |
Collapse
|
49
|
Current Status of Rift Valley Fever Vaccine Development. Vaccines (Basel) 2017; 5:vaccines5030029. [PMID: 28925970 PMCID: PMC5620560 DOI: 10.3390/vaccines5030029] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023] Open
Abstract
Rift Valley Fever (RVF) is a mosquito-borne zoonotic disease that presents a substantial threat to human and public health. It is caused by Rift Valley fever phlebovirus (RVFV), which belongs to the genus Phlebovirus and the family Phenuiviridae within the order Bunyavirales. The wide distribution of competent vectors in non-endemic areas coupled with global climate change poses a significant threat of the transboundary spread of RVFV. In the last decade, an improved understanding of the molecular biology of RVFV has facilitated significant progress in the development of novel vaccines, including DIVA (differentiating infected from vaccinated animals) vaccines. Despite these advances, there is no fully licensed vaccine for veterinary or human use available in non-endemic countries, whereas in endemic countries, there is no clear policy or practice of routine/strategic livestock vaccinations as a preventive or mitigating strategy against potential RVF disease outbreaks. The purpose of this review was to provide an update on the status of RVF vaccine development and provide perspectives on the best strategies for disease control. Herein, we argue that the routine or strategic vaccination of livestock could be the best control approach for preventing the outbreak and spread of future disease.
Collapse
|
50
|
Abstract
Rift Valley fever (RVF) is a severe veterinary disease of livestock that also causes moderate to severe illness in people. The life cycle of RVF is complex and involves mosquitoes, livestock, people, and the environment. RVF virus is transmitted from either mosquitoes or farm animals to humans, but is generally not transmitted from person to person. People can develop different diseases after infection, including febrile illness, ocular disease, hemorrhagic fever, or encephalitis. There is a significant risk for emergence of RVF into new locations, which would affect human health and livestock industries.
Collapse
Affiliation(s)
- Amy Hartman
- Center for Vaccine Research, Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|