1
|
Schluep SM, Chen TY, Whitehead SA, Buckner EA. Time-of-day changes in permethrin susceptibility and metabolic gene expression in Florida Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2025:tjaf013. [PMID: 39899734 DOI: 10.1093/jme/tjaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 02/05/2025]
Abstract
Aedes aegypti (Linnaeus) is the principal mosquito vector for many of the most medically significant arboviruses that threaten global public health. A better understanding of time-of-day variation in insecticide resistance mediated by detoxifying enzymes in Ae. aegypti could allow for targeted insecticide applications when susceptibility is highest and the upregulation of detoxification enzymes is lowest. Using a susceptible and metabolically resistant field Ae. aegypti strain from Florida, we investigated simulated photoperiodic changes in permethrin susceptibility and upregulation of detoxification enzymes by measuring permethrin LD50 and expression of detoxification genes (GSTE7, GSTE2, CCEae3A, CYP9J28, and CYPBB2) for both strains every 4 h over a 24 h (12:12 h light: dark) cycle. We found that in both Ae. aegypti strains, permethrin susceptibility was lower during the day as compared to evening, with susceptibility lowest at dusk (18:00) and highest between 02:00 and 14:00. Although no significant changes in gene expression over time were observed in the susceptible Ae. aegypti strain, we documented increased expression of all investigated detoxification genes in the metabolically resistant field Ae. aegypti strain during the night (18:00 to 02:00) as compared to the day (06:00 to 14:00). These data suggest that permethrin applications made between midnight and dawn (06:00) may be more effective against Ae. aegypti as compared to applications made at dusk (approximately 18:00).
Collapse
Affiliation(s)
- Sierra M Schluep
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA
| | - Tse-Yu Chen
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA
- Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Shelley A Whitehead
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA
| | - Eva A Buckner
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, USA
| |
Collapse
|
2
|
de Almeida Teles AC, Dos Santos BO, Santana EC, Durço AO, Conceição LSR, Roman-Campos D, de Holanda Cavalcanti SC, de Souza Araujo AA, Dos Santos MRV. Larvicidal activity of terpenes and their derivatives against Aedes aegypti: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64703-64718. [PMID: 39549195 DOI: 10.1007/s11356-024-35479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/23/2024] [Indexed: 11/18/2024]
Abstract
Aedes aegypti (Diptera: Culicidae) is the primary arthropod vector responsible for the transmission of dengue, which is present in more than one hundred countries. The application of synthetic larvicides is one of the most common strategies used for dengue control, but their prolonged use can cause larvicide resistance or tolerance, environmental damage, and have toxic effects on human and animal health. Thus, faced with this problem, there have been increasing efforts to find alternative larvicides against Ae. Aegypti. This search has been mainly focused on naturally occurring chemical compounds, driven by the evidence of their potential effectiveness, and by a desire to find more sustainable, environmentally friendly, and safe alternatives to synthetic larvicides. Thus, the present study aimed to review the effects of terpenes and their derivatives on mortality of the Ae. aegypti larvae, focusing mainly on a lethal concentration of 50% (LC50), in addition to summarizing information on its mechanisms of action and effects on non-target organisms. We searched the main databases for studies published up to April 2024 using relevant keywords, and data were extracted and analyzed qualitatively and quantitatively. Twenty-one articles describing 69 different terpenes and derivatives met the criteria of the review and meta-analysis. Among them, 76.8% were terpenoids and 23.2% terpenes. The LC50 ranged from 0.4 to 1628.2 ppm. The present review and meta-analysis showed that the terpenes and terpenoids can be promising chemical templates for use in eco-friendly larvicides against Ae. aegypti.
Collapse
Affiliation(s)
- Ana Cristina de Almeida Teles
- Health Science Graduate Program, Federal University of Sergipe, Hospital Universitário, S/N, R Cláudio Batista, Sanatório, 49060-108, Aracaju, SE, Brazil
| | - Beatriz Oliveira Dos Santos
- Department of Pharmacy, Federal University of Sergipe, Marcelo Deda Chagas Avenue, S/N, Rosa Elze, 49107-230, Sao Cristovao, SE, Brazil
- Department of Physiology, Federal University of Sergipe, Marcelo Deda Chagas Avenue, S/N, Rosa Elze, 49107-230, Sao Cristovao, SE, Brazil
| | - Elaine Carvalho Santana
- Biotechnology Graduate Program - Northeast Network of Biotechnology (RENORBIO), Federal University of Sergipe, Marcelo Deda Chagas Avenue, S/N, Rosa Elze, 49107-230, Sao Cristovao, SE, Brazil
| | - Aimée Obolari Durço
- Department of Physiology, Federal University of Sergipe, Marcelo Deda Chagas Avenue, S/N, Rosa Elze, 49107-230, Sao Cristovao, SE, Brazil
- Department of Biophysics, Federal University of São Paulo, Rua Botucatu, 740, Vila Clementino, 04023-062, São Paulo, SP, Brazil
| | - Lino Sérgio Rocha Conceição
- Department of Physical Therapy, Federal University of Sergipe, Hospital Universitário, S/N, R Cláudio Batista, Sanatório, 49060-108, Aracaju, SE, Brazil
| | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, Rua Botucatu, 740, Vila Clementino, 04023-062, São Paulo, SP, Brazil
| | | | - Adriano Antunes de Souza Araujo
- Health Science Graduate Program, Federal University of Sergipe, Hospital Universitário, S/N, R Cláudio Batista, Sanatório, 49060-108, Aracaju, SE, Brazil
- Department of Pharmacy, Federal University of Sergipe, Marcelo Deda Chagas Avenue, S/N, Rosa Elze, 49107-230, Sao Cristovao, SE, Brazil
| | - Márcio Roberto Viana Dos Santos
- Department of Physiology, Federal University of Sergipe, Marcelo Deda Chagas Avenue, S/N, Rosa Elze, 49107-230, Sao Cristovao, SE, Brazil.
- Biotechnology Graduate Program - Northeast Network of Biotechnology (RENORBIO), Federal University of Sergipe, Marcelo Deda Chagas Avenue, S/N, Rosa Elze, 49107-230, Sao Cristovao, SE, Brazil.
| |
Collapse
|
3
|
Malijan RPB, Angeles JR, Apilado AMA, Ammugauan MAT, Salazar FV. Insecticide Resistance in Aedes aegypti from the National Capital Region of the Philippines. INSECTS 2024; 15:782. [PMID: 39452358 PMCID: PMC11508968 DOI: 10.3390/insects15100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 10/26/2024]
Abstract
Human arboviral diseases such as dengue, chikungunya, and Zika can be transmitted by the mosquito Aedes aegypti. The insecticide-based vector control strategy is critical in reducing transmission of these Aedes-borne diseases but is threatened mainly by the emergence of insecticide resistance. Adult Ae. aegypti from the National Capital Region (NCR), Philippines, were subjected to bioassays to determine their susceptibility to diagnostic doses of pyrethroid, organochlorine, and organophosphate insecticides following the standard World Health Organization insecticide susceptibility test. This study reports the detection of insecticide resistance to pyrethroids and organochlorine in Ae. aegypti from the Philippines for the first time. Most of the Ae. aegypti populations from NCR exhibited phenotypic resistance to permethrin, etofenprox, and DDT. Varying resistance levels to deltamethrin, cyfluthrin, and lambda-cyhalothrin were observed in the different mosquito populations, while all populations tested to malathion were susceptible to this organophosphate. This finding should alert public health authorities to consider modifying the existing vector management package for greater control efficacy. Best practices proven to prevent or delay the development of insecticide resistance, such as insecticide rotation, should also be implemented, while alternative chemicals with a different mode of action should be explored to ensure the continuing efficacy of program interventions.
Collapse
Affiliation(s)
| | | | | | | | - Ferdinand V. Salazar
- Department of Medical Entomology, Research Institute for Tropical Medicine, 9002 Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City 1781, Philippines; (R.P.B.M.); (J.R.A.); (A.M.A.A.); (M.A.T.A.)
| |
Collapse
|
4
|
Carrera LC, Piedra L, Torres-Cosme R, Castillo AM, Bruno A, Ramírez JL, Martínez D, Rodríguez MM, Bisset JA. Insecticide resistance status and mechanisms in Aedes aegypti and Aedes albopictus from different dengue endemic regions of Panama. Trop Med Health 2024; 52:69. [PMID: 39385264 PMCID: PMC11462824 DOI: 10.1186/s41182-024-00637-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Dengue is a serious public health problem worldwide, including Panama. During the last years, the number of dengue cases has increased. This may be due to the presence of mosquito populations resistant to insecticides. The aim of this study was to characterize the resistance status, its enzymatic mechanisms and Kdr mutations in wild populations of Aedes aegypti and Aedes albopictus. METHODS Standard WHO bioassays were performed using insecticide-treated filter papers to determine resistance in populations Ae. aegypti and Ae. albopictus to pyrethroids insecticides, organophosphates, to the carbamate propoxur and to the organochlorine DDT. Biochemical assays were conducted to detect metabolic resistance mechanisms and real-time PCR was performed to determine the frequencies of the Kdr mutations Val1016IIe and F1534C. RESULTS The strains Ae. aegypti El Coco showed confirmed resistance to deltamethrin (78.5% mortality) and lambda-cyhalothrin (81%), Aguadulce to deltamethrin (79.3%), David to deltamethrin (74.8%) and lambda-cyhalothrin (87.5%) and Puerto Armuelles to permethrin (83%). Aedes aegypti El Empalme showed confirmed resistance to pirimiphos-methyl (62.3% mortality), chlorpyrifos-methyl (55.5%) and propoxur (85.3%). All strains of Ae. albopictus showed possible resistance to PYs and five strains to DDT. Only Ae. albopictus Canto del Llano showed confirmed resistance to pirimiphos-methyl (70% mortality) and malathion (62%). Esterase activity was variable across sites with the most frequent expression of α-EST compared to β-EST in Ae. aegypti populations. In Ae. Albopictus, the expressed enzymes were β-EST and MFOs. Through ANOVA, significant differences were established in the levels of enzymatic activity of α- and β-EST, MFOs and GST, with p < 0.001 in the Ae. aegypti and Ae. albopictus. The Kdr Val1016IIe mutation was detected in Ae. aegypti Aguadulce, El Coco and David. The odds ratio for the Val1016Ile mutation ranged from 0.8 to 20.8 in resistant mosquitoes, indicating the association between pyrethroid phenotypic resistance and the kdr mutation. CONCLUSION The presence of a varied and generalized resistance, enzymatic mechanisms and the Val1016IIe mutation may be associated with the intensive use and possibly misuse of the different insecticides applied to control Aedes populations. These results highlight the need to develop a program for resistance management. Also, alternative approaches to mosquito control that do not involve insecticides should be explored.
Collapse
Affiliation(s)
- Lorenzo Cáceres Carrera
- Departamento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, PO. Box 0816-02593, Panamá, Panamá.
| | - Luis Piedra
- Deparatamento de Control de Vectores del Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - Rolando Torres-Cosme
- Departamento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, PO. Box 0816-02593, Panamá, Panamá
| | - Anakena M Castillo
- Departamento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, PO. Box 0816-02593, Panamá, Panamá
| | - Antonio Bruno
- Departamento de Química de Alimentos y Aguas del Laboratorio Central de Referencia en Salud Pública del Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panamá
| | - José Luis Ramírez
- Agricultural Research Service, United States Department of Agriculture. Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Dan Martínez
- Departamento de Entomología Médica del Instituto Conmemorativo Gorgas de Estudios de la Salud, PO. Box 0816-02593, Panamá, Panamá
| | - María Magdalena Rodríguez
- Deparatamento de Control de Vectores del Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| | - Juan A Bisset
- Deparatamento de Control de Vectores del Instituto de Medicina Tropical "Pedro Kourí", La Habana, Cuba
| |
Collapse
|
5
|
de Souza RF, Amaro TR, Palacio-Cortés AM, da Silva MAN, Dionisio JF, Pezenti LF, Lopes TBF, Mantovani MS, Zequi JAC, da Rosa R. Comparative transcriptional analysis between susceptible and resistant populations of Aedes (Stegomyia) aegypti (Linnaeus, 1762) after malathion exposure. Mol Genet Genomics 2024; 299:92. [PMID: 39367967 DOI: 10.1007/s00438-024-02185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
Aedes aegypti is an important vector of arboviruses, including dengue, chikungunya and Zika. The application of synthetic insecticides is a frequently used strategy to control this insect. Malathion is an organophosphate insecticide that was widely used in Brazil in the 1980s and 1990s to control the adult form of A. aegypti. In situations where resistance to currently used insecticides is detected, the use of malathion may be resumed as a control measure. Many studies have confirmed resistance to malathion, however, comparative studies of differential gene expression of the entire transcriptome of resistant and susceptible insects are scarce. Therefore, understanding the molecular basis of resistance to this insecticide in this species is extremely important. In this paper, we present the first transcriptomic description of susceptible and resistant strains of A. aegypti challenged with malathion. Guided transcriptome assembly resulted in 39,904 transcripts, where 2133 differentially expressed transcripts were detected, and three were validated by RT-qPCR. Enrichment analysis for these identified transcripts resulted in 13 significant pathways (padj < 0.05), 8 associated with down-regulated and 5 with up-regulated transcripts in treated resistant insects. It was possible to divide the transcripts according to the mechanism of action into three main groups: (i) genes involved in detoxification metabolic pathways; (ii) genes of proteins located in the membrane/extracellular region; and (iii) genes related to DNA integration/function. These results are important in advancing knowledge of genes related to resistance mechanisms in this insect, enabling the development of effective technologies and strategies for managing insecticide resistance.
Collapse
Affiliation(s)
- Rogério Fernandes de Souza
- Laboratório de Bioinformática, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Tafarel Ribeiro Amaro
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Angela Maria Palacio-Cortés
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Mário Antônio Navarro da Silva
- Laboratório de Morfologia e Fisiologia de Culicidae E Chironomidae, Departamento de Zoologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jaqueline Fernanda Dionisio
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Larissa Forim Pezenti
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Thayná Bisson Ferraz Lopes
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil
| | - Mário Sérgio Mantovani
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - João Antônio Cyrino Zequi
- Laboratório de Entomologia Médica, Departamento de Biologia Animal e Vegetal, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Renata da Rosa
- Laboratório de Citogenética e Entomologia Molecular, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid/Pr 445 Km 380, Londrina, Paraná, CEP: 86057-970, Brazil.
| |
Collapse
|
6
|
Marcombe S, Doeurk B, Thammavong P, Veseli T, Heafield C, Mills MA, Kako S, Prado MF, Thomson S, Millett S, Hill T, Kentsley I, Davies S, Pathiraja G, Daniels B, Browne L, Nyamukanga M, Harvey J, Rubinstein L, Townsend C, Allen Z, Davey-Spence C, Hupi A, Jones AK, Boyer S. Metabolic Resistance and Not Voltage-Gated Sodium Channel Gene Mutation Is Associated with Pyrethroid Resistance of Aedes albopictus (Skuse, 1894) from Cambodia. INSECTS 2024; 15:358. [PMID: 38786914 PMCID: PMC11122440 DOI: 10.3390/insects15050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
(1) Background: In Cambodia, Aedes albopictus is an important vector of the dengue virus. Vector control using insecticides is a major strategy implemented in managing mosquito-borne diseases. Resistance, however, threatens to undermine the use of insecticides. In this study, we present the levels of insecticide resistance of Ae. albopictus in Cambodia and the mechanisms involved. (2) Methods: Two Ae. albopictus populations were collected from the capital, Phnom Penh city, and from rural Pailin province. Adults were tested with diagnostic doses of malathion (0.8%), deltamethrin (0.03%), permethrin (0.25%), and DDT (4%) using WHO tube assays. Synergist assays using piperonyl butoxide (PBO) were implemented before the pyrethroid assays to detect the potential involvement of metabolic resistance mechanisms. Adult female mosquitoes collected from Phnom Penh and Pailin were tested for voltage-gated sodium channel (VGSC) kdr (knockdown resistance) mutations commonly found in Aedes sp.-resistant populations throughout Asia (S989P, V1016G, and F1534C), as well as for other mutations (V410L, L982W, A1007G, I1011M, T1520I, and D1763Y). (3) Results: The two populations showed resistance against all the insecticides tested (<90% mortality). The use of PBO (an inhibitor of P450s) strongly restored the efficacy of deltamethrin and permethrin against the two resistant populations. Sequences of regions of the vgsc gene showed a lack of kdr mutations known to be associated with pyrethroid resistance. However, four novel non-synonymous mutations (L412P/S, C983S, Q1554STOP, and R1718L) and twenty-nine synonymous mutations were detected. It remains to be determined whether these mutations contribute to pyrethroid resistance. (4) Conclusions: Pyrethroid resistance is occurring in two Ae. albopictus populations originating from urban and rural areas of Cambodia. The resistance is likely due to metabolic resistance specifically involving P450s monooxygenases. The levels of resistance against different insecticide classes are a cause for concern in Cambodia. Alternative tools and insecticides for controlling dengue vectors should be used to minimize disease prevalence in the country.
Collapse
Affiliation(s)
- Sébastien Marcombe
- Medical Entomology and Vector-borne Diseases Laboratory, Institut Pasteur du Laos, Ministry of Health, Vientiane P.O. Box 3560, Laos; (S.M.); (P.T.)
- Vector Control Consulting—South East Asia Sole Co., Ltd., Vientiane P.O. Box 3463, Laos
| | - Bros Doeurk
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh P.O. Box 983, Cambodia; (B.D.); (S.B.)
| | - Phoutmany Thammavong
- Medical Entomology and Vector-borne Diseases Laboratory, Institut Pasteur du Laos, Ministry of Health, Vientiane P.O. Box 3560, Laos; (S.M.); (P.T.)
| | - Tuba Veseli
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Derby DE65 5NX, UK
| | - Christian Heafield
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Oxford OX14 2RN, UK
| | - Molly-Ann Mills
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Sedra Kako
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Marcelly Ferreira Prado
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Oxford University Hospitals, Churchill Hospital, Genetics Laboratories, Old Rd, Headington, Oxford OX3 7LE, UK
| | - Shakira Thomson
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Burnham-On-Sea TA8 1AZ, UK
| | - Saffron Millett
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Timothy Hill
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Imogen Kentsley
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Brighton BN8 4HR, UK
| | - Shereena Davies
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Shrewsbury SY1 4YP, UK
| | - Geethika Pathiraja
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Wallingford OX10 7EA, UK
| | - Ben Daniels
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Syngenta, Jealott’s Hill International Research Centre, Bracknell RG42 6EY, Berkshire, UK
| | - Lucianna Browne
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Reading RG31 4SE, UK
| | - Miranda Nyamukanga
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Wythenshawe Hospital, Southmoor Rd, Wythenshawe M23 9LT, Manchester, UK
| | - Jess Harvey
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Oxford Nanopore Technologies plc, Unit 3, Genesis Building, Library Avenue, Harwell, Didcot OX11 0SG, Oxfordshire, UK
| | - Lyranne Rubinstein
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, 69009 Lyon, France
| | - Chloe Townsend
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Zack Allen
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Christopher Davey-Spence
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Adina Hupi
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Oxford OX3 8HP, UK
| | - Andrew K. Jones
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh P.O. Box 983, Cambodia; (B.D.); (S.B.)
| |
Collapse
|
7
|
Poulton BC, Colman F, Anthousi A, Sattelle DB, Lycett GJ. Aedes aegypti CCEae3A carboxylase expression confers carbamate, organophosphate and limited pyrethroid resistance in a model transgenic mosquito. PLoS Negl Trop Dis 2024; 18:e0011595. [PMID: 38377131 PMCID: PMC10906864 DOI: 10.1371/journal.pntd.0011595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/01/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Insecticide resistance is a serious threat to our ability to control mosquito vectors which transmit pathogens including malaria parasites and arboviruses. Understanding the underlying mechanisms is an essential first step in tackling the challenges presented by resistance. This study aimed to functionally characterise the carboxylesterase, CCEae3A, the elevated expression of which has been implicated in temephos resistance in Aedes aegypti and Aedes albopictus larvae. Using our GAL4/UAS expression system, already established in insecticide-sensitive Anopheles gambiae mosquitoes, we produced transgenic An. gambiae mosquitoes that express an Ae. aegypti CCEae3A ubiquitously. This new transgenic line permits examination of CCEae3A expression in a background in which there is not a clear orthologue in Vectorbase and allows comparison with existing An. gambiae GAL4-UAS lines. Insecticide resistance profiling of these transgenic An. gambiae larvae indicated significant increases in resistance ratio for three organophosphate insecticides, temephos (6), chloropyriphos (6.6) and fenthion (3.2) when compared to the parental strain. Cross resistance to adulticides from three major insecticide classes: organophosphates (malathion, fenitrothion and pirimiphos methyl), carbamates (bendiocarb and propoxur) and pyrethroid (alpha-cypermethrin) was also detected. Resistance to certain organophosphates and carbamates validates conclusions drawn from previous expression and phenotypic data. However, detection of resistance to pirimiphos methyl and alphacypermethrin has not previously been formally associated with CCEae3A, despite occurring in Ae. aegypti strains where this gene was upregulated. Our findings highlight the importance of characterising individual resistance mechanisms, thereby ensuring accurate information is used to guide future vector control strategies.
Collapse
Affiliation(s)
- Beth C. Poulton
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Fraser Colman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Amalia Anthousi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - David B. Sattelle
- Division of Medicine, University College London, London, United Kingdom
| | - Gareth J. Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
8
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
9
|
Ramkumar G, Muthusamy R, Narayanan M, Shivakumar MS, Kweka EJ. Overexpression of cytochrome P450 and esterase genes involved in permethrin resistance in larvae and adults of Culex quinquefasciatus. Parasitol Res 2023; 122:3205-3212. [PMID: 37874391 DOI: 10.1007/s00436-023-08010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Mosquitoes are important vectors of several arthropod-borne diseases, which remain a priority for epidemiological research. Mosquito vector control strategies have traditionally relied on chemical insecticides such as synthetic pyrethroids. However, the indiscriminate use of pesticides has resulted in the development of resistance in many mosquito species. In insects, resistance evolves primarily through the overexpression of one or more gene products from the cytochrome P450, carboxylesterase, and glutathione superfamilies. The current study examined the expression of cytochrome P450 CYP6M2, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes in larvae and adults of a permethrin-resistant (PerRes) and susceptible (Sus) Culex quinquefasciatus strains. The results showed that the CYP6AA7 gene was overexpressed (10-fold) in larvae and adults with PerRes (p < 0.01) followed by CYPJ34 (9.0-fold) and CYP6Z2 (5.0-fold) compared to the Sus, whereas fewer changes in CYP6M gene expression were observed in PerRes adults (p < 0.05), and no expression was found in larvae. The esterase gene was overexpressed in PerRes larvae (9.0-fold) followed by adults (2.5-fold) compared to the susceptible strain. Based on data, the present study suggests that cytochrome P450, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes were involved in permethrin resistance in larval and adult Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Govindaraju Ramkumar
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, 30223, USA
- Molecular Entomology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ranganathan Muthusamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institution, Hosur, 635130, Tamil Nadu, India.
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, Tamil Nadu, India
| | | | - Eliningaya J Kweka
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
- Research Department, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
- Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| |
Collapse
|
10
|
Mack LK, Attardo GM. Time-series analysis of transcriptomic changes due to permethrin exposure reveals that Aedes aegypti undergoes detoxification metabolism over 24 h. Sci Rep 2023; 13:16564. [PMID: 37783800 PMCID: PMC10545687 DOI: 10.1038/s41598-023-43676-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023] Open
Abstract
Insecticide resistance is a multifaceted response and an issue across taxa. Aedes aegypti, the mosquito that vectors Zika, dengue, chikungunya, and yellow fever, demonstrates high levels of pyrethroid resistance across the globe, presenting a challenge to public health officials. To examine the transcriptomic shifts across time after exposure to permethrin, a 3'Tag-Seq analysis was employed on samples 6, 10, and 24 h after exposure along with controls. Differential expression analysis revealed significant shifts in detoxifying enzymes and various energy-producing metabolic processes. These findings indicate significant alterations in gene expression associated with key energy mobilization pathways within the system. These changes encompass a coordinated response involving lipolysis, beta-oxidation, and the citric acid cycle, required for the production of energetic molecules such as ATP, NADH, NADPH, and FADH. These findings highlight a complex interplay of metabolic processes that may have broader implications for understanding insect physiology and response to environmental stimuli. Among the upregulated detoxifying enzymes are cytochrome P450s, glutathione s-transferases and peroxidases, and ATP-binding cassette transporters. Additionally, eight heat shock genes or genes with heat shock domains exhibit the highest fold change across time. Twenty-four hours after exposure, samples indicate a global downregulation of these processes, though principal component analysis suggests lasting signatures of the response. Understanding the recovery response to insecticide exposure provides information on possible new genetic and synergist targets to explore.
Collapse
Affiliation(s)
- Lindsey K Mack
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
11
|
Guo Y, Hu K, Zhou J, Xie Z, Zhao Y, Zhao S, Gu J, Zhou X, Yan G, James AA, Chen XG. The dynamics of deltamethrin resistance evolution in Aedes albopictus has an impact on fitness and dengue virus type-2 vectorial capacity. BMC Biol 2023; 21:194. [PMID: 37704988 PMCID: PMC10500878 DOI: 10.1186/s12915-023-01693-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Worldwide invasion and expansion of Aedes albopictus, an important vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. Chemical insecticides are the primary means currently available to control the mosquito populations. However, long-term and large-scale use of insecticides has selected for resistance in the mosquito that is accompanied by a genetic load that impacts fitness. RESULTS A number of laboratory strains representing different resistance mechanisms were isolated and identified from laboratory-derived, deltamethrin-resistant Ae. albopictus recovered in previous work. Resistance levels and fitness costs of the strains were evaluated and compared to characterize the evolution of the resistance genotypes and phenotypes. The heterozygous F1534S mutation (1534F/S) in the voltage gated sodium channel (vgsc) gene product (VGSC), first detected in early stages of resistance evolution, not only confers high-level resistance, but also produces no significant fitness costs, leading to the rapid spread of resistance in the population. This is followed by the increase in frequency of homozygous F1534S (1534S/S) mosquitoes that have significant fitness disadvantages, prompting the emergence of an unlinked I1532T mutation with fewer side effects and a mating advantage better adapted to the selection and reproductive pressures imposed in the experiments. Metabolic resistance with no significant fitness cost and mediating a high-tolerance resistance phenotype may play a dominant role in the subsequent evolution of resistance. The different resistant strains had similar vector competence for dengue virus type-2 (DENV-2). Furthermore, a comparative analysis of vectorial capacity revealed that increased survival due to deltamethrin resistance balanced the negative fitness cost effects and contributed to the risk of dengue virus (DENV) transmission by resistant populations. The progressive evolution of resistance results in mosquitoes with both target-site insensitivity and metabolic resistance with lower fitness costs, which further leads to resistant populations with both high resistance levels and vectorial capacity. CONCLUSIONS This study reveals a possible mechanism for the evolution of deltamethrin resistance in Aedes albopictus. These findings will help guide practical strategies for insecticide use, resistance management and the prevention and control of mosquito-borne disease.
Collapse
Affiliation(s)
- Yijia Guo
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ke Hu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingni Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | | | - Yijie Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Siyu Zhao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinbao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaohong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, Irvine, CA, USA
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA.
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
- , Irvine, USA.
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Shettima A, Ishak IH, Lau B, Abu Hasan H, Miswan N, Othman N. Quantitative proteomics analysis of permethrin and temephos-resistant Ae. aegypti revealed diverse differentially expressed proteins associated with insecticide resistance from Penang Island, Malaysia. PLoS Negl Trop Dis 2023; 17:e0011604. [PMID: 37721966 PMCID: PMC10538732 DOI: 10.1371/journal.pntd.0011604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 09/28/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023] Open
Abstract
Synthetic insecticides are the primary vector control method used globally. However, the widespread use of insecticides is a major cause of insecticide-resistance in mosquitoes. Hence, this study aimed at elucidating permethrin and temephos-resistant protein expression profiles in Ae. aegypti using quantitative proteomics. In this study, we evaluated the susceptibility of Ae. aegypti from Penang Island dengue hotspot and non-hotspot against 0.75% permethrin and 31.25 mg/l temephos using WHO bioassay method. Protein extracts from the mosquitoes were then analysed using LC-ESI-MS/MS for protein identification and quantification via label-free quantitative proteomics (LFQ). Next, Perseus 1.6.14.0 statistical software was used to perform differential protein expression analysis using ANOVA and Student's t-test. The t-test selected proteins with≥2.0-fold change (FC) and ≥2 unique peptides for gene expression validation via qPCR. Finally, STRING software was used for functional ontology enrichment and protein-protein interactions (PPI). The WHO bioassay showed resistance with 28% and 53% mortalities in adult mosquitoes exposed to permethrin from the hotspot and non-hotspot areas. Meanwhile, the susceptibility of Ae. aegypti larvae revealed high resistance to temephos in hotspot and non-hotspot regions with 80% and 91% mortalities. The LFQ analyses revealed 501 and 557 (q-value <0.05) differentially expressed proteins in adults and larvae Ae. aegypti. The t-test showed 114 upregulated and 74 downregulated proteins in adult resistant versus laboratory strains exposed to permethrin. Meanwhile, 13 upregulated and 105 downregulated proteins were observed in larvae resistant versus laboratory strains exposed to temephos. The t-test revealed the upregulation of sodium/potassium-dependent ATPase β2 in adult permethrin resistant strain, H15 domain-containing protein, 60S ribosomal protein, and PB protein in larvae temephos resistant strain. The downregulation of troponin I, enolase phosphatase E1, glucosidase 2β was observed in adult permethrin resistant strain and tubulin β chain in larvae temephos resistant strain. Furthermore, the gene expression by qPCR revealed similar gene expression patterns in the above eight differentially expressed proteins. The PPI of differentially expressed proteins showed a p-value at <1.0 x 10-16 in permethrin and temephos resistant Ae. aegypti. Significantly enriched pathways in differentially expressed proteins revealed metabolic pathways, oxidative phosphorylation, carbon metabolism, biosynthesis of amino acids, glycolysis, and citrate cycle. In conclusion, this study has shown differentially expressed proteins and highlighted upregulated and downregulated proteins associated with insecticide resistance in Ae. aegypti. The validated differentially expressed proteins merit further investigation as a potential protein marker to monitor and predict insecticide resistance in field Ae. aegypti. The LC-MS/MS data were submitted into the MASSIVE database with identifier no: MSV000089259.
Collapse
Affiliation(s)
- Abubakar Shettima
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
- Department of Microbiology, University of Maiduguri, Maiduguri, Nigeria
| | - Intan Haslina Ishak
- School of Biological Sciences (SBS), Universiti Sains Malaysia, Gelugor, Malaysia
- Vector Control Research Unit (VCRU), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Benjamin Lau
- Proteomics and Metabolomics (PROMET) laboratory, Malaysian Palm Oil Board (MPOB), Kajang, Malaysia
| | - Hadura Abu Hasan
- School of Biological Sciences (SBS), Universiti Sains Malaysia, Gelugor, Malaysia
- Vector Control Research Unit (VCRU), Universiti Sains Malaysia, Gelugor, Malaysia
| | - Noorizan Miswan
- Center for Chemical Biology (CCB), Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Nurulhasanah Othman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
13
|
Wu H, Qian J, Xu Z, Yan R, Zhu G, Wu S, Chen M. Leucine to tryptophane substitution in the pore helix IIP1 confer sodium channel resistance to pyrethroids and DDT. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105490. [PMID: 37532317 DOI: 10.1016/j.pestbp.2023.105490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023]
Abstract
Aedes aegypti is responsible for transmitting a variety of arboviral infectious diseases such as dengue and chikungunya. Insecticides, particularly pyrethroids, are used widely for mosquito control. However, intensive used of pyrethroids has led to the selection of kdr mutations on sodium channels. L982W, locating in the PyR1 (Pyrethroid receptor site 1), was first reported in Ae. aegypti populations collected from Vietnam. Recently, the high frequency of L982W was detected in pyrethroid-resistant populations of Vietnam and Cambodia, and also concomitant mutations L982W + F1534C was detected in both countries. However, the role of L982W in pyrethroid resistance remains unclear. In this study, we examined the effects of L982W on gating properties and pyrethroid sensitivity in Xenopus oocytes. We found that mutations L982W and L982W + F1534C shifted the voltage dependence of activation in the depolarizing direction, however, neither mutations altered the voltage dependence of inactivation. L982W significantly reduced channel sensitivity to Type I pyrethroids, permethrin and bifenthrin, and Type II pyrethroids, deltamethrin and cypermethrin. No enhancement was observed when synergized with F1534C. In addition, L982W and L982W + F1534C mutations reduced the channel sensitivity to DDT. Our results illustrate the molecular basis of resistance mediates by L982W mutation, which will be helpful to understand the interacions of pyrethroids or DDT with sodium channels and develop molecular markers for monitoring pest resistance to pyrethroids and DDT.
Collapse
Affiliation(s)
- Huiming Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Jiali Qian
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Ru Yan
- College of life sciences, Zhejiang University, Hangzhou, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Shaoying Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China.
| | - Mengli Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
14
|
Konkon AK, Padonou GG, Osse R, Salako AS, Zoungbédji DM, Sina H, Sovi A, Tokponnon F, Aïkpon R, Noukpo H, Baba-Moussa L, Akogbéto MC. Insecticide resistance status of Aedes aegypti and Aedes albopictus mosquitoes in southern Benin, West Africa. Trop Med Health 2023; 51:22. [PMID: 37085936 PMCID: PMC10122308 DOI: 10.1186/s41182-023-00514-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/09/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND The emergence of insecticide resistance in Aedes mosquitoes could undermine efforts to control arboviruses. The present study aims to assess in some communes of Southern Benin, the susceptibility level of Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894) to insecticides commonly used in public health, as well as mechanisms involved. METHODS Females Ae. albopictus and Ae. aegypti collected in Ifangni, Porto-Novo, Avrankou, Adjarra and Kétou from June 2021 to October 2022, were exposed to: deltamethrin 0.05%, permethrin 0.75%, alpha-cypermethrin 0.05%, pirimiphos methyl 0.25% and bendiocarb 0.1%, following the standard WHO susceptibility tube test protocol. In some sites, pre-exposure to the synergist PBO was used to verify if pyrethroid resistance of populations of Aedes was mediated by oxidases. RESULTS Full susceptibility to deltamethrin and permethrin was observed in all tested populations of Ae. albopictus. However, with alphacypermethrin, a suspected resistance was observed in Adjarra (94.67%), Ifangni (93%) and Porto-Novo (94%), and a resistance in Avrankou (83%). The PBO-alphacypermethrin tests performed, led to a full susceptibility (100%) in all four sites, which confirms the full involvement of oxidases in resistance of all tested populations of Ae. albopictus to alphacypermethrin. At the opposite, Aedes aegypti was either resistant or suspected of being resistant to all tested pyrethroids in all four sites, except in Ifangni where a full susceptibility to alphacypermethrin was observed. The full susceptibility of Ae. aegypti to bendiocarb and pirimiphos-methyl in all communes suggests that these two insecticides can be good candidates for an effective control of pyrethroid-resistant Aedes vector populations. Use of permethrin and deltamethrin could also be considered for controlling populations of Ae. albopictus. CONCLUSION Results of the present study will help guide strategy to implement for an effective control of Aedes vector populations in Benin.
Collapse
Affiliation(s)
- Alphonse Keller Konkon
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
| | - Germain Gil Padonou
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
| | - Razaki Osse
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- École de Gestion et d’exploitation des Systèmes d’élevage de l’Université Nationale d’Agriculture de Porto-Novo, Porto-Novo, Benin
| | | | - David Mahouton Zoungbédji
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
| | - Haziz Sina
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
- Department of Biochemistry and Cellular Biology, Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Arthur Sovi
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
- Faculty of Agronomy, University of Parakou, Parakou, Benin
- Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, UK
| | - Filemon Tokponnon
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Rock Aïkpon
- Ministère de la Santé, 08 BP 882, Cotonou, Benin
- Université Nationale des Sciences, Technologies, Ingénierie Et Mathématiques (UNSTIM), Abomey, Benin
| | - Herbert Noukpo
- Centre de Recherche Entomologique de Cotonou (CREC), 06 BP 2604, Cotonou, Benin
| | - Lamine Baba-Moussa
- Faculté des Sciences et Techniques de l’Université d’Abomey-Calavi, Abomey-Calavi, Benin
- Department of Biochemistry and Cellular Biology, Laboratory of Biology and Molecular Typing in Microbiology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | | |
Collapse
|
15
|
Sombié A, Ouédraogo WM, Oté M, Saiki E, Sakurai T, Yaméogo F, Sanon A, McCall PJ, Kanuka H, Weetman D, Badolo A. Association of 410L, 1016I and 1534C kdr mutations with pyrethroid resistance in Aedes aegypti from Ouagadougou, Burkina Faso, and development of a one-step multiplex PCR method for the simultaneous detection of 1534C and 1016I kdr mutations. Parasit Vectors 2023; 16:137. [PMID: 37076920 PMCID: PMC10116651 DOI: 10.1186/s13071-023-05743-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Since 2000, Burkina Faso has experienced regular dengue cases and outbreaks, making dengue an increasingly important health concern for the country. Previous studies in Burkina Faso reported that resistance of Aedes aegypti to pyrethroid insecticides was associated with the F1534C and V1016I kdr mutations. The current study reports high resistance of Ae. aegypti populations to pyrethroid insecticides, likely supported by mutations in the voltage-gated sodium channel, here evidenced by genotyping the kdr SNPs V410L, V1016I and F1534C. We also describe a new multiplex PCR-based diagnostic of F1534C and V1016I kdr SNPs. METHODS Larvae of Ae. aegypti were collected from three health districts of Ouagadougou in 2018. The resistance status of Ae. aegypti to permethrin (15 μg/ml) and deltamethrin (10 μg/ml) was tested using bottles and to malathion (5%) using WHO tube tests. All bioassays used 1-h exposure and mortality recorded 24 h post-exposure. Bioassay results were interpreted according to WHO thresholds for resistance diagnosis. The kdr mutations were screened using AS-PCR and TaqMan methods in exposed and non-exposed Aedes mosquitoes. RESULTS Females from all health districts were resistant to permethrin and deltamethrin (< 20% mortality) but were fully susceptible to 5% malathion. The F1534C and V1016I kdr mutations were successfully detected using a newly developed multiplex PCR in perfect agreement with TaqMan method. The 1534C/1016I/410L haplotype was correlated with permethrin resistance but not with deltamethrin resistance; however, the test power was limited by a low frequency of dead individuals in deltamethrin exposure. CONCLUSIONS Resistance to pyrethroid insecticides is associated with kdr mutant haplotypes, while the absence of substantial resistance to malathion suggests that it remains a viable option for dengue vector control in Ouagadougou.
Collapse
Affiliation(s)
- Aboubacar Sombié
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Wendegoudi Mathias Ouédraogo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Programme National de Lutte Contre Les Maladies Tropicales Négligées, Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Manabu Oté
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Erisha Saiki
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Tatsuya Sakurai
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Félix Yaméogo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Antoine Sanon
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hirotaka Kanuka
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
16
|
Martinez NP, Pinch M, Kandel Y, Hansen IA. Knockdown of the Sodium/Potassium ATPase Subunit Beta 2 Reduces Egg Production in the Dengue Vector, Aedes aegypti. INSECTS 2023; 14:50. [PMID: 36661978 PMCID: PMC9862990 DOI: 10.3390/insects14010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The Na+/K+ ATPase (NKA) is present in the cellular membrane of most eukaryotic cells. It utilizes energy released by ATP hydrolysis to pump sodium ions out of the cell and potassium ions into the cell, which establishes and controls ion gradients. Functional NKA pumps consist of three subunits, alpha, beta, and FXYD. The alpha subunit serves as the catalytic subunit while the beta and FXYD subunits regulate the proper folding and localization, and ion affinity of the alpha subunit, respectively. Here we demonstrate that knockdown of NKA beta subunit 2 mRNA (nkaβ2) reduces fecundity in female Ae. aegypti. We determined the expression pattern of nkaβ2 in several adult mosquito organs using qRT-PCR. We performed RNAi-mediated knockdown of nkaβ2 and assayed for lethality, and effects on female fecundity. Tissue expression levels of nkaβ2 mRNA were highest in the ovaries with the fat body, midgut and thorax having similar expression levels, while Malpighian tubules had significantly lower expression. Survival curves recorded post dsRNA injection showed a non-significant decrease in survival of nkaβ2 dsRNA-injected mosquitoes compared to GFP dsRNA-injected mosquitoes. We observed a significant reduction in the number of eggs laid by nkaβ2 dsRNA-injected mosquitoes compared to control mosquitoes. These results, coupled with the tissue expression profile of nkaβ2, indicate that this subunit plays a role in normal female Ae. aegypti fecundity. Additional research needs to be conducted to determine the exact role played by NKAβ2 in mosquito post-blood meal nutrient sensing, transport, yolk precursor protein (YPP) synthesis and yolk deposition.
Collapse
Affiliation(s)
- Nathan P. Martinez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
17
|
Low Transmission of Chikungunya Virus by Aedes aegypti from Vientiane Capital, Lao PDR. Pathogens 2022; 12:pathogens12010031. [PMID: 36678379 PMCID: PMC9860973 DOI: 10.3390/pathogens12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
In 2012−2013, chikungunya virus (CHIKV) was the cause of a major outbreak in the southern part of Lao People’s Democratic Republic (Lao PDR). Since then, only a few imported cases, with isolates belonging to different lineages, were recorded between 2014 and 2020 in Vientiane capital and few autochthonous cases of ECSA-IOL lineage were detected in the south of the country in 2020. The CHIKV epidemiological profile contrasts with the continuous and intensive circulation of dengue virus in the country, especially in Vientiane capital. The study’s aim was to investigate the ability of the local field-derived Aedes aegypti population from Vientiane capital to transmit the Asian and ECSA-IOL lineages of CHIKV. Our results revealed that, for both CHIKV lineages, infection rates were low and dissemination rates were high. The transmission rates and efficiencies evidenced a low vector competence for the CHIKV tested. Although this population of Ae. aegypti showed a relatively modest vector competence for these two CHIKV lineages, several other factors could influence arbovirus emergence such as the longevity and density of female mosquitoes. Due to the active circulation of CHIKV in Southeast Asia, investigations on these factors should be done to prevent the risk of CHIKV emergence and spread in Lao PDR and neighboring countries.
Collapse
|
18
|
Marcombe S, Shimell K, Savage R, Howlett E, Luangamath P, Nilaxay S, Vungkyly V, Baby A, King M, Clarke J, Jeffries C, Jojo J, Lacey E, Bhatty F, Mabika D, Dela Cruz A, Fisher C, Mbadu M, Despiniadis I, Brey PT, Thammavong P, Jones AK. Detection of pyrethroid resistance mutations and intron variants in the voltage-gated sodium channel of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus mosquitoes from Lao People's Democratic Republic. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:424-434. [PMID: 35593512 PMCID: PMC9790263 DOI: 10.1111/mve.12580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/03/2022] [Indexed: 06/01/2023]
Abstract
In Lao People's Democratic Republic, Aedes aegypti (Linnaeus 1762) and Aedes albopictus (Skuse 1894) mosquitoes (Diptera: Culicidae) are vectors of arboviral diseases such as dengue. As the treatment for these diseases is limited, control of the vectors with the use of pyrethroid insecticides is still essential. However, mutations in the voltage-gated sodium channel (vgsc) gene giving rise to pyrethroid resistance are threatening vector control programs. Here, we analysed both Ae. aegypti and Ae. albopictus mosquitoes, which were collected in different districts of Laos (Kaysone Phomvihane, Vangvieng, Saysettha and Xaythany), for vgsc mutations commonly found throughout Asia (S989P, V1016G and F1534C). Sequences of the vgsc gene showed that the F1534C mutation was prevalent in both Aedes species. S989P and V1016G mutations were detected in Ae. aegypti from each site and were always found together. In addition, the mutation T1520I was seen in Ae. albopictus mosquitoes from Saysettha district as well as in all Ae. aegypti samples. Thus, mutations in the vgsc gene of Ae. aegypti are prevalent in the four districts studied indicating growing insecticide resistance throughout Laos. Constant monitoring programmes and alternative strategies for controlling Aedes should be utilized in order to prolong the effectiveness of pyrethroids thereby maximizing vector control.
Collapse
Affiliation(s)
- Sebastien Marcombe
- Institut Pasteur du LaosMinistry of HealthVientianeLao People's Democratic Republic
| | - Katherine Shimell
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Rachel Savage
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Edward Howlett
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | | | - Somphat Nilaxay
- Institut Pasteur du LaosMinistry of HealthVientianeLao People's Democratic Republic
| | - Vacky Vungkyly
- Institut Pasteur du LaosMinistry of HealthVientianeLao People's Democratic Republic
| | - Anne Baby
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Mathew King
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Josie Clarke
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Chloe Jeffries
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Josna Jojo
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Emily Lacey
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Farris Bhatty
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Dadirayi Mabika
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Andrea Dela Cruz
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Cerys Fisher
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Milca Mbadu
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Iasonas Despiniadis
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Paul T. Brey
- Institut Pasteur du LaosMinistry of HealthVientianeLao People's Democratic Republic
| | - Phoutmany Thammavong
- Institut Pasteur du LaosMinistry of HealthVientianeLao People's Democratic Republic
| | - Andrew K. Jones
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| |
Collapse
|
19
|
Bonnin L, Tran A, Herbreteau V, Marcombe S, Boyer S, Mangeas M, Menkes C. Predicting the Effects of Climate Change on Dengue Vector Densities in Southeast Asia through Process-Based Modeling. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:127002. [PMID: 36473499 PMCID: PMC9726451 DOI: 10.1289/ehp11068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Aedes aegypti and Ae. albopictus mosquitoes are major vectors for several human diseases of global importance, such as dengue and yellow fever. Their life cycles and hosted arboviruses are climate sensitive and thus expected to be impacted by climate change. Most studies investigating climate change impacts on Aedes at global or continental scales focused on their future global distribution changes, whereas a single study focused on its effects on Ae. aegypti densities regionally. OBJECTIVES A process-based approach was used to model densities of Ae. aegypti and Ae. albopictus and their potential evolution with climate change using a panel of nine CMIP6 climate models and climate scenarios ranging from strong to low mitigation measures at the Southeast Asian scale and for the next 80 y. METHODS The process-based model described, through a system of ordinary differential equations, the variations of mosquito densities in 10 compartments, corresponding to 10 different stages of mosquito life cycle, in response to temperature and precipitation variations. Local field data were used to validate model outputs. RESULTS We show that both species densities will globally increase due to future temperature increases. In Southeast Asia by the end of the century, Ae. aegypti densities are expected to increase from 25% with climate mitigation measures to 46% without; Ae. albopictus densities are expected to increase from 13%-21%, respectively. However, we find spatially contrasted responses at the seasonal scales with a significant decrease in Ae. albopictus densities in lowlands during summer in the future. DISCUSSION These results contrast with previous results, which brings new insight on the future impacts of climate change on Aedes densities. Major sources of uncertainties, such as mosquito model parametrization and climate model uncertainties, were addressed to explore the limits of such modeling. https://doi.org/10.1289/EHP11068.
Collapse
Affiliation(s)
- Lucas Bonnin
- ENTROPIE (UMR 9220), IRD, Université de la Réunion, CNRS, Ifremer, Université de Nouvelle Calédonie, Nouméa, Nouvelle-Calédonie
| | - Annelise Tran
- CIRAD, UMR TETIS, Sainte-Clotilde, Reunion Island, France
- TETIS, Université Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Sainte-Clotilde, Reunion Island, France
- ASTRE, Université Montpellier, CIRAD, INRAE, Montpellier, France
| | - Vincent Herbreteau
- ESPACE-DEV, IRD, Université Antilles, Université Guyane, Université Montpellier, Université de la Réunion, Montpellier, France
- ESPACE-DEV, IRD, Université Antilles, Université Guyane, Université Montpellier, Université de la Réunion, Phnom Penh, Cambodia
| | - Sébastien Marcombe
- Medical Entomology and Vector-Borne Disease Laboratory, Institut Pasteur du Laos, Vientiane, Lao PDR
| | - Sébastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Morgan Mangeas
- ENTROPIE (UMR 9220), IRD, Université de la Réunion, CNRS, Ifremer, Université de Nouvelle Calédonie, Nouméa, Nouvelle-Calédonie
| | - Christophe Menkes
- ENTROPIE (UMR 9220), IRD, Université de la Réunion, CNRS, Ifremer, Université de Nouvelle Calédonie, Nouméa, Nouvelle-Calédonie
| |
Collapse
|
20
|
Mashlawi AM, Al-Nazawi AM, Noureldin EM, Alqahtani H, Mahyoub JA, Saingamsook J, Debboun M, Kaddumukasa M, Al-Mekhlafi HM, Walton C. Molecular analysis of knockdown resistance (kdr) mutations in the voltage-gated sodium channel gene of Aedes aegypti populations from Saudi Arabia. PARASITES & VECTORS 2022; 15:375. [PMID: 36261845 PMCID: PMC9583590 DOI: 10.1186/s13071-022-05525-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/02/2022] [Indexed: 12/04/2022]
Abstract
Background The Aedes aegypti mosquito is the primary vector for dengue, chikungunya, yellow fever and Zika viruses worldwide. The first record of Ae. aegypti in southwestern Saudi Arabia was in 1956. However, the first outbreak and cases of dengue fever were reported in 1994, and cases have increased in recent years. Vector control for Ae. aegypti mainly uses pyrethroid insecticides in outdoor and indoor space spraying. The constant use of pyrethroids has exerted intense selection pressure for developing target-site mutations in the voltage-gated sodium channel (vgsc) gene in Ae. Aegypti against pyrethroids—mutations that have led to knockdown resistance (kdr). Methods Aedes aegypti field populations from five regions (Jazan, Sahil, Makkah, Jeddah and Madinah) of southwestern Saudi Arabia were genotyped for known kdr mutations in domains IIS6 and IIIS6 of the vgsc gene using polymerase chain reaction (PCR) amplification and sequencing. We estimated the frequency of kdr mutations and genotypes from Saudi Arabia as well as from other countries, Thailand, Myanmar (Southeast Asia) and Uganda (East Africa). We constructed haplotype networks to infer the evolutionary relationships of these gene regions. Results The three known kdr mutations, S989P, V1016G (IIS6) and F1534C (IIIS6), were detected in all five regions of Saudi Arabia. Interestingly, the triple homozygous wild genotype was reported for the first time in two individuals from the highlands of the Jazan region and one from the Al-Quoz, Sahil region. Overall, nine genotypes comprising four haplotypes were observed in southwestern Saudi Arabia. The median-joining haplotype networks of eight populations from Saudi Arabia, Southeast Asia and East Africa for both the IIS6 and IIIS6 domains revealed that haplotype diversity was highest in Uganda and in the Jazan and Sahil regions of Saudi Arabia, whereas haplotype diversity was low in the Jeddah, Makkah and Madinah regions. Median-joining haplotype networks of both domains indicated selection acting on the kdr-mutation containing haplotypes in Saudi Arabia. Conclusions The presence of wild type haplotypes without any of the three kdr mutations, i.e. that are fully susceptible, in Saudi Arabia indicates that further consideration should be given to insecticide resistance management strategies that could restore pyrethroid sensitivity to the populations of Ae. aegypti in Saudi Arabia as part of an integrative vector control strategy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05525-y.
Collapse
|
21
|
Montgomery M, Harwood JF, Yougang AP, Wilson-Bahun TA, Tedjou AN, Keumeni CR, Kilpatrick AM, Wondji CS, Kamgang B. Spatial distribution of insecticide resistant populations of Aedes aegypti and Ae. albopictus and first detection of V410L mutation in Ae. aegypti from Cameroon. Infect Dis Poverty 2022; 11:90. [PMID: 35974351 PMCID: PMC9382841 DOI: 10.1186/s40249-022-01013-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
Background Dengue (DENV), chikungunya (CHIKV) and Zika virus (ZIKV), are mosquito-borne viruses of medical importance in most tropical and subtropical regions. Vector control, primarily through insecticides, remains the primary method to prevent their transmission. Here, we evaluated insecticide resistance profiles and identified important underlying resistance mechanisms in populations of Aedes aegypti and Ae. albopictus from six different regions in Cameroon to pesticides commonly used during military and civilian public health vector control operations. Methods Aedes mosquitoes were sampled as larvae or pupae between August 2020 and July 2021 in six locations across Cameroon and reared until the next generation, G1. Ae. aegypti and Ae. albopictus adults from G1 were tested following World Health Organization (WHO) recommendations and Ae. aegypti G0 adults screened with real time melting curve qPCR analyses to genotype the F1534C, V1016I and V410L Aedes kdr mutations. Piperonyl butoxide (PBO) assays and real time qPCR were carried out from some cytochrome p450 genes known to be involved in metabolic resistance. Statistical analyses were performed using Chi-square test and generalized linear models. Results Loss of susceptibility was observed to all insecticides tested. Mortality rates from tests with 0.25% permethrin varied from 24.27 to 85.89% in Ae. aegypti and from 17.35% to 68.08% in Ae. albopictus. Mortality rates for 0.03% deltamethrin were between 23.30% and 88.20% in Ae. aegypti and between 69.47 and 84.11% in Ae. albopictus. We found a moderate level of resistance against bendiocarb, with mortality rates ranging from 69.31% to 90.26% in Ae. aegypti and from 86.75 to 98.95% in Ae. albopictus. With PBO pre-exposure, we found partial or fully restored susceptibility to pyrethroids and bendiocarb. The genes Cyp9M6F88/87 and Cyp9J10 were overexpressed in Ae. aegypti populations from Douala sites resistant to permethrin and deltamethrin. Cyp6P12 was highly expressed in alphacypermethrin and permethrin resistant Ae. albopictus samples. F1534C and V1016I mutations were detected in A. aegypti mosquitoes and for the first time V410L was reported in Cameroon. Conclusions This study revealed that Ae. aegypti and Ae. albopictus are resistant to multiple insecticide classes with multiple resistance mechanisms implicated. These findings could guide insecticide use to control arbovirus vectors in Cameroon. Supplementary Information The online version contains supplementary material available at 10.1186/s40249-022-01013-8.
Collapse
Affiliation(s)
- Matthew Montgomery
- U.S. Naval Medical Research Unit No. 3, Naval Air Station Sigonella, Italy
| | - James F Harwood
- U.S. Naval Medical Research Unit No. 3, Naval Air Station Sigonella, Italy
| | - Aurelie P Yougang
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Theodel A Wilson-Bahun
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Laboratory of Vertebrate and Invertebrate Bioecology, Faculty of Science and Technology, Marien-Ngouabi University, Brazzaville, Congo
| | - Armel N Tedjou
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Christophe Rostand Keumeni
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | | | - Charles S Wondji
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Vector Biology Department, Liverpool School of Tropical Medicine, London, UK
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.
| |
Collapse
|
22
|
Calvez E, Bounmany P, Somlor S, Xaybounsou T, Viengphouthong S, Keosenhom S, Brey PT, Lacoste V, Grandadam M. Multiple chikungunya virus introductions in Lao PDR from 2014 to 2020. PLoS One 2022; 17:e0271439. [PMID: 35839218 PMCID: PMC9286254 DOI: 10.1371/journal.pone.0271439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/30/2022] [Indexed: 12/04/2022] Open
Abstract
The first documented chikungunya virus (CHIKV) outbreak in Lao People’s Democratic Republic (Lao PDR) occurred in 2012–2013. Since then, several imported and a few autochthonous cases were identified by the national arbovirus surveillance network. The present study aimed to summarize the main genetic features of the CHIKV strains detected in Lao PDR between 2014 and 2020. Samples from Lao patients presenting symptoms compatible with a CHIKV infection were centralized in Vientiane Capital city for real-time RT-PCR screening. Molecular epidemiology was performed by sequencing the E2-6K-E1 region. From 2014 to 2020, two Asian lineage isolates (e.g. French Polynesia; Indonesia), one ECSA-IOL lineage isolate (e.g. Thailand) and one unclassified (e.g. Myanmar) were imported in Vientiane Capital city. Sequences from the autochthonous cases recorded in the Central and Southern parts of the country between July and September 2020 belonged to the ECSA-IOL lineage and clustered with CHIKV strains recently detected in neighboring countries. These results demonstrate the multiple CHIKV introductions in Lao PDR since 2014 and provide evidence for sporadic and time-limited circulation of CHIKV in the country. Even if the circulation of CHIKV seems to be geographically and temporally limited in Lao PDR, the development of international tourism and trade may cause future outbreaks of CHIKV in the country and at the regional level.
Collapse
Affiliation(s)
- Elodie Calvez
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
- * E-mail:
| | - Phaithong Bounmany
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Somphavanh Somlor
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Thonglakhone Xaybounsou
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Souksakhone Viengphouthong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Sitsana Keosenhom
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Paul T. Brey
- Medical Entomology and Vector-Borne Disease Unit, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Vincent Lacoste
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| | - Marc Grandadam
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane, Lao People’s Democratic Republic
| |
Collapse
|
23
|
Tikhe CV, Cardoso-Jaime V, Dong S, Rutkowski N, Dimopoulos G. Trypsin-like Inhibitor Domain (TIL)-Harboring Protein Is Essential for Aedes aegypti Reproduction. Int J Mol Sci 2022; 23:ijms23147736. [PMID: 35887084 PMCID: PMC9319116 DOI: 10.3390/ijms23147736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Cysteine-rich trypsin inhibitor-like domain (TIL)-harboring proteins are broadly distributed in nature but remain understudied in vector mosquitoes. Here we have explored the biology of a TIL domain-containing protein of the arbovirus vector Aedes aegypti, cysteine-rich venom protein 379 (CRVP379). CRVP379 was previously shown to be essential for dengue virus infection in Ae. aegypti mosquitoes. Gene expression analysis showed CRVP379 to be highly expressed in pupal stages, male testes, and female ovaries. CRVP379 expression is also increased in the ovaries at 48 h post-blood feeding. We used CRISPR-Cas9 genome editing to generate two mutant lines of CRVP379 with mutations inside or outside the TIL domain. Female mosquitoes from both mutant lines showed severe defects in their reproductive capability; mutant females also showed differences in their follicular cell morphology. However, the CRVP379 line with a mutation outside the TIL domain did not affect male reproductive performance, suggesting that some CRVP379 residues may have sexually dimorphic functions. In contrast to previous reports, we did not observe a noticeable difference in dengue virus infection between the wild-type and any of the mutant lines. The importance of CRVP379 in Ae. aegypti reproductive biology makes it an interesting candidate for the development of Ae. aegypti population control methods.
Collapse
Affiliation(s)
- Chinmay Vijay Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Natalie Rutkowski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.V.T.); (V.C.-J.); (S.D.); (N.R.)
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Correspondence:
| |
Collapse
|
24
|
First national-scale evaluation of temephos resistance in Aedes aegypti in Peru. Parasit Vectors 2022; 15:254. [PMID: 35818063 PMCID: PMC9397858 DOI: 10.1186/s13071-022-05310-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background The development of resistance against insecticides in Aedes aegypti can lead to operational failures in control programs. Knowledge of the spatial and temporal trends of this resistance is needed to drive effective monitoring campaigns, which in turn provide data on which vector control decision-making should be based. Methods Third-stage larvae (L3) from the F1 and F2 generations of 39 Peruvian field populations of Ae. aegypti mosquitoes from established laboratory colonies were evaluated for resistance against the organophosphate insecticide temephos. The 39 populations were originally established from eggs collected in the field with ovitraps in eight departments of Peru during 2018 and 2019. Dose–response bioassays, at 11 concentrations of the insecticide, were performed following WHO recommendations. Results Of the 39 field populations of Ae. aegypti tested for resistance to temephos , 11 showed high levels of resistance (resistance ratio [RR] > 10), 16 showed moderate levels of resistance (defined as RR values between 5 and 10) and only 12 were susceptible (RR < 5). The results segregated the study populations into two geographic groups. Most of the populations in the first geographic group, the coastal region, were resistant to temephos, with three populations (AG, CR and LO) showing RR values > 20 (AG 21.5, CR 23.1, LO 39.4). The populations in the second geographic group, the Amazon jungle and the high jungle, showed moderate levels of resistance, with values ranging between 5.1 (JN) and 7.1 (PU). The exception in this geographic group was the population from PM, which showed a RR value of 28.8 to this insecticide. Conclusions The results of this study demonstrate that Ae. aegypti populations in Peru present different resistance intensities to temephos, 3 years after temephos use was discontinued. Resistance to this larvicide should continue to be monitored because it is possible that resistance to temephos could decrease in the absence of routine selection pressures. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05310-x.
Collapse
|
25
|
Small-scale field assessment against the dengue vector Aedes aegypti using the auto-dissemination approach in an urban area of Vientiane, Lao PDR. PLoS One 2022; 17:e0270987. [PMID: 35776762 PMCID: PMC9249186 DOI: 10.1371/journal.pone.0270987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Background In Lao PDR, dengue fever is the most important vector borne disease and vector control remains the principal method to fight against Aedes aegypti the primary transmitter mosquito species. Vector control management programs need new strategies in addition to conventional larviciding and adulticiding interventions in the country. In this study, we examined the In2Care® Mosquito Trap’s efficacy using insecticide auto-dissemination strategy. The insecticide pyriproxyfen, present in powder form inside the trap station, contaminates the body of gravid female mosquitoes visiting the traps and is later on disseminated via the mosquitoes in breeding sites surrounding the traps. We tested the attractiveness of the Traps, their efficacy to reduce the larval and adult abundance, and the impact on emergence rates. Specifically, we tested if the servicing interval of the In2Care® Mosquito Trap could be extended to 12 weeks. Methods Two black plastic ovitrap buckets and two BG® sentinel traps were placed in the premises of the Science campus of Vientiane Capital located in an urban area to measure weekly the larval and adult relative abundance of Aedes mosquitoes from 2017 to 2019. Twenty-five In2Care® Mosquito Traps were evenly distributed in this area and two studies of 12 weeks were implemented during January and April 2018 and, July to October 2018 (dry and rainy season, respectively). Every 2 weeks, water samples from 5 In2Care® Traps were randomly selected and tested at the laboratory with Ae. aegypti larvae to measure the larval and pupal mortality. The relative abundance of Aedes mosquitoes in the BG traps® with the presence of In2Care® Traps in 2018, was compared with the surveillance results obtained in 2017 and 2019 without In2Care® Traps. Every week, water samples from the ovitrap buckets were tested for Emergence Inhibition (EI). Results The In2Care® Traps were very attractive to gravid Ae. aegypti mosquitoes specifically during the rainy seasons with 96% of the traps colonized with larvae/pupae within four weeks. The bioassays showed 100% mortality in the water samples from the traps during the twelve weeks studies showing the good efficacy over time of the pyriproxyfen without additional servicing in the 12 week period. In addition, the larvicide was successfully disseminated into the ovitrap buckets placed in the treated area where 100% of EI during all weeks of intervention was measured. There was no significant effect of the treatment on adult abundance reduction in the treated area, probably due to recolonization of adult mosquitoes surrounding the field experiment. Conclusions The observed potential of the In2Care® Mosquito Trap using the auto-dissemination strategy could lead to the use of this new tool in combination with conventional control methods against Dengue vectors in urban tropical areas. Large scale field trials should be implemented in Lao PDR to prove its efficacy for Public Health programs.
Collapse
|
26
|
Silalahi CN, Tu WC, Chang NT, Singham GV, Ahmad I, Neoh KB. Insecticide Resistance Profiles and Synergism of Field Aedes aegypti from Indonesia. PLoS Negl Trop Dis 2022; 16:e0010501. [PMID: 35666774 PMCID: PMC9203003 DOI: 10.1371/journal.pntd.0010501] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/16/2022] [Accepted: 05/16/2022] [Indexed: 12/05/2022] Open
Abstract
Information on the insecticide resistance profiles of Aedes aegypti in Indonesia is fragmentary because of the lack of wide-area insecticide resistance surveillance. We collected Ae. aegypti from 32 districts and regencies in 27 Indonesian provinces and used WHO bioassays to evaluate their resistance to deltamethrin, permethrin, bendiocarb, and pirimiphos-methyl. To determine the possible resistance mechanisms of Ae. aegypti, synergism tests were conducted using piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioates (DEF). The Ae. aegypti from all locations exhibited various levels of resistance to pyrethroids. Their resistance ratio (RR50) to permethrin and deltamethrin ranged from 4.08× to 127× and from 4.37× to 72.20×, respectively. In contrast with the findings of other studies, most strains from the highly urbanized cities on the island of Java (i.e., Banten, Jakarta, Bandung, Semarang, Yogyakarta, and Surabaya) exhibited low to moderate resistance to pyrethroids. By contrast, the strains collected from the less populated Kalimantan region exhibited very high resistance to pyrethroids. The possible reasons are discussed herein. Low levels of resistance to bendiocarb (RR50, 1.24–6.46×) and pirimiphos-methyl (RR50, 1.01–2.70×) were observed in all tested strains, regardless of locality. PBO and DEF synergists significantly increased the susceptibility of Ae. aegypti to permethrin and deltamethrin and reduced their resistance ratio to less than 16×. The synergism tests suggested the major involvement of cytochrome P450 monooxygenases and esterases in conferring pyrethroid resistance. On the basis of our results, we proposed a 6-month rotation of insecticides (deltamethrin + synergists ➝ bendiocarb ➝ permethrin + synergists ➝ pirimiphos-methyl) and the use of an insecticide mixture containing pyrethroid and pyrimiphos-methyl to control Ae. aegypti populations and overcome the challenge of widespread Ae. aegypti resistance to pyrethroid in Indonesia. Insecticide resistance is a major impediment to the successful management of vector-transmitted diseases because it increases the vector’s chances of surviving under insecticide treatment. In Indonesia, the implementation of insecticide resistance management at the national level is particularly challenging due to the vast area and regional disparities in terms of population, health, and socioeconomic status. Previous studies on determining insecticide resistance of Aedes mosquito only focused on several cities in some provinces of Indonesia, making resistance monitoring results difficult to interpret and arguably reflect the generality in Indonesia. To complicate the matter, data released by the Ministry of Agriculture of Indonesia in 2022 showed that approximately 82% of insecticides registered to control Ae. aegypti in Indonesia are pyrethroid-based products. Principally, we found that the synergists PBO and DEF significantly reduce the resistance of field Ae. aegypti from Indonesia toward permethrin and deltamethrin. Bendiocarb and pirimiphos-methyl remain highly toxic to the field strains of Ae. aegypti. We suggest the feasible choice of insecticide group for Ae. aegypti vector management based on the currently registered insecticide inventory. The finding also underscores the urgent need to approve other non-pyrethroid-based insecticides as alternative tools for reducing the risk of resistance development during an outbreak.
Collapse
Affiliation(s)
| | - Wu-Chun Tu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Niann-Tai Chang
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - G. Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Intan Ahmad
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, West Java, Indonesia
- * E-mail: (IA); (KBN)
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (IA); (KBN)
| |
Collapse
|
27
|
Knockdown Resistance Mutations in the Voltage-Gated Sodium Channel of Aedes aegypti (Diptera: Culicidae) in Myanmar. INSECTS 2022; 13:insects13040322. [PMID: 35447764 PMCID: PMC9028491 DOI: 10.3390/insects13040322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) of mosquitoes confer resistance to pyrethroid insecticides. Analysis of kdr mutations in Aedes aegypti mosquitoes collected from five different townships in the Mandalay area, Myanmar, revealed high levels of validated kdr mutations in domains II and III of vgsc. Moreover, high frequencies of concurrent kdr mutations were also detected. The results of this study suggest that kdr mutations associated with pyrethroid resistance are widespread in the Ae. aegypti population of the study area. Our results provide a valuable molecular basis to understand the pyrethroid resistance status of the Ae. aegypti population in the area and underscore the need for an effective vector control program in Myanmar. Abstract Aedes aegypti is an important mosquito vector transmitting diverse arboviral diseases in Myanmar. Pyrethroid insecticides have been widely used in Myanmar as the key mosquito control measure, but the efforts are constrained by increasing resistance. Knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) are related to pyrethroid resistance in Ae. aegypti. We analyzed the patterns and distributions of the kdr mutations in Ae. aegypti in the Mandalay area of Myanmar. The segment 6 regions of domains II and III of vgsc were separately amplified from individual Ae. aegypti genomic DNA via polymerase chain reaction. The amplified gene fragments were sequenced. High proportions of three major kdr mutations, including S989P (54.8%), V1016G (73.6%), and F1534C (69.5%), were detected in the vgsc of Ae. aegypti from all studied areas. Other kdr mutations, T1520I and F1534L, were also found. These kdr mutations represent 11 distinct haplotypes of the vgsc population. The S989P/V1016G/F1534C was the most prevalent, followed by S989P/V1016V and V1016G/F1534C. A quadruple mutation, S989P/V1016G/T1520I/F1534C, was also identified. High frequencies of concurrent kdr mutations were observed in vgsc of Myanmar Ae. aegypti, suggesting a high level of pyrethroid resistance in the population. These findings underscore the need for an effective vector control program in Myanmar.
Collapse
|
28
|
Han H, Yang Y, Hu J, Wang Y, Zhao Z, Ma R, Gao L, Guo Y. Identification and Characterization of CYP6 Family Genes from the Oriental Fruit Moth (Grapholita molesta) and Their Responses to Insecticides. INSECTS 2022; 13:insects13030300. [PMID: 35323597 PMCID: PMC8953268 DOI: 10.3390/insects13030300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Eight CYP6 family genes were identified in Grapholita molesta (Busck). The expression of individual gene members differed between the developmental stages and insect tissues. High expression was found in third/fourth-instar larvae and in the midgut and Malpighian tubules. The response patterns of the genes exhibited diverse response patterns to the three representative insecticides were diverse. Abstract Cytochrome P450 (CYP) monooxygenases comprise a superfamily of proteins that detoxify xenobiotics and plant secondary metabolites in insects. The CYP6 family is unique to the class Insecta, and its members participate in the metabolism of exogenous substances. In this study, we sequenced and characterized the full-length cDNAs of eight CYP6 family genes from Grapholita molesta (Busck), a global pest of pome fruits. P450 genes with the exception of CYP6AN35, which was most highly expressed in adults, consistently showed high expression in third- or fourth-instar larvae. The analysis of different tissues of adults showed that most of these genes were predominantly expressed in the midgut, Malpighian tubules, and/or fat body. The expression of these eight CYP6 genes was differentially affected by three representative insecticides: malathion (organophosphate), deltamethrin (pyrethroid), and chlorantraniliprole (carbamate). All eight CYP6 genes responded to malathion treatment. Only three CYP6 genes were highly expressed in deltamethrin-treated individuals. Chlorantraniliprole treatment exerted weak effects on gene expression. Interestingly, CYP6AN35 was a highly expression level in the adult head and its expression was induced by all three insecticides. CYP6AN35 may be a key gene in the metabolism of insecticides. This study provides a fundamental understanding of the functions of the CYP6 gene family in insecticide metabolism in G. molesta.
Collapse
Affiliation(s)
- Hui Han
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
| | - Yanyu Yang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
| | - Jun Hu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
| | - Yuanxin Wang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
| | - Zhiguo Zhao
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
| | - Lingling Gao
- CSIRO Agriculture & Food, Private Bag 5, Wembley, Perth, WA 6913, Australia
- Correspondence: (L.G.); (Y.G.)
| | - Yanqiong Guo
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (H.H.); (Y.Y.); (J.H.); (Y.W.); (Z.Z.); (R.M.)
- Correspondence: (L.G.); (Y.G.)
| |
Collapse
|
29
|
Zhou G, Li Y, Jeang B, Wang X, Cummings RF, Zhong D, Yan G. Emerging Mosquito Resistance to Piperonyl Butoxide-Synergized Pyrethroid Insecticide and Its Mechanism. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:638-647. [PMID: 35050361 PMCID: PMC8924976 DOI: 10.1093/jme/tjab231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Piperonyl butoxide (PBO)-synergized pyrethroid products are widely available for the control of pyrethroid-resistant mosquitoes. To date, no study has examined mosquito resistance after pre-exposure to PBO and subsequent enzymatic activity when exposed to PBO-synergized insecticides. We used Culex quinquefasciatus Say (Diptera: Culicidae), an important vector of arboviruses and lymphatic filariasis, as a model to examine the insecticide resistance mechanisms of mosquitoes to PBO-synergized pyrethroid using modified World Health Organization tube bioassays and biochemical analysis of metabolic enzyme expressions pre- and post-PBO exposure. Mosquito eggs and larvae were collected from three cities in Orange County in July 2020 and reared in insectary, and F0 adults were used in this study. A JHB susceptible strain was used as a control. Mosquito mortalities and metabolic enzyme expressions were examined in mosquitoes with/without pre-exposure to different PBO concentrations and exposure durations. Except for malathion, wild strain Cx quinquefasciatus mosquitoes were resistant to all insecticides tested, including PBO-synergized pyrethroids (mortality range 3.7 ± 4.7% to 66.7 ± 7.7%). Wild strain mosquitoes had elevated levels of carboxylesterase (COE, 3.8-fold) and monooxygenase (P450, 2.1-fold) but not glutathione S-transferase (GST) compared to susceptible mosquitoes. When wild strain mosquitoes were pre-exposed to 4% PBO, the 50% lethal concentration of deltamethrin was reduced from 0.22% to 0.10%, compared to 0.02% for a susceptible strain. The knockdown resistance gene mutation (L1014F) rate was 62% in wild strain mosquitoes. PBO pre-exposure suppressed P450 enzyme expression levels by 25~34% and GST by 11%, but had no impact on COE enzyme expression. Even with an optimal PBO concentration (7%) and exposure duration (3h), wild strain mosquitoes had significantly higher P450 enzyme expression levels after PBO exposure compared to the susceptible laboratory strain. These results further demonstrate other studies that PBO alone may not be enough to control highly pyrethroid-resistant mosquitoes due to multiple resistance mechanisms. Mosquito resistance to PBO-synergized insecticide should be closely monitored through a routine resistance management program for effective control of mosquitoes and the pathogens they transmit.
Collapse
Affiliation(s)
- Guofa Zhou
- Program in Public Health, University of California, Irvine, CA, USA
| | - Yiji Li
- Program in Public Health, University of California, Irvine, CA, USA
| | - Brook Jeang
- Program in Public Health, University of California, Irvine, CA, USA
| | - Xiaoming Wang
- Program in Public Health, University of California, Irvine, CA, USA
| | - Robert F Cummings
- Orange County Mosquito and Vector Control District, Garden Grove, CA, USA
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, USA
| |
Collapse
|
30
|
Boyer S, Maquart PO, Chhuoy K, Suor K, Chhum M, Heng K, Leng S, Fontenille D, Marcombe S. Monitoring insecticide resistance of adult and larval Aedes aegypti (Diptera: Culicidae) in Phnom Penh, Cambodia. Parasit Vectors 2022; 15:44. [PMID: 35101104 PMCID: PMC8805314 DOI: 10.1186/s13071-022-05156-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
Background Dengue fever is a major public health concern in Cambodia, with thousands of cases every year in urban, suburban and rural areas of the country. The main vector of dengue fever in Cambodia is Aedes aegypti. The organophosphate larvicide temephos and adulticides belonging to the pyrethroid family have been widely used for decades by public health authorities to fight dengue vectors, but resistance of Ae. aegypti to these insecticides has been previously described for Cambodia. Methods In order to adapt the vector control strategy presently used in Cambodia, we tested 14 adulticides belonging to the carbamate, organochlorine, organophosphate, and pyrethroid insecticide families and three larvicides [temephos, spinosad and Bacillus thuringiensis ser. israelensis (Bti)] belonging to three different insecticide families (organophosphates, spinosyns and entomopathogenic bacteria). The standard procedures used here to test the adults and larvae of an Ae. aegypti population from Phnom Penh followed World Health Organization guidelines. Results For adults, high mortality rates were observed with carbamate, organophosphate and organochlorine (with the exception of dichlorodiphenyltrichloroethane) insecticides (i.e. between 87.6 and 100%), while low mortality rates were observed with all of the tested pyrethroid insecticides (i.e. between 1 and 35%). For larvae, no resistance against Bti was detected [resistance ratio (RR90 < 1.6)], but moderate resistance was observed for temephos and spinosad (RR90 < 5.6). Conclusions The results of this study indicate that (i) Bti should be considered a serious alternative to temephos for the control of Ae. aegypti larvae; and (ii) the carbamate adulticides propoxur and bendiocarb should be employed instead of the widely used pyrethroid insecticides for the control of adult Ae. aegypti on land under mosaic farming and crop rotation in Cambodia, as the insects were found to be resistant to the latter types of insecticide. Research focusing on insecticide resistance and innovative and effective vector control strategies should be undertaken as a public health priority in Cambodia. Graphical abstract ![]()
Collapse
|
31
|
Morgan J, Salcedo-Sora JE, Triana-Chavez O, Strode C. Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:192-212. [PMID: 34718656 PMCID: PMC8755997 DOI: 10.1093/jme/tjab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 05/08/2023]
Abstract
Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Ormskirk, UK
| | - J Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Omar Triana-Chavez
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of Antioquia, Medellín, Colombia
| | - Clare Strode
- Department of Biology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
32
|
Granada Y, Mejía-Jaramillo AM, Zuluaga S, Triana-Chávez O. Molecular surveillance of resistance to pyrethroids insecticides in Colombian Aedes aegypti populations. PLoS Negl Trop Dis 2021; 15:e0010001. [PMID: 34905537 PMCID: PMC8735628 DOI: 10.1371/journal.pntd.0010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/06/2022] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction In Colombia, organochloride, organophosphate, carbamate, and pyrethroid insecticides are broadly used to control Aedes aegypti populations. However, Colombian mosquito populations have shown variability in their susceptibility profiles to these insecticides, with some expressing high resistance levels. Materials and methods In this study, we analyzed the susceptibility status of ten Colombian field populations of Ae. aegypti to two pyrethroids; permethrin (type-I pyrethroid) and lambda-cyhalothrin (type-II pyrethroid). In addition, we evaluated if mosquitoes pressured with increasing lambda-cyhalothrin concentrations during some filial generations exhibited altered allelic frequency of these kdr mutations and the activity levels of some metabolic enzymes. Results Mosquitoes from all field populations showed resistance to lambda-cyhalothrin and permethrin. We found that resistance profiles could only be partially explained by kdr mutations and altered enzymatic activities such as esterases and mixed-function oxidases, indicating that other yet unknown mechanisms could be involved. The molecular and biochemical analyses of the most pyrethroid-resistant mosquito population (Acacías) indicated that kdr mutations and altered metabolic enzyme activity are involved in the resistance phenotype expression. Conclusions In this context, we propose genetic surveillance of the mosquito populations to monitor the emergence of resistance as an excellent initiative to improve mosquito-borne disease control measures. The main method of preventing Aedes-borne diseases such as dengue, Zika, and chikungunya is by targeting the primary mosquito vector, Aedes aegypti, with insecticides. However, the success of these vector control strategies is jeopardized by the widespread development of insecticide resistance in mosquito populations. Furthermore, the molecular mechanisms of insecticide resistance in Ae. aegypti are still not well understood, resulting in limited resistance mitigation and management strategies. In this paper, we found that resistance to some pyrethroid insecticides in different Colombian cities is associated with three allelic substitutions V419L, V1016I, and F1534C, on the voltage-gated sodium channel gene, known as kdr (‘knock-down resistance’) mutations, with all three mutations present in mosquitoes resistant to pyrethroids. The data also showed that kdr mutations are important in conferring low resistance levels, but after around 10-fold intensity, the allele frequencies don’t change, indicating that other mechanisms contribute to the resistance. Thus, we found that mosquitoes under selective pressure with insecticides present also altered enzymatic activities such as esterases and mixed-function oxidases, indicating that kdr mutations and metabolic enzymes are involved in the resistance expression. The findings on the extent of insecticide resistance and the molecular mechanisms underpinning the problem will impact the surveillance, selection, and rational use of insecticides by local health authorities.
Collapse
Affiliation(s)
- Yurany Granada
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Ana María Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Sara Zuluaga
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia UdeA, Medellin, Colombia
- * E-mail:
| |
Collapse
|
33
|
Calvez E, Bounmany P, Balière C, Somlor S, Viengphouthong S, Xaybounsou T, Keosenhom S, Fangkham K, Brey PT, Caro V, Lacoste V, Grandadam M. Using Background Sequencing Data to Anticipate DENV-1 Circulation in the Lao PDR. Microorganisms 2021; 9:microorganisms9112263. [PMID: 34835389 PMCID: PMC8617722 DOI: 10.3390/microorganisms9112263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Since its first detection in 1979, dengue fever has been considered a major public health issue in the Lao People’s Democratic Republic (PDR). Dengue virus (DENV) serotype 1 was the cause of an epidemic in 2010–2011. Between 2012 and 2020, major outbreaks due successively to DENV-3, DENV-4 and recently DENV-2 have been recorded. However, DENV-1 still co-circulated in the country over this period. Here, we summarize epidemiological and molecular data of DENV-1 between 2016 and 2020 in the Lao PDR. Our data highlight the continuous circulation of DENV-1 in the country at levels ranging from 16% to 22% among serotyping tests. In addition, the phylogenetic analysis has revealed the circulation of DENV-1 genotype I at least since 2008 with a co-circulation of different clusters. Sequence data support independent DENV-1 introductions in the Lao PDR correlated with an active circulation of this serotype at the regional level in Southeast Asia. The maintenance of DENV-1 circulation over the last ten years supports a low level of immunity against this serotype within the Lao population. Thereby, the risk of a DENV-1 epidemic cannot be ruled out in the future, and this emphasizes the importance of maintaining an integrated surveillance approach to prevent major outbreaks.
Collapse
Affiliation(s)
- Elodie Calvez
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
- Correspondence:
| | - Phaithong Bounmany
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Charlotte Balière
- Environment and Infectious Risks Unit, Institut Pasteur, 75015 Paris, France; (C.B.); (V.C.)
| | - Somphavanh Somlor
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Souksakhone Viengphouthong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Thonglakhone Xaybounsou
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Sitsana Keosenhom
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Kitphithak Fangkham
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
- Lao Army Institute for Preventive Medicine, Vientiane 01030, Laos
| | - Paul T. Brey
- Medical Entomology and Vector Borne Disease Unit, Institut Pasteur du Laos, Vientiane 01030, Laos;
| | - Valérie Caro
- Environment and Infectious Risks Unit, Institut Pasteur, 75015 Paris, France; (C.B.); (V.C.)
| | - Vincent Lacoste
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| | - Marc Grandadam
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 01030, Laos; (P.B.); (S.S.); (S.V.); (T.X.); (S.K.); (K.F.); (V.L.); (M.G.)
| |
Collapse
|
34
|
Evaluation of Total Female and Male Aedes aegypti Proteomes Reveals Significant Predictive Protein-Protein Interactions, Functional Ontologies, and Differentially Abundant Proteins. INSECTS 2021; 12:insects12080752. [PMID: 34442320 PMCID: PMC8396896 DOI: 10.3390/insects12080752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary Aedes aegypti is a significant vector for flavivirus diseases. Only the female mosquito transmits pathogens, while the male plays a vital role in mating and species continuity. In this study, female and male Ae. aegypti proteins were analysed using a mass analyser. Then, we identified proteins for the examination of protein-protein interactions, functional enrichment, and differential protein abundance analysis. This study identified 422 and 682 proteins exclusive to male and female Ae. aegypti, respectively, with 608 proteins found in both sexes. The most significant protein-protein interaction clusters and functional enrichments were observed in the biological process, molecular function, and cellular component for the proteins of both sexes. The abundance of the proteins differed, with one protein showing an increase (elongation factor 1 α, EF1α) and two showing reductions (actin family) in females versus males. The study highlights the protein differences in male and female Ae. aegypti, and future research could further investigate their roles in mosquito–viral interactions for blocking disease transmission. Abstract Aedes aegypti is a significant vector for many tropical and subtropical flavivirus diseases. Only the female mosquito transmits pathogens, while the male plays a vital role in mating and species continuity. This study explored the total proteomes of females and males based on the physiological and genetic differences of female and male mosquitoes. Protein extracts from mosquitoes were analysed using LC–ESI–MS/MS for protein identification, protein interaction network analysis, functional ontology enrichment, and differential protein abundance analyses. Protein identification revealed 422 and 682 proteins exclusive to males and females, respectively, with 608 common proteins found in both sexes. The most significant PPIs (<1.0 × 10−16) were for common proteins, followed by proteins exclusive to females (<1.0 × 10−16) and males (1.58 × 10−12). Significant functional enrichments were observed in the biological process, molecular function, and cellular component for the male and female proteins. The abundance of the proteins differed, with one protein showing an increase (elongation factor 1 α, EF1α) and two showing reductions (actin family) in females versus males. Overall, the study verified the total proteomes differences between male and female Ae. aegypti based on protein identification and interactions, functional ontologies, and differentially abundant proteins. Some of the identified proteins merit further investigation to elucidate their roles in blocking viral transmission.
Collapse
|
35
|
Fang Y, Tambo E, Xue JB, Zhang Y, Zhou XN, Khater EIM. Molecular Analysis of Targeted Insecticide Resistance Gene Mutations in Field-Caught Mosquitos of Medical Importance From Saudi Arabia. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1839-1848. [PMID: 33864372 PMCID: PMC8285008 DOI: 10.1093/jme/tjab048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 05/11/2023]
Abstract
Gene mutations on target sites can be a valuable indicator of the status of insecticide resistance. Jeddah, a global commercial and major port-of-entry city, is bearing the brunt of dengue disease burden in Saudi Arabia. In the current study, six genotypes of three codon combinations (989, 1016, and 1534) were observed on voltage-gated sodium channel (VGSC) gene in Jeddah's Aedes aegypti population, with PGF/PGC as the dominant one. Two types of introns between exon 20 and 21 on VGSC have been identified for the first time in Ae. aegypti in Saudi Arabia. Statistical and phylogenetic analyses showed that the intron type was significantly associated with the 1016 allele and may reflect the history of insecticide treatment in different continents. In addition, fixation of the L1014F allele on VGSC and G119S on acetylcholinesterase 1 gene was detected in local Culex quinquefasciatus populations, with frequencies of 95.24 and 100%, respectively. To the best of our knowledge, this is the first report of resistant-associated mutations in field-caught Cx. quinquefasciatus in Saudi Arabia. The high prevalence of insecticide resistance gene mutations in local primary mosquito vector species highlights the urgent need to carry out comprehensive insecticide resistance surveillance in Saudi Arabia.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
- Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention–Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ernest Tambo
- Public Health Pests Laboratory, Municipality of Jeddah Governorate, Jeddah 21577, Saudi Arabia
| | - Jing-Bo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
- Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention–Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
- Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention–Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
- Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention–Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Emad I M Khater
- Public Health Pests Laboratory, Municipality of Jeddah Governorate, Jeddah 21577, Saudi Arabia
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 12413, Egypt
| |
Collapse
|
36
|
Gan SJ, Leong YQ, Bin Barhanuddin MFH, Wong ST, Wong SF, Mak JW, Ahmad RB. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasit Vectors 2021; 14:315. [PMID: 34112220 PMCID: PMC8194039 DOI: 10.1186/s13071-021-04785-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Dengue fever is the most important mosquito-borne viral disease in Southeast Asia. Insecticides remain the most effective vector control approach for Aedes mosquitoes. Four main classes of insecticides are widely used for mosquito control: organochlorines, organophosphates, pyrethroids and carbamates. Here, we review the distribution of dengue fever from 2000 to 2020 and its associated mortality in Southeast Asian countries, and we gather evidence on the trend of insecticide resistance and its distribution in these countries since 2000, summarising the mechanisms involved. The prevalence of resistance to these insecticides is increasing in Southeast Asia, and the mechanisms of resistance are reported to be associated with target site mutations, metabolic detoxification, reduced penetration of insecticides via the mosquito cuticle and behavioural changes of mosquitoes. Continuous monitoring of the status of resistance and searching for alternative control measures will be critical for minimising any unpredicted outbreaks and improving public health. This review also provides improved insights into the specific use of insecticides for effective control of mosquitoes in these dengue endemic countries. ![]()
Collapse
Affiliation(s)
- Soon Jian Gan
- International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Yong Qi Leong
- International Medical University, 57000, Kuala Lumpur, Malaysia.,Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Siew Tung Wong
- International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Shew Fung Wong
- International Medical University, 57000, Kuala Lumpur, Malaysia. .,Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Joon Wah Mak
- International Medical University, 57000, Kuala Lumpur, Malaysia.,Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rohani Binti Ahmad
- Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Saavedra-Rodriguez K, Campbell CL, Lozano S, Penilla-Navarro P, Lopez-Solis A, Solis-Santoyo F, Rodriguez AD, Perera R, Black IV WC. Permethrin resistance in Aedes aegypti: Genomic variants that confer knockdown resistance, recovery, and death. PLoS Genet 2021; 17:e1009606. [PMID: 34138859 PMCID: PMC8211209 DOI: 10.1371/journal.pgen.1009606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Pyrethroids are one of the few classes of insecticides available to control Aedes aegypti, the major vector of dengue, chikungunya, and Zika viruses. Unfortunately, evolving mechanisms of pyrethroid resistance in mosquito populations threaten our ability to control disease outbreaks. Two common pyrethroid resistance mechanisms occur in Ae. aegypti: 1) knockdown resistance, which involves amino acid substitutions at the pyrethroid target site-the voltage-gated sodium channel (VGSC)-and 2) enhanced metabolism by detoxification enzymes. When a heterogeneous population of mosquitoes is exposed to pyrethroids, different responses occur. During exposure, a proportion of mosquitoes exhibit immediate knockdown, whereas others are not knocked-down and are designated knockdown resistant (kdr). When these individuals are removed from the source of insecticide, the knocked-down mosquitoes can either remain in this status and lead to dead or recover within a few hours. The proportion of these phenotypic responses is dependent on the pyrethroid concentration and the genetic background of the population tested. In this study, we sequenced and performed pairwise genome comparisons between kdr, recovered, and dead phenotypes in a pyrethroid-resistant colony from Tapachula, Mexico. We identified single-nucleotide polymorphisms (SNPs) associated with each phenotype and identified genes that are likely associated with the mechanisms of pyrethroid resistance, including detoxification, the cuticle, and insecticide target sites. We identified high association between kdr and mutations at VGSC and moderate association with additional insecticide target site, detoxification, and cuticle protein coding genes. Recovery was associated with cuticle proteins, the voltage-dependent calcium channel, and a different group of detoxification genes. We provide a list of detoxification genes under directional selection in this field-resistant population. Their functional roles in pyrethroid metabolism and their potential uses as genomic markers of resistance require validation.
Collapse
Affiliation(s)
- Karla Saavedra-Rodriguez
- Colorado State University, Department of Microbiology, Immunology and Pathology, Center of Vector-borne and Infectious Diseases, Fort Collins, Colorado, United States of America
| | - Corey L. Campbell
- Colorado State University, Department of Microbiology, Immunology and Pathology, Center of Vector-borne and Infectious Diseases, Fort Collins, Colorado, United States of America
| | - Saul Lozano
- Centers for Diseases Prevention and Control, Arboviral Diseases Branch, Fort Collins, Colorado, United States of America
| | - Patricia Penilla-Navarro
- Centro Regional de Investigacion en Salud Publica, Instituto Nacional de Salud Publica, Tapachula, Mexico
| | - Alma Lopez-Solis
- Centro Regional de Investigacion en Salud Publica, Instituto Nacional de Salud Publica, Tapachula, Mexico
| | - Francisco Solis-Santoyo
- Centro Regional de Investigacion en Salud Publica, Instituto Nacional de Salud Publica, Tapachula, Mexico
| | - Americo D. Rodriguez
- Centro Regional de Investigacion en Salud Publica, Instituto Nacional de Salud Publica, Tapachula, Mexico
| | - Rushika Perera
- Colorado State University, Department of Microbiology, Immunology and Pathology, Center of Vector-borne and Infectious Diseases, Fort Collins, Colorado, United States of America
| | - William C. Black IV
- Colorado State University, Department of Microbiology, Immunology and Pathology, Center of Vector-borne and Infectious Diseases, Fort Collins, Colorado, United States of America
| |
Collapse
|
38
|
Djiappi-Tchamen B, Nana-Ndjangwo MS, Mavridis K, Talipouo A, Nchoutpouen E, Makoudjou I, Bamou R, Mayi AMP, Awono-Ambene P, Tchuinkam T, Vontas J, Antonio-Nkondjio C. Analyses of Insecticide Resistance Genes in Aedes aegypti and Aedes albopictus Mosquito Populations from Cameroon. Genes (Basel) 2021; 12:genes12060828. [PMID: 34071214 PMCID: PMC8229692 DOI: 10.3390/genes12060828] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
The emergence of insecticide resistance in Aedes mosquitoes could pose major challenges for arboviral-borne disease control. In this paper, insecticide susceptibility level and resistance mechanisms were assessed in Aedes aegypti (Linnaeus, 1762) and Aedes albopictus (Skuse, 1894) from urban settings of Cameroon. The F1 progeny of Aedes aegypti and Aedes albopictus collected in Douala, Yaoundé and Dschang from August to December 2020 was tested using WHO tube assays with four insecticides: deltamethrin 0.05%, permethrin 0.75%, DDT 4% and bendiocarb 0.1%. TaqMan, qPCR and RT-qPCR assays were used to detect kdr mutations and the expression profiles of eight detoxification genes. Aedes aegypti mosquitoes from Douala were found to be resistant to DDT, permethrin and deltamethrin. Three kdr mutations, F1534C, V1016G and V1016I were detected in Aedes aegypti populations from Douala and Dschang. The kdr allele F1534C was predominant (90%) in Aedes aegypti and was detected for the first time in Aedes albopictus (2.08%). P450s genes, Cyp9J28 (2.23-7.03 folds), Cyp9M6 (1.49-2.59 folds), Cyp9J32 (1.29-3.75 folds) and GSTD4 (1.34-55.3 folds) were found overexpressed in the Douala and Yaoundé Aedes aegypti populations. The emergence of insecticide resistance in Aedes aegypti and Aedes albopictus calls for alternative strategies towards the control and prevention of arboviral vector-borne diseases in Cameroon.
Collapse
Affiliation(s)
- Borel Djiappi-Tchamen
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067 Dschang, Cameroon; (R.B.); (A.M.P.M.); (T.T.)
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
- Correspondence: (B.D.-T.); (C.A.-N.)
| | - Mariette Stella Nana-Ndjangwo
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337 Yaoundé, Cameroon
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece; (K.M.); (J.V.)
| | - Abdou Talipouo
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337 Yaoundé, Cameroon
| | - Elysée Nchoutpouen
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
| | - Idene Makoudjou
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
- Department of Animal Physiology and Biology, Faculty of Science, University of Yaoundé I, P.O. Box 337 Yaoundé, Cameroon
| | - Roland Bamou
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067 Dschang, Cameroon; (R.B.); (A.M.P.M.); (T.T.)
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
| | - Audrey Marie Paul Mayi
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067 Dschang, Cameroon; (R.B.); (A.M.P.M.); (T.T.)
| | - Parfait Awono-Ambene
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
| | - Timoléon Tchuinkam
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 067 Dschang, Cameroon; (R.B.); (A.M.P.M.); (T.T.)
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece; (K.M.); (J.V.)
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Christophe Antonio-Nkondjio
- Institut de Recherche de Yaoundé (IRY), Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), P.O. Box 288 Yaoundé, Cameroon; (M.S.N.-N.); (A.T.); (E.N.); (I.M.); (P.A.-A.)
- Department of Vector Biology, Liverpool School of Tropical medicine, Pembroke Place, Liverpool L3 5QA, UK
- Correspondence: (B.D.-T.); (C.A.-N.)
| |
Collapse
|
39
|
Liu N, Wang Y, Li T, Feng X. G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int J Mol Sci 2021; 22:ijms22105260. [PMID: 34067660 PMCID: PMC8156084 DOI: 10.3390/ijms22105260] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
- Correspondence: ; Tel.: +1-334-844-5076
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Xuechun Feng
- Department of Biology Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
40
|
Kaczmarek A, Wrońska AK, Boguś MI, Kazek M, Gliniewicz A, Mikulak E, Matławska M. The type of blood used to feed Aedes aegypti females affects their cuticular and internal free fatty acid (FFA) profiles. PLoS One 2021; 16:e0251100. [PMID: 33930098 PMCID: PMC8087090 DOI: 10.1371/journal.pone.0251100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/19/2021] [Indexed: 11/18/2022] Open
Abstract
Aedes aegypti, the primary vector of various arthropod-borne viral (arboviral) diseases such as dengue and Zika, is a popular laboratory model in vector biology. However, its maintenance in laboratory conditions is difficult, mostly because the females require blood meals to complete oogenesis, which is often provided as sheep blood. The outermost layer of the mosquito cuticle is consists of lipids which protects against numerous entomopathogens, prevents desiccation and plays an essential role in signalling processes. The aim of this work was to determine how the replacement of human blood with sheep blood affects the cuticular and internal FFA profiles of mosquitoes reared in laboratory culture. The individual FFAs present in cuticular and internal extracts from mosquito were identified and quantified by GC-MS method. The normality of their distribution was checked using the Kolmogorov-Smirnov test and the Student's t-test was used to compare them. GC-MS analysis revealed similar numbers of internal and cuticular FFAs in the female mosquitoes fed sheep blood by membrane (MFSB) and naturally fed human blood (NFHB), however MFSB group demonstrated 3.1 times greater FFA concentrations in the cuticular fraction and 1.4 times the internal fraction than the NFHB group. In the MFSB group, FFA concentration was 1.6 times higher in the cuticular than the internal fraction, while for NFHB, FFA concentration was 1.3 times lower in the cuticular than the internal fraction. The concentration of C18:3 acid was 223 times higher in the internal fraction than the cuticle in the MHSB group but was absent in the NFHB group. MFSB mosquito demonstrate different FFA profiles to wild mosquitoes, which might influence their fertility and the results of vital processes studied under laboratory conditions. The membrane method of feeding mosquitoes is popular, but our research indicates significant differences in the FFA profiles of MFSB and NFHB. Such changes in FFA profile might influence female fertility, as well as other vital processes studied in laboratory conditions, such as the response to pesticides. Our work indicates that sheep blood has potential shortcomings as a substitute feed for human blood, as its use in laboratory studies may yield different results to those demonstrated by free-living mosquitoes.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| | | | - Mieczysława Irena Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- BIOMIBO, Warsaw, Poland
| | - Michalina Kazek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Ewa Mikulak
- National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| | - Marta Matławska
- National Institute of Public Health—National Institute of Hygiene, Warsaw, Poland
| |
Collapse
|
41
|
Shimono T, Kanda S, Lamaningao P, Murakami Y, Darcy AW, Mishima N, Inthavongsack S, Soprasert O, Xaypangna T, Nishiyama T. Phenotypic and haplotypic profiles of insecticide resistance in populations of Aedes aegypti larvae (Diptera: Culicidae) from central Lao PDR. Trop Med Health 2021; 49:32. [PMID: 33883036 PMCID: PMC8061177 DOI: 10.1186/s41182-021-00321-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Background Aedes aegypti, which is widely distributed in the Lao People’s Democratic Republic (PDR), is the primary vector of arboviral diseases. Chemical insecticides have been intensively used to eliminate mosquito-borne diseases, resulting in the development of insecticide resistance. However, little is known about the insecticide resistance of mosquito populations in Lao PDR and the mechanisms responsible for it, which have important implications for vector management programs. Here, we examined the phenotypic and haplotypic profiles of insecticide resistance in populations of Ae. aegypti larvae from central Lao PDR. Methods Ae. aegypti larvae were collected from four sites in Lao PDR, and their susceptibility to temephos, deltamethrin, permethrin, and Bacillus thuringiensis israelensis (Bti) was tested using larval bioassays. Synergistic tests were also conducted to evaluate the activity of insecticide-metabolizing enzymes in the larvae. Deltamethrin-resistant and Deltamethrin-susceptible larvae were then genotyped for knockdown resistance (kdr) mutations to determine the associations between each genotype and resistance. Results Ae. aegypti larvae from central Lao PDR were considered to be “resistant” (<98% mortality) to organophosphates and pyrethroids. The bio-insecticide Bti remains effective against such larvae. The resistance mechanisms of Ae. aegypti larvae were found to vary among populations, especially for pyrethroid resistance. Kdr mutations were significantly associated with deltamethrin resistance in Ae. aegypti from the Xaythany population. In contrast, synergist assays with piperonyl butoxide suggested that cytochrome P450 monooxygenases played an important role in the resistance seen in the Khounkham and Thakhek populations. Conclusion This study obtained information that will aid the design and implementation of insecticide-based vector management of Ae. aegypti in central Lao PDR. Ae. aegypti larvae from central Lao PDR were highly susceptible to Bti, while they were resistant to temephos at a diagnostic dose of 0.0286 mg/L. Given the limited number of insecticides that are approved for vector control, it is important to alternate between temephos and other larvicides, such as Bti and pyriproxyfen. The differences in pyrethroid resistance mechanisms seen among the Ae. aegypti populations highlight the need to tailor vector-control strategies to each region to increase the success of dengue control in Lao PDR. Supplementary Information The online version contains supplementary material available at 10.1186/s41182-021-00321-3.
Collapse
Affiliation(s)
- Takaki Shimono
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata, Osaka, Japan.,Regenerative Research Center for Intractable Diseases, Kansai Medical University, Hirakata, Osaka, Japan
| | - Seiji Kanda
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata, Osaka, Japan. .,Regenerative Research Center for Intractable Diseases, Kansai Medical University, Hirakata, Osaka, Japan.
| | - Pheophet Lamaningao
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata, Osaka, Japan.,Regenerative Research Center for Intractable Diseases, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata, Osaka, Japan.,Regenerative Research Center for Intractable Diseases, Kansai Medical University, Hirakata, Osaka, Japan
| | - Andrew Waleluma Darcy
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata, Osaka, Japan
| | - Nobuyuki Mishima
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata, Osaka, Japan
| | - Somchit Inthavongsack
- Station of Malariology, Parasitology, and Entomology, Khammouane Provincial Health Department, Thakhek, Khammouane Province, Lao PDR
| | - Odai Soprasert
- Khammouane Provincial Health Department, Thakhek, Khammouane Province, Lao PDR
| | | | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
42
|
Cattel J, Haberkorn C, Laporte F, Gaude T, Cumer T, Renaud J, Sutherland IW, Hertz JC, Bonneville J, Arnaud V, Fustec B, Boyer S, Marcombe S, David J. A genomic amplification affecting a carboxylesterase gene cluster confers organophosphate resistance in the mosquito Aedes aegypti: From genomic characterization to high-throughput field detection. Evol Appl 2021; 14:1009-1022. [PMID: 33897817 PMCID: PMC8061265 DOI: 10.1111/eva.13177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
By altering gene expression and creating paralogs, genomic amplifications represent a key component of short-term adaptive processes. In insects, the use of insecticides can select gene amplifications causing an increased expression of detoxification enzymes, supporting the usefulness of these DNA markers for monitoring the dynamics of resistance alleles in the field. In this context, the present study aims to characterize a genomic amplification event associated with resistance to organophosphate insecticides in the mosquito Aedes aegypti and to develop a molecular assay to monitor the associated resistance alleles in the field. An experimental evolution experiment using a composite population from Laos supported the association between the over-transcription of multiple contiguous carboxylesterase genes on chromosome 2 and resistance to multiple organophosphate insecticides. Combining whole genome sequencing and qPCR on specific genes confirmed the presence of a ~100-Kb amplification spanning at least five carboxylesterase genes at this locus with the co-existence of multiple structural duplication haplotypes. Field data confirmed their circulation in South-East Asia and revealed high copy number polymorphism among and within populations suggesting a trade-off between this resistance mechanism and associated fitness costs. A dual-color multiplex TaqMan assay allowing the rapid detection and copy number quantification of this amplification event in Ae. aegypti was developed and validated on field populations. The routine use of this novel assay will improve the tracking of resistance alleles in this major arbovirus vector.
Collapse
Affiliation(s)
- Julien Cattel
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
- Present address:
Symbiosis Technologies for Insect Control (SymbioTIC)Plateforme de Recherche CyroiSte ClotildeFrance
| | - Chloé Haberkorn
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Fréderic Laporte
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Thierry Gaude
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Tristan Cumer
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Julien Renaud
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Ian W. Sutherland
- United States Navy Entomology. Center of ExcellenceNAS JacksonvilleJacksonvilleFLUSA
| | | | - Jean‐Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Victor Arnaud
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Bénédicte Fustec
- Department of MicrobiologyKhon Kaen UniversityKhon KaenThailand
- Institut de Recherche pour le DéveloppementUMR IRD 224‐CNRS 5290‐Université MontpellierMontpellier Cedex 5France
| | - Sébastien Boyer
- Medical and Veterinary EntomologyInstitut Pasteur du CambodgePhnom PenhCambodia
| | - Sébastien Marcombe
- Medical Entomology and Vector‐Borne Disease LaboratoryInstitut Pasteur du LaosVientianeLaos
| | - Jean‐Philippe David
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| |
Collapse
|
43
|
Li X, Hu S, Yin H, Zhang H, Zhou D, Sun Y, Ma L, Shen B, Zhu C. MiR-4448 is involved in deltamethrin resistance by targeting CYP4H31 in Culex pipiens pallens. Parasit Vectors 2021; 14:159. [PMID: 33726813 PMCID: PMC7962327 DOI: 10.1186/s13071-021-04665-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 12/03/2022] Open
Abstract
Background Culex pipiens (Cx. pipiens) complex, which acts as a vector of viruses and is widespread and abundant worldwide, including West Nile virus, Japanese encephalitis virus, and Sindbis virus, can cause serious vector-borne diseases affecting human health. Unfortunately, mosquitoes have developed deltamethrin resistance because of its long-term overuse, representing a major challenge to mosquito control. Understanding the molecular regulatory mechanisms of resistance is vital to control mosquitoes. MicroRNAs (miRNAs) are short non-coding RNAs that have been demonstrated to be important regulators of gene expression across a wide variety of organisms, which might function in mosquito deltamethrin resistance. In the present study, we aimed to investigate the regulatory functions of miR-4448 and CYP4H31 in the formation of insecticidal resistance in mosquito Culex pipiens pallens. Methods We used quantitative real-time reverse transcription PCR to measure miR-4448 and CYP4H31 (encoding a cytochrome P450) expression levels. The regulatory functions of miR-4448 and CYP4H31 were assessed using dual-luciferase reporter assays. Then, oral feeding, RNA interference, and the American Centers for Disease Control and Prevention bottle bioassay were used to determine miR-4448’s association with deltamethrin resistance by targeting CYP4H31in vivo. Cell Counting Kit-8 (CCK-8) was also used to detect the viability of pIB/V5-His-CYP4H31-transfected C6/36 cells after deltamethrin treatment in vitro. Results MiR-4448 was downregulated in the deltamethrin-resistant strain (DR strain), whereas CYP4H31 was downregulated in deltamethrin-susceptible strain. CYP4H31 expression was downregulated by miR-4448 recognizing and binding to its 3′ untranslated region. Functional verification experiments showed that miR-4448 overexpression resulted in lower expression of CYP4H31. The mortality of miR-4448 mimic-injected DR strain mosquitoes was higher than that of the controls. CCK-8 assays showed that CYP4H31 decreased cellular resistance to deltamethrin in vitro and the mortality of the DR strain increased when CYP4H31 was knocked down in vivo. Conclusions In mosquitoes, miR-4448 participates in deltamethrin resistance by targeting CYP4H31. The results of the present study increase our understanding of deltamethrin resistance mechanisms.![]()
Collapse
Affiliation(s)
- Xixi Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Shengli Hu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Haitao Yin
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Hongbo Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| |
Collapse
|
44
|
Insecticide resistance and underlying targets-site and metabolic mechanisms in Aedes aegypti and Aedes albopictus from Lahore, Pakistan. Sci Rep 2021; 11:4555. [PMID: 33633183 PMCID: PMC7907206 DOI: 10.1038/s41598-021-83465-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/18/2021] [Indexed: 01/31/2023] Open
Abstract
Insecticide resistant Aedes populations have recently been reported in Pakistan, imposing a threat to their control. We aimed to evaluate the susceptibility of Aedes aegypti and Aedes albopictus populations from Lahore to WHO-recommended insecticides and to investigate metabolic and target-site resistance mechanisms. For this purpose, we first carried out bioassays with the larvicides temephos and pyriproxyfen, and the adulticides malathion, permethrin, deltamethrin, alpha-cypermethrin, and etofenprox. We looked for Knockdown resistance mutations (kdr) by qPCR, High-Resolution Melt (HRM), and sequencing. In order to explore the role of detoxifying enzymes in resistance, we carried out synergist bioassay with both species and then checked the expression of CYP9M6, CYP9J10, CYP9J28, CYP6BB2, CCAe3a, and SAP2 genes in Ae. aegypti. Both species were susceptible to organophosphates and the insect growth regulator, however resistant to all pyrethroids. We are reporting the kdr haplotypes 1520Ile + 1534Cys and T1520 + 1534Cys in high frequencies in Ae. aegypti while Ae. albopictus only exhibited the alteration L882M. PBO increased the sensitivity to permethrin in Ae. aegypti, suggesting the participation of P450 genes in conferring resistance, and indeed, CYP928 was highly expressed. We presume that dengue vectors in Lahore city are resistant to pyrethroids, probably due to multiple mechanisms, such as kdr mutations and P450 overexpression.
Collapse
|
45
|
Khan HAA. Resistance to insecticides and synergism by enzyme inhibitors in Aedes albopictus from Punjab, Pakistan. Sci Rep 2020; 10:21034. [PMID: 33273631 PMCID: PMC7713067 DOI: 10.1038/s41598-020-78226-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
The widespread use of insecticides has ecological consequences such as emergence of insecticide resistance and environmental pollution. Aedes albopictus is a major vector of dengue virus in the Punjab province, Pakistan. Control of Ae. albopictus with insecticides along with source eradication is critical in the prevention and control of dengue fever but is threatened by the development of insecticide resistance. Here, field strains of Ae. albopictus from eight cities of Punjab were evaluated for resistance against temephos, deltamethrin and permethrin. For temephos, high resistance (RRLC50 > tenfold) was found in larvae of the Rawalpindi strain, moderate resistance (RRLC50 = five- to tenfold) in Multan, Faisalabad, Sialkot, Lahore and Sheikhupura strains, and low resistance (RRLC50 < fivefold) in Kasur and Sahiwal strains. In the case of deltamethrin, high resistance was seen in adults of the strain from Faisalabad, moderate resistance in the strains from Sialkot, Sheikhupura, Lahore and Kasur, and low resistance in Sahiwal, Multan and Rawalpindi strains. For permethrin, adults of all the field strains exhibited high levels of resistance. In synergism bioassays, toxicity of all the insecticides in the field strains significantly enhanced when tested in combination with piperonyl butoxide or S,S,S-tributylphosphorotrithioate, suggesting the probability of metabolic-based mechanisms of resistance. In conclusion, field strains of Ae. albopictus from Punjab exhibit resistance to temephos, deltamethrin and permethrin, which might be associated with metabolic mechanisms of resistance.
Collapse
|
46
|
Yougang AP, Kamgang B, Bahun TAW, Tedjou AN, Nguiffo-Nguete D, Njiokou F, Wondji CS. First detection of F1534C knockdown resistance mutation in Aedes aegypti (Diptera: Culicidae) from Cameroon. Infect Dis Poverty 2020; 9:152. [PMID: 33138860 PMCID: PMC7607635 DOI: 10.1186/s40249-020-00769-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Background Aedes borne viral diseases, notably dengue, are increasingly reported in Cameroon with Aedes aegypti being a major vector. Data on insecticide resistance of this vector and underlying mechanisms needed for outbreak preparedness remain scarce in Cameroon. Here, we present the nationwide distribution of insecticide resistance in Ae. aegypti and investigate the potential resistance mechanisms involved. Methods Immature stages of Ae. aegypti were collected between March and July 2017 in 13 locations across Cameroon and reared until G1/G2/G3 generation. Larval, adult bioassays, and piperonyl butoxide (PBO) synergist assays were carried out according to World Health Organization guidelines. F1534C mutation was genotyped using allele specific polymerase chain reaction in field collected adults (Go) and the polymorphism of the sodium channel gene was assessed. The χ2 test was used to compare the mortality rate between bioassays with insecticides only and bioassays after preexposure to PBO synergist. Results Larval bioassay revealed that all the three populations tested with temephos were susceptible. Adult bioassays showed a good level of susceptibility toward both pyrethroids tested, 0.25% permethrin and 0.05% deltamethrin, with six out of 10 populations susceptible. However, two populations (Douala and Edéa) were resistant (deltamethrin [73.2–92.5% mortality], permethrin [2.6–76.3% mortality]). The resistance to 4% dichlorodiphenyltrichloroethane was observed in four out of 10 populations tested (16.8–87.1% mortality). Resistance was also reported to carbamates including 0.1% propoxur (60.8–87.1% mortality) and to 0.1% bendiocarb (82.9% mortality). All populations tested were fully susceptible to 1% fenitrothion. A partial recovery of susceptibility was observed in the pyrethroid resistant population of Douala after pre-exposed to PBO suggesting the implication of cytochrome P450 monoxygenases permethrin resistance. Genotyping and sequencing detected the F1534C kdr mutation in the two pyrethroid resistant locations of Edéa and Douala, with allelic frequency of 3.3% and 33.3% respectively. However, the high genetic diversity of the sodium channel gene supports the recent introduction of this mutation in Cameroon. Conclusions This study revealed the contrasting resistance profiles to insecticides of Ae. aegypti populations in Cameroon suggesting that, instead of a unique nationwide control approach, a regionally adapted strategy will be needed to control this vector. The localised distribution of the F1534C kdr mutation supports this region-specific control strategy.
Collapse
Affiliation(s)
- Aurelie P Yougang
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Basile Kamgang
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.
| | - Theodel A Wilson Bahun
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Laboratory of Vertebrate and Invertebrate Bioecology, Faculty of Science and Technology, Marien-Ngouabi University, Brazzaville, Congo
| | - Armel N Tedjou
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Daniel Nguiffo-Nguete
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Laboratory of Biology and Applied Ecology, Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 96, Dschang, Cameroon
| | - Flobert Njiokou
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Charles S Wondji
- Centre for Research in Infectious Diseases, P.O. Box 13591, Yaoundé, Cameroon.,Liverpool School of Tropical Medicine, Pembroke place, Liverpool, L3 5QA, UK
| |
Collapse
|
47
|
Calvez E, Pommelet V, Somlor S, Pompon J, Viengphouthong S, Bounmany P, Chindavong TA, Xaybounsou T, Prasayasith P, Keosenhom S, Brey PT, Telle O, Choisy M, Marcombe S, Grandadam M. Trends of the Dengue Serotype-4 Circulation with Epidemiological, Phylogenetic, and Entomological Insights in Lao PDR between 2015 and 2019. Pathogens 2020; 9:pathogens9090728. [PMID: 32899416 PMCID: PMC7557816 DOI: 10.3390/pathogens9090728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue outbreaks have regularly been recorded in Lao People's Democratic Republic (PDR) since the first detection of the disease in 1979. In 2012, an integrated arbovirus surveillance network was set up in Lao PDR and an entomological surveillance has been implemented since 2016 in Vientiane Capital. Here, we report a study combining epidemiological, phylogenetic, and entomological analyzes during the largest DENV-4 epidemic ever recorded in Lao PDR (2015-2019). Strikingly, from 2015 to 2019, we reported the DENV-4 emergence and spread at the country level after two large epidemics predominated by DENV-3 and DENV-1, respectively, in 2012-2013 and 2015. Our data revealed a significant difference in the median age of the patient infected by DENV-4 compared to the other serotypes. Phylogenetic analysis demonstrated the circulation of DENV-4 Genotype I at the country level since at least 2013. The entomological surveillance showed a predominance of Aedesaegypti compared to Aedesalbopictus and high abundance of these vectors in dry and rainy seasons between 2016 and 2019, in Vientiane Capital. Overall, these results emphasized the importance of an integrated approach to evaluate factors, which could impact the circulation and the epidemiological profile of dengue viruses, especially in endemic countries like Lao PDR.
Collapse
Affiliation(s)
- Elodie Calvez
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
- Correspondence:
| | - Virginie Pommelet
- Epidemiology Unit, Institut Pasteur du Lao PDR, Vientiane 01030, Laos;
| | - Somphavanh Somlor
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Julien Pompon
- Department of Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
- MIVEGEC, University of Montpellier, CNRS, IRD, 34394 Montpellier, France
| | - Souksakhone Viengphouthong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Phaithong Bounmany
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Thep Aksone Chindavong
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Thonglakhone Xaybounsou
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Phoyphaylinh Prasayasith
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Sitsana Keosenhom
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
| | - Paul T. Brey
- Medical Entomology and Vector Borne Disease Unit, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (P.T.B.); (S.M.)
| | - Olivier Telle
- Centre de Sciences Humaines (CHS), Centre National de la Recherche Scientifique (CNRS), Delhi 110001, India;
- Center for Policy Research (CPR), Delhi 110001, India
| | - Marc Choisy
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK;
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam
| | - Sébastien Marcombe
- Medical Entomology and Vector Borne Disease Unit, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (P.T.B.); (S.M.)
| | - Marc Grandadam
- Arbovirus and Emerging Viral Diseases Laboratory, Institut Pasteur du Lao PDR, Vientiane 01030, Laos; (S.S.); (S.V.); (P.B.); (T.A.C.); (T.X.); (P.P.); (S.K.); (M.G.)
- Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| |
Collapse
|
48
|
Saeung M, Ngoen-Klan R, Thanispong K, Muenworn V, Bangs MJ, Chareonviriyaphap T. Susceptibility of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to Temephos in Thailand and Surrounding Countries. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1207-1220. [PMID: 32159772 DOI: 10.1093/jme/tjaa035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Aedes-borne virus disease control relies on insecticides to interrupt transmission. Temephos remains a key chemical for control of immature stage Aedes in Thailand and much of Southeast Asia. However, repeated use of insecticides may result in selection for resistance in vector populations, thus compromising operational intervention. Herein, the phenotypic response to temephos by Aedes aegypti (L.) and Aedes albopictus (Skuse) collected in Thailand and surrounding countries is presented. Data from 345 collection sites are included: 283 from literature review (244 sites with Ae. aegypti, 21 with Ae. albopictus, and 18 having both species sampled), plus 62 locations with Ae. aegypti in Thailand conducted between 2014 and 2018. Susceptibility assays followed WHO guidelines using the recommended discriminating dose of temephos (0.012 mg/liter) against late third to early fourth instar Ae. aegypti. Findings revealed 34 locations with susceptible Ae. aegypti, 13 with suspected resistance, and 15 indicating resistance. Published data between 1999 and 2019 in Thailand found Ae. aegypti resistant in 73 of 206 collection sites, whereas 3 locations from 11 sampled with low-level resistant in Ae. albopictus. From surrounding countries conducting temephos assays (Cambodia, Lao PDR, Myanmar, Malaysia, and Singapore), resistance is present in Ae. aegypti and Ae. albopictus from 27 of 56 and 19 of 28 locations, respectively. Routine insecticide susceptibility monitoring should be an operational requirement in vector control programs. Given the wide distribution and apparent increase in temephos-resistance, alternative larvicidal compounds must be considered if chemical control is to remain a viable vector control strategy.
Collapse
Affiliation(s)
- Manop Saeung
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Ratchadawan Ngoen-Klan
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Kanutcharee Thanispong
- Division of Vector Borne Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Vithee Muenworn
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Michael J Bangs
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
- Public Health & Malaria Control Department, PT Freeport Indonesia/International SOS, Kuala Kencana, Papua, Indonesia
| | | |
Collapse
|
49
|
Pinch M, Rodriguez SD, Mitra S, Kandel Y, Moore E, Hansen IA. Low Levels of Pyrethroid Resistance in Hybrid Offspring of a Highly Resistant and a More Susceptible Mosquito Strain. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5866135. [PMID: 32610346 PMCID: PMC7329315 DOI: 10.1093/jisesa/ieaa060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 04/30/2023]
Abstract
The use of insecticides has been a central approach to control disease-transmitting mosquitoes for the last century. The high prevalence of pyrethroid use as public health insecticides has resulted in the evolution of pyrethroid resistance in many populations of Aedes aegypti (Linnaeus) (Diptera: Culicidae), throughout its global distribution range. Insecticide resistance is often correlated with an associated fitness cost. In this project, we studied the phenotypes of hybrid mosquitoes derived from crossing a pyrethroid-resistant strain of Ae. aegypti (Puerto Rico [PR]) with a more susceptible one (Rockefeller [ROCK]). We first sequenced and compared the para gene of both original strains. We then crossed males from one strain with females of the other, creating two hybrids (Puertofeller, Rockorico). We used a Y-tube choice assay to measure the attraction of these strains towards a human host. We then compared the levels of pyrethroid resistance in the different strains. We found three known resistance mutations in the para gene sequence of the PR strain. In our attraction assays, PR females showed lower attraction to humans, than the ROCK females. Both hybrid strains showed strong attraction to a human host. In the insecticide resistance bottle assays, both hybrid strains showed marginal increases in resistance to permethrin compared to the more susceptible ROCK strain. These results suggest that hybrids of sensitive and permethrin-resistant mosquitoes have an incremental advantage compared to more susceptible mosquitoes when challenged with permethrin. This explains the rapid spread of permethrin resistance that was observed many times in the field.
Collapse
Affiliation(s)
- Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, NM
- Corresponding author, e-mail:
| | | | - Soumi Mitra
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Yashoda Kandel
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Emily Moore
- Department of Biology, New Mexico State University, Las Cruces, NM
- Current address: Department of Pediatrics – Occupational Therapy, University of New Mexico School of Medicine, Albuquerque, NM 87106
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM
| |
Collapse
|
50
|
Balaska S, Fotakis EA, Kioulos I, Grigoraki L, Mpellou S, Chaskopoulou A, Vontas J. Bioassay and molecular monitoring of insecticide resistance status in Aedes albopictus populations from Greece, to support evidence-based vector control. Parasit Vectors 2020; 13:328. [PMID: 32600453 PMCID: PMC7325023 DOI: 10.1186/s13071-020-04204-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/20/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Aedes albopictus has a well-established presence in southern European countries, associated with recent disease outbreaks (e.g. chikungunya). Development of insecticide resistance in the vector is a major concern as its control mainly relies on the use of biocides. Data on the species' resistance status are essential for efficient and sustainable control. To date the insecticide resistance status of Ae. albopictus populations from Greece against major insecticides used in vector control remains largely unknown. METHODS We investigated the insecticide resistance status of 19 Ae. albopictus populations from 11 regions of Greece. Bioassays were performed against diflubenzuron (DFB), Bacillus thuringiensis var. israelensis (Bti), deltamethrin and malathion. Known insecticide resistance loci were molecularly analysed, i.e. voltage-gated sodium channel (VGSC) mutations associated with pyrethroid resistance; presence and frequency of carboxylesterases 3 (CCEae3a) and 6 (CCEae6a) gene amplification associated with organophosphate (OP) resistance and; chitin synthase-1 (CHS-1) for the possible presence of DFB resistance mutations. RESULTS Bioassays showed full susceptibility to DFB, Bti and deltamethrin, but resistance against the OP malathion (range of mortality: 55.30-91.40%). VGSC analysis revealed a widespread distribution of the mutations F1534C (in all populations, with allelic frequencies between 6.6-68.3%), and I1532T (in 6 populations; allelic frequencies below 22.70%), but absence of V1016G. CCE gene amplifications were recorded in 8 out of 11 populations (overall frequency: 33%). Co-presence of the F1534C mutation and CCEae3a amplification was reported in 39 of the 156 samples analysed by both assays. No mutations at the CHS-1 I1043 locus were detected. CONCLUSIONS The results indicate: (i) the suitability of larvicides DFB and Bti for Ae. albopictus control in Greece; (ii) possible incipient pyrethroid resistance due to the presence of kdr mutations; and (iii) possible reduced efficacy of OPs, in a scenario of re-introducing them for vector control. The study highlights the need for systematic resistance monitoring for developing and implementing appropriate evidence-based control programmes.
Collapse
Affiliation(s)
- Sofia Balaska
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Emmanouil A. Fotakis
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| | - Ilias Kioulos
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| | - Linda Grigoraki
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Spyridoula Mpellou
- Bioefarmoges Eleftheriou LP -Integrated Mosquito Control, Marathon, 19007 Greece
| | | | - John Vontas
- Department of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| |
Collapse
|