1
|
Long J, Zeng Y, Liang F, Liu N, Xi Y, Sun Y, Zhao X. Transformed Salmonella typhimurium SL7207/pcDNA-CCOL2A1 as an orally administered DNA vaccine. AMB Express 2024; 14:6. [PMID: 38196027 PMCID: PMC10776540 DOI: 10.1186/s13568-023-01650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/11/2024] Open
Abstract
The use of attenuated bacteria for oral delivery of DNA vaccines is a recent innovation. We designed and constructed the naked plasmid DNA vaccine pcDNA-CCOL2A1, which effectively prevented and treated a rheumatoid arthritis model by inducing immunotolerance. We aimed to ensure a reliable, controllable dosage of this oral DNA vaccine preparation and establish its stability. We transformed pcDNA-CCOL2A1 via electroporation into attenuated Salmonella typhimurium SL7207. A resistant plate assay confirmed the successful construction of the transformed strain of the SL7207/pcDNA-CCOL2A1 oral DNA vaccine. We verified its identification and stability in vitro and in vivo. Significant differences were observed in the characteristics of the transformed and blank SL7207 strains. No electrophoretic restriction patterns or direct sequencing signals were observed in the original extract of the transformed strain. However, target gene bands and sequence signals were successfully detected after PCR amplification. CCOL2A1 expression was detected in the ilea of BALB/c mice that were orally administered SL7207/pcDNA-CCOL2A1. The pcDNA-CCOL2A1 plasmid of the transformed strain was retained under the resistant condition, and the transformed strain remained stable at 4 °C for 100 days. The concentration of the strain harboring the pcDNA-CCOL2A1 plasmid was stable at 109 CFU/mL after 6-8 h of incubation. The results demonstrated that the transformed strain SL7207/pcDNA-CCOL2A1 can be expressed in vivo, has good stability, and may be used to prepare the oral DNA vaccine pcDNA-CCOL2A1 with a stable, controllable dosage and the capacity to provide oral immunization. This vehicle can effectively combine both oral immunotolerance and DNA vaccination.
Collapse
Affiliation(s)
- Juan Long
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China
| | - Yang Zeng
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China
| | - Fei Liang
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China
| | - Nan Liu
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China
| | - Yongzhi Xi
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China.
| | - Yuying Sun
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China.
| | - Xiao Zhao
- Department of Immunology and National Center for Biomedicine Analysis, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, No.8, Dongda Ave, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
2
|
Zhang R, Zhang XZ, Guo X, Han LL, Wang BN, Zhang X, Liu RD, Cui J, Wang ZQ. The protective immunity induced by Trichinella spiralis galectin against larval challenge and the potential of galactomannan as a novel adjuvant. Res Vet Sci 2023; 165:105075. [PMID: 37931574 DOI: 10.1016/j.rvsc.2023.105075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Previous studies showed that recombinant Trichinella spiralis galectin (rTsgal) promoted larval invasion of gut epithelial cells, while anti-rTsgal antibodies inhibited the invasion. Galactomannan (GM) is a polysaccharide capable of regulating immune response. The aim of this study was to evaluate protective immunity induced by rTsgal immunization and the potential of GM as a novel adjuvant. The results showed that vaccination of mice with rTsgal+ISA201 and rTsgal+GM elicited a Th1/Th2 immune response. Mice immunized with rTsgal+ISA201 and rTsgal+GM exhibited significantly higher levels of serum anti-rTsgal antibodies, mucosal sIgA and cellular immune responses, but level of specific antibodies and cytokines of rTsgal+GM group was lower than the rTsgal+ISA201 group. Immunization of mice with rTsgal+ISA201 and rTsgal+GM showed a 50.5 and 40.16% reduction of intestinal adults, and 52.04 and 37.53% reduction of muscle larvae after challenge. Moreover, the numbers of goblet cells and expression level of mucin 2, Muc5ac and pro-inflammatory cytokines (TNF-α and IL-1β) in gut tissues of vaccinated mice were obviously decreased, while Th2 inducing cytokine (IL-4) expression was evidently increased. Galactomannan enhanced protective immunity, alleviated intestinal and muscle inflammation of infected mice. The results indicated that rTsgal+ISA201 vaccination induced a more prominent gut local as well as systemic immune response and protection compared to rTsgal+GM vaccination. The results suggested that Tsgal could be considered as a candidate vaccine target against Trichinella infection and galactomannan might be a potential novel candidate adjuvant of anti-Trichinella vaccines.
Collapse
Affiliation(s)
- Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Zhang Y, Hardy LC, Kapita CM, Hall JA, Arbeeva L, Campbell E, Urban JF, Belkaid Y, Nagler CR, Iweala OI. Intestinal Helminth Infection Impairs Oral and Parenteral Vaccine Efficacy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:389-402. [PMID: 37272847 PMCID: PMC10524302 DOI: 10.4049/jimmunol.2300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023]
Abstract
The impact of endemic parasitic infection on vaccine efficacy is an important consideration for vaccine development and deployment. We have examined whether intestinal infection with the natural murine helminth Heligmosomoides polygyrus bakeri alters Ag-specific Ab and cellular immune responses to oral and parenteral vaccination in mice. Oral vaccination of mice with a clinically relevant, live, attenuated, recombinant Salmonella vaccine expressing chicken egg OVA (Salmonella-OVA) induced the accumulation of activated, OVA-specific T effector cells rather than OVA-specific regulatory T cells in the GALT. Intestinal helminth infection significantly reduced Th1-skewed Ab responses to oral vaccination with Salmonella-OVA. Activated, adoptively transferred, OVA-specific CD4+ T cells accumulated in draining mesenteric lymph nodes of vaccinated mice, regardless of their helminth infection status. However, helminth infection increased the frequencies of adoptively transferred OVA-specific CD4+ T cells producing IL-4 and IL-10 in the mesenteric lymph node. Ab responses to the oral Salmonella-OVA vaccine were reduced in helminth-free mice adoptively transferred with OVA-specific CD4+ T cells harvested from mice with intestinal helminth infection. Intestinal helminth infection also significantly reduced Th2-skewed Ab responses to parenteral vaccination with OVA adsorbed to alum. These findings suggest that vaccine-specific CD4+ T cells induced in the context of helminth infection retain durable immunomodulatory properties and may promote blunted Ab responses to vaccination. They also underscore the potential need to treat parasitic infection before mass vaccination campaigns in helminth-endemic areas.
Collapse
Affiliation(s)
- Yugen Zhang
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599
| | - LaKeya C. Hardy
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599
| | - Camille M. Kapita
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599
| | - Jason A. Hall
- National Institute of Allergy and Infectious Diseases Microbiome Program and Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Liubov Arbeeva
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599
| | - Evelyn Campbell
- Biological Sciences Division, University of Chicago, Chicago, IL, 60637
| | - Joseph F. Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory and Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, 10300 Baltimore Avenue BLDG 307-C BARC-East, Beltsville, MD, 20705
| | - Yasmine Belkaid
- National Institute of Allergy and Infectious Diseases Microbiome Program and Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, Center for Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Cathryn R. Nagler
- Biological Sciences Division, University of Chicago, Chicago, IL, 60637
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637
- Center for Immunology and Inflammatory Disease, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Charlestown, MA 02129
| | - Onyinye I. Iweala
- Department of Medicine, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Chapel Hill, NC, 27599
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599
- Center for Immunology and Inflammatory Disease, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Charlestown, MA 02129
| |
Collapse
|
4
|
Ghaemi A, Vakili-Azghandi M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Oral non-viral gene delivery platforms for therapeutic applications. Int J Pharm 2023; 642:123198. [PMID: 37406949 DOI: 10.1016/j.ijpharm.2023.123198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Since gene therapy can regulate gene and protein expression directly, it has a great potential to prevent or treat a variety of genetic or acquired diseases through vaccines such as viral infections, cystic fibrosis, and cancer. Owing to their high efficacy, in vivo gene therapy trials are usually conducted intravenously, which is usually costly and invasive. There are several advantages to oral drug administration over intravenous injections, such as better patient compliance, ease of use, and lower cost. However, gene therapy is successful if the oligonucleotides can cross the cell membrane easily and reach the nucleus after the endosomal escape. In order to accomplish this task and deliver the cargo to the intended location, appropriate delivery systems should be introduced. This review summarizes oral delivery systems developed for effective gene delivery, vaccination, and treatment of various diseases. Studies have also shown that oral delivery approaches are potentially applicable to treat various diseases, especially inflammatory bowel disease, stomach, and colorectal cancers. Also, the current review provides an update overview on the development of non-viral and oral gene delivery techniques for gene therapy and vaccination purposes.
Collapse
Affiliation(s)
- Asma Ghaemi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoume Vakili-Azghandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Bai SJ, Han LL, Liu RD, Long SR, Zhang X, Cui J, Wang ZQ. Oral vaccination of mice with attenuated Salmonella encoding Trichinella spiralis calreticulin and serine protease 1.1 confers protective immunity in BALB/c mice. PLoS Negl Trop Dis 2022; 16:e0010929. [PMID: 36445875 PMCID: PMC9707759 DOI: 10.1371/journal.pntd.0010929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Trichinella spiralis is a foodborne parasitic nematode which is a serious risk to meat safety. Development of anti-Trichinella vaccine is needed to control Trichinella infection in food animals. In this study, two novel T. spiralis genes (calreticulin and serine protease 1.1) in combination were used to construct oral DNA vaccines, and their induced protective immunity was evaluated in a murine model. METHODOLOGY/PRINCIPAL FINDINGS TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA were transformed into attenuated Salmonella typhimurium ΔcyaSL1344. Oral vaccination of mice with TsCRT+TsSP1.1, TsCRT and TsSP1.1 DNA vaccines elicited a gut local mucosal sIgA response and systemic Th1/Th2 mixed response. Oral vaccination with TsCRT+TsSP1.1 induced obviously higher level of serum specific antibodies, mucosal sIgA and cellular immune response than either of single TsCRT or TsSP1.1 DNA vaccination. Oral vaccination of mice with TsCRT+TsSP1.1 exhibited a 53.4% reduction of enteral adult worms and a 46.05% reduction of muscle larvae, conferred a higher immune protection than either of individual TsCRT (44.28 and 42.46%) or TsSP1.1 DNA vaccine (35.43 and 29.29%) alone. Oral vaccination with TsCRT+TsSP1.1, TsCRT and TsSP1.1 also obviously ameliorated inflammation of intestinal mucosa and skeletal muscles of vaccinated mice after challenge. CONCLUSIONS TsCRT and TsSP1.1 might be regarded the novel potential targets for anti-Trichinella vaccines. Attenuated Salmonella-delivered DNA vaccine provided a prospective approach to control T. spiralis infection in food animals.
Collapse
Affiliation(s)
- Sheng Jie Bai
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, People’s Repuplic of China
| |
Collapse
|
6
|
Ramos ACS, Oliveira LM, Santos YLDCO, Dantas MCS, Walker CIB, Faria AMC, Bueno LL, Dolabella SS, Fujiwara RT. The role of IgA in gastrointestinal helminthiasis: A systematic review. Immunol Lett 2022; 249:12-22. [PMID: 36002066 DOI: 10.1016/j.imlet.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
Immunoglobulin-A (IgA) is an important mediator of immunity and has been associated with protection against several pathogens, although its role in gastrointestinal infections remains unclear. Then, the aim of this systematic review was to synthesize qualitative evidence in respect of IgA as mediator of protective immunity against gastrointestinal helminths. Following recommended guidelines, we searched for articles published between January 1990 and October 2019 that evaluated IgA levels and their association with gastrointestinal helminth infections. Twenty-five articles were included after screening 1,546 titles and abstracts, as well as reading in full 52 selected articles. Consistent associations between higher IgA levels and lower parasitological parameters were only found in mice, rats, and sheep. However, the role of IgA in other host species remains uncertain, making it difficult to create a consensus. Therefore, it is too soon to claim that IgA is an effective protective factor against gastrointestinal helminths, and further studies are still needed.
Collapse
Affiliation(s)
- Anne C S Ramos
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil
| | - Luciana M Oliveira
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil; Departamento de Morfologia, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil
| | - Yvanna L D C O Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil
| | - Marlon C S Dantas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil
| | - Cristiani I B Walker
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil
| | - Ana M C Faria
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brasil
| | - Lílian L Bueno
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brasil
| | - Silvio S Dolabella
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil.
| | - Ricardo T Fujiwara
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, SE, Brasil; Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brasil.
| |
Collapse
|
7
|
Xue Y, Xu YF, Zhang B, Huang HB, Pan TX, Li JY, Tang Y, Shi CW, Wang N, Yang GL, Wang CF. Trichinella spiralis infection ameliorates the severity of Citrobacter rodentium-induced experimental colitis in mice. Exp Parasitol 2022; 238:108264. [PMID: 35523284 DOI: 10.1016/j.exppara.2022.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
Trichinellosis is a food-borne zoonotic parasitic disease that causes serious harm to human health and the pig breeding industry. However, there are reports that Trichinella spiralis (T. spiralis) infection can treat autoimmune diseases, including enteritis and experimental autoimmune encephalitis (EAE). However, research on the mechanism of T. spiralis infection in infectious enteritis has not been fully elucidated. Therefore, this experiment used Citrobacter rodentium (C. rodentium) to induce colitis in mouse models and explored its underlying mechanisms. In this experiment, a total of 72 C57BL/6 mice were randomly divided into four groups. Experimental mice in the TS and TS + CR groups were orally inoculated with individual T. spiralis larvae. At 21 days postinfection (dpi) with T. spiralis, experimental animals in the CR and TS + CR groups were inoculated by orogastric gavage with C. rodentium. The control group received PBS only. The results indicated that the weight loss and macroscopic and microscopic colon damage of mice in the TS + CR group were significantly decreased compared with those observed in the CR group. The results of flow cytometry showed that the expression levels of IL-4, IL-10 and CD4+CD25+Foxp3+ Tregs were increased (P < 0.05), while the expression levels of IFN-γ, IL-12 and IL-17 were decreased in the spleens and MLNs of the TS + CR experimental mice compared with the colitis model mice. ELISA results revealed that the TS + CR group not only elicited a strong IgG1 response (P < 0.01) but also a low level of IgG2a response (P < 0.05) relative to the CR group. The above results demonstrated that prior exposure of mice to T. spiralis infection ameliorated the severity of C. rodentium-induced infectious colitis.
Collapse
Affiliation(s)
- Ying Xue
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yun-Fei Xu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Bo Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tian-Xu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jun-Yi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yue Tang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
8
|
Xue Y, Zhang B, Wang N, Huang HB, Quan Y, Lu HN, Zhu ZY, Li JY, Pan TX, Tang Y, Jiang YL, Shi CW, Yang GL, Wang CF. Oral Vaccination of Mice With Trichinella spiralis Putative Serine Protease and Murine Interleukin-4 DNA Delivered by Invasive Lactiplantibacillus plantarum Elicits Protective Immunity. Front Microbiol 2022; 13:859243. [PMID: 35591986 PMCID: PMC9113538 DOI: 10.3389/fmicb.2022.859243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Trichinellosis is a serious zoonotic parasitic disease caused by Trichinella spiralis (T. spiralis) that causes considerable economic losses for the global pig breeding and food industries. As such, there is an urgent need for a vaccine that can prevent T. spiralis infection. Previous studies have reported that recombinant invasive Lactococcus lactis (LL) expressing Staphylococcus aureus fibronectin binding protein A (LL-FnBPA+) can transfer DNA vaccines directly to dendritic cells (DCs) across an epithelial cell monolayer, leading to significantly higher amounts of heterologous protein expression compared to non-invasive Lactococcus lactis. In this study, the invasive bacterium Lactiplantibacillus plantarum (L. plantarum) expressing FnBPA was used as a carrier to deliver a novel oral DNA vaccine consisting of T. spiralis adult putative serine protease (Ts-ADpsp) and murine interleukin (IL)-4 DNA to mouse intestinal epithelial cells. Experimental mice were orally immunized 3 times at 10-day intervals. At 10 days after the last vaccination, mice were challenged with 350 T. spiralis infective larvae by oral inoculation. Immunization with invasive L. plantarum harboring pValac-Ts-ADpsp/pSIP409-FnBPA induced the production of anti-Ts-ADpsp-specific IgG of serum, type 1 and 2 helper T cell cytokines of mesenteric lymph node (MLN) and spleen, secreted (s) IgA of intestinal lavage, and decreased T. spiralis burden and intestinal damage compared to immunization with non-invasive L. plantarum expressing Ts-ADpsp (pValac-Ts-ADpsp/pSIP409). Thus, invasive L. plantarum expressing FnBPA and IL-4 stimulates both mucosal and cellular immune response to protect against T. spiralis infection, highlighting its therapeutic potential as an effective DNA vaccine for trichinellosis.
Collapse
Affiliation(s)
- Ying Xue
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Bo Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Quan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hui-Nan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Zhi-Yu Zhu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jun-Yi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tian-Xu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yue Tang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
9
|
Tang B, Li J, Li T, Xie Y, Guan W, Zhao Y, Yang S, Liu M, Xu D. Vaccines as a Strategy to Control Trichinellosis. Front Microbiol 2022; 13:857786. [PMID: 35401479 PMCID: PMC8984473 DOI: 10.3389/fmicb.2022.857786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Trichinellosis caused by Trichinella spiralis is a worldwide food-borne parasitic zoonosis. Several approaches have been performed to control T. spiralis infection, including veterinary vaccines, which contribute to improving animal health and increasing public health by preventing the transmission of trichinellosis from animals to humans. In the past several decades, many vaccine studies have been performed in effort to control T. spiralis infection by reducing the muscle larvae and adult worms burden. Various candidate antigens, selected from excretory-secretory (ES) products and different functional proteins involved in the process of establishing infection have been investigated in rodent or swine models to explore their protective effect against T. spiralis infection. Moreover, different types of vaccines have been developed to improve the protective effect against T. spiralis infection in rodent or swine models, such as live attenuated vaccines, natural antigen vaccines, recombinant protein vaccines, DNA vaccines, and synthesized epitope vaccines. However, few studies of T. spiralis vaccines have been performed in pigs, and future research should focus on exploring the protective effect of different types of vaccines in swine models. Here, we present an overview of the strategies for the development of effective T. spiralis vaccines and summarize the factors of influencing the effectiveness of vaccines. We also discuss several propositions in improving the effectiveness of vaccines and may provide a route map for future T. spiralis vaccines development.
Collapse
Affiliation(s)
- Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Tingting Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, China
- Department of Pathogen Biology, Hainan Medical University, Haikou, China
| | - Yiting Xie
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Wei Guan
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Yanqing Zhao
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Shuguo Yang
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
- *Correspondence: Mingyuan Liu,
| | - Daoxiu Xu
- Department of Human Parasitology, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
- Daoxiu Xu,
| |
Collapse
|
10
|
Zhang XZ, Yue WW, Bai SJ, Hao HN, Song YY, Long SR, Dan Liu R, Cui J, Wang ZQ. Oral immunization with attenuated Salmonella encoding an elastase elicits protective immunity against Trichinella spiralis infection. Acta Trop 2022; 226:106263. [PMID: 34879232 DOI: 10.1016/j.actatropica.2021.106263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Elastase belongs to the serine protease family. Previous studies showed that Trichinella spiralis elastase (TsE) was highly expressed in intestinal infective larvae (IIL). Recombinant TsE (rTsE) promoted the larval intrusion of enteral epithelium cells (IECs), whereas anti-rTsE antibodies and siRNA impeded larval intrusion. Subcutaneous vaccination of mice with rTsE showed a partial protective immunity, suggesting that TsE might be a promising vaccine target against Trichinella infection. In this study, complete TsE cDNA sequence was cloned into pcDNA3.1, and the rTsE DNA was transformed into attenuated S. typhimurium strain ΔcyaSL1344. Oral vaccination of mice with TsE DNA elicited a systemic Th1/Th2/Treg mixed immune response and gut local mucosal sIgA response. Immunized mice exhibited a significant immune protection against T. spiralis larval challenge, as demonstrated by a 52.48% reduction of enteral adult worms and a 69.43% reduction of muscle larvae. The protection might be related to the TsE-induced production of intestinal mucus, specific anti-TsE sIgA and IgG, and secretion of IFN-γ, IL-2, IL-4 and IL-10, which protected gut mucosa from larval intrusion, suppressed worm development and impeded female reproduction. The results demonstrated that attenuated Salmonella-delivered TsE DNA vaccine provided a prospective strategy for the control of Trichinella infection in food animals.
Collapse
|
11
|
Genetic background affects the mucosal SIgA levels, parasite burden, lung inflammation and susceptibility of male mice to Ascaris suum infection. Infect Immun 2021; 90:e0059521. [PMID: 34807734 DOI: 10.1128/iai.00595-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ascariasis is a neglected tropical disease, widespread in the world and causing important socioeconomic impacts. The presence of various stages of worm development in the pulmonary and intestinal mucosa induces a humoral and cellular immune response. However, although there is much evidence of the protective role of mucosal immunity against various pathogens, including helminthes, there is still a gap in the knowledge about the immune response and the mechanisms of action that are involved in protection against diseases, especially in the initial phase of ascariasis. Then, the aim of this study was to evaluate the kinetic aspects of the immune parasitological parameters in intestinal and pulmonary mucosa in male mice with early ascariasis. Therefore, two mice strains showed a different susceptibility to ascariasis (BALB/c and C57BL6/j), when experimentally infected with 2,500 infective eggs of Ascaris suum from time-point 0 and the immune parasitological parameters evaluated each two days after infection, during the period of 12 days. The results were suggestive of a synergetic action of intestinal and pulmonary SIgA contributing for the protection against early ascariasis by reducing the amount of migrating larval as well as the influx of leukocytes in the lung and the consequent impair of the pulmonary capacity.
Collapse
|
12
|
Oral vaccination with recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase elicited a protective immunity in BALB/c mice. PLoS Negl Trop Dis 2021; 15:e0009865. [PMID: 34699522 PMCID: PMC8547688 DOI: 10.1371/journal.pntd.0009865] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Trichinellosis is a serious zoonotic disease distributed around the world. It is needed to develop a safe, effective and feasible anti-Trichinella vaccine for prevention and control of trichinellosis. The aim of this study was to construct a recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase (TsPPase) and investigate its immune protective effects against T. spiralis infection. Methodology/Principal findings The growth of recombinant L. plantarum was not affected by TsPPase/pSIP409-pgsA′ plasmid, and the recombinant plasmid was inherited stably in bacteria. Western blot and immunofluorescence assay (IFA) indicated that the rTsPPase was expressed on the surface of recombinant L. plantarum. Oral vaccination with rTsPPase induced higher levels of specific serum IgG, IgG1, IgG2a and mucosal secretory IgA (sIgA) in BALB/c mice. ELISA analysis revealed that the levels of IFN-γ and IL-4 released from spleen, mesenteric lymph nodes and Peyer’s patches were evidently increased at 2–4 weeks following vaccination, compared to MRS (De Man, Rogosa, Sharpe) medium control group (P < 0.05). Immunization of mice with rTsPPase exhibited a 67.18, 54.78 and 51.91% reduction of intestinal infective larvae, adult worms and muscle larvae at 24 hours post infection (hpi), 6 days post infection (dpi) and 35 dpi, respectively (P < 0.05), and the larval molting and development was significantly inhibited by 45.45% at 24 hpi, compared to the MRS group. Conclusions TsPPase plays a crucial role in T. spiralis molting and development, oral vaccination with rTsPPase induced a significant local mucosal sIgA response and systemic Th1/Th2 immune response, and immune protection against T. spiralis infection in BALB/c mice. In the previous study, a Trichinella spiralis inorganic pyrophosphatase (TsPPase) was expressed and its role in larval molting and development was observed. In this study, a recombinant TsPPase/pSIP409-pgsA′ plasmid was constructed and transferred into Lactobacillus plantarum NC8, the rTsPPase was expressed on the surface of recombinant L. plantarum NC8. Oral immunization of mice with rTsPPase DNA vaccine elicited a high level of specific serum IgG, IgG1, IgG2a and mucosal secretory IgA (sIgA). The levels of IFN-γ and IL-4 released from spleen, mesenteric lymph nodes and Peyer’s patches were evidently increased at 2–4 weeks following vaccination. Immunization of mice with rTsPPase showed a significant reduction of intestinal infective larvae, adult worms and muscle larvae, and intestinal larval molting and development was significantly suppressed. The results indicated that oral vaccination with rTsPPase elicited a significant local mucosal sIgA response and specific systemic Th1/Th2 immune response, and an obvious protective immunity against T. spiralis infection.
Collapse
|
13
|
Avendaño C, Vidal S, Villamizar-Sarmiento MG, Guzmán M, Hidalgo H, Lapierre L, Valenzuela C, Sáenz L. Encapsulation of Cochleates Derived from Salmonella Infantis with Biopolymers to Develop a Potential Oral Poultry Vaccine. Polymers (Basel) 2021; 13:3426. [PMID: 34641241 PMCID: PMC8512329 DOI: 10.3390/polym13193426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to develop and characterize Salmonellaenterica serovar Infantis (S. Infantis) cochleates protected by encapsulation technology as a potential vaccine and to determine its safety in pullets. Cochleates were encapsulated by two technologies, spray drying and ionotropic gelation at different concentrations (0-15% v/v), and were characterized by physicochemical properties, protein content and Fourier Transform Infrared Spectroscopy (FTIR). The cochleates were white liquid suspensions with tubular shapes and a protein content of 1.0-2.1 mg/mL. After encapsulation by spray drying, microparticles ranged in size from 10.4-16.9 µm, were spherical in shape, and the protein content was 0.7-1.8 mg/g. After encapsulation by ionotropic gelation, beads ranged in size from 1620-1950 µm and were spherical in shape with a protein content of 1.0-2.5 mg/g. FTIR analysis indicated that both encapsulation processes were efficient. The cochleates encapsulated by ionotropic gelation were then tested for safety in pullets. No ill effect on the health of animals was observed upon physical or postmortem examination. In conclusion, this study was the first step in developing a potential oral S. Infantis vaccine safe for poultry using a novel cochleate encapsulation technology. Future studies are needed to determine the effectiveness of the vaccine.
Collapse
Affiliation(s)
- Constanza Avendaño
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile; (C.A.); (S.V.); (M.G.V.-S.); (M.G.); (H.H.); (L.L.)
| | - Sonia Vidal
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile; (C.A.); (S.V.); (M.G.V.-S.); (M.G.); (H.H.); (L.L.)
| | - María Gabriela Villamizar-Sarmiento
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile; (C.A.); (S.V.); (M.G.V.-S.); (M.G.); (H.H.); (L.L.)
- Department of Sciences and Pharmaceutical Technology, University of Chile, Santiago 8380494, Chile
| | - Miguel Guzmán
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile; (C.A.); (S.V.); (M.G.V.-S.); (M.G.); (H.H.); (L.L.)
- Nucleus of Applied Research in Veterinary and Agronomic Sciences, NIAVA, Faculty of Veterinary Medicine and Agronomy, Universidad de las Américas, Santiago 9250000, Chile
| | - Héctor Hidalgo
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile; (C.A.); (S.V.); (M.G.V.-S.); (M.G.); (H.H.); (L.L.)
| | - Lisette Lapierre
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile; (C.A.); (S.V.); (M.G.V.-S.); (M.G.); (H.H.); (L.L.)
| | - Carolina Valenzuela
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile; (C.A.); (S.V.); (M.G.V.-S.); (M.G.); (H.H.); (L.L.)
| | - Leonardo Sáenz
- Faculty of Veterinary Sciences, University of Chile, Santiago 8820808, Chile; (C.A.); (S.V.); (M.G.V.-S.); (M.G.); (H.H.); (L.L.)
| |
Collapse
|
14
|
Wang N, Wang JY, Pan TX, Jiang YL, Huang HB, Yang WT, Shi CW, Wang JZ, Wang D, Zhao DD, Sun LM, Yang GL, Wang CF. Oral vaccination with attenuated Salmonella encoding the Trichinella spiralis 43-kDa protein elicits protective immunity in BALB/c mice. Acta Trop 2021; 222:106071. [PMID: 34331898 DOI: 10.1016/j.actatropica.2021.106071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/02/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
A vaccine against Trichinella spiralis infection is urgently needed to interrupt its transmission from domestic animals to humans. However, no vaccine against T. spiralis is currently available. Our previous study demonstrated that the use of the 43-kDa glycoprotein present in excretory-secretory (ES) proteins of muscle larvae (ML) as an intramuscular DNA vaccine led to a 52.1% protection rate against T. spiralis infection. Attenuated Salmonella strains have the advantage of eliciting mucosal immunity, which is important for controlling T. spiralis infections at the intestinal stage and can be provided as vaccines via oral or intranasal routes. Therefore, in this study, complete 43-kDa glycoprotein (Ts43) sequences of T. spiralis were cloned into the vector pYA3681, and the recombinant plasmid pYA3681-Ts43 was transformed into the attenuated Salmonella typhimurium strain χ11802. The results showed that oral vaccination of mice with attenuated Salmonella carrying the recombinant plasmid pYA3681-Ts43 induced an evident elevation of the local intestinal mucosal sIgA and serum IgG antibody responses. The flow cytometry results showed that the percentages of CD4+ T cells and secreted IFN-γ, IL-4, and IL-17A in CD4+ T cells were significantly increased in the spleen and mesenteric lymph node (MLN) lymphocytes of the vaccinated groups. In addition, increased levels of the IFN-γ, IL-4, and IL-17A cytokines were also observed in the serum of the immunized groups. The above immune response results in the immunized groups demonstrated that protective immunity was elicited in this study. Finally, vaccinated mice demonstrated a significant 45.9% reduction in ML burden after infection with T. spiralis. This study demonstrated that oral vaccination with Ts43 delivered by attenuated Salmonella elicited local and systemic concurrent Th1/Th2/Th17 immune responses and provided partial protection against T. spiralis infection in BALB/c mice. This is a prospective strategy for the prevention and control of trichinellosis.
Collapse
|
15
|
Xue Y, Yang KD, Quan Y, Jiang YL, Wang N, Huang HB, Lu HN, Zhu ZY, Zhang B, Li JY, Pan TX, Shi CW, Yang GL, Wang CF. Oral vaccination with invasive Lactobacillus plantarum delivered nucleic acid vaccine co-expressing SS1 and murine interleukin-4 elicits protective immunity against Trichinella spiralis in BALB/c mice. Int Immunopharmacol 2021; 101:108184. [PMID: 34601334 DOI: 10.1016/j.intimp.2021.108184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 12/01/2022]
Abstract
Trichinellosis is a foodborne zoonosis caused by Trichinella spiralis (T. spiralis) that not only causes considerable economic losses for the global pig breeding and food industries, but also seriously threats the health of human. Therefore, it is very necessary to develop an effective vaccine to prevent trichinellosis. In this study, the invasive Lactobacillus plantarum (L. plantarum) expressing fibronectin-binding protein A (FnBPA) was served as a live bacterial vector to deliver DNA to the host to produce a novel oral DNA vaccine. Co-expressing T. spiralis SS1 and murine interleukin-4 (mIL-4) of DNA vaccine were constructed and subsequently delivered to intestinal epithelial cells via invasive L. plantarum. At 10 days after the third immunization, the experimental mice were challenged with 350 T. spiralis infective larvae. The results found that the mice orally vaccinated with invasive L. plantarum harboring pValac-SS1/pSIP409-FnBPA not only stimulated the production of anti-SS1-specific IgG, Th1/Th2 cell cytokines, and secreted(s) IgA but also decreased worm burden and intestinal damage. However, the mice inoculated with invasive L. plantarum co-expressing SS1 and mIL-4 (pValac-SS1-IL-4/pSIP409-FnBPA) induced the highest protective immune response against T. spiralis infection. The DNA vaccine delivered by invasive L. plantarum provides a novel idea for the prevention of T. spiralis infection.
Collapse
Affiliation(s)
- Ying Xue
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Kai-Dian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Quan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hui-Nan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Zhi-Yu Zhu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Bo Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jun-Yi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tian-Xu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
16
|
Wang D, Liu Q, Jiang YL, Huang HB, Li JY, Pan TX, Wang N, Yang WT, Cao X, Zeng Y, Shi CW, Wang JZ, Yang GL, Zhao Q, Wang CF. Oral immunization with recombinant Lactobacillus plantarum expressing Nudix hydrolase and 43 kDa proteins confers protection against Trichinella spiralis in BALB/c mice. Acta Trop 2021; 220:105947. [PMID: 33971160 DOI: 10.1016/j.actatropica.2021.105947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/01/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022]
Abstract
Trichinellosis is a significant food-borne zoonotic parasitic disease caused by parasite Trichinella. Given the side effects of anti-Trichinella drugs (e.g., Mebendazole) aroused in the course of treatments, an effective vaccine against the parasite is called for. The therapies available to date are in most instances targeting a single stage of Trichinella, resulting in an incomplete protective immunity against the parasite in terms of the complexity of its developmental stages. In this study, a recombinant dual-expression double anchor vector NC8-pLp-TsNd-S-pgsA'-gp43 was constructed carrying two antigen genes from Trichinella spiralis (T. spiralis), encoding the gp43 and T. spiralis Nudix hydrolase (TsNd) proteins which were mainly expressed in muscle larva (ML) and intestinal infective larva stages of the parasite respectively. These two proteins were to be expressed by Lactobacillus plantarum NC8 (L. plantarum NC8) which was designed to express the two anchored peptides, a truncated poly-γ-glutamic acid synthetase A (pgsA') and the surface layer protein of Lactobacillus acidophilus (SlpA), on its surface for attaching expressed foreign proteins. Oral immunization with the above recombinant vaccine induced higher levels of specific serum IgG and mucosal secretory IgA (SIgA) in BALB/c mice. In addition, cytokines, interferon-γ (IFN- γ), interleukin-4 (IL-4) and IL-17 released by lymphocytes, and CD4+ levels displayed on the surfaces of splenic and mesenteric lymph cells were significantly enhanced by the vaccination. Moreover, after larval challenges, a 75.67 % reduction of adult worms (AW) at 7 days post-infection (dpi) and 57.14 % reduction of ML at 42 dpi were observed in mice immunized with the recombinant vaccine. Furthermore, this oral vaccination reduced the counts of encysted larvae presented in tongue and masseter muscles after infected with T. spiralis in mice. The overall results demonstrated that the recombinant vaccine developed in this study could induce specific humoral, mucosal, and cellular immune responses, and provides protections against different stages (adult worms and muscle larva) of T. spiralis infections in BALB/c mice, which could make it a promising oral vaccine candidate against trichinellosis.
Collapse
Affiliation(s)
- Dan Wang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Qiong Liu
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; College of Food Engineering, Jilin Engineering Normal University, Changchun, Jilin 130052, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Jun-Yi Li
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Tian-Xu Pan
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Jian-Zhong Wang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China.
| | - Quan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China; Key Laboratory of animal production and product quality safety of Ministry of Education, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin Province 130118, China.
| |
Collapse
|
17
|
Li X, Jiang S, Wang X, Hui W, Jia B. iTRAQ-based comparative proteomic analysis in different developmental stages of Echinococcus granulosus. ACTA ACUST UNITED AC 2021; 28:15. [PMID: 33666550 PMCID: PMC7934609 DOI: 10.1051/parasite/2021012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/08/2021] [Indexed: 11/29/2022]
Abstract
Cystic echinococcosis, caused by infection with the larval stage of the cestode Echinococcus granulosus, is a chronic zoonosis. The lifecycle of the E. granulosus parasite includes three consecutive stages that require specific gene regulation or protein expression to survive environmental shifts between definitive hosts and intermediate hosts. The aim of the present study is to screen and analyze the stage differential antigens to be considered for vaccine development against E. granulosus. By using the iTRAQ (isobaric tags for relative and absolute quantification) method, the differentially expressed proteins were selected from the three consecutive developmental stages of E. granulosus: oncosphere, adult tapeworms, and protoscolex. Through a bioinformatics analysis including Clusters of Orthologous Groups (COG), Gene Ontology (GO), and pathway metabolic annotation, we identified some proteins of interest from each stage. The results showed that a large number of differentially expressed proteins (375: oncosphere vs. adult, 346: oncosphere vs. protoscolex, and 391: adult vs. protoscolex) were identified from the three main lifecycle stages. Analysis of the differential protein pathways showed that these differential proteins are mainly enriched in metabolic pathways, Huntington’s diseases, Alzheimer’s diseases, and ribosome metabolic pathways. Interestingly, among these differential proteins, expression levels of paramyosin, HSP60, HSP70, HSP90, cathepsin L1, cathepsin D, casein kinase, and calmodulin were significantly higher in the oncosphere than in the adult or protoscolex (p < 0.05). We hope our findings will help to identify potential targets for diagnosis or for therapeutic and prophylactic intervention.
Collapse
Affiliation(s)
- Xin Li
- College of Life Sciences, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China - College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Song Jiang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Xuhai Wang
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| | - Wenqiao Hui
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agriculture Sciences, Road Nongkenan, Hefei 230031, Anhui, PR China
| | - Bin Jia
- College of Animal Science and Technology, Shihezi University, Road Beisi, Shihezi 832003, Xinjiang, PR China
| |
Collapse
|
18
|
Zhai CC, Liu XL, Bai X, Jia ZJ, Chen SH, Tian LG, Ai L, Tang B, Liu MY, Wu XP, Chen JX. Bioinformatic Prediction and Production of Four Recombinant Proteins from Different Developmental Stages of Trichinella spiralis and Testing of Their Diagnostic Sensitivity in Mice. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:122-135. [PMID: 33786054 PMCID: PMC7988681 DOI: 10.18502/ijpa.v16i1.5531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: Trichinellosis is a serious food-borne parasitic zoonosis, thus finding high quality antigens is the key to serodiagnosis of trichinosis. This article reports the characterization and sensitivity of four recombinant proteins expressed by four genes (Wn10, Zh68, T668, and Wm5) from different developmental stages of Trichinella spiralis for the diagnosis of trichinellosis in mice. Methods: This study was conducted in Jilin University and National Institute of Parasitic Diseases of Chinese Center for Disease Control and Prevention in 2017–2018. The structures and functions of the proteins encoded by four genes were predicted by bioinformatics analysis. The four genes were cloned and expressed, and the recombinant proteins were purified. Anti-Trichinella IgM and IgG antibodies in the sera of mice infected with T. spiralis from 1-45 d post-infection (dpi) were evaluated by ELISA. Results: The optimal antigen epitopes of four proteins (P1, P2, P3, and P4) encoded by the four genes from T- and B-cells were predicted, and four purified recombinant proteins (r-P1, r-P2, r-P3, and r-P4) were successfully produced. For IgM, the antibody levels detected by the four recombinant antigens were approximately equal to the cut-off value. Anti-Trichinella IgG antibodies were first detected by r-P1 at 8 dpi, followed by r-P2, r-P3, and r-P4 at 10 dpi, 14 dpi, and 16 dpi, respectively, and the antibody levels remained high until 45 dpi. Conclusion: The recombinant antigens r-P1, r-P2, r-P3, and r-P4 could be antigens that react with antibodies, they showed high sensitivity in the detection of anti-Trichinella IgG antibodies in mice. Among these proteins, r-P1 may be a candidate antigen for the detection of anti-Trichinella IgG antibodies in the early infection phase and exhibited the best sensitivity among the antigens.
Collapse
Affiliation(s)
- Cheng-Cheng Zhai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai 200025, China.,Editorial Department of Chinese Journal of Clinical Medicine, Department of Research, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiao-Lei Liu
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun 130062, China
| | - Xue Bai
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun 130062, China
| | - Ze-Jun Jia
- Editorial Department of Chinese Journal of Clinical Medicine, Department of Research, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shao-Hong Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai 200025, China
| | - Li-Guang Tian
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai 200025, China
| | - Lin Ai
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai 200025, China
| | - Bin Tang
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun 130062, China
| | - Ming-Yuan Liu
- Key Laboratory for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun 130062, China
| | - Xiu-Ping Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai 200025, China
| | - Jia-Xu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, Shanghai 200025, China
| |
Collapse
|
19
|
Wu Z, Nagano I, Khueangchiangkhwang S, Maekawa Y. Proteomics of Trichinella. TRICHINELLA AND TRICHINELLOSIS 2021:103-183. [DOI: 10.1016/b978-0-12-821209-7.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Zhang XZ, Yuan Sun X, Bai Y, Wen Yue W, Yue X, Song YY, Cui J, Wang ZQ. Immune responses in mice vaccinated with a DNA vaccine expressing a new elastase from Trichinella spiralis. Folia Parasitol (Praha) 2020; 67. [DOI: 10.14411/fp.2020.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
|
21
|
The potential for vaccines against scour worms of small ruminants. Int J Parasitol 2020; 50:533-553. [PMID: 32569640 DOI: 10.1016/j.ijpara.2020.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/08/2023]
Abstract
This review addresses the research landscape regarding vaccines against scour worms, particularly Trichostrongylus spp. and Teladorsagia circumcincta. The inability of past research to deliver scour-worm vaccines with reliable and reproducible efficacy has been due in part to gaps in knowledge concerning: (i) host-parasite interactions leading to development of type-2 immunity, (ii) definition of an optimal suite of parasite antigens, and (iii) rational formulation and administration to induce protective immunity against gastrointestinal nematodes (GIN) at the site of infestation. Recent 'omics' developments enable more systematic analyses. GIN genomes are reaching completion, facilitating "reverse vaccinology" approaches that have been used successfully for the Rhipicephalus australis vaccine for cattle tick, while methods for gene silencing and editing in GIN enable identification and validation of potential vaccine antigens. We envisage that any efficacious scour worm vaccine(s) would be adopted similarly to "Barbervax™" within integrated parasite management schemes. Vaccines would therefore effectively parallel the use of resistant animals, and reduce the frequency of drenching and pasture contamination. These aspects of integration, efficacy and operation require updated models and validation in the field. The conclusion of this review outlines an approach to facilitate an integrated research program.
Collapse
|
22
|
A Multiple Antigen Peptide Vaccine Containing CD4 + T Cell Epitopes Enhances Humoral Immunity against Trichinella spiralis Infection in Mice. J Immunol Res 2020; 2020:2074803. [PMID: 32377530 PMCID: PMC7199560 DOI: 10.1155/2020/2074803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/06/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022] Open
Abstract
Multiepitope peptide vaccine has some advantages over traditional recombinant protein vaccine due to its easy and fast production and possible inclusion of multiple protective epitopes of pathogens. However, it is usually poorly immunogenic and needs to conjugate to a large carrier protein. Peptides conjugated to a central lysine core to form multiple antigen peptides (MAPs) will increase the immunogenicity of peptide vaccine. In this study, we constructed a MAP consisting of CD4+ T cell and B cell epitopes of paramyosin (Pmy) of Trichinella spiralis (Ts-Pmy), which has been proved to be a good vaccine candidate in our previous work. The immunogenicity and induced protective immunity of MAP against Trichinella spiralis (T. spiralis) infection were evaluated in mice. We demonstrated that mice immunized with MAP containing CD4+ T cell and B cell epitopes (MAP-TB) induced significantly higher protection against the challenge of T. spiralis larvae (35.5% muscle larva reduction) compared to the MAP containing B cell epitope alone (MAP-B) with a 12.4% muscle larva reduction. The better protection induced by immunization of MAP-TB was correlated with boosted antibody titers (both IgG1 and IgG2a) and mixed Th1/Th2 cytokine production secreted by the splenocytes of immunized mice. Further flow cytometry analysis of lymphocytes in spleens and draining lymph nodes demonstrated that mice immunized with MAP-TB specifically enhanced the generation of T follicular helper (Tfh) cells and germinal center (GC) B cells, while inhibiting follicular regulatory CD4+ T (Tfr) cells and regulatory T (Treg) cells. Immunofluorescence staining of spleen sections also confirmed that MAP-TB vaccination enhanced the formation of GCs. Our results suggest that CD4+ T cell epitope of Ts-Pmy is crucial in vaccine component for inducing better protection against T. spiralis infection.
Collapse
|
23
|
Yang Y, Bai X, Li C, Tong M, Zhang P, Cai W, Liu X, Liu M. Molecular Characterization of Fructose-1,6-bisphosphate Aldolase From Trichinella spiralis and Its Potential in Inducing Immune Protection. Front Cell Infect Microbiol 2019; 9:122. [PMID: 31069178 PMCID: PMC6491450 DOI: 10.3389/fcimb.2019.00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
Trichinella spiralis is a major food-borne parasite worldwide. Trichinellosis caused by T. spiralis is not only a public health problem, but also an economic hazard in food safety. The development of effective vaccines to prevent Trichinella infection in domestic animals and humans is urgently needed for controlling of this zoonosis. Fructose-1, 6-bisphosphate aldolase (FBPA) is involved in energy production in glycolysis and is also associated with many non-glycolysis functions in the parasite, such as adhesion to host cells, plasminogen binding, and invasion. FBPA has been considered as a potential vaccine candidate or as a target for chemotherapeutic treatment. Here, we report for the first time the characterization of FBPA of T. spiralis and an evaluation of its potential as a vaccine candidate antigen against T. spiralis infection in mice. The results of qPCR and western blot analysis showed that the Ts-FBPA gene was expressed at various developmental stages of T. spiralis and was also detected in excretory–secretory products (ES) of T. spiralis muscle larvae (ML). Immunostaining with anti-Ts-FBPA mouse sera indicated that it localized principally to the surface and embryos of this parasitic nematode. Vaccination of mice with recombinant Ts-FBPA (rTs-FBPA) resulted in a Th1/Th2 mixed humoral and cellular immune response with Th2 predominant, as well as remarkably elevated IgE levels. Moreover, mice vaccinated with rTs-FBPA displayed a 48.7% reduction in adult worm burden and 52.5% reduction in muscle larval burden. These studies indicated that Ts-FBPA is a promising target for developing an effective vaccine to prevent and control Trichinella infection.
Collapse
Affiliation(s)
- Yong Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China.,Wu Xi Medical School, Jiangnan University, Wuxi, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Chengyao Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Peihao Zhang
- Wu Xi Medical School, Jiangnan University, Wuxi, China
| | - Wei Cai
- Affiliated Hospital of Jiangnan University, The Fourth People's Hospital of Wuxi City, Wuxi, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
24
|
Shao S, Sun X, Chen Y, Zhan B, Zhu X. Complement Evasion: An Effective Strategy That Parasites Utilize to Survive in the Host. Front Microbiol 2019; 10:532. [PMID: 30949145 PMCID: PMC6435963 DOI: 10.3389/fmicb.2019.00532] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
Parasitic infections induce host immune responses that eliminate the invading parasites. However, parasites have evolved to develop many strategies to evade host immune attacks and survive in a hostile environment. The complement system acts as the first line of immune defense to eliminate the invading parasites by forming the membrane attack complex (MAC) and promoting an inflammatory reaction on the surface of invading parasites. To date, the complement activation pathway has been precisely delineated; however, the manner in which parasites escape complement attack, as a survival strategy in the host, is not well understood. Increasing evidence has shown that parasites develop sophisticated strategies to escape complement-mediated killing, including (i) recruitment of host complement regulatory proteins on the surface of the parasites to inhibit complement activation; (ii) expression of orthologs of host RCA to inhibit complement activation; and (iii) expression of parasite-encoded proteins, specifically targeting different complement components, to inhibit complement function and formation of the MAC. In this review, we compiled information regarding parasitic abilities to escape host complement attack as a survival strategy in the hostile environment of the host and the mechanisms underlying complement evasion. Effective escape of host complement attack is a crucial step for the survival of parasites within the host. Therefore, those proteins expressed by parasites and involved in the regulation of the complement system have become important targets for the development of drugs and vaccines against parasitic infections.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Wang Z, Hao C, Huang J, Zhuang Q, Zhan B, Zhu X. Mapping of the complement C1q binding site on Trichinella spiralis paramyosin. Parasit Vectors 2018; 11:666. [PMID: 30587214 PMCID: PMC6307294 DOI: 10.1186/s13071-018-3258-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/05/2018] [Indexed: 12/18/2022] Open
Abstract
Background Trichinella spiralis is a tissue-dwelling parasite has developed the ability to evade the host immune attack to establish parasitism in a host. One of the strategies evolved by the nematode is to produce proteins that immunomodulate the host immune system. TsPmy is a paramyosin secreted by T. spiralis on the surface of larvae and adult worms that can interact with complement components C1q and C8/C9 to compromise their activation and functions. To better understand the mechanism of TsPmy involved in the C1q inactivation and immune evasion, the C1q-binding site on TsPmy was investigated. Methods The TsPmy C1q-binding site was investigated by sequential narrow-down fragment expression in bacteria and peptide binding screening. C1q binding activity was identified by Far-Western blotting and ELISA assays. Results After several runs of sequential fragment expression, the C1q binding site was narrowed down to fragments of N-terminal TsPmy226-280aa and TsPmy231-315aa, suggesting the final C1q binding site is probably located to TsPmy231-280aa. A total of nine peptides covering different amino acid sequences within TsPmy231-280aa were synthesized. The binding assay to C1q determined that only P2 peptide covering TsPmy241-280aa binds to C1q, indicating that the C1q binding domain may need both the linearized sequence and conformational structure required for binding to C1q. The binding of peptide P2 to C1q significantly inhibited both C1q-initiated complement classical activation and C1q-induced macrophage chemotaxis. Conclusions This study identifies the C1q binding site within TsPmy which provides helpful information for developing a vaccine against trichinellosis by targeting the C1q-binding activity of TsPmy.
Collapse
Affiliation(s)
- Zixia Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chunyue Hao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qinghui Zhuang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
Ren HN, Guo KX, Zhang Y, Sun GG, Liu RD, Jiang P, Zhang X, Wang L, Cui J, Wang ZQ. Molecular characterization of a 31 kDa protein from Trichinella spiralis and its induced immune protection in BALB/c mice. Parasit Vectors 2018; 11:625. [PMID: 30518426 PMCID: PMC6282284 DOI: 10.1186/s13071-018-3198-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Background Trichinella spiralis is an important foodborne zoonotic parasite and it is necessary to develop a vaccine in order to interrupt transmission from animals to humans. A 31 kDa protein from T. spiralis (Ts31) is an antigen targeted by protective antibodies, and Ts31 contains a domain of trypsin-like serine protease that might have the function of serine protease. The purpose of this study was to investigate the molecular characteristics of Ts31 and its induced immune protection. Methods Expression and localization of Ts31 in various T. spiralis phases were investigated using qPCR and immunofluorescent test (IFT). The specific binding between Ts31 and intestinal epithelium cells (IECs) was analyzed by Far-Western blotting, ELISA and IFT, and the cellular localization of binding sites was examined on confocal microscopy. The mice were subcutaneously vaccinated with recombinant Ts31 protein (rTs31), serum specific IgG was determined by ELISA, and immune protection induced by immunization with rTs31 was evaluated. Inhibition of anti-rTs31 IgG on IL1 invasion of IECs and ADCC-mediated killing of newborn larvae (NBL) was also determined. Results Ts31 was expressed at different life-cycle stages and located principally at the stichosome and cuticle of this parasite. rTs31 was capable to specially bond to IECs, and binding site was located in the cytoplasm of IECs. Immunization of mice with rTs31 elicited a significant humoral response and protection, as demonstrated by a 56.93% reduction of adult worms at 6 days post-infection (dpi) and a 53.50% reduction of muscle larvae at 42 dpi after larval challenge. Anti-rTs31 antibodies impeded T. spiralis penetration of enterocytes in a dose-dependent pattern, and participated in the destruction of NBL by an ADCC-mediated manner. Conclusions Ts31 facilitated the T. spiralis penetration of intestinal epithelium, which could make it a vaccine candidate target molecule against Trichinella infection.
Collapse
Affiliation(s)
- Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Kai Xia Guo
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China
| | - Li Wang
- Genetic and Prenatal Diagnostic Center of the First Affiliated Hospital, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
27
|
Qi X, Han Y, Jiang P, Yue X, Ren HN, Sun GG, Long SR, Yu C, Cheng XC, Cui J, Wang ZQ. Oral vaccination with Trichinella spiralis DNase II DNA vaccine delivered by attenuated Salmonella induces a protective immunity in BALB/c mice. Vet Res 2018; 49:119. [PMID: 30518422 PMCID: PMC6280372 DOI: 10.1186/s13567-018-0614-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/07/2018] [Indexed: 02/02/2023] Open
Abstract
Trichinellosis is one of the most serious foodborne parasitic zoonosis with worldwide distribution, and it is necessary to develop a vaccine to interrupt transmission from animals to humans. Trichinella spiralis adult-specific DNase II-1 (TsDNase II) were identified by immunoproteomics in surface or excretory/secretory proteins of adult worms (AW) and intestinal infective larvae (IIL). The aim of this study was to investigate the systemic, mucosal responses and immune protection elicited by oral vaccination with TsDNase II DNA vaccine delivered by attenuated Salmonella typhimurium strain⊿cyaSL1344. Oral vaccination with TsDNase II DNA vaccine triggered an obvious mucosal sIgA response and a systemic IgG response in mice, and IgG1 was predominant. Th1 (IFN-γ) and Th2 (IL-4, 10) cytokines were distinctly increased in the spleen and mesenteric lymph node (MLN) cells of vaccinated mice. An indirect immunofluorescent test revealed that native TsDNase II is present at the cuticle of this nematode after the 2nd molting, further confirming that TsDNase II is adult-specific and expressed at AW and pre-adult stages. Oral immunization of mice with TsDNase II exhibited a 53.85% reduction in AW and a 59.26% reduction in ML after larval challenge. The in vitro NBL production of adult females from TsDNase II-vaccinated mice was also reduced in comparison with pcDNA3.1 or the PBS control group (P < 0.01). Our results show that oral immunization of mice with TsDNase II produced an intestinal and systematic concurrent Th1/Th2 immune response, and a significant immune protection against challenge.
Collapse
Affiliation(s)
- Xin Qi
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Yue
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Hua Nan Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Ge Ge Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chuan Yu
- Key Lab of Animal Disease and Public Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiang Chao Cheng
- Key Lab of Animal Disease and Public Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
28
|
Wang J, Jiang Y, Yang W, Shi C, Huang H, Sun H, Liu G, Wang C, Yang G, Cai Y. Vaccination with DNA encoding ES 43-kDa /45-kDa antigens significantly reduces Trichinella spiralis infection in mice. Res Vet Sci 2018; 120:4-10. [DOI: 10.1016/j.rvsc.2018.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/30/2018] [Accepted: 08/20/2018] [Indexed: 01/24/2023]
|
29
|
Li JF, Guo KX, Qi X, Lei JJ, Han Y, Yan SW, Jiang P, Yu C, Cheng XC, Wang ZQ, Cui J. Protective immunity against Trichinella spiralis in mice elicited by oral vaccination with attenuated Salmonella-delivered TsSP1.2 DNA. Vet Res 2018; 49:87. [PMID: 30189894 PMCID: PMC6127904 DOI: 10.1186/s13567-018-0582-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Trichinellosis is a worldwide important food-borne zoonosis caused mainly by ingesting raw or undercooked pork infected with Trichinella spiralis larvae. The development of vaccine is needed for preventing swine from Trichinella infection to ensure pork safety. Previous studies showed that T. spiralis serine protease 1.2 (TsSP1.2) is a vaccine candidate against Trichinella infection. In this study, the complete TsSP1.2 cDNA sequences were cloned into pcDNA3.1, and the rTsSP1.2 DNA was transformed into attenuated Salmonella typhimurium strain ΔcyaSL1344. Oral vaccination of mice with Salmonella-delivered rTsSP1.2 DNA vaccine induced an obvious intestinal mucosal IgA response and a systemic Th1/Th2 immune response; the vaccinated mice showed a 33.45% reduction of intestinal adult worms and 71.84% reduction of muscle larvae after T. spiralis larval challenge. The protection might be due to the rTsSP1.2-induced production of specific anti-TsSP1.2 sIgA, IgG, IgG1/IgG2a, and secretion of IFN-γ, IL-4 and IL-10, which protected intestinal mucosa from the parasite invasion, inhibited worm development and reduced female fecundity. The results indicate that the attenuated Salmonella-delivered rTsSP1.2 DNA vaccine offers a prospective strategy for the prevention and control of animal Trichinella infection.
Collapse
Affiliation(s)
- Jie Feng Li
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Kai Xia Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Xin Qi
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Jun Lei
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China
| | - Chuan Yu
- Key Lab of Animal Disease and Public Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiang Chao Cheng
- Key Lab of Animal Disease and Public Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
30
|
Ding K, Shang K, Yu ZH, Yu C, Jia YY, He L, Liao CS, Li J, Zhang CJ, Li YJ, Wu TC, Cheng XC. Recombinant-attenuated Salmonella Pullorum strain expressing the hemagglutinin-neuraminidase protein of Newcastle disease virus (NDV) protects chickens against NDV and Salmonella Pullorum challenge. J Vet Sci 2018; 19:232-241. [PMID: 29032660 PMCID: PMC5879071 DOI: 10.4142/jvs.2018.19.2.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/10/2017] [Accepted: 10/07/2017] [Indexed: 02/05/2023] Open
Abstract
Newcastle disease virus (NDV) and Salmonella Pullorum have significant damaging effects on the poultry industry, but no previous vaccine can protect poultry effectively. In this study, a recombinant-attenuated S. Pullorum strain secreting the NDV hemagglutinin-neuraminidase (HN) protein, C79-13ΔcrpΔasd (pYA-HN), was constructed by using the suicide plasmid pREasd-mediated bacteria homologous recombination method to form a new bivalent vaccine candidate against Newcastle disease (ND) and S. Pullorum disease (PD). The effect of this vaccine candidate was compared with those of the NDV LaSota and C79-13ΔcrpΔasd (pYA) strains. The serum hemagglutination inhibition antibody titers, serum immunoglobulin G (IgG) antibodies, secretory IgA, and stimulation index in lymphocyte proliferation were increased significantly more (p < 0.01) in chickens inoculated with C79-13ΔcrpΔasd (pYA-HN) than with C79-13ΔcrpΔasd (pYA) but were not significantly increased compared with the chickens immunized with the LaSota live vaccine (p > 0.05). Moreover, the novel strain provides 60% and 80% protective efficacy against the NDV virulent strain F48E9 and the S. Pullorum virulent strain C79-13. In summary, in this study, a recombinant-attenuated S. Pullorum strain secreting NDV HN protein was constructed. The generation of the S. Pullorum C79-13ΔcrpΔasd (pYA-HN) strain provides a foundation for the development of an effective living-vector double vaccine against ND and PD.
Collapse
Affiliation(s)
- Ke Ding
- Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, and Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
| | - Ke Shang
- Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, and Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
| | - Zu-Hua Yu
- Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, and Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
| | - Chuan Yu
- Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, and Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
| | - Yan-Yan Jia
- Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, and Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
| | - Lei He
- Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, and Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
| | - Cheng-Shui Liao
- Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, and Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
| | - Jing Li
- Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, and Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
| | - Chun-Jie Zhang
- Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, and Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
| | - Yin-Ju Li
- Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, and Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
| | - Ting-Cai Wu
- Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, and Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
| | - Xiang-Chao Cheng
- Key Laboratory of Animal Disease and Public Health, Henan University of Science and Technology, and Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471003, China
| |
Collapse
|
31
|
Song YY, Zhang Y, Yang D, Ren HN, Sun GG, Jiang P, Liu RD, Zhang X, Cui J, Wang ZQ. The Immune Protection Induced by a Serine Protease Inhibitor From the Foodborne Parasite Trichinella spiralis. Front Microbiol 2018; 9:1544. [PMID: 30050521 PMCID: PMC6050375 DOI: 10.3389/fmicb.2018.01544] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
Serine protease inhibitors (SPI) are a superfamily of the proteins able to suppress serine protease activity, and may exert the major biological function in complement activation, inflammation, and fibrinolysis. A SPI was identified from Trichinella spiralis adult worms (AW) by immunoproteomics with early infection sera. The aim of this study was to investigate the protective immune elicited by TsSPI. The complete TsSPI cDNA sequence was cloned into pQE-80 L and then expressed in Escherichia coli BL21. The rTsSPI was purified and its antigenicity was determined by Western blotting analysis. By using anti-rTsSPI serum the native TsSPI was identified in somatic and ES proteins from muscle larvae (ML). The results of qPCR and immunofluorescence assay (IFA) revealed that the expression of the TsSPI gene was observed throughout all developmental stages of T. spiralis (ML, intestinal infective larvale, 3- and 6-days AW, and newborn larvae, NBL), located principally in cuticles, stichosome, and embryos of this parasitic nematode. Vaccination of mice with rTsSPI triggered high level of anti-TsSPI IgG response, and showed a 62.2 and 57.25% worm burden reduction in the recovery of intestinal AW at 6 days post-infection (dpi) and ML at 35 dpi, respectively. The TsSPI might be a novel potential target for anti-Trichinella vaccine.
Collapse
Affiliation(s)
- Yan Y Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yao Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Daqi Yang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Hua N Ren
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ge G Sun
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Peng Jiang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ruo D Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhong Q Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Zhang X, Xu L, Song X, Li X, Yan R. Molecular cloning of enolase from Trichinella spiralis and the protective immunity in mice. Acta Parasitol 2018; 63:252-260. [PMID: 29654687 DOI: 10.1515/ap-2018-0029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022]
Abstract
Trichinella spiralis, the main pathogen of trichinosis, infects a wide range of mammalian hosts and is one of the most widespread parasites worldwide. For parasites, glycolysis is the most important way to generate energy. Previous studies showed that some enzymes involved in the glycolytic pathway play roles in regulation the host immunity. In this paper, enolase from T. spiralis was cloned and the protective potentials were studied. One hundred and sixty ICR mice were divided into four groups and vaccinated with recombinant enolase (pET-ENO), eukaryotic recombinant plasmid encoding enolase (pVAX1-ENO) and negative controls (pVAXl and PBS), respectively. Two weeks after the second immunization, each mouse was challenged orally with 200 muscle larvae (MLs) of T. spiralis. Results showed that mice vaccinated with pET-ENO and pVAX1-ENO induced specific antibodies of IgG, IgA, IgM, but no IgE. Subclasses of IgG antibodies showed that mice immunized with recombinant protein and recombinant plasmids induced a Th1/Th2 immune response. Concentrations of serum cytokines were detected and showed significant increase of IFN-γ, IL-4 and TGFβ1, while IL-17 in each group was not significantly different. Flow cytometric analysis showed significant increase of CD4+ and CD8+ T lymphocytes in the groups immunized with recombinant protein and recombinant plasmids. Challenge infection demonstrated that immunized groups had a reduced number of worm burdens. The reductions of larvae per gram muscle (LPG) in pET-ENO and pVAX1-ENO group were 17.7% and 15.8% when compared with PBS control.
Collapse
MESH Headings
- Animals
- Antibodies, Helminth/blood
- Antigens, Helminth/administration & dosage
- Antigens, Helminth/genetics
- Antigens, Helminth/immunology
- Cloning, Molecular
- Cytokines/immunology
- Female
- Larva/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred ICR
- Phosphopyruvate Hydratase/genetics
- Phosphopyruvate Hydratase/immunology
- Phosphopyruvate Hydratase/isolation & purification
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Trichinella spiralis/enzymology
- Trichinella spiralis/genetics
- Trichinella spiralis/immunology
- Trichinellosis/prevention & control
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Xuliang Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| |
Collapse
|
33
|
Zhang N, Li W, Fu B. Vaccines against Trichinella spiralis: Progress, challenges and future prospects. Transbound Emerg Dis 2018; 65:1447-1458. [PMID: 29873198 DOI: 10.1111/tbed.12917] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 01/14/2023]
Abstract
Trichinella spiralis, the causative agent of trichinellosis, is able to infect a wide range of carnivores and omnivores including human beings. In the past 30 years, a mass of vaccination efforts has been performed to control T. spiralis infection with the purpose of reduction in worm fecundity or decrease in muscle larval and adult burdens. Here, we summarize the development of veterinary vaccines against T. spiralis infection. During recent years, increasing numbers of new vaccine candidates have been developed on the protective immunity against T. spiralis infection in murine model. The vaccine candidates were not only selected from excretory-secretory (ES) antigens, but also from the recombinant functional proteins, such as proteases and some other antigens participated in T. spiralis intracellular processes. However, immunization with a single antigen generally revealed lower protective effects against T. spiralis infection in mice compared to that with the inactivated whole worms or crude extraction and ES productions. Future study of T. spiralis vaccines should focus on evaluation of the protective efficacy of antigens and/or ligands delivered by nanoparticles that could elicit Th2-type immune response on experimental pigs.
Collapse
Affiliation(s)
- Nianzhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wenhui Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Baoquan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| |
Collapse
|
34
|
Eichenberger RM, Sotillo J, Loukas A. Immunobiology of parasitic worm extracellular vesicles. Immunol Cell Biol 2018; 96:704-713. [PMID: 29808496 DOI: 10.1111/imcb.12171] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022]
Abstract
Helminth parasites (worms) have evolved a vast array of strategies to manipulate their vertebrate hosts. Extracellular vesicles (EVs) are secreted by all helminth species investigated thus far, and their salient roles in parasite-host interactions are being revealed. Parasite EVs directly interact with various cell types from their hosts, including immune cells, and roles for their molecular cargo in both regulation and promotion of inflammation in the host have been reported. Despite the growing body of literature on helminth EVs, limited availability of genetic manipulation tools for helminth research has precluded detailed investigation of specific molecular interactions between parasite EVs and host target cells. Here, we review the current state of the field and discuss innovative strategies targeting helminth EVs for the discovery and development of new therapeutic strategies, placing particular emphasis on both anti-helminth vaccines and EV small RNAs for treating noninfectious inflammatory diseases.
Collapse
Affiliation(s)
- Ramon M Eichenberger
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- ParaGen Bio Laboratories, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- ParaGen Bio Laboratories, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
35
|
Zheng Z, Diaz-Arévalo D, Guan H, Zeng M. Noninvasive vaccination against infectious diseases. Hum Vaccin Immunother 2018; 14:1717-1733. [PMID: 29624470 PMCID: PMC6067898 DOI: 10.1080/21645515.2018.1461296] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.
Collapse
Affiliation(s)
- Zhichao Zheng
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China.,b Center of Emphasis in Infectious Diseases , Department of Biomedical Sciences , Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso , Texas , USA
| | - Diana Diaz-Arévalo
- c Grupo Funcional de Inmunología , Fundación Instituto de Inmunología de Colombia-FIDIC, Faculty of Agricultural Sciences, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, School of Medicine and Health Sciences, Universidad del Rosario , Bogotá , DC . Colombia
| | - Hongbing Guan
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Mingtao Zeng
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China.,b Center of Emphasis in Infectious Diseases , Department of Biomedical Sciences , Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso , Texas , USA
| |
Collapse
|
36
|
Lemieux MW, Sonzogni-Desautels K, Ndao M. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis. Pathogens 2017; 7:pathogens7010002. [PMID: 29295550 PMCID: PMC5874728 DOI: 10.3390/pathogens7010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/16/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.
Collapse
Affiliation(s)
- Maxime W Lemieux
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Karine Sonzogni-Desautels
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada.
- Faculty of Agricultural and Environmental Sciences, Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Momar Ndao
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
37
|
Yang Z, Li W, Yang Z, Pan A, Liao W, Zhou X. A novel antigenic cathepsin B protease induces protective immunity in Trichinella-infected mice. Vaccine 2017; 36:248-255. [PMID: 29199042 DOI: 10.1016/j.vaccine.2017.11.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/27/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
Trichinellosis is a foodborne disease that remains a public health hazard and an economic problem in food safety. Vaccines against the parasite can be an effective way to control this disease; however, commercial vaccines against Trichinella infection are not yet available. Trichinella cathepsin B proteins appear to be promising targets for vaccine development. Here, we reported for the first time the characterization of a novel cDNA that encodes Trichinella spiralis (T. spiralis) cathepsin B-like protease 2 gene (TsCPB2). The recombinant mature TsCPB2 protein was successfully expressed in E. coli system and purified with Ni-affinity chromatography. TsCPB2 expression was detected at all the developmental stages of T. spiralis and it was expressed as an excretory-secretory protein of T. spiralis muscle larvae. Immunization with TsCPB2 antigen induced a combination of humoral and cellular immune responses, which manifested as a mixed Th1/Th2 response, as well as remarkably elevated IgE level. Moreover, vaccination of mice with TsCPB2 that were subsequently challenged with T. spiralis larvae resulted in a 52.3% (P < .001) reduction in worm burden and a 51.2% (P < .001) reduction in muscle larval burden. Our results suggest that TsCPB2 induces protective immunity in Trichinella-infected mice and might be a novel vaccine candidate against trichinellosis.
Collapse
Affiliation(s)
- Zhaoshou Yang
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Wenjie Li
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zifan Yang
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Aihua Pan
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China
| | - Wanqin Liao
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| | - Xingwang Zhou
- Sun Yat-sen University Zhongshan School of Medicine, Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
38
|
Liu CY, Song YY, Ren HN, Sun GG, Liu RD, Jiang P, Long SR, Zhang X, Wang ZQ, Cui J. Cloning and expression of a Trichinella spiralis putative glutathione S-transferase and its elicited protective immunity against challenge infections. Parasit Vectors 2017; 10:448. [PMID: 28962639 PMCID: PMC5622431 DOI: 10.1186/s13071-017-2384-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/17/2017] [Indexed: 01/25/2023] Open
Abstract
Background Glutathione-S-transferase (GST) is a widespread multigene family of detoxification enzymes. The vaccination of mice with recombinant GST of 24 kDa from Trichinella spiralis elicited a low immune protection against challenge infection. The objective of this study was to characterize the T. spiralis putative GST gene (TspGST) encoding a 30.8 kDa protein and to evaluate its potential as a candidate antigen for anti-Trichinella vaccine. Methods The full-length cDNA sequence of TspGST from T. spiralis muscle larvae (ML) was expressed in E. coli. The enzymatic activity and antigenicity of the rTspGST were identified by spectrophotometry, Western blot, and ELISA. The expression of TspGST at T. spiralis various stages was investigated by RT-PCR and indirect immunofluorescent test (IIFT). Serum level of total IgG, IgG1, and IgG2a antibodies against rTspGST were measured by ELISA. The immune protection produced by vaccination with rTspGST against T. spiralis was evaluated. Results The sequencing results showed that the cDNA of TspGST was 840 bp, and encoded a protein of 279 amino acids, which had a molecular size of 30.8 kDa and a pI of 5.21. Its amino acid sequence shares 37% similarity with TsGST. The rTspGST protein had enzymatic activity of GST. On Western blot and ELISA analysis, the native TspGST protein with 30.8 kDa in crude antigens derived from adult worms (AW), newborn larvae (NBL), infective intestinal larvae (IIL) and ML was recognized by anti-rTspGST sera, but the ML ES antigens could be not recognized by anti-rTspGST sera. Expression of TspGST was found in all of T. spiralis various stages (AW, NBL, ML, and IIL). An immunolocalization analysis identified TspGST in different stages (mainly in cuticles) of the nematode. The mice vaccinated with the rTspGST elicited Th2-predominant immune responses, showed a 34.38% reduction of adult worms and a 43.70% reduction of muscle larvae. Conclusions Immunization with rTspGST produced a partial immune protection, and the rTspGST could be regarded as a potential candidate target for an anti-Trichinella vaccine.
Collapse
Affiliation(s)
- Chun Ying Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Yan Song
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Hua Na Ren
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ge Ge Sun
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ruo Dan Liu
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Peng Jiang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Shao Rong Long
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Xi Zhang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhong Quan Wang
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Jing Cui
- Department of Parasitology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
39
|
Abstract
Soil-transmitted helminths (STHs) collectively infect one fourth of all human beings, and the majority of livestock in the developing world. These gastrointestinal nematodes are the most important parasites on earth with regard to their prevalence in humans and livestock. Current anthelmintic drugs are losing their efficacies due to increasing drug resistance, particularly in STHs of livestock and drug treatment is often followed by rapid reinfection due to failure of the immune system to develop a protective response. Vaccines against STHs offer what drugs cannot accomplish alone. Because such vaccines would have to be produced on such a large scale, and be cost effective, recombinant subunit vaccines that include a minimum number of proteins produced in relatively simple and inexpensive expression systems are required. Here, we summarize all of the previous studies pertaining to recombinant subunit vaccines for STHs of humans and livestock with the goal of both informing the public of just how critical these parasites are, and to help guide future developments. We also discuss several key areas of vaccine development, which we believe to be critical for developing more potent recombinant subunit vaccines with broad-spectrum protection.
Collapse
|
40
|
Gu Y, Sun X, Li B, Huang J, Zhan B, Zhu X. Vaccination with a Paramyosin-Based Multi-Epitope Vaccine Elicits Significant Protective Immunity against Trichinella spiralis Infection in Mice. Front Microbiol 2017; 8:1475. [PMID: 28824599 PMCID: PMC5540943 DOI: 10.3389/fmicb.2017.01475] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
Trichinellosis is a worldwide zoonosis and remains a serious public health problem. Interrupting parasite transmission via vaccination of livestocks with a potent vaccine is a practical approach to prevent human Trichinellosis. Our previous studies have identified that paramyosin of Trichinella spiralis (Ts-Pmy) is a good vaccine candidate against Trichinellosis. In this study, a novel multi-epitope vaccine (MEP) was constructed by using four CD4+ T cell epitopes (P2, P3, P4, and P5) and one B cell epitope (YX1) from Ts-Pmy and expressed as a soluble recombinant protein (rMEP) in Escherichia coli. Mice immunized with rMEP vaccine produced significant higher muscle larval reduction (55.4%) than that induced by immunization of parental rTs-Pmy (34.4%) against T. spiralis infection. The better protection is associated with rMEP induced high levels of anti-rMEP specific IgG and subclass IgG1/IgG2a, elevated T cell proliferation of splenocytes and secretion of IFN-γ, IL-4 and IL-5. The cellular response to individual T cell epitope also showed that splenocytes from mice immunized with rMEP strongly response to the stimulation of synthetic epitope peptide P2, P3, and P4, but not to P5, suggesting that most of T cell epitopes are exposed and processed well during immunization that may contribute to the high protection induced by the immunization of rMEP. This study implies that epitope vaccine is a promising approach for the development of vaccines against Trichinellosis.
Collapse
Affiliation(s)
- Yuan Gu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Bo Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Bin Zhan
- Section of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, HoustonTX, United States
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| |
Collapse
|
41
|
Bai X, Hu X, Liu X, Tang B, Liu M. Current Research of Trichinellosis in China. Front Microbiol 2017; 8:1472. [PMID: 28824597 PMCID: PMC5539376 DOI: 10.3389/fmicb.2017.01472] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022] Open
Abstract
Trichinellosis, caused by Trichinella, is an emerging or re-emerging zoonotic parasitic disease, which is distributed worldwide with major socio-economic importance in some developing countries. In particular, it has been calculated that more than 40 million people are at risk of Trichinella infection in China. This review summarizes the current information on the epidemiology, laboratory diagnosis and vaccines of trichinellosis in China. Moreover, study of the treatment potential of using Trichinella for immune-related diseases and cancer, as well as the transcription and post-transcription modification of Trichinella were also collected, providing viewpoints for future investigations. Current advances in research will help us to develop new strategies for the prevention and control of trichinellosis and may potentially yield biological agents for treating other diseases.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin UniversityChangchun, China
| | - Xiaoxiang Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin UniversityChangchun, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin UniversityChangchun, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin UniversityChangchun, China
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin UniversityChangchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou, China
| |
Collapse
|
42
|
Wang L, Sun X, Huang J, Zhan B, Zhu X. Heterologous Prime-Boost Vaccination Enhances TsPmy's Protective Immunity against Trichinella spiralis Infection in a Murine Model. Front Microbiol 2017; 8:1394. [PMID: 28785255 PMCID: PMC5519575 DOI: 10.3389/fmicb.2017.01394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/10/2017] [Indexed: 11/25/2022] Open
Abstract
TsPmy is a paramyosin expressed by parasitic Trichinella spiralis and confers a protective immunity when its recombinant protein or DNA was used as an immunogen. To improve its immunogenicity and vaccine efficacy, we conducted a heterologous prime-boost strategy by orally delivering one dose of TsPmy DNA carried by attenuated Salmonella typhimurium (SL7207), followed by two doses of recombinant TsPmy intramuscularly. This strategy effectively induced intestinal mucosal sIgA response and an enhanced and balanced Th1/Th2 immune responses that improve protection against T. spiralis larval challenge, with 55.4% muscle larvae reduction and 41.8% adult worm reduction compared to PBS control. The muscle larvae reduction induced by heterologous prime-boost regimen was significant higher than that induced by the homologous DNA or protein prime-boost regimens, which could act as a practical prophylactic approach to prevent T. spiralis infection.
Collapse
Affiliation(s)
- Lei Wang
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China.,Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Jingjing Huang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, HoustonTX, United States
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical UniversityBeijing, China.,Research Centre of Microbiome, Capital Medical UniversityBeijing, China
| |
Collapse
|
43
|
Abstract
免疫球蛋白A(immunoglobulin A, IgA)在黏膜的免疫功能中起关键作用, 是维持肠道黏膜稳态的重要物质. 分泌型IgA(secretory IgA, SIgA)的分泌组分保护免疫球蛋白不被蛋白水解酶降解, SIgA在肠道内各种免疫因子、免疫细胞以及其他免疫球蛋白的参与下完成肠道内的免疫监视、免疫自稳、免疫调控. 本文主要就肠道中SIgA的结构、合成转运、分泌调节、作用和其相关临床疾病的研究进展作一综述.
Collapse
|
44
|
Zhang TT, Zhang JC, Cui XJ, Zheng JJ, Li R, Wang F, Liu JZ, Hu YH. Evaluation of immune protection induced by DNA vaccines from Haemaphysalis longicornis paramyosin in rabbits. Parasit Vectors 2017; 10:325. [PMID: 28683807 PMCID: PMC5501075 DOI: 10.1186/s13071-017-2262-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/25/2017] [Indexed: 11/21/2022] Open
Abstract
Background Haemaphysalis longicornis is a blood-sucking ectoparasite that can cause diseases by transmitting some pathogens to humans and animals. Paramyosin (Pmy) is an immunomodulatory protein, which plays an important role in immune reactions against parasites. In this study, we evaluated the immune protection elicited by recombinant plasmids encoding H. longicornis Pmy in rabbits. Results Rabbits vaccinated with pcDNA3.1(+)-Pmy developed high level of IgG compared to control group, suggesting that humoral immune response was induced by vaccination. On the fourth day after fed on the rabbit, some female adults died and the mortality rate from pcDNA3.1(+)-Pmy group (27.31%) was significantly higher than that of the control group (P < 0.0001). Other female ticks were attached to the rabbits until detachment, and the average engorgement weight, oviposition of female adult from pcDNA3.1(+)-Pmy group were 109.61 ± 4.24 mg and 48.39 ± 4.06 mg, respectively, which correspondingly resulted in 36 and 39% reduction compared with that of the control group (P < 0.0001). In brief, vaccination with Pmy plasmid DNA provided an overall efficacy of 50% in immune protection of rabbits. Conclusions This study suggested that Pmy DNA vaccine can induce effective humoral immune response and partially protected rabbit against H. longicornis infection.
Collapse
Affiliation(s)
- Tian-Tian Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jin-Cheng Zhang
- Shijiazhuang Posts and Telecommunications Technical College, Shijiazhuang, 050021, China
| | - Xue-Jiao Cui
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jing-Jing Zheng
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ru Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Fang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jing-Ze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Yong-Hong Hu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
45
|
Xu J, Bai X, Wang LB, Shi HN, van der Giessen JWB, Boireau P, Liu MY, Liu XL. Influence of adjuvant formulation on inducing immune response in mice immunized with a recombinant serpin from Trichinella spiralis. Parasite Immunol 2017; 39. [PMID: 28445612 DOI: 10.1111/pim.12437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/20/2017] [Indexed: 11/29/2022]
Abstract
Nematodes of the genus Trichinella are one of the most widespread zoonotic pathogens on the world, and they can still cause major public health problems in many parts of the world. Vaccination against the helminth nematode Trichinella could be a good strategy to reduce the risk of human and animal infection. It was our aim to evaluate three adjuvants, which could be used as an efficient vaccine for animals in combination with rTs-Serpin antigen. In this study, BALB/c mice were vaccinated by an intramuscular route with rTs-Serpin antigen from the parasite Trichinella spiralis in combination with three different adjuvant formulations: Montanide ISA201, Montanide IMS 1313 N PR VG and Freund's complete adjuvant/Freund's incomplete adjuvant (FCA/FIA). The dynamics of IgG, IgM, IgE and cytokine production from spleen cells and worm reduction rate of the vaccinated mice were analysed. The results showed that rTs-serpin can induce partial protection against Trichinella larvae challenge in mice, when compared to the FCA-/FIA-formulated vaccination, the IMS1313 plus rTs-serpin mixture showed higher humoral immunity and similar levels of cellular immunity and worm reduction rate. The study suggested that Montanide IMS nanoparticles 1313 are as effective as FCA but less toxic; thus, Montanide IMS nanoparticles 1313 can be used as a good candidate of adjuvant for developing vaccine against Trichinella spiralis.
Collapse
Affiliation(s)
- J Xu
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, PR, China
| | - X Bai
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, PR, China
| | - L B Wang
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, PR, China
| | - H N Shi
- Mucosal Immunology Laboratory, Pediatric Gastroenterology Unit, Massachusetts General Hospital East, Boston, MA, USA
| | - J W B van der Giessen
- Centre for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment, Amsterdam, The Netherlands
| | - P Boireau
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, PR, China.,Laboratory for Animal Health, Maisons Alfort, ANSES, INRA, ENVA, Universite Paris Est, Paris, France
| | - M Y Liu
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, PR, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR, China
| | - X L Liu
- Key Lab for Zoonoses Research, Ministry of Education, Institute of Zoonoses, Jilin University, Changchun, PR, China
| |
Collapse
|