1
|
Patel R, Bryant AS, Castelletto ML, Walsh B, Akimori D, Hallem EA. The generation of stable transgenic lines in the human-infective nematode Strongyloides stercoralis. G3 (BETHESDA, MD.) 2024; 14:jkae122. [PMID: 38839055 PMCID: PMC11304987 DOI: 10.1093/g3journal/jkae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The skin-penetrating gastrointestinal parasitic nematode Strongyloides stercoralis causes strongyloidiasis, which is a neglected tropical disease that is associated with severe chronic illness and fatalities. Unlike other human-infective nematodes, S. stercoralis cycles through a single free-living generation and thus serves as a genetically tractable model organism for understanding the mechanisms that enable parasitism. Techniques such as CRISPR/Cas9-mediated mutagenesis and transgenesis are now routinely performed in S. stercoralis by introducing exogenous DNA into free-living adults and then screening their F1 progeny for transgenic or mutant larvae. However, transgenesis in S. stercoralis has been severely hindered by the inability to establish stable transgenic lines that can be propagated for multiple generations through a host; to date, studies of transgenic S. stercoralis have been limited to heterogeneous populations of transgenic F1 larvae. Here, we develop an efficient pipeline for the generation of stable transgenic lines in S. stercoralis. We also show that this approach can be used to efficiently generate stable transgenic lines in the rat-infective nematode Strongyloides ratti. The ability to generate stable transgenic lines circumvents the limitations of working with heterogeneous F1 populations, such as variable transgene expression and the inability to generate transgenics of all life stages. Our transgenesis approach will enable novel lines of inquiry into parasite biology, such as transgene-based comparisons between free-living and parasitic generations.
Collapse
Affiliation(s)
- Ruhi Patel
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Astra S Bryant
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Breanna Walsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Damia Akimori
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
2
|
Moser MS, Hallem EA. Astacin metalloproteases in human-parasitic nematodes. ADVANCES IN PARASITOLOGY 2024; 126:177-204. [PMID: 39448190 DOI: 10.1016/bs.apar.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Parasitic nematodes infect over 2 billion individuals worldwide, primarily in low-resource areas, and are responsible for several chronic and potentially deadly diseases. Throughout their life cycle, these parasites are thought to use astacin metalloproteases, a subfamily of zinc-containing metalloendopeptidases, for processes such as skin penetration, molting, and tissue migration. Here, we review the known functions of astacins in human-infective, soil-transmitted parasitic nematodes - including the hookworms Necator americanus and Ancylostoma duodenale, the threadworm Strongyloides stercoralis, the giant roundworm Ascaris lumbricoides, and the whipworm Trichuris trichiura - as well as the human-infective, vector-borne filarial nematodes Wuchereria bancrofti, Onchocerca volvulus, and Brugia malayi. We also review astacin function in parasitic nematodes that infect other mammalian hosts and discuss the potential of astacins as anthelmintic drug targets. Finally, we highlight the molecular and genetic tools that are now available for further exploration of astacin function and discuss how a better understanding of astacin function in human-parasitic nematodes could lead to new avenues for nematode control and drug therapies.
Collapse
Affiliation(s)
- Matthew S Moser
- Molecular Biology Interdepartmental PhD Program; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
3
|
Geary TG. New paradigms in research on Dirofilaria immitis. Parasit Vectors 2023; 16:247. [PMID: 37480077 PMCID: PMC10362759 DOI: 10.1186/s13071-023-05762-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/30/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Since the advent of ivermectin (along with melarsomine and doxycycline), heartworm has come to be viewed as a solved problem in veterinary medicine, diminishing investment into non-clinical research on Dirofilaria immitis. However, heartworm infections continue to pose problems for practitioners and their patients and seem to be increasing in frequency and geographic distribution. Resistance to preventative therapies (macrocyclic lactones) complicates the picture. The use of chemotherapy for other kinds of pathogens has benefitted enormously from research into the basic biology of the pathogen and on the host-pathogen interface. A lack of basic information on heartworms as parasites and how they interact with permissive and non-permissive hosts greatly limits the ability to discover new ways to prevent and treat heartworm disease. Recent advances in technical platforms will help overcome the intrinsic barriers that hamper research on D. immitis, most notably, the need for experimentally infected dogs to maintain the life cycle and provide material for experiments. Impressive achievements in the development of laboratory animal models for D. immitis will enhance efforts to discover new drugs for prevention or treatment, to characterize new diagnostic biomarkers and to identify key parasite-derived molecules that are essential for survival in permissive hosts, providing a rational basis for vaccine discovery. A 'genomics toolbox' for D. immitis could enable unprecedented insight into the negotiations between host and parasite that enable survival in a permissive host. The more we know about the pathogen and how it manipulates its host, the better able we will be to protect companion animals far into the future.
Collapse
Affiliation(s)
- Timothy G Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
- School of Biological Sciences, Queen's University-Belfast, Belfast, Northern Ireland.
| |
Collapse
|
4
|
Airs PM, Vaccaro K, Gallo KJ, Dinguirard N, Heimark ZW, Wheeler NJ, He J, Weiss KR, Schroeder NE, Huisken J, Zamanian M. Spatial transcriptomics reveals antiparasitic targets associated with essential behaviors in the human parasite Brugia malayi. PLoS Pathog 2022; 18:e1010399. [PMID: 35390105 PMCID: PMC9017939 DOI: 10.1371/journal.ppat.1010399] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/19/2022] [Accepted: 02/25/2022] [Indexed: 01/24/2023] Open
Abstract
Lymphatic filariasis (LF) is a chronic debilitating neglected tropical disease (NTD) caused by mosquito-transmitted nematodes that afflicts over 60 million people. Control of LF relies on routine mass drug administration with antiparasitics that clear circulating larval parasites but are ineffective against adults. The development of effective adulticides is hampered by a poor understanding of the processes and tissues driving parasite survival in the host. The adult filariae head region contains essential tissues that control parasite feeding, sensory, secretory, and reproductive behaviors, which express promising molecular substrates for the development of antifilarial drugs, vaccines, and diagnostics. We have adapted spatial transcriptomic approaches to map gene expression patterns across these prioritized but historically intractable head tissues. Spatial and tissue-resolved data reveal distinct biases in the origins of known drug targets and secreted antigens. These data were used to identify potential new drug and vaccine targets, including putative hidden antigens expressed in the alimentary canal, and to spatially associate receptor subunits belonging to druggable families. Spatial transcriptomic approaches provide a powerful resource to aid gene function inference and seed antiparasitic discovery pipelines across helminths of relevance to human and animal health.
Collapse
Affiliation(s)
- Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kathy Vaccaro
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kendra J. Gallo
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary W. Heimark
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jiaye He
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Kurt R. Weiss
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
| | - Nathan E. Schroeder
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jan Huisken
- Morgridge Institute for Research, Madison, Wisconsin, United States of America
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
5
|
Bryant AS, Hallem EA. The Wild Worm Codon Adapter: a web tool for automated codon adaptation of transgenes for expression in non-Caenorhabditis nematodes. G3 (BETHESDA, MD.) 2021; 11:6259089. [PMID: 33914084 PMCID: PMC8496300 DOI: 10.1093/g3journal/jkab146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 01/22/2023]
Abstract
Advances in genomics techniques are expanding the range of nematode species that are amenable to transgenesis. Due to divergent codon usage biases across species, codon optimization is often a critical step for the successful expression of exogenous transgenes in nematodes. Platforms for generating DNA sequences codon-optimized for the free-living model nematode Caenorhabditis elegans are broadly available. However, until now such tools did not exist for non-Caenorhabditis nematodes. We therefore developed the Wild Worm Codon Adapter, a tool for rapid transgene codon optimization for expression in non-Caenorhabditis nematodes. The app includes built-in optimization for parasitic nematodes in the Strongyloides, Nippostrongylus, and Brugia genera as well as the predatory nematode Pristionchus pacificus. The app also supports custom optimization for any species using user-provided optimization rules. In addition, the app supports automated insertion of synthetic or native introns, as well as the analysis of codon bias in transgene and native sequences. Here, we describe this web-based tool and demonstrate how it may be used to analyze genome-wide codon bias in Strongyloides species.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author: University of California, Los Angeles, MIMG, 237 BSRB, 615 Charles E. Young Dr. S., Los Angeles, CA 90095, USA.
| |
Collapse
|
6
|
Kwarteng A, Sylverken A, Asiedu E, Ahuno ST. Genome editing as control tool for filarial infections. Biomed Pharmacother 2021; 137:111292. [PMID: 33581654 DOI: 10.1016/j.biopha.2021.111292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Human filarial infections are vector-borne nematode infections, which include lymphatic filariasis, onchocerciasis, loiasis, and mansonella filariasis. With a high prevalence in developing countries, filarial infections are responsible for some of the most debilitating morbidities and a vicious cycle of poverty and disease. Global initiatives set to eradicate these infections include community mass treatments, vector control, provision of care for morbidity, and search for vaccines. However, there are growing challenges associated with mass treatments, vector control, and antifilarial vaccine development. With the emergence of genome editing tools and successful applications in other infectious diseases, the integration of genetic editing techniques in future control strategies for filarial infections would offer the best option for eliminating filarial infections. In this review, we briefly discuss the mechanisms of the three main genetic editing techniques and explore the potential applications of these powerful tools to control filarial infections.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana.
| | - Augustina Sylverken
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana; Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| |
Collapse
|
7
|
Gandjui NVT, Njouendou AJ, Gemeg EN, Fombad FF, Ritter M, Kien CA, Chunda VC, Fru J, Esum ME, Hübner MP, Enyong PA, Hoerauf A, Wanji S. Establishment of an in vitro culture system to study the developmental biology of Onchocerca volvulus with implications for anti-Onchocerca drug discovery and screening. PLoS Negl Trop Dis 2021; 15:e0008513. [PMID: 33561123 PMCID: PMC7899360 DOI: 10.1371/journal.pntd.0008513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 02/22/2021] [Accepted: 01/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background Infections with Onchocerca volvulus nematodes remain a threat in Sub-Saharan Africa after three decades of ivermectin mass drug administration. Despite this effort, there is still an urgent need for understanding the parasite biology especially the mating behaviour and nodule formation as well as the development of more potent drugs that can clear the developmental (L3, L4, L5) and adult stages of the parasite and inhibit parasite reproduction and behaviour. Methodology/Principal findings Prior to culture, freshly harvested O. volvulus L3 larvae from dissected Simulium damnosum flies were purified by centrifugation using a 30% Percoll solution to eliminate fly tissue debris and contaminants. Parasites were cultured in both cell-free and cell-based co-culture systems and monitored daily by microscopic visual inspection. Exhausted culture medium was replenished every 2–3 days. The cell-free culture system (DMEM supplemented with 10% NCS) supported the viability and motility of O. volvulus larvae for up to 84 days, while the co-culture system (DMEM supplemented with 10% FBS and seeded on LLC-MK2 feeder cells) extended worm survival for up to 315 days. Co-culture systems alone promoted two consecutive parasite moults (L3 to L4 and L4 to L5) with highest moulting rates (69.2±30%) observed in DMEM supplemented with 10% FBS and seeded on LLC-MK2 feeder cells, while no moult was observed in DMEM supplemented with 10% NCS and seeded on LEC feeder cells. In DMEM supplemented with 10% FBS and seeded on LLC-MK2 feeder cells, O. volvulus adult male worms attached to the vulva region of adult female worms and may have mated in vitro. Apparent early initiation of nodulogenesis was observed in both DMEM supplemented with 10% FBS and seeded on LLC-MK2 and DMEM supplemented with 10% NCS and seeded on LLC-MK2 systems. Conclusions/Significance The present study describes an in vitro system in which O. volvulus L3 larvae can be maintained in culture leading to the development of adult stages. Thus, this in vitro system may provide a platform to investigate mating behaviour and early stage of nodulogenesis of O. volvulus adult worms that can be used as additional targets for macrofilaricidal drug screening. River blindness affects people living in mostly remote and underserved rural communities in some of the poorest areas of the world. Although significant efforts have been achieved towards the reduction of disease morbidity, onchocerciasis still affects millions of people in Sub-Saharan Africa. The current control strategy is the annual mass administration of ivermectin which has accumulated several drawbacks over time, especially the action of the drug is solely microfilaricidal, very long treatment period (15–17 years) and reports of ivermectin losing its efficacy; thus, raising the urgent need for new adulticidal compounds. Our study has established an in vitro platform capable of supporting the growth and development of Onchocerca volvulus for up to 315 days, enabling the observation of parasite developmental processes: moulting (from the infective L3 stage to adults), increase in morphometry, the attachment of adult male and female worms and the potential initiation of nodulogenesis. Moreover, the platform might provide more insight into O. volvulus adult worms behavioural pattern in vitro. Also, our findings provide more avenues for mass production of different parasite stages, the investigation of parasite developmental biology and the identification of targets for drug discovery against different developmental stages of this filarial parasite within 315 days.
Collapse
Affiliation(s)
- Narcisse V. T. Gandjui
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Abdel J. Njouendou
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Eric N. Gemeg
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Fanny F. Fombad
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Chi A. Kien
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Valerine C. Chunda
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jerome Fru
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Mathias E. Esum
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), Bonn-Cologne partner site, Bonn, Germany
| | - Peter A. Enyong
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), Bonn-Cologne partner site, Bonn, Germany
| | - Samuel Wanji
- Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
- Parasite and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- * E-mail:
| |
Collapse
|
8
|
Hagen J, Sarkies P, Selkirk ME. Lentiviral transduction facilitates RNA interference in the nematode parasite Nippostrongylus brasiliensis. PLoS Pathog 2021; 17:e1009286. [PMID: 33497411 PMCID: PMC7864396 DOI: 10.1371/journal.ppat.1009286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/05/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
Animal-parasitic nematodes have thus far been largely refractory to genetic manipulation, and methods employed to effect RNA interference (RNAi) have been ineffective or inconsistent in most cases. We describe here a new approach for genetic manipulation of Nippostrongylus brasiliensis, a widely used laboratory model of gastrointestinal nematode infection. N. brasiliensis was successfully transduced with Vesicular Stomatitis Virus glycoprotein G (VSV-G)-pseudotyped lentivirus. The virus was taken up via the nematode intestine, RNA reverse transcribed into proviral DNA, and transgene transcripts produced stably in infective larvae, which resulted in expression of the reporter protein mCherry. Improved transgene expression was achieved by incorporating the C. elegans hlh11 promoter and the tbb2 3´-UTR into viral constructs. MicroRNA-adapted short hairpin RNAs delivered in this manner were processed correctly and resulted in partial knockdown of β-tubulin isotype-1 (tbb-iso-1) and secreted acetylcholinesterase B (ache-B). The system was further refined by lentiviral delivery of double stranded RNAs, which acted as a trigger for RNAi following processing and generation of 22G-RNAs. Virus-encoded sequences were detectable in F1 eggs and third stage larvae, demonstrating that proviral DNA entered the germline and was heritable. Lentiviral transduction thus provides a new means for genetic manipulation of parasitic nematodes, including gene silencing and expression of exogenous genes. The complex life cycle of parasitic nematodes makes them very difficult to manipulate genetically, and methods to delete or silence genes which are routinely used in other organisms are ineffective in most species of nematodes which infect animals. This has hindered attempts to understand the function of defined genes and proteins, and their roles in development and interaction of nematode parasites with their host. We show here that foreign genetic material can be introduced into a widely used laboratory model of intestinal nematode infection by using a viral vector. The vector was modified to improve transgene expression, and a reporter protein expressed by transduced nematode larvae in vitro. We subsequently utilised the viral vector to deliver double stranded RNA molecules to the larvae. These molecules were processed along known pathways, resulting in partial knockdown of two test genes. This system represents a new means of genetically manipulating nematode parasites, and will aid in understanding their complex biology, in addition to defining new targets for control of infection.
Collapse
Affiliation(s)
- Jana Hagen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Murray E. Selkirk
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
McCrea AR, Edgerton EB, Oliver GT, O'Neill FM, Nolan TJ, Lok JB, Povelones M. A novel assay to isolate and quantify third-stage Dirofilaria immitis and Brugia malayi larvae emerging from individual Aedes aegypti. Parasit Vectors 2021; 14:30. [PMID: 33413579 PMCID: PMC7789620 DOI: 10.1186/s13071-020-04529-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/07/2020] [Indexed: 11/11/2022] Open
Abstract
Background Mosquitoes transmit filarial nematodes to both human and animal hosts, with worldwide health and economic consequences. Transmission to a vertebrate host requires that ingested microfilariae develop into infective third-stage larvae capable of emerging from the mosquito proboscis onto the skin of the host during blood-feeding. Determining the number of microfilariae that successfully develop to infective third-stage larvae in the mosquito host is key to understanding parasite transmission potential and to developing new strategies to block these worms in their vector. Methods We developed a novel method to efficiently assess the number of infective third-stage filarial larvae that emerge from experimentally infected mosquitoes. Following infection, individual mosquitoes were placed in wells of a multi-well culture plate and warmed to 37 °C to stimulate parasite emergence. Aedes aegypti infected with Dirofilaria immitis were used to determine infection conditions and assay timing. The assay was also tested with Brugia malayi-infected Ae. aegypti. Results Approximately 30% of Ae. aegypti infected with D. immitis and 50% of those infected with B. malayi produced emerging third-stage larvae. Once D. immitis third-stage larvae emerged at 13 days post infection, the proportion of mosquitoes producing them and the number produced per mosquito remained stable until at least day 21. The prevalence and intensity of emerging third-stage B. malayi were similar on days 12–14 post infection. Increased uptake of D. immitis microfilariae increased the fitness cost to the mosquito but did not increase the number of emerging third-stage larvae. Conclusions We provide a new assay with an associated set of infection conditions that will facilitate assessment of the filarial transmission potential of mosquito vectors and promote preparation of uniformly infectious third-stage larvae for functional assays. The ability to quantify infection outcome will facilitate analyses of molecular interactions between vectors and filariae, ultimately allowing for the establishment of novel methods to block disease transmission. ![]()
Collapse
Affiliation(s)
- Abigail R McCrea
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth B Edgerton
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Genevieve T Oliver
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fiona M O'Neill
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Thomas J Nolan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
CRISPR-mediated Transfection of Brugia malayi. PLoS Negl Trop Dis 2020; 14:e0008627. [PMID: 32866158 PMCID: PMC7485969 DOI: 10.1371/journal.pntd.0008627] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/11/2020] [Accepted: 07/21/2020] [Indexed: 01/25/2023] Open
Abstract
The application of reverse genetics in the human filarial parasites has lagged due to the difficult biology of these organisms. Recently, we developed a co-culture system that permitted the infective larval stage of Brugia malayi to be transfected and efficiently develop to fecund adults. This was exploited to develop a piggyBac transposon-based toolkit that can be used to produce parasites with transgene sequences stably integrated into the parasite genome. However, the piggyBac system has generally been supplanted by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based technology, which allows precise editing of a genome. Here we report adapting the piggyBac mediated transfection system of B. malayi for CRISPR mediated knock-in insertion into the parasite genome. Suitable CRISPR insertion sites were identified in intergenic regions of the B. malayi genome. A dual reporter piggybac vector was modified, replacing the piggyBac inverted terminal repeat regions with sequences flanking the insertion site. B. malayi molting L3 were transfected with a synthetic guide RNA, the modified plasmid and the CAS9 nuclease. The transfected parasites were implanted into gerbils and allowed to develop into adults. Progeny microfilariae were recovered and screened for expression of a secreted luciferase reporter encoded in the plasmid. Approximately 3% of the microfilariae were found to secrete luciferase; all contained the transgenic sequences inserted at the expected location in the parasite genome. Using an adaptor mediated PCR assay, transgenic microfilariae were examined for the presence of off target insertions; no off-target insertions were found. These data demonstrate that CRISPR can be used to modify the genome of B. malayi, opening the way to precisely edit the genome of this important human filarial parasite. Human filarial parasites are the causative agents of lymphatic filariasis (elephantiasis) and onchocerciasis (river blindness) and are some of the most important causes of morbidity worldwide. A large obstacle to research on these organisms has been the inability to employ reverse genetic methods and to develop integrated transgenic parasite lines. Recently, we developed a piggyBac transposon-based method that employed a co-culture system that permitted the infective larval stage of B. malayi to be transfected by lipofection in culture, resulting in the production of developmentally competent transgenic parasites. However, the piggyBac system cannot be used to precisely edit particular sequences in the genome. Thus, the piggyBac system has generally been supplanted by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based technology, which permits precise targeting (and editing) of particular sequences in the genome. Here, we report building upon the methods developed for piggyBac mediated transfection of B. malayi to develop a CRISPR mediated method for precise transgenesis in this parasite.
Collapse
|
11
|
Grote A, Li Y, Liu C, Voronin D, Geber A, Lustigman S, Unnasch TR, Welch L, Ghedin E. Prediction pipeline for discovery of regulatory motifs associated with Brugia malayi molting. PLoS Negl Trop Dis 2020; 14:e0008275. [PMID: 32574217 PMCID: PMC7337397 DOI: 10.1371/journal.pntd.0008275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/06/2020] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Filarial nematodes can cause debilitating diseases in humans. They have complicated life cycles involving an insect vector and mammalian hosts, and they go through a number of developmental molts. While whole genome sequences of parasitic worms are now available, very little is known about transcription factor (TF) binding sites and their cognate transcription factors that play a role in regulating development. To address this gap, we developed a novel motif prediction pipeline, Emotif Alpha, that integrates ten different motif discovery algorithms, multiple statistical tests, and a comparative analysis of conserved elements between the filarial worms Brugia malayi and Onchocerca volvulus, and the free-living nematode Caenorhabditis elegans. We identified stage-specific TF binding motifs in B. malayi, with a particular focus on those potentially involved in the L3-L4 molt, a stage important for the establishment of infection in the mammalian host. Using an in vitro molting system, we tested and validated three of these motifs demonstrating the accuracy of the motif prediction pipeline. Diseases caused by parasitic worms such as the filariae are among the leading causes of morbidity in the developing world. Very little is known about how development is regulated in these vector-transmitted parasites. We have developed a computational method to identify motifs that correspond to transcription factor binding sites in the genome of the parasitic worm, Brugia malayi, one of the causative agents of lymphatic filariasis. Using this approach, we were able to predict stage-specific transcription factor binding sites involved in a stage of the molting process important for the establishment of the infection. We validated the role of these motifs using an in vitro molting system.
Collapse
Affiliation(s)
- Alexandra Grote
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Yichao Li
- School of Computer Science and Electrical Engineering, Ohio University, Athens, Ohio, United States of America
| | - Canhui Liu
- Center for Global Infectious Disease Research, University of South Florida, Tampa, FL, Florida, United States of America
| | - Denis Voronin
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Adam Geber
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Thomas R. Unnasch
- Center for Global Infectious Disease Research, University of South Florida, Tampa, FL, Florida, United States of America
| | - Lonnie Welch
- School of Computer Science and Electrical Engineering, Ohio University, Athens, Ohio, United States of America
- * E-mail: (LW); (EG)
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Epidemiology, School of Global Public Health, New York University, New York, New York, United States of America
- * E-mail: (LW); (EG)
| |
Collapse
|
12
|
Wheeler NJ, Heimark ZW, Airs PM, Mann A, Bartholomay LC, Zamanian M. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLoS Biol 2020; 18:e3000723. [PMID: 32511224 PMCID: PMC7302863 DOI: 10.1371/journal.pbio.3000723] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 06/18/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
Lymphatic filariasis (LF) afflicts over 60 million people worldwide and leads to severe pathological outcomes in chronic cases. The nematode parasites (Nematoda: Filarioidea) that cause LF require both arthropod (mosquito) intermediate hosts and mammalian definitive hosts for their propagation. The invasion and migration of filarial worms through host tissues are complex and critical to survival, yet little is known about the receptors and signaling pathways that mediate directed migration in these medically important species. In order to better understand the role of chemosensory signaling in filarial worm taxis, we employ comparative genomics, transcriptomics, reverse genetics, and chemical approaches to identify putative chemosensory receptor proteins and perturb chemotaxis phenotypes in filarial worms. We find that chemoreceptor family size is correlated with the presence of environmental (extrahost) stages in nematode life cycles, and that filarial worms contain compact and highly diverged chemoreceptor complements and lineage-specific ion channels that are predicted to operate downstream of chemoreceptor activation. In Brugia malayi, an etiological agent of LF, chemoreceptor expression patterns correspond to distinct parasite migration events across the life cycle. To interrogate the role of chemosensation in the migration of larval worms, arthropod and mammalian infectious stage Brugia parasites were incubated in nicotinamide, an agonist of the nematode transient receptor potential (TRP) channel OSM-9. Exposure of microfilariae to nicotinamide alters intramosquito migration, and exposure of L3s reduces chemotaxis toward host-associated cues in vitro. Nicotinamide also potently modulates thermosensory responses in L3s, suggesting a polymodal sensory role for Brugia osm-9. Reverse genetic studies implicate both Brugia osm-9 and the cyclic nucleotide-gated (CNG) channel subunit tax-4 in larval chemotaxis toward host serum, and these ion channel subunits partially rescue sensory defects in Caenorhabditis elegans osm-9 and tax-4 knock-out strains. Together, these data reveal genetic and functional diversification of chemosensory signaling proteins in filarial worms and encourage a more thorough investigation of clade- and parasite-specific facets of nematode sensory receptor biology.
Collapse
Affiliation(s)
- Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary W. Heimark
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexis Mann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lyric C. Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
13
|
Liu C, De SL, Miley K, Unnasch TR. In vivo imaging of transgenic Brugia malayi. PLoS Negl Trop Dis 2020; 14:e0008182. [PMID: 32243453 PMCID: PMC7122700 DOI: 10.1371/journal.pntd.0008182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background Studies of the human filarial parasite have been hampered by the fact that they are obligate parasites with long life cycles. In other pathogenic infections, in vivo imaging systems (IVIS) have proven extremely useful in studying pathogenesis, tissue tropism and in vivo drug efficacy. IVIS requires the use of transgenic parasites expressing a florescent reporter. Developing a method to produce transgenic filarial parasites expressing a florescent reporter would permit IVIS to be applied to the study of tissue tropism and provide a non-invasive way to screen for in vivo drug efficacy against these parasites. Methodology/Principal findings We report the development of a dual luciferase reporter construct in a piggyBac backbone that may be used to stably transfect Brugia malayi, a causative agent of human filariasis. Parasites transfected with this construct were visible in IVIS images obtained from infected gerbils. The signal in these infected animals increased dramatically when the transgenic parasites matured to the adult stage and began to produce transgenic progeny microfilaria. We demonstrate that the IVIS system can be used to develop an effective method for cryopreservation of transgenic parasites, to non-invasively monitor the effect of treatment with anti-filarial drugs, and to rapidly identify transgenic F1 microfilariae. Conclusions To our knowledge, this represents the first application of IVIS to the study of a human filarial parasite. This method should prove useful in studies of tissue tropism and as an efficient in vivo assay for candidate anti-filarial drugs. The human filarial parasites are responsible for two major debilitating diseases; lymphatic filariasis (elephantiasis) and onchocerciasis (river blindness). Both have been identified as diseases that can be eliminated as a public health problem. However, the current elimination programs rely upon prolonged distribution of a limited number of drugs, a process which is logistically difficult to accomplish and may encourage the development of resistance. Thus, more effective drugs are needed. In other infectious diseases, in vivo imaging systems (IVIS) have proven to be very effective tools to study the pathogenesis of infection and to develop rapid and non-invasive assays for new drugs. Here we report the adaptation of IVIS to a human filarial parasitic infection and demonstrate in principal that it may be used to non-invasively monitor the efficacy of anti-filarial treatment in vivo. This system should prove useful as an in vivo screen for new anti-filarial compounds, as well as studies of the basic biology of these parasites.
Collapse
Affiliation(s)
- Canhui Liu
- Center for Global Health Infectious Disease Research, University of South Florida, Florida, United States of America
| | - Sai Lata De
- Center for Global Health Infectious Disease Research, University of South Florida, Florida, United States of America
| | - Kristi Miley
- Center for Global Health Infectious Disease Research, University of South Florida, Florida, United States of America
| | - Thomas R. Unnasch
- Center for Global Health Infectious Disease Research, University of South Florida, Florida, United States of America
- * E-mail:
| |
Collapse
|
14
|
Castelletto ML, Gang SS, Hallem EA. Recent advances in functional genomics for parasitic nematodes of mammals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb206482. [PMID: 32034038 DOI: 10.1242/jeb.206482] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human-parasitic nematodes infect over a quarter of the world's population and are a major cause of morbidity in low-resource settings. Currently available treatments have not been sufficient to eliminate infections in endemic areas, and drug resistance is an increasing concern, making new treatment options a priority. The development of new treatments requires an improved understanding of the basic biology of these nematodes. Specifically, a better understanding of parasitic nematode development, reproduction and behavior may yield novel drug targets or new opportunities for intervention such as repellents or traps. Until recently, our ability to study parasitic nematode biology was limited because few tools were available for their genetic manipulation. This is now changing as a result of recent advances in the large-scale sequencing of nematode genomes and the development of new techniques for their genetic manipulation. Notably, skin-penetrating gastrointestinal nematodes in the genus Strongyloides are now amenable to transgenesis, RNAi and CRISPR/Cas9-mediated targeted mutagenesis, positioning the Strongyloides species as model parasitic nematode systems. A number of other mammalian-parasitic nematodes, including the giant roundworm Ascaris suum and the tissue-dwelling filarial nematode Brugia malayi, are also now amenable to transgenesis and/or RNAi in some contexts. Using these tools, recent studies of Strongyloides species have already provided insight into the molecular pathways that control the developmental decision to form infective larvae and that drive the host-seeking behaviors of infective larvae. Ultimately, a mechanistic understanding of these processes could lead to the development of new avenues for nematode control.
Collapse
Affiliation(s)
- Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92161, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Lok JB. CRISPR/Cas9 Mutagenesis and Expression of Dominant Mutant Transgenes as Functional Genomic Approaches in Parasitic Nematodes. Front Genet 2019; 10:656. [PMID: 31379923 PMCID: PMC6646703 DOI: 10.3389/fgene.2019.00656] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
DNA transformation of parasitic nematodes enables novel approaches to validating predictions from genomic and transcriptomic studies of these important pathogens. Notably, proof of principle for CRISPR/Cas9 mutagenesis has been achieved in Strongyloides spp., allowing identification of molecules essential to the functions of sensory neurons that mediate behaviors comprising host finding, invasion, and location of predilection sites by parasitic nematodes. Likewise, CRISPR/Cas9 knockout of the developmental regulatory transcription factor Ss-daf-16 has validated its function in regulating morphogenesis of infective third-stage larvae in Strongyloides stercoralis. While encouraging, these studies underscore challenges that remain in achieving straightforward validation of essential intervention targets in parasitic nematodes. Chief among these is the likelihood that knockout of multifunctional regulators like Ss-DAF-16 or its downstream mediator, the nuclear receptor Ss-DAF-12, will produce phenotypes so complex as to defy interpretation and will render affected worms incapable of infecting their hosts, thus preventing establishment of stable mutant lines. Approaches to overcoming these impediments could involve refinements to current CRISPR/Cas9 methods in Strongyloides including regulatable Cas9 expression from integrated transgenes and CRISPR/Cas9 editing to ablate specific functional motifs in regulatory molecules without complete knockout. Another approach would express transgenes encoding regulatory molecules of interest with mutations designed to similarly ablate or degrade specific functional motifs such as the ligand binding domain of Ss-DAF-12 while preserving core functions such as DNA binding. Such mutant transgenes would be expected to exert a dominant interfering effect on their endogenous counterparts. Published reports validate the utility of such dominant-negative approaches in Strongyloides.
Collapse
Affiliation(s)
- James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|