1
|
Lim EQ, Ahemad N, Yap MKK. High-throughput virtual screening, pharmacophore modelling and antagonist effects of small molecule inhibitors against cytotoxin-induced cytotoxicity. J Biomol Struct Dyn 2025; 43:2014-2028. [PMID: 38100546 DOI: 10.1080/07391102.2023.2293275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Cobra venom cytotoxins (CTX) cause dermonecrosis in envenomed patients who suffered from limb amputations due to the limitation of serotherapy-based antivenoms. This study aimed to identify small molecule inhibitors against CTX. A structure-based high-throughput virtual screening (HTVS) was conducted based on a conserved CTX, using the Natural Product Activity and Species Source (NPASS) screening library. The hits were valerenic acid, 1-oxo-2H-isoquinoline-4-carboxylic acid, acenaphthene, and 5-bromopyrrole-2-carboxamide, which interacted with contemporary antivenom binding site A and functional loops I-III of CTX, respectively, in molecular docking studies. Furthermore, molecular dynamic simulations were performed along with analysis of ligand fitness through their pharmacophore and pharmacokinetics properties. The antagonist effects of these hits on CTX-induced cytotoxicity were examined in human keratinocytes (HaCaT). Despite having a low binding affinity (KD = 14.45 × 10-4 M), acenaphthene demonstrated a significant increase of cell viability at 6 h and 24 h in experimental envenomed HaCaT. It also demonstrated the highest neutralization potency against CTX with a median effective concentration (EC50) of 0.05 mL/mg. Acenaphthene interacted with the functional loop II, which is the crucial cytotoxic site of CTX. It has an aromatic ring as its primary pharmacophoric feature, commonly used for rational drug design. In conclusion, acenaphthene could be a promising lead compound as a small molecule inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- En Qi Lim
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
2
|
Mao YC, Liu PY, Lai KL, Luo Y, Chen KT, Lai CS. Clinical Characteristics of Snakebite Envenomings in Taiwan. Toxins (Basel) 2024; 17:14. [PMID: 39852967 PMCID: PMC11769513 DOI: 10.3390/toxins17010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
Snakebite envenomings continue to represent a major public health concern in Taiwan because of the presence of various venomous snakes whose habitats intersect with human activities. This review provides a comprehensive analysis of the clinical characteristics, complications, and management strategies associated with snakebite envenomings in Taiwan. Taiwan is inhabited by six principal venomous snakes: Trimeresurus stejnegeri stejnegeri, Protobothrops mucrosquamatus, Deinagkistrodon acutus, Daboia siamensis, Naja atra, and Bungarus multicinctus, each presenting distinct clinical challenges. The clinical manifestations vary from local symptoms such as pain, swelling, and necrosis to systemic complications including neurotoxicity, coagulopathy, and organ failure, depending on the species. Notable complications arising from these snakebite envenomings include necrotizing soft tissue infection, compartment syndrome, respiratory failure, and acute kidney injury, often necessitating intensive medical interventions. This review highlights the critical importance of early diagnosis, the prompt administration of antivenoms, and multidisciplinary care to improve patient outcomes and reduce healthcare costs. Future research is encouraged to enhance treatment efficacy, improve public awareness, and develop targeted prevention strategies. By identifying gaps in current knowledge and practice, this work contributes to the global literature on envenoming management and serves as a foundation for advancing clinical protocols and reducing snakebite-related morbidity and mortality in Taiwan.
Collapse
Affiliation(s)
- Yan-Chiao Mao
- Department of Medical Toxicology, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 407204, Taiwan;
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No.250, Wuxing St., Xinyi Dist., Taipei 110301, Taiwan
- School of Medicine, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei 114201, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 402202, Taiwan
| | - Po-Yu Liu
- Department of Internal Medicine, Division of Infecious Diseases, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 407204, Taiwan;
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 402202, Taiwan
| | - Kuo-Lung Lai
- Department of Internal Medicine, Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 407204, Taiwan;
| | - Yi Luo
- Liuzhou Integrated Chinese and Western Medicine Snake Injury Treatment Center, Liuzhou Traditional Chinese Medicine Hospital, Liuzhou 545001, China;
| | - Kuang-Ting Chen
- Department of Chinese Medicine, Chang Bing Show Chwan Memorial Hospital, No. 6, Lugong Rd., Lukang Township, Changhua County 505029, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, No. 100, Section 1, Jingmao Road, Beitun District, Taichung 406040, Taiwan
| | - Chih-Sheng Lai
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung 402202, Taiwan
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Taichung Veterans General Hospital, 1650 Taiwan Boulevard Sect. 4, Taichung 407204, Taiwan
| |
Collapse
|
3
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
4
|
Tijani Y, Zanna H, Hock TC, Shettima A, Onu A, Sugun M, Ehizibolo D, Shuaibu AB, Habib AG. Experimental production and efficacy testing of mono-specific antibodies against the venom of carpet viper (Echis ocellatus) from savannah Nigeria. Toxicon 2024; 248:107845. [PMID: 38960288 DOI: 10.1016/j.toxicon.2024.107845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Echis ocellatus is one of the commonest snakes responsible for envenomation in Nigeria. Antivenom is the only effective treatment, but the country suffers from a limited supply of effective antivenom. This study therefore aimed to explore the feasibility of effective, mono-specific antibodies production through immunization in rabbits using the venom of Echis ocellatus from Nigeria. The World Health Organization guide on antivenom production was employed in the immunization and the resultant antibodies were purified using protein A agarose column chromatography. Antibody titer reached a high plateau by 2-month immunization, and SDS PAGE of the sera suggests the presence of intact immunoglobulins accompanied with the heavy (50 kDa) and light (25 kDa) chains. The venom has an intravenous LD50 of 0.35 mg/kg in mice, and the venom lethality at a challenge dose of 2 LD50 was effectively neutralized by the antibodies with a potency value of 0.83 mg venom per g antibodies. The antibodies also neutralized the procoagulant activity of the venom with an effective dose (ED) of 13 ± 0.66 μl, supporting its use for hemotoxic envenomation. The study establishes the feasibility of developing effective, mono-specific antibodies against the Nigerian Carpet viper.
Collapse
Affiliation(s)
- Yahaya Tijani
- Department of Biochemistry, Faculty of Life Sciences, University of Maiduguri, Nigeria.
| | - Hassan Zanna
- Department of Biochemistry, Faculty of Life Sciences, University of Maiduguri, Nigeria
| | - Tan Choo Hock
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Abubakar Shettima
- Department of Microbiology, Faculty of Life Sciences, University of Maiduguri, Nigeria.
| | - Andrew Onu
- Department of Biochemistry, Faculty of Chemical and Life Science, Usman Danfodiyo University Sokoto, Nigeria
| | - Manasa Sugun
- Department of Bacteria and Vaccine Production, National Veterinary Research Institute, Plateau State, Nigeria
| | - David Ehizibolo
- Department of Infectious and Trans-boundary Animal Diseases, National Veterinary Research Institute, Plateau State, Nigeria
| | - Abdulmalik Bello Shuaibu
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Usman Danfodiyo University, Sokoto, Nigeria
| | | |
Collapse
|
5
|
Lin CC, Wang CC, Ou Yang CH, Liu CC, Yu JS, Fann WC, Chen YC, Shih CP. The changes and the potential clinical applications of cytokines in Taiwan's major venomous snakebites patients. Toxicon 2024; 247:107843. [PMID: 38964621 DOI: 10.1016/j.toxicon.2024.107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Taiwan habu (Protobothrops mucrosquamatus), green bamboo viper (Viridovipera stejnegeri), and Taiwan cobra (Naja atra) are the most venomous snakebites in Taiwan. Patients commonly present with limb swelling but misdiagnosis rates are high, and currently available diagnostic tools are limited. This study explores the immune responses in snakebite patients to aid in differential diagnosis. METHODS This prospective observational study investigated the changes in cytokines in snakebite patients and their potential for diagnosis. RESULTS Elevated pro-inflammatory cytokines IL-6 and TNF-α were observed in all snakebite patients compared to the healthy control group. While no significant disparities were observed in humoral immune response cytokines, there were significant differences in IFN-γ levels, with significantly higher IL-10 levels in patients bitten by cobras. Patients with TNF-α levels exceeding 3.02 pg/mL were more likely to have been bitten by a cobra. CONCLUSION This study sheds light on the immune responses triggered by various venomous snakebites, emphasizing the potential of cytokine patterns for snakebite-type differentiation. Larger studies are needed to validate these findings for clinical use, ultimately improving snakebite diagnosis and treatment.
Collapse
Affiliation(s)
- Chih-Chuan Lin
- Department of Emergency Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Cheng Wang
- Department of Traumatology and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taiwan
| | - Chun-Hsiang Ou Yang
- Department of Traumatology and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taiwan
| | - Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan; Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Wen-Chih Fann
- Department of Emergency Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yen-Chia Chen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Pang Shih
- Department of Healthcare Management, Yuanpei University of Medical Technology, HsinChu, Taiwan.
| |
Collapse
|
6
|
Wang WC, Chang J, Lee CH, Chiang YW, Leu SJ, Mao YC, Chiang JR, Yang CK, Wu CJ, Yang YY. Phage display-derived alpaca nanobodies as potential therapeutics for Naja atra snake envenomation. Appl Environ Microbiol 2024; 90:e0012124. [PMID: 38980046 PMCID: PMC11337809 DOI: 10.1128/aem.00121-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Naja atra, the Chinese cobra, is a major cause of snake envenomation in Asia, causing hundreds of thousands of clinical incidents annually. The current treatment, horse serum-derived antivenom, has unpredictable side effects and presents manufacturing challenges. This study focused on developing new-generation snake venom antidotes by using microbial phage display technology to derive nanobodies from an alpaca immunized with attenuated N. atra venom. Following confirmation of the immune response in the alpaca, we amplified VHH genes from isolated peripheral blood mononuclear cells and constructed a phage display VHH library of 1.0 × 107 transformants. After four rounds of biopanning, the enriched phages exhibited increased binding activity to N. atra venom. Four nanobody clones with high binding affinities were selected: aNAH1, aNAH6, aNAH7, and aNAH9. Specificity testing against venom from various snake species, including two Southeast Asian cobra species, revealed nanobodies specific to the genus Naja. An in vivo mouse venom neutralization assay demonstrated that all nanobodies prolonged mouse survival and aNAH6 protected 66.6% of the mice from the lethal dosage. These findings highlight the potential of phage display-derived nanobodies as valuable antidotes for N. atra venom, laying the groundwork for future applications in snakebite treatment.IMPORTANCEChinese cobra venom bites present a formidable medical challenge, and current serum treatments face unresolved issues. Our research applied microbial phage display technology to obtain a new, effective, and cost-efficient treatment approach. Despite interest among scientists in utilizing this technology to screen alpaca antibodies against toxins, the available literature is limited. This study makes a significant contribution by introducing neutralizing antibodies that are specifically tailored to Chinese cobra venom. We provide a comprehensive and unbiased account of the antibody construction process, accompanied by thorough testing of various nanobodies and an assessment of cross-reactivity with diverse snake venoms. These nanobodies represent a promising avenue for targeted antivenom development that bridges microbiology and biotechnology to address critical health needs.
Collapse
Affiliation(s)
- Wei-Chu Wang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hsin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wei Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
- Foundation for Poison Control, Taipei, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yan-Chiao Mao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Medicine, National Defense Medical Centre, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jen-Ron Chiang
- Bioproduction Plants, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chun-Kai Yang
- Interdisciplinary Research on Ecology and Sustainability, National Dong Hwa University, Hualien, Taiwan
| | - Chao-Jung Wu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Yuan Yang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Bartlett KE, Hall SR, Rasmussen SA, Crittenden E, Dawson CA, Albulescu LO, Laprade W, Harrison RA, Saviola AJ, Modahl CM, Jenkins TP, Wilkinson MC, Gutiérrez JM, Casewell NR. Dermonecrosis caused by a spitting cobra snakebite results from toxin potentiation and is prevented by the repurposed drug varespladib. Proc Natl Acad Sci U S A 2024; 121:e2315597121. [PMID: 38687786 PMCID: PMC11087757 DOI: 10.1073/pnas.2315597121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 05/02/2024] Open
Abstract
Snakebite envenoming is a neglected tropical disease that causes substantial mortality and morbidity globally. The venom of African spitting cobras often causes permanent injury via tissue-destructive dermonecrosis at the bite site, which is ineffectively treated by current antivenoms. To address this therapeutic gap, we identified the etiological venom toxins in Naja nigricollis venom responsible for causing local dermonecrosis. While cytotoxic three-finger toxins were primarily responsible for causing spitting cobra cytotoxicity in cultured keratinocytes, their potentiation by phospholipases A2 toxins was essential to cause dermonecrosis in vivo. This evidence of probable toxin synergism suggests that a single toxin-family inhibiting drug could prevent local envenoming. We show that local injection with the repurposed phospholipase A2-inhibiting drug varespladib significantly prevents local tissue damage caused by several spitting cobra venoms in murine models of envenoming. Our findings therefore provide a therapeutic strategy that may effectively prevent life-changing morbidity caused by snakebite in rural Africa.
Collapse
Affiliation(s)
- Keirah E. Bartlett
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Steven R. Hall
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Sean A. Rasmussen
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Sciences Centre and Dalhousie University, Halifax, NSB3H 1V8, Canada
| | - Edouard Crittenden
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Charlotte A. Dawson
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - William Laprade
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens LyngbyDK-2800, Denmark
| | - Robert A. Harrison
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO80045
| | - Cassandra M. Modahl
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens LyngbyDK-2800, Denmark
| | - Mark C. Wilkinson
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José11501–2060, Costa Rica
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
- Centre for Drugs & Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, LiverpoolL3 5QA, United Kingdom
| |
Collapse
|
8
|
Liu CC, Lin CC, Liou MH, Hsiao YC, Chu LJ, Wang PJ, Liu CH, Wang CY, Chen CH, Yu JS. Development of antibody-detection ELISA based on beta-bungarotoxin for evaluation of the neutralization potency of equine plasma against Bungarus multicinctus in Taiwan. Int J Biol Macromol 2024; 262:130080. [PMID: 38354918 DOI: 10.1016/j.ijbiomac.2024.130080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Animal testing has been the primary approach to assess the neutralization potency of antivenom for decades. However, the necessity to sacrifice large numbers of experimental animals during this process has recently raised substantial welfare concerns. Furthermore, the laborious and expensive nature of animal testing highlights the critical need to develop alternative in vitro assays. Here, we developed an antibody-detection enzyme-linked immunosorbent assay (ELISA) technique as an alternative approach to evaluate the neutralization potency of hyperimmunized equine plasma against B. multicinctus, a medically important venomous snake in Taiwan. Firstly, five major protein components of B. multicinctus venom, specifically, α-BTX, β-BTX, γ-BTX, MTX, and NTL, were isolated. To rank their relative medical significance, a toxicity score system was utilized. Among the proteins tested, β-BTX presenting the highest score was regarded as the major toxic component. Subsequently, antibody-detection ELISA was established based on the five major proteins and used to evaluate 55 hyperimmunized equine plasma samples with known neutralization potency. ELISA based on β-BTX, the most lethal protein according to the toxicity score, exhibited the best sensitivity (75.6 %) and specificity (100 %) in discriminating between high-potency and low-potency plasma, supporting the hypothesis that highly toxic proteins offer better discriminatory power for potency evaluation. Additionally, a phospholipase A2 (PLA2) competition process was implemented to eliminate the antibodies targeting toxicologically irrelevant domains. This optimization greatly enhanced the performance of our assay, resulting in sensitivity of 97.6 % and specificity of 92.9 %. The newly developed antibody-detection ELISA presents a promising alternative to in vivo assays to determine the neutralization potency of antisera against B. multicinctus during the process of antivenom production.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Ming-Han Liou
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Po-Jung Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hsin Liu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Cyong-Yi Wang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Chao-Hung Chen
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 11561, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan..
| |
Collapse
|
9
|
Hall SR, Rasmussen SA, Crittenden E, Dawson CA, Bartlett KE, Westhorpe AP, Albulescu LO, Kool J, Gutiérrez JM, Casewell NR. Repurposed drugs and their combinations prevent morbidity-inducing dermonecrosis caused by diverse cytotoxic snake venoms. Nat Commun 2023; 14:7812. [PMID: 38097534 PMCID: PMC10721902 DOI: 10.1038/s41467-023-43510-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/11/2023] [Indexed: 12/17/2023] Open
Abstract
Morbidity from snakebite envenoming affects approximately 400,000 people annually. Tissue damage at the bite-site often leaves victims with catastrophic life-long injuries and is largely untreatable by current antivenoms. Repurposed small molecule drugs that inhibit specific snake venom toxins show considerable promise for tackling this neglected tropical disease. Using human skin cell assays as an initial model for snakebite-induced dermonecrosis, we show that the drugs 2,3-dimercapto-1-propanesulfonic acid (DMPS), marimastat, and varespladib, alone or in combination, inhibit the cytotoxicity of a broad range of medically important snake venoms. Thereafter, using preclinical mouse models of dermonecrosis, we demonstrate that the dual therapeutic combinations of DMPS or marimastat with varespladib significantly inhibit the dermonecrotic activity of geographically distinct and medically important snake venoms, even when the drug combinations are delivered one hour after envenoming. These findings strongly support the future translation of repurposed drug combinations as broad-spectrum therapeutics for preventing morbidity caused by snakebite.
Collapse
Affiliation(s)
- Steven R Hall
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Sean A Rasmussen
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Sciences Centre and Dalhousie University, 7th Floor of MacKenzie Building, 5788 University Avenue, Halifax, NS, B3H 1V8, Canada
| | - Edouard Crittenden
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Charlotte A Dawson
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Keirah E Bartlett
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Adam P Westhorpe
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH, Amsterdam, The Netherlands
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, PO Box 11501-2060, San José, Costa Rica
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
- Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
10
|
M Morris N, A Blee J, Hauert S. Global parameter optimisation and sensitivity analysis of antivenom pharmacokinetics and pharmacodynamics. Toxicon 2023; 232:107206. [PMID: 37356552 DOI: 10.1016/j.toxicon.2023.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
In recent years it has become possible to design snakebite antivenoms with diverse pharmacokinetic properties. Owing to the pharmacokinetic variability of venoms, the choice of antivenom scaffold may influence a treatment's neutralisation coverage. Computation offers a useful medium through which to assess the pharmacokinetics and pharmacodynamics of envenomation-treatment systems, as antivenoms with identical neutralising capacities can be simulated. In this study, we simulate envenomation and treatment with a variety of antivenoms, to define the properties of effective antivenoms. Systemic envenomation and treatment were described using a two-compartment pharmacokinetic model. Treatment of Naja sumatrana and Cryptelytrops purpureomaculatus envenomation was simulated with a set of 200,000 theoretical antivenoms across 10 treatment time delays. These two venoms are well-characterised and have differing pharmacokinetic properties. The theoretical antivenom set varied across molecular weight, dose, kon, koff, and valency. The best and worst treatments were identified using an area under the curve metric, and a global sensitivity analysis was performed to quantify the influence of the input parameters on treatment outcome. The simulations show that scaffolds of diverse molecular formats can be effective. Molecular weight and valency have a negligible direct impact on treatment outcome, however low molecular weight scaffolds offer more flexibility across the other design parameters, particularly when treatment is delayed. The simulations show kon to primarily mediate treatment efficacy, with rates above 105 M-1s-1 required for the most effective treatments. koff has the greatest impact on the performance of less effective scaffolds. While the same scaffold preferences for improved treatment are seen for both model snakes, the parameter bounds for C. purpureomaculatus envenomation are more constrained. This paper establishes a computational framework for the optimisation of antivenom design.
Collapse
Affiliation(s)
- Natalie M Morris
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Johanna A Blee
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Sabine Hauert
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| |
Collapse
|
11
|
Hiu JJ, Fung JKY, Tan HS, Yap MKK. Unveiling the functional epitopes of cobra venom cytotoxin by immunoinformatics and epitope-omic analyses. Sci Rep 2023; 13:12271. [PMID: 37507457 PMCID: PMC10382524 DOI: 10.1038/s41598-023-39222-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Approximate 70% of cobra venom is composed of cytotoxin (CTX), which is responsible for the dermonecrotic symptoms of cobra envenomation. However, CTX is generally low in immunogenicity, and the antivenom is ineffective in attenuating its in vivo toxicity. Furthermore, little is known about its epitope properties for empirical antivenom therapy. This study aimed to determine the epitope sequences of CTX using the immunoinformatic analyses and epitope-omics profiling. A conserved CTX was used in this study to determine its T-cell and B-cell epitope sequences using immunoinformatic tools and molecular docking simulation with different Human Leukocyte Antigens (HLAs). The potential T-cell and B-cell epitopes were 'KLVPLFY,' 'CPAGKNLCY,' 'MFMVSTPTK,' and 'DVCPKNSLL.' Molecular docking simulations disclosed that the HLA-B62 supertype exhibited the greatest binding affinity towards cobra venom cytotoxin. The namely L7, G18, K19, N20, M25, K33, V43, C44, K46, N47, and S48 of CTX exhibited prominent intermolecular interactions with HLA-B62. The multi-enzymatic-limited-digestion/liquid chromatography-mass spectrometry (MELD/LC-MS) also revealed three potential epitope sequences as 'LVPLFYK,' 'MFMVS,' and 'TVPVKR'. From different epitope mapping approaches, we concluded four potential epitope sites of CTX as 'KLVPLFYK', 'AGKNL', 'MFMVSTPKVPV' and 'DVCPKNSLL'. Site-directed mutagenesis of these epitopes confirmed their locations at the functional loops of CTX. These epitope sequences are crucial to CTX's structural folding and cytotoxicity. The results concluded the epitopes that resided within the functional loops constituted potential targets to fabricate synthetic epitopes for CTX-targeted antivenom production.
Collapse
Affiliation(s)
- Jia Jin Hiu
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | - Jared Kah Yin Fung
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| | | |
Collapse
|
12
|
Liu CC, Chou YS, Wu CJ, Hsieh CH, Hsiao YC, Chu LJ, Ouyang CH, Lin CC, Liaw GW, Chen CK. Detection of cytotoxins by sandwich-ELISA for discrimination of cobra envenomation and indication of necrotic severity. Int J Biol Macromol 2023; 242:124969. [PMID: 37210050 DOI: 10.1016/j.ijbiomac.2023.124969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Snake envenoming is both a healthcare and socioeconomic problem for developing countries and underserved communities. In Taiwan, clinical management of Naja atra envenomation is a major challenge, since cobra venom-induced symptoms are usually confused with hemorrhagic snakebites and current antivenom treatments do not effectively prevent venom-induced necrosis for which early surgical debridement should be administered. Identification and validation of biomarkers of cobra envenomation is critical for progress in setting a realistic goal for snakebite management in Taiwan. Previously, cytotoxin (CTX) was determined as one of potential biomarker candidates; however, its ability to discriminate cobra envenoming remains to be verified, especially in clinical practice. In this study, we selected a monoclonal single-chain variable fragment (scFv) and a polyclonal antibody to develop a sandwich enzyme-linked immunosorbent assay (ELISA) for CTX detection, which successfully recognized CTX from N. atra venom over that from other snake species. Using this specific assay, the CTX concentration in envenoming mice was shown to remain consistent in about 150 ng/mL during the 2-hour post-injection period. The measured concentration was highly correlated with the size of local necrosis in mouse dorsal skin, which the correlation coefficient is about 0.988. Furthermore, our ELISA method displayed 100 % of specificity and sensitivity in discriminating cobra envenoming among snakebite victims through CTX detection and the level of CTX in victim plasma was ranged from 5.8 to 253.9 ng/mL. Additionally, patients developed tissue necrosis at plasma CTX concentrations higher than 150 ng/mL. Thus, CTX not only serves as a verified biomarker for discrimination of cobra envenoming but also a potential indicator of severity of local necrosis. In this context, detection of CTX may facilitate reliable identification of envenoming species and improve snakebite management in Taiwan.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shao Chou
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City 23741, Taiwan
| | - Cho-Ju Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City 23741, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Hsiang Ouyang
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Geng-Wang Liaw
- Department of Emergency Medicine, Yeezen General Hospital, Taoyuan 32645, Taiwan.
| | - Chun-Kuei Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
13
|
Chen FC, Ismail AK, Mao YC, Hsu CH, Chiang LC, Shih CC, Tzeng YS, Lin CS, Liu SH, Ho CH. Application of Sonographic Assessments of the Rate of Proximal Progression to Monitor Protobothrops mucrosquamatus Bite-Related Local Envenomation: A Prospective Observational Study. Trop Med Infect Dis 2023; 8:tropicalmed8050246. [PMID: 37235294 DOI: 10.3390/tropicalmed8050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Patients bitten by Protobothrops mucrosquamatus typically experience significant pain, substantial swelling, and potentially blister formation. The appropriate dosage and efficacy of FHAV for alleviating local tissue injury remain uncertain. Between 2017 and 2022, 29 snakebite patients were identified as being bitten by P. mucrosquamatus. These patients underwent point-of-care ultrasound (POCUS) assessments at hourly intervals to measure the extent of edema and evaluate the rate of proximal progression (RPP, cm/hour). Based on Blaylock's classification, seven patients (24%) were classified as Group I (minimal), while 22 (76%) were classified as Group II (mild to severe). In comparison to Group I patients, Group II patients received more FHAV (median of 9.5 vials vs. two vials, p-value < 0.0001) and experienced longer median complete remission times (10 days vs. 2 days, p-value < 0.001). We divided the Group II patients into two subgroups based on their clinical management. Clinicians opted not to administer antivenom treatment to patients in Group IIA if their RPP decelerated. In contrast, for patients in Group IIB, clinicians increased the volume of antivenom in the hope of reducing the severity of swelling or blister formation. Patients in Group IIB received a significantly higher median volume of antivenom (12 vials vs. six vials; p-value < 0.001) than those in Group IIA. However, there was no significant difference in outcomes (disposition, wound necrosis, and complete remission times) between subgroups IIA and IIB. Our study found that FHAV does not appear to prevent local tissue injuries, such as swelling progression and blister formation, immediately after administration. When administering FHAV to patients bitten by P. mucrosquamatus, the deceleration of RPP may serve as an objective parameter to help clinicians decide whether to withhold FHAV administration.
Collapse
Affiliation(s)
- Feng-Chen Chen
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11402, Taiwan
| | - Ahmad Khaldun Ismail
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Chih-Hsiung Hsu
- Health Service and Readiness Section, Armed Forces Taoyuan General Hospital, Taoyuan 325, Taiwan
| | - Liao-Chun Chiang
- National Tsing Hua University, College of Life Sciences, Hsinchu 300044, Taiwan
| | - Chang-Chih Shih
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11402, Taiwan
| | - Yuan-Sheng Tzeng
- Division of Plastic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11402, Taiwan
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11402, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Cheng-Hsuan Ho
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11402, Taiwan
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| |
Collapse
|
14
|
Lu HY, Mao YC, Liu PY, Lai KL, Wu CY, Tsai YC, Yen JH, Chen IC, Lai CS. Clinical predictors of early surgical intervention in patients with venomous snakebites. Eur J Med Res 2023; 28:131. [PMID: 36945006 PMCID: PMC10029284 DOI: 10.1186/s40001-023-01101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Venomous snakebites induce tissue destruction and secondary infection; however, the optimal timing of surgical intervention for these complications remains unknown. This study assessed the clinical predictors of early surgical intervention in patients with snakebites. METHODS This retrospective study included 63 patients (45 men and 18 women) with venomous snakebites. In addition to the snake species, the demographics, affected body parts, clinical characteristics, and ultrasound findings of the patients in the surgical (32 patients) and nonsurgical (31 patients) groups were analyzed and compared. RESULTS A higher incidence of acute compartment syndrome, local ecchymosis, skin necrosis, bullae, blisters, and fever was found in the surgical group than in the nonsurgical group, and ultrasound findings of the absence of Doppler flow were more frequently noted in the surgical group than in the nonsurgical group. After adjustment using a multivariate logistic regression model, only advanced age, Naja atra bite, local ecchymosis, and bulla or blister formation remained significant factors for surgical intervention. Furthermore, comparison of the outcomes of patients who received early (≤ 24 h) and late (> 24 h) surgical intervention revealed that the duration of continuous negative pressure wound therapy (6 vs. 15 days; P = 0.006), duration of hospital stay (13 vs. 26 days; P = 0.002), and duration of outpatient follow-up (15 vs. 36 days; P < 0.001) were significantly lower in patients who received early surgical intervention. The final reconstructive surgery was simple among the patients who received surgical intervention within 24 h of being bitten (P = 0.028). CONCLUSION In patients with snakebites, advanced age, high-risk clinical manifestations (e.g., local ecchymosis and bulla or blister formation), and Naja atra envenomation are predictors of surgical intervention within 24 h.
Collapse
Affiliation(s)
- Hsiao-Yu Lu
- Department of Orthopedic, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Republic of China
- Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- School of Medicine, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Po-Yu Liu
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Kuo-Lung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Cheng-Yeu Wu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Yueh-Chi Tsai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Jung-Hsing Yen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - I-Chen Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Chih-Sheng Lai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
15
|
Yang J, Li JC, Huang Z, Huang DL, Wang F, Wei WX, Nong JF, Yang F, Lu XL, Zhu JR, Wang W. Effect of Several Naja atra Antivenom Injection Methods on the Rabbit Model of Naja naja atra Bite Poisoning. J Trop Med 2023; 2023:3253771. [PMID: 36860623 PMCID: PMC9970700 DOI: 10.1155/2023/3253771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/26/2022] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Snakebite is a global public health concern, which often occurs in tropical and subtropical underdeveloped areas, but it is often neglected. In the southern China, Naja naja atra (Chinese cobra) is a common venomous snake that causes swelling and necrosis of local tissues, even amputation and death. Currently, the main therapy is the administration of Naja atra antivenom, which greatly reduces mortality. However, the antivenom is not particularly effective in the improvement of local tissue necrosis. Clinically, antivenom is mainly administered intravenously. We speculated that the method of injection influences the efficacy of antivenom. In this study, the rabbit model was used to explore the effects of different antivenom injection methods on systemic and local poisoning symptoms. If topical injection of antivenom contributes to ameliorate tissue necrosis, then we need to reconsider the use of Naja atra antivenom.
Collapse
Affiliation(s)
- Jie Yang
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jin-Cheng Li
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhou Huang
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Dong-Ling Huang
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Fan Wang
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Wan-Xia Wei
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Ji-Fei Nong
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Feng Yang
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Xue-Ling Lu
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jun-Rong Zhu
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Wang
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
16
|
The secretory phenotypes of envenomed cells: Insights into venom cytotoxicity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:193-230. [PMID: 36707202 DOI: 10.1016/bs.apcsb.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Snake envenomation is listed as Category A Neglected Tropical Diseases (NTD) by World Health Organization, indicates a severe public health problem. The global figures for envenomation cases are estimated to be more than 1.8 million annually. Even if the affected victims survive the envenomation, they might suffer from permanent morbidity due to local envenomation. One of the most prominent local envenomation is dermonecrosis. Dermonecrosis is a pathophysiological outcome of envenomation that often causes disability in the victims due to surgical amputations, deformities, contracture, and chronic ulceration. The key venom toxins associated with this local symptom are mainly attributed to substantial levels of enzymatic and non-enzymatic toxins as well as their possible synergistic actions. Despite so, the severity of the local tissue damage is based on macroscopic observation of the bite areas. Furthermore, limited knowledge is known about the key biomarkers involved in the pathogenesis of dermonecrosis. The current immunotherapy with antivenom is also ineffective against dermonecrosis. These local effects eventually end up as sequelae. There is also a global shortage of toxins-targeted therapeutics attributed to inadequate knowledge of the actual molecular mechanisms of cytotoxicity. This chapter discusses the characterization of secretory phenotypes of dermonecrosis as an advanced tool to indicate its severity and pathogenesis in envenomation. Altogether, the secretory phenotypes of envenomed cells and tissues represent the precise characteristics of dermonecrosis caused by venom toxins.
Collapse
|
17
|
Yeh H, Gao SY, Lin CC. Wound Infection of Snakebite from Venomous Protobothrops mucrosquamatus, Viridovipera stejnegeri and Naja atra in Taiwan: Validation of BITE and Cobra BITE Scoring Systems and their Bacteriological Differences in Wound Cultures. Toxins (Basel) 2023; 15:78. [PMID: 36668897 PMCID: PMC9861491 DOI: 10.3390/toxins15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Patients bitten by Protobothrops mucrosquamatus, Viridovipera stejnegeri, and Naja atra develop different degrees of wound infection. This study validated BITE and Cobra BITE scoring systems that we established previously. Bacteriological studies of patients with wound infection were conducted. The operating characteristic curves and area under the curve (AUC) and wound infection rates were compared between the derivation set (our previous study patient population) and the validation set (new patient cohorts enrolled between June 2017 and May 2021). No significant differences in the AUC for both the BITE (0.84 vs. 0.78, p = 0.27) and Cobra BITE (0.88 vs. 0.75, p = 0.21) scoring systems were observed between the derivation and validation sets. Morganella morganii and Enterococcus faecalis were the two most commonly detected bacteria in the microbiological study. More bacterial species were cultured from N. atra-infected wounds. Antibiotics such as amoxicillin with clavulanic acid, oxacillin, and ampicillin may not be suitable for treating patients with P. mucrosquamatus, V. stejnegeri, and N. atra bites in Taiwan. Carbapenem, third-generation cephalosporins, and fluoroquinolone may be superior alternatives.
Collapse
Affiliation(s)
- Heng Yeh
- Department of Emergency Medicine, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shi-Ying Gao
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
18
|
Ahmadi S, Pachis ST, Kalogeropoulos K, McGeoghan F, Canbay V, Hall SR, Crittenden EP, Dawson CA, Bartlett KE, Gutiérrez JM, Casewell NR, Keller UAD, Laustsen AH. Proteomics and histological assessment of an organotypic model of human skin following exposure to Naja nigricollis venom. Toxicon 2022; 220:106955. [DOI: 10.1016/j.toxicon.2022.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
19
|
Kalita B, Utkin YN, Mukherjee AK. Current Insights in the Mechanisms of Cobra Venom Cytotoxins and Their Complexes in Inducing Toxicity: Implications in Antivenom Therapy. Toxins (Basel) 2022; 14:toxins14120839. [PMID: 36548736 PMCID: PMC9780984 DOI: 10.3390/toxins14120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Cytotoxins (CTXs), an essential class of the non-enzymatic three-finger toxin family, are ubiquitously present in cobra venoms. These low-molecular-mass toxins, contributing to about 40 to 60% of the cobra venom proteome, play a significant role in cobra venom-induced toxicity, more prominently in dermonecrosis. Structurally, CTXs contain the conserved three-finger hydrophobic loops; however, they also exhibit a certain degree of structural diversity that dictates their biological activities. In their mechanism, CTXs mediate toxicity by affecting cell membrane structures and membrane-bound proteins and activating apoptotic and necrotic cell death pathways. Notably, some CTXs are also responsible for depolarizing neurons and heart muscle membranes, thereby contributing to the cardiac failure frequently observed in cobra-envenomed victims. Consequently, they are also known as cardiotoxins (CdTx). Studies have shown that cobra venom CTXs form cognate complexes with other components that potentiate the toxic effects of the venom's individual component. This review focuses on the pharmacological mechanism of cobra venom CTXs and their complexes, highlighting their significance in cobra venom-induced pathophysiology and toxicity. Furthermore, the potency of commercial antivenoms in reversing the adverse effects of cobra venom CTXs and their complexes in envenomed victims has also been discussed.
Collapse
Affiliation(s)
- Bhargab Kalita
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ashis K. Mukherjee
- Institute of Advanced Study in Science and Technology, Guwahati 781035, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Correspondence:
| |
Collapse
|
20
|
Tan CH, Tan KY, Wong KY, Tan NH, Chong HP. Equatorial Spitting Cobra ( Naja sumatrana) from Malaysia (Negeri Sembilan and Penang), Southern Thailand, and Sumatra: Comparative Venom Proteomics, Immunoreactivity and Cross-Neutralization by Antivenom. Toxins (Basel) 2022; 14:toxins14080522. [PMID: 36006183 PMCID: PMC9414237 DOI: 10.3390/toxins14080522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
The Equatorial Spitting Cobra (Naja sumatrana) is a medically important venomous snake species in Southeast Asia. Its wide geographical distribution implies potential intra-specific venom variation, while there is no species-specific antivenom available to treat its envenoming. Applying a protein-decomplexing proteomic approach, the study showed that three-finger toxins (3FTX), followed by phospholipases A2 (PLA2), were the major proteins well-conserved across N. sumatrana venoms of different locales. Variations were noted in the subtypes and relative abundances of venom proteins. Of note, alpha-neurotoxins (belonging to 3FTX) are the least in the Penang specimen (Ns-PG, 5.41% of total venom proteins), compared with geographical specimens from Negeri Sembilan (Ns-NS, 14.84%), southern Thailand (Ns-TH, 16.05%) and Sumatra (Ns-SU, 10.81%). The alpha-neurotoxin abundance, in general, correlates with the venom’s lethal potency. The Thai Naja kaouthia Monovalent Antivenom (NkMAV) was found to be immunoreactive toward the N. sumatrana venoms and is capable of cross-neutralizing N. sumatrana venom lethality to varying degrees (potency = 0.49–0.92 mg/mL, interpreted as the amount of venom completely neutralized per milliliter of antivenom). The potency was lowest against NS-SU venom, implying variable antigenicity of its lethal alpha-neurotoxins. Together, the findings suggest the para-specific and geographical utility of NkMAV as treatment for N. sumatrana envenoming in Southeast Asia.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.W.); (H.P.C.)
- Correspondence: or
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.T.); (N.H.T.)
| | - Kin Ying Wong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.W.); (H.P.C.)
| | - Nget Hong Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.T.); (N.H.T.)
| | - Ho Phin Chong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (K.Y.W.); (H.P.C.)
| |
Collapse
|
21
|
Liu CC, Wu CJ, Chou TY, Liaw GW, Hsiao YC, Chu LJ, Lee CH, Wang PJ, Hsieh CH, Chen CK, Yu JS. Development of a Monoclonal scFv against Cytotoxin to Neutralize Cytolytic Activity Induced by Naja atra Venom on Myoblast C2C12 Cells. Toxins (Basel) 2022; 14:toxins14070459. [PMID: 35878197 PMCID: PMC9320128 DOI: 10.3390/toxins14070459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
The Taiwanese cobra, Naja atra, is a clinically significant species of snake observed in the wild in Taiwan. Victims bitten by N. atra usually experience severe pain and local tissue necrosis. Although antivenom is available for treatment of cobra envenomation, its neutralization potency against cobra-induced necrosis is weak, with more than 60% of cobra envenoming patients developing tissue necrosis after antivenom administration. The present study found that cytotoxin (CTX) is a key component of N. atra venom responsible for cytotoxicity against myoblast cells. Anti-CTX IgY was generated in hens, and the spleens of these hens were used to construct libraries for the development of single chain variable fragments (scFv). Two anti-CTX scFv, S1 and 2S7, were selected using phage display technology and biopanning. Both polyclonal IgY and monoclonal scFv S1 reacted specifically with CTX in cobra venom. In a cell model assay, the CTX-induced cytolytic effect was inhibited only by monoclonal scFv S1, not by polyclonal IgY. Moreover, the neutralization potency of scFv S1 was about 3.8 mg/mg, approximately three times higher than that of conventional freeze-dried neurotoxic antivenom (FNAV). Collectively, these results suggest that scFv S1 can effectively neutralize CTX-induced cytotoxicity and, when combined with currently available antivenom, can improve the potency of the latter, thereby preventing tissue damage induced by cobra envenoming.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.L.); (Y.-C.H.); (L.-J.C.); (P.-J.W.)
| | - Cho-Ju Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
| | - Tsai-Ying Chou
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Geng-Wang Liaw
- Department of Emergency Medicine, Yeezen General Hospital, Taoyuan 32645, Taiwan;
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.L.); (Y.-C.H.); (L.-J.C.); (P.-J.W.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Lichieh-Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.L.); (Y.-C.H.); (L.-J.C.); (P.-J.W.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11042, Taiwan;
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11042, Taiwan
| | - Po-Jung Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.L.); (Y.-C.H.); (L.-J.C.); (P.-J.W.)
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City 23741, Taiwan;
| | - Chun-Kuei Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan;
- Correspondence: (C.-K.C.); (J.-S.Y.); Tel.: +88-63-2118800 (ext. 5171) (J.-S.Y.); Fax: +88-63-2118891 (J.-S.Y.)
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; (C.-C.L.); (Y.-C.H.); (L.-J.C.); (P.-J.W.)
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (C.-K.C.); (J.-S.Y.); Tel.: +88-63-2118800 (ext. 5171) (J.-S.Y.); Fax: +88-63-2118891 (J.-S.Y.)
| |
Collapse
|
22
|
On characterizing the Red-headed Krait (Bungarus flaviceps) venom: Decomplexation proteomics, immunoreactivity and toxicity cross-neutralization by hetero-specific antivenoms. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101006. [PMID: 35717758 DOI: 10.1016/j.cbd.2022.101006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/26/2022]
Abstract
The Red-headed Krait (Bungarus flaviceps) is a medically important venomous snake species in Southeast Asia, while there is no specific antivenom available for its envenoming. This study investigated the venom composition through a decomplexation proteomic approach, and examined the immunoreactivity as well as cross-neutralization efficacy of two hetero-specific krait antivenoms, Bungarus candidus Monovalent Antivenom (BcMAV) and Bungarus fasciatus Monovalent Antivenom (BfMAV), against the venom of B. flaviceps from Peninsular Malaysia. A total of 43 non-redundant proteoforms belonging to 10 toxin families were identified in the venom proteome, which is dominated by phospholipases A2 including beta-bungarotoxin lethal subunit (56.20 % of total venom proteins), Kunitz-type serine protease inhibitors (19.40 %), metalloproteinases (12.85 %) and three-finger toxins (7.73 %). The proteome varied in quantitative aspect from the earlier reported Indonesian (Sumatran) sample, suggesting geographical venom variation. BcMAV and BfMAV were immunoreactive toward the B. flaviceps venom, with BcMAV being more efficacious in immunological binding. Both antivenoms cross-neutralized the venom lethality with varying efficacy, where BcMAV was more potent than BfMAV by ~13 times (normalized potency: 38.04 mg/g vs. 2.73 mg/g, defined as the venom amount completely neutralized by one-gram antivenom protein), supporting the potential utility of BcMAV for para-specific neutralization against B. flaviceps venom.
Collapse
|
23
|
Hiu JJ, Yap MKK. The myth of cobra venom cytotoxin: More than just direct cytolytic actions. Toxicon X 2022; 14:100123. [PMID: 35434602 PMCID: PMC9011113 DOI: 10.1016/j.toxcx.2022.100123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
Cobra venom cytotoxin (CTX) is a non-enzymatic three-finger toxin that constitutes 40-60% of cobra venom. Thus, it plays an important role in the pathophysiology of cobra envenomation, especially in local dermonecrosis. The three-finger hydrophobic loops of CTX determine the cytotoxicity. Nevertheless, the actual mechanisms of cytotoxicity are not fully elucidated as they involve not only cytolytic actions but also intracellular signalling-mediated cell death pathways. Furthermore, the possible transition cell death pattern remains to be explored. The actual molecular mechanisms require further studies to unveil the relationship between different CTXs from different cobra species and cell types which may result in differential cell death patterns. Here, we discuss the biophysical interaction of CTX with the cell membrane involving four binding modes: electrostatic interaction, hydrophobic partitioning, isotropic phase, and oligomerisation. Oligomerisation of CTX causes pore formation in the membrane lipid bilayer. Additionally, the CTX-induced apoptotic pathway can be executed via death receptor-mediated extrinsic pathways and mitochondrial-mediated intrinsic pathways. We also discuss lysosomal-mediated necrosis and the occurrence of necroptosis following CTX action. Collectively, we provided an insight into concentration-dependent transition of cell death pattern which involves different mechanistic actions. This contributes a new direction for further investigation of cytotoxic pathways activated by the CTXs for future development of biotherapeutics targeting pathological effects caused by CTX.
Collapse
Affiliation(s)
- Jia Jin Hiu
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Michelle Khai Khun Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
24
|
Chong HP, Tan KY, Liu BS, Sung WC, Tan CH. Cytotoxicity of Venoms and Cytotoxins from Asiatic Cobras (Naja kaouthia, Naja sumatrana, Naja atra) and Neutralization by Antivenoms from Thailand, Vietnam, and Taiwan. Toxins (Basel) 2022; 14:toxins14050334. [PMID: 35622581 PMCID: PMC9144634 DOI: 10.3390/toxins14050334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Envenoming by cobras (Naja spp.) often results in extensive local tissue necrosis when optimal treatment with antivenom is not available. This study investigated the cytotoxicity of venoms and purified cytotoxins from the Monocled Cobra (Naja kaouthia), Taiwan Cobra (Naja atra), and Equatorial Spitting Cobra (Naja sumatrana) in a mouse fibroblast cell line, followed by neutralization of the cytotoxicity by three regional antivenoms: the Thai Naja kaouthia monovalent antivenom (NkMAV), Vietnamese snake antivenom (SAV) and Taiwanese Neuro bivalent antivenom (NBAV). The cytotoxins of N. atra (NA-CTX) and N. sumatrana (NS-CTX) were identified as P-type cytotoxins, whereas that of N. kaouthia (NK-CTX) is S-type. All venoms and purified cytotoxins demonstrated varying concentration-dependent cytotoxicity in the following trend: highest for N. atra, followed by N. sumatrana and N. kaouthia. The antivenoms moderately neutralized the cytotoxicity of N. kaouthia venom but were weak against N. atra and N. sumatrana venom cytotoxicity. The neutralization potencies of the antivenoms against the cytotoxins were varied and generally low across NA-CTX, NS-CTX, and NK-CTX, possibly attributed to limited antigenicity of CTXs and/or different formulation of antivenom products. The study underscores the need for antivenom improvement and/or new therapies in treating local tissue toxicity caused by cobra envenomings.
Collapse
Affiliation(s)
- Ho Phin Chong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Bing-Sin Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
- Correspondence: (W.-C.S.); (C.H.T.)
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: (W.-C.S.); (C.H.T.)
| |
Collapse
|
25
|
Snake Venomics: Fundamentals, Recent Updates, and a Look to the Next Decade. Toxins (Basel) 2022; 14:toxins14040247. [PMID: 35448856 PMCID: PMC9028316 DOI: 10.3390/toxins14040247] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/11/2023] Open
Abstract
Venomic research, powered by techniques adapted from proteomics, transcriptomics, and genomics, seeks to unravel the diversity and complexity of venom through which knowledge can be applied in the treatment of envenoming, biodiscovery, and conservation. Snake venom proteomics is most extensively studied, but the methods varied widely, creating a massive amount of information which complicates data comparison and interpretation. Advancement in mass spectrometry technology, accompanied by growing databases and sophisticated bioinformatic tools, has overcome earlier limitations of protein identification. The progress, however, remains challenged by limited accessibility to samples, non-standardized quantitative methods, and biased interpretation of -omic data. Next-generation sequencing (NGS) technologies enable high-throughput venom-gland transcriptomics and genomics, complementing venom proteomics by providing deeper insights into the structural diversity, differential expression, regulation and functional interaction of the toxin genes. Venomic tissue sampling is, however, difficult due to strict regulations on wildlife use and transfer of biological materials in some countries. Limited resources for techniques and funding are among other pertinent issues that impede the progress of venomics, particularly in less developed regions and for neglected species. Genuine collaboration between international researchers, due recognition of regional experts by global organizations (e.g., WHO), and improved distribution of research support, should be embraced.
Collapse
|
26
|
Lai CS, Liu PY, Lee CH, Ho CH, Chen WL, Lai KL, Su HY, Lin WL, Chung KC, Yang YY, You CW, Chen KT, Mao YC. The development of surgical risk score and evaluation of necrotizing soft tissue infection in 161 Naja atra envenomed patients. PLoS Negl Trop Dis 2022; 16:e0010066. [PMID: 35143522 PMCID: PMC8830662 DOI: 10.1371/journal.pntd.0010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Naja atra bites cause wound necrosis, secondary infection, and necrotizing soft tissue infection (NSTI) requiring repetitive surgeries. Little information is known about the predictors for surgery after these bites. MATERIALS AND METHODS We retrospectively evaluated 161 patients envenomed by N. atra, 80 of whom underwent surgery because of wound necrosis and infection. We compared the patients' variables between surgical and non-surgical groups. To construct a surgical risk score, we converted the regression coefficients of the significant factors in the multivariate logistic regression into integers. We also examined the deep tissue cultures and pathological findings of the debrided tissue. RESULTS A lower limb as the bite site, a ≥3 swelling grade, bullae or blister formation, gastrointestinal (GI) effects, and fever were significantly associated with surgery in the multivariate logistic regression analysis. The surgical risk scores for these variables were 1, 1, 2, 1, and 2, respectively. At a ≥3-point cutoff value, the model has 71.8% sensitivity and 88.5% specificity for predicting surgery, with an area under the receiver operating characteristic curve of 0.88. The histopathological examinations of the debrided tissues supported the diagnosis of snakebite-induced NSTI. Twelve bacterial species were isolated during the initial surgery and eleven during subsequent surgeries. DISCUSSION AND CONCLUSIONS From the clinical perspective, swelling, bullae or blister formation, GI effects, and fever appeared quickly after the bite and before surgery. The predictive value of these factors for surgery was acceptable, with a ≥3-point risk score. The common laboratory parameters did not always predict the outcomes of N. atra bites without proper wound examination. Our study supported the diagnosis of NSTI and demonstrated the changes in bacteriology during the surgeries, which can have therapeutic implications for N. atra bites.
Collapse
Affiliation(s)
- Chih-Sheng Lai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Yu Liu
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University
| | - Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hsuan Ho
- Department of Emergency Medicine, Tri-Service General Hospital, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ling Chen
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Psychiatry Department, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuo-Lung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Yuan Su
- Department of Emergency Medicine, E-Da Hospital and I-Shou University, Kaohsiung, Taiwan
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Loung Lin
- Taichung Wildlife Conservation Group, Taichung, Taiwan
| | - Kuo-Chen Chung
- Division of Traumatology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | | | | | - Yan-Chiao Mao
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Lin JH, Sung WC, Mu HW, Hung DZ. Local Cytotoxic Effects in Cobra Envenoming: A Pilot Study. Toxins (Basel) 2022; 14:toxins14020122. [PMID: 35202149 PMCID: PMC8877591 DOI: 10.3390/toxins14020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 01/31/2023] Open
Abstract
The cobra (genus Naja (N.)) is one of the most common venomous snakes. Due to its frequency and deadly complications of muscle paralysis, local necrosis, and chronic musculoskeletal disability, it should not be ignored. The pathology of devastating tissue destruction, even though specific antivenoms exist, is not fully clear. Here, we attempted to dig in envenomed tissues to study the clinical toxicology of cobra venom. Four cases of N. atra snake envenomation, in which the subjects developed advanced tissue injury, were involved in this study. We used enzyme-ligand sandwich immunoassay (ELISA) to assay the whole venom, cytotoxin A3 and short-chain neurotoxin (sNTX) in blood, bullae, wound discharge, and debrided tissue. We found that persistently high concentrations of venom and toxins, especially cytotoxin A3, were detected in bullae, wound discharge fluid and necrotic tissue of these patients even after large doses of specific antivenom treatment, and wide excision and advanced debridement could largely remove these toxins, lessen the size of necrosis, and promote wound healing. We also found that the point-of-care apparatus, ICT-Cobra kit, might be used to promptly monitor the wound condition and as one of the indicators of surgical intervention in cases of cobra envenomation in Taiwan.
Collapse
Affiliation(s)
- Jing-Hua Lin
- Division of Toxicology, China Medical University Hospital, Taichung 40447, Taiwan; (J.-H.L.); (H.-W.M.)
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Han-Wei Mu
- Division of Toxicology, China Medical University Hospital, Taichung 40447, Taiwan; (J.-H.L.); (H.-W.M.)
| | - Dong-Zong Hung
- Division of Toxicology, China Medical University Hospital, Taichung 40447, Taiwan; (J.-H.L.); (H.-W.M.)
- Correspondence: ; Tel.: +886-4-2205-2121
| |
Collapse
|
28
|
Guan Z, Li Y, Hu S, Mo C, He D, Huang Z, Liao M. Screening and identification of differential metabolites in serum and urine of bamaxiang pigs bitten by trimeresurus stejnegeri based on UPLC-Q-TOF/MS metabolomics technology. J Toxicol Sci 2022; 47:389-407. [PMID: 36104186 DOI: 10.2131/jts.47.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Trimeresurus stejnegeri is one of the top ten venomous snakes in China, and its bite causes acute and severe diseases. Elucidating the metabolic changes of the body caused by Trimeresurus stejnegeri bite will be beneficial to the diagnosis and treatment of snakebite. Thus, an animal pig model of Trimeresurus stejnegeri bite was established, and then the metabolites of serum and urine were subsequently screened and identified in both ESI+ and ESI- modes identified by ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) methods. There are 9 differential metabolites in serum, including Oleic acid, Lithocholic acid, Deoxycholic acid, Hypoxanthine, etc. There are 11 differential metabolites in urine, including Dopamine, Thiocysteine, Arginine, Indoleacetaldehyde, etc. Serum enrichment pathway analysis showed that 5 metabolic pathways, including Tryptophanuria, Liver disease due to cystic fibrosis, Hartnup disease, Hyperbaric oxygen exposure and Biliary cirrhosis, the core metabolites in these pathways, including deoxycholic acid, lithocholic acid, tryptophan and hypoxanthine, changed significantly. Urine enrichment pathway analysis showed that 4 metabolic pathways, including Aromatic L-Amino Acid Decarboxylase, Vitiligo, Blue Diaper Syndrome and Hyperargininemia, the core metabolites in these pathways including dopamine, 5-hydroxyindole acetic acid and arginine. Taken together, the current study has successfully established an animal model of Trimeresurus stejnegeri bite, and identified the metabolic markers and metabolic pathways of Trimeresurus stejnegeri bite. These metabolites and pathways may have potential application value and provide a therapeutic basis for the treatment of Trimeresurus stejnegeri bite.
Collapse
Affiliation(s)
- ZheZhe Guan
- Institute of Life Sciences of Guangxi Medical University, China
| | - YaLan Li
- Institute of Life Sciences of Guangxi Medical University, China
| | - ShaoCong Hu
- Institute of Life Sciences of Guangxi Medical University, China
| | - CaiFeng Mo
- Institute of Life Sciences of Guangxi Medical University, China
| | - DongLing He
- Institute of Life Sciences of Guangxi Medical University, China
| | - Zhi Huang
- Institute of Life Sciences of Guangxi Medical University, China
| | - Ming Liao
- Institute of Life Sciences of Guangxi Medical University, China
| |
Collapse
|
29
|
Development of Antibody Detection ELISA Based on Immunoreactive Toxins and Toxin-Derived Peptides to Evaluate the Neutralization Potency of Equine Plasma against Naja atra in Taiwan. Toxins (Basel) 2021; 13:toxins13110818. [PMID: 34822602 PMCID: PMC8622849 DOI: 10.3390/toxins13110818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Naja atra, also known as Taiwanese cobra, is one of the most prevalent venomous snakes in Taiwan. Clinically, freeze-dried neurotoxic antivenom (FNAV) produced from horses by Taiwan Centers for Disease Control (CDC) has been the only approved treatment for N. atra envenoming for the last few decades. During antivenom production, large numbers of mice are used in the in vivo assay to determine whether the neutralization potency of hyperimmunized equines is satisfactory for large-scale harvesting. However, this in vivo assay is extremely laborious, expensive, and significantly impairs animal welfare. In the present study, we aimed to develop an in vitro ELISA-based system that could serve as an alternative assay to evaluate the neutralization potency of plasma from hyperimmunized equines. We initially obtained 51 plasma samples with known (high or low) neutralization potency assessed in vivo from 9 hyperimmunized equines and subsequently determined their antibody titers against the five major protein components of N. atra venom (neurotoxin (NTX), phospholipase A2 (PLA2), cytotoxin (CTX), cysteine-rich secretory protein (CRISP), and snake venom metalloproteinase (SVMP)) via ELISA. The antibody titer against NTX was the most effective in discriminating between high and low potency plasma samples. To identify the specific epitope(s) of NTX recognized by neutralization potency-related antibodies, 17 consecutive NTX-derived pentadecapeptides were synthesized and used as antigens to probe the 51 equine plasma samples. Among the 17 peptides, immunoreactive signals for three consecutive peptides (NTX1-8, NTX1-9, and NTX1-10) were significantly higher in the high potency relative to low potency equine plasma groups (p < 0.0001). Our ELISA system based on NTX1-10 peptide (RWRDHRGYRTERGCG) encompassing residues 28–42 of NTX displayed optimal sensitivity (96.88%) and specificity (89.47%) for differentiating between high- and low-potency plasma samples (area under the receiver operating characteristic curve (AUC) = 0.95). The collective data clearly indicate that the antibody titer against NTX protein or derived peptides can be used to efficiently discriminate between high and low neutralization potency of plasma samples from venom-immunized horses. This newly developed antibody detection ELISA based on NTX or its peptide derivatives has good potential to complement or replace the in vivo rodent assay for determining whether the neutralization potency of equine plasma is satisfactory for large-scale harvesting in the antivenom production process against N. atra.
Collapse
|
30
|
Patra A, Kalita B, Khadilkar MV, Salvi NC, Shelke PV, Mukherjee AK. Assessment of quality and pre-clinical efficacy of a newly developed polyvalent antivenom against the medically important snakes of Sri Lanka. Sci Rep 2021; 11:18238. [PMID: 34521877 PMCID: PMC8440654 DOI: 10.1038/s41598-021-97501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
Snake envenomation is a severe problem in Sri Lanka (SL) and Indian polyvalent antivenom (PAV) is mostly used for treating snakebite albeit due to geographical variation in venom composition, Indian PAV shows poor efficacy in neutralizing the lethality and toxicity of venom from the same species of snakes in SL. Therefore, the quality and in vivo venom neutralization potency of a country-specific PAV produced against the venom of the five most medically important snakes of SL (Daboia russelii, Echis carinatus, Hypnale hypnale, Naja naja, Bungarus caeruleus) was assessed. LC-MS/MS analysis of two batches of PAV showed the presence of 88.7-97.2% IgG and traces of other plasma proteins. The tested PAVs contained minor amounts of undigested IgG and F(ab')2 aggregates, showed complement activation, were devoid of IgE, endotoxin, and content of preservative was below the threshold level. Immunological cross-reactivity and in vitro neutralization of enzymatic activities, pharmacological properties demonstrated superior efficacy of SL PAV compared to Indian PAV against SL snake venoms. The in vivo neutralization study showed that the tested PAVs are potent to neutralize the lethality and venom-induced toxicity of SL snake venoms. Therefore, our study suggests that introduction of SL-specific PAV will improve snakebite management in SL.
Collapse
Affiliation(s)
- Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Science, Tezpur University, Tezpur, Assam, 784028, India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Science, Tezpur University, Tezpur, Assam, 784028, India
| | - Milind V Khadilkar
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, Maharashtra, 410504, India
| | - Nitin C Salvi
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, Maharashtra, 410504, India
| | - Pravin V Shelke
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, Maharashtra, 410504, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Science, Tezpur University, Tezpur, Assam, 784028, India.
- Institute of Advanced Study in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati, Assam, 781035, India.
| |
Collapse
|
31
|
Ho CH, Chiang LC, Mao YC, Lan KC, Tsai SH, Shih YJ, Tzeng YS, Lin CS, Lin WL, Fang WH, Chen KT, Lee CH, Chiang DML, Liu SH. Analysis of the Necrosis-Inducing Components of the Venom of Naja atra and Assessment of the Neutralization Ability of Freeze-Dried Antivenom. Toxins (Basel) 2021; 13:toxins13090619. [PMID: 34564623 PMCID: PMC8473173 DOI: 10.3390/toxins13090619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Patients bitten by Naja atra who are treated with bivalent freeze-dried neurotoxic antivenom in Taiwan have an improved survival rate but develop necrotic wound changes. The World Health Organization (WHO) has suggested using the minimum necrotizing dose (MND) of venom as a method of evaluating the neutralization effect of antivenom. The aim of this study was to evaluate the effectiveness of antivenom for the prevention of necrosis based on the MND and clarify which component of the venom of N. atra induces necrosis. The neurotoxins (NTXs) were removed from the crude venom (deNTXs), and different concentrations of deNTXs were injected intradermally into the dorsal skin of mice. After three days, the necrotic lesion diameter was found to be approximately 5 mm, and the MND was calculated. A reduction in the necrotic diameter of 50% was used to identify the MND50. Furthermore, both phospholipase A2 (PLA2) and cytotoxins (CTXs) were separately removed from the deNTXs to identify the major necrosis-inducing factor, and the necrotic lesions were scored. All mice injected with deNTXs survived for three days and developed necrotic wounds. The MND of the deNTXs for mice was 0.494 ± 0.029 µg/g, that of the deNTXs-dePLA2 (major component retained: CTXs) was 0.294 ± 0.05 µg/g, and that of the deNTX-deCTX (major component retained: PLA2) venom was greater than 1.25 µg/g. These values show that CTX is the major factor inducing necrosis. These results suggest that the use of the deNTXs is necessary to enable the mice to survive long enough to develop venom-induced cytolytic effects. CTXs play a major role in N. atra-related necrosis. However, the MND50 could not be identified in this study, which meant that the antivenom did not neutralize venom-induced necrosis.
Collapse
Affiliation(s)
- Cheng-Hsuan Ho
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.H.); (K.-C.L.); (S.-H.T.)
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu 300, Taiwan;
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.H.); (K.-C.L.); (S.-H.T.)
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-H.H.); (K.-C.L.); (S.-H.T.)
| | - Yu-Jen Shih
- Division of Plastic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-J.S.); (Y.-S.T.)
| | - Yuan-Sheng Tzeng
- Division of Plastic Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (Y.-J.S.); (Y.-S.T.)
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Wen-Loung Lin
- Taichung Wildlife Conservation Group, Taichung 436, Taiwan; (W.-L.L.); (W.-H.F.)
| | - Wei-Hsuan Fang
- Taichung Wildlife Conservation Group, Taichung 436, Taiwan; (W.-L.L.); (W.-H.F.)
| | - Kuang-Ting Chen
- Department of Chinese Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan;
| | - Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Dapi Meng-Lin Chiang
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University Munich, 85354 Freising, Germany;
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Pediatrics, College of Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-23123456 (ext. 88605)
| |
Collapse
|
32
|
Wong KY, Tan KY, Tan NH, Gnanathasan CA, Tan CH. Elucidating the Venom Diversity in Sri Lankan Spectacled Cobra ( Naja naja) through De Novo Venom Gland Transcriptomics, Venom Proteomics and Toxicity Neutralization. Toxins (Basel) 2021; 13:558. [PMID: 34437429 PMCID: PMC8402536 DOI: 10.3390/toxins13080558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/18/2023] Open
Abstract
Inadequate effectiveness of Indian antivenoms in treating envenomation caused by the Spectacled Cobra/Indian Cobra (Naja naja) in Sri Lanka has been attributed to geographical variations in the venom composition. This study investigated the de novo venom-gland transcriptomics and venom proteomics of the Sri Lankan N. naja (NN-SL) to elucidate its toxin gene diversity and venom variability. The neutralization efficacy of a commonly used Indian antivenom product in Sri Lanka was examined against the lethality induced by NN-SL venom in mice. The transcriptomic study revealed high expression of 22 toxin genes families in NN-SL, constituting 46.55% of total transcript abundance. Three-finger toxins (3FTX) were the most diversely and abundantly expressed (87.54% of toxin gene expression), consistent with the dominance of 3FTX in the venom proteome (72.19% of total venom proteins). The 3FTX were predominantly S-type cytotoxins/cardiotoxins (CTX) and α-neurotoxins of long-chain or short-chain subtypes (α-NTX). CTX and α-NTX are implicated in local tissue necrosis and fatal neuromuscular paralysis, respectively, in envenomation caused by NN-SL. Intra-species variations in the toxin gene sequences and expression levels were apparent between NN-SL and other geographical specimens of N. naja, suggesting potential antigenic diversity that impacts antivenom effectiveness. This was demonstrated by limited potency (0.74 mg venom/ml antivenom) of the Indian polyvalent antivenom (VPAV) in neutralizing the NN-SL venom. A pan-regional antivenom with improved efficacy to treat N. naja envenomation is needed.
Collapse
Affiliation(s)
- Kin Ying Wong
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nget Hong Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | | | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
33
|
Influential Factors of Local Tissue Necrosis after Taiwan Cobra Bites: A Secondary Analysis of the Clinical Significance of Venom Detection in Patients of Cobra Snakebites. Toxins (Basel) 2021; 13:toxins13050338. [PMID: 34067062 PMCID: PMC8151269 DOI: 10.3390/toxins13050338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/04/2022] Open
Abstract
Local tissue swelling, inflammation, and wound necrosis are observed in Taiwan cobra bites. Knowledge of the factors influencing local tissue necrosis after cobra bites might improve the cobra bite treatment strategy. Therefore, we aimed to explore the factors influencing local tissue necrosis after cobra bites. This was a retrospective observational cohort study. All patients clinical presentations including serum venom levels for determining the influential factors in this study were obtained from Hung et al.’s previous study. Clinical features, such as bite information, initial swelling, patient presentation time, serum venom levels, and antivenom, use were extracted. The measurement outcome was the development of wound necrosis. The factors influencing wound necrosis were investigated using univariate and logistic regression analyses. The influential factors of local tissue necrosis and their areas under the curve were: initial limb swelling, 0.88; presentation time × serum level, 0.80; initial necrosis, 0.75; patient presentation time, 0.70. Serum venom level alone cannot be used as a predictive factor. The development of tissue necrosis might be associated with the venom factor, time factor, and their interaction. These influential factors can be used in future studies to evaluate antivenom efficacy.
Collapse
|
34
|
Mao YC, Chuang HN, Shih CH, Hsieh HH, Jiang YH, Chiang LC, Lin WL, Hsiao TH, Liu PY. An investigation of conventional microbial culture for the Naja atra bite wound, and the comparison between culture-based 16S Sanger sequencing and 16S metagenomics of the snake oropharyngeal bacterial microbiota. PLoS Negl Trop Dis 2021; 15:e0009331. [PMID: 33857127 PMCID: PMC8078740 DOI: 10.1371/journal.pntd.0009331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/27/2021] [Accepted: 03/25/2021] [Indexed: 01/11/2023] Open
Abstract
Naja atra is a major venomous snake found in Taiwan. The bite of this snake causes extensive wound necrosis or necrotizing soft tissue infection. Conventional microbial culture-based techniques may fail to identify potential human pathogens and render antibiotics ineffective in the management of wound infection. Therefore, we evaluated 16S Sanger sequencing and next-generation sequencing (NGS) to identify bacterial species in the oropharynx of N. atra. Using conventional microbial culture methods and the VITEK 2 system, we isolated nine species from snakebite wounds. On the basis of the 16S Sanger sequencing of bacterial clones from agar plates, we identified 18 bacterial species in the oropharynx of N. atra, including Morganella morganii, Proteus vulgaris, and Proteus mirabilis, which were also present in the infected bite wound. Using NGS of 16S metagenomics, we uncovered more than 286 bacterial species in the oropharynx of N. atra. In addition, the bacterial species identified using 16S Sanger sequencing accounted for only 2% of those identified through NGS of 16S metagenomics. The bacterial microbiota of the oropharynx of N. atra were modeled better using NGS of 16S metagenomics compared to microbial culture-based techniques. Stenotrophomonas maltophilia, Acinetobacter baumannii, and Proteus penneri were also identified in the NGS of 16S metagenomics. Understanding the bacterial microbiota that are native to the oropharynx of N. atra, in addition to the bite wound, may have additional therapeutic implications regarding empiric antibiotic selection for managing N. atra bites. Naja atra bites induce extensive wound necrotizing soft tissue infections in a substantial proportion of patients. Empiric antibiotic administration in snakebite patients is a common practice, but clinical reports indicate that this treatment was ineffective in preventing secondary infection given that the microbiota of the infected wound and oropharynx of the culprit snake were not properly established. In this study, only 9 species were detected in cobra bites using a conventional microbial culture method and the VITEK 2 system, whereas 18 species were detected in the cobra oropharynx using microbial culture-based 16S Sanger sequencing. Among these, Morganella morganii, Proteus vulgaris, and Proteus mirabilis were identified as common bacteria. Compared to microbial culture-based 16S Sanger sequencing, NGS-based 16S metagenomic sequencing detected more than 286 bacterial species. Stenotrophomonas maltophilia, Acinetobacter baumannii, and Proteus penneri only appeared with 16S metagenomic sequencing. These results suggest that NGS-based 16S metagenomic sequencing is a better tool for uncovering the bacterial microbiota of the N. atra oropharynx, which may help in developing a proper therapeutic strategy for patients with N. atra bites.
Collapse
Affiliation(s)
- Yan-Chiao Mao
- Department of Emergency Medicine, Division of Clinical Toxicology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Medicine, Division of Clinical Toxicology and Occupational Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Ni Chuang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Precision Medicine Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chien-Hung Shih
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Precision Medicine Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Han-Hsueh Hsieh
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Precision Medicine Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Han Jiang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Liao-Chun Chiang
- Department of Emergency Medicine, Division of Clinical Toxicology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Department of Medicine, Division of Clinical Toxicology and Occupational Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- National Tsing Hua University, College of Life Sciences, Hsinchu, Taiwan
| | - Wen-Loung Lin
- Taichung Wildlife Conservation Group, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Precision Medicine Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (T-HH); (P-YL)
| | - Po-Yu Liu
- Department of Internal Medicine, Division of Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (T-HH); (P-YL)
| |
Collapse
|
35
|
Yeh H, Gao SY, Lin CC. Wound Infections from Taiwan Cobra ( Naja atra) Bites: Determining Bacteriology, Antibiotic Susceptibility, and the Use of Antibiotics-A Cobra BITE Study. Toxins (Basel) 2021; 13:toxins13030183. [PMID: 33801318 PMCID: PMC7999477 DOI: 10.3390/toxins13030183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 02/04/2023] Open
Abstract
Wound necrosis and secondary infection are common complications after Naja atra bites. Clinical tools to evaluate the infection risk after Taiwan cobra bites are lacking. In this Cobra BITE study, we investigated the prevalence of wound infection, bacteriology, and corresponding antibiotic usage in patients presenting with Taiwan cobra snakebites. Patients with wound infection lacking tissue necrosis were included in developing Cobra BITE score utilizing univariate and multiple logistic regression, as patients with wound necrosis require antibiotics for infection treatment. 8,295,497 emergency department visits occurred in the span of this study, with 195 of those patients being diagnosed as having cobra bites. Of these patients, 23 had wound necrosis, and 30 had wound infection, resulting in a wound infection rate of 27.2% (53/195). Enterococcus faecalis and Morganella morganii were the main bacteria identified in the culture report regardless of whether patients’ wounds had necrosis. As per our Cobra BITE score, the three factors predicting secondary wound infection after cobra bites are hospital admission, a white blood cell count (in 103/µL) × by neu-trophil-lymphocyte ratio value of ≥114.23, and the use of antivenin medication. The area under the receiver operating characteristic curve for the Cobra BITE score system was 0.88; ideal sensitivity and specificity were 0.89 and 0.76. This scoring system enables the assessment of wound infections after N. atra bites, and it could be modified and improved in the future for other Naja spp. bites.
Collapse
Affiliation(s)
- Heng Yeh
- Department of Emergency Medicine, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (H.Y.); (S.-Y.G.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shi-Ying Gao
- Department of Emergency Medicine, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (H.Y.); (S.-Y.G.)
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (H.Y.); (S.-Y.G.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
36
|
Liu CC, Yang YH, Hsiao YC, Wang PJ, Liu JC, Liu CH, Hsieh WC, Lin CC, Yu JS. Rapid and Efficient Enrichment of Snake Venoms from Human Plasma Using a Strong Cation Exchange Tip Column to Improve Snakebite Diagnosis. Toxins (Basel) 2021; 13:toxins13020140. [PMID: 33668416 PMCID: PMC7917991 DOI: 10.3390/toxins13020140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Snake envenomation is a serious public health issue in many tropical and subtropical countries. Accurate diagnosis and immediate antivenom treatment are critical for effective management. However, the venom concentration in the victims' plasma is usually low, representing one of the bottlenecks in developing clinically applicable assays for venom detection and snakebite diagnosis. In this study, we attempted to develop a simple method for rapid enrichment of venom proteins from human plasma to facilitate detection. Our experiments showed that several major protein components of both Naja atra (N. atra) and Bungarus multicinctus (B. multicinctus) venoms have higher isoelectric point (pI) values relative to high-abundance human plasma proteins and could be separated via strong cation exchange-high-performance liquid chromatography (SCX-HPLC). Based on this principle, we developed an SCX tip column-based protocol for rapid enrichment of N. atra and B. multicinctus venom proteins from human plasma. Application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) led to the identification of cytotoxin and beta-bungarotoxin as the major proteins enriched by the SCX tip column in each venom sample. The entire process of venom enrichment could be completed within 10-15 min. Combination of this method with our previously developed lateral flow strip assays (rapid test) significantly enhanced the sensitivity of the rapid test, mainly via depletion of the plasma protein background, as well as increase in venom protein concentration. Notably, the SCX tip column-based enrichment method has the potential to efficiently enrich other Elapidae snake venoms containing proteins with higher pI values, thereby facilitating venom detection with other assays. This simple and rapid sample preparation method should aid in improving the clinical utility of diagnostic assays for snakebite.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-C.H.); (P.-J.W.)
| | - Ya-Han Yang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-C.H.); (P.-J.W.)
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Po-Jung Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-C.H.); (P.-J.W.)
| | - Jo-Chuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chien-Hsin Liu
- Center for Research, Diagnostics and Vaccine Development of Centers for Disease Control, Ministry of Health and Welfare, Taipei 10050, Taiwan; (C.-H.L.); (W.-C.H.)
| | - Wen-Chin Hsieh
- Center for Research, Diagnostics and Vaccine Development of Centers for Disease Control, Ministry of Health and Welfare, Taipei 10050, Taiwan; (C.-H.L.); (W.-C.H.)
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-C.H.); (P.-J.W.)
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 5171); Fax: +886-3-2118891
| |
Collapse
|
37
|
Neema KN, Hamse Kameshwar V, Nafeesa Z, Kumar D, Babu Shubha P, Nagendra Prasad MN, Swamy SN. Serine protease from Indian Cobra venom: its anticoagulant property and effect on human fibrinogen. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1855656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- K. N. Neema
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS Institutions Campus, Mysuru, Karnataka, India
- JSS Research Foundation, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS Institutions Campus, Mysuru, Karnataka, India
| | - Vivek Hamse Kameshwar
- Department of Biotechnology, School of Natural Sciences, Adichunchanagiri University-Centre for Research and Innovation, Adichunchanagiri University, Nagamangala, Karnataka, India
| | - Zohara Nafeesa
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS Institutions Campus, Mysuru, Karnataka, India
- JSS Research Foundation, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS Institutions Campus, Mysuru, Karnataka, India
| | - Divya Kumar
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS Institutions Campus, Mysuru, Karnataka, India
- JSS Research Foundation, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS Institutions Campus, Mysuru, Karnataka, India
| | - Priya Babu Shubha
- Department of Studies in Chemistry, University of Mysore, Manasagangothri, Mysuru, Karnataka, India
| | - M. N. Nagendra Prasad
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS Institutions Campus, Mysuru, Karnataka, India
| | - Shivananju Nanjunda Swamy
- Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, JSS Institutions Campus, Mysuru, Karnataka, India
| |
Collapse
|
38
|
Feola A, Marella GL, Carfora A, Della Pietra B, Zangani P, Campobasso CP. Snakebite Envenoming a Challenging Diagnosis for the Forensic Pathologist: A Systematic Review. Toxins (Basel) 2020; 12:E699. [PMID: 33153179 PMCID: PMC7693695 DOI: 10.3390/toxins12110699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Snakebite envenoming (SBE) is a public health issue in developing countries. The estimated annual global incidence of snakebites is about 5.4 million snakebites per year, resulting from 1.8 to 2.7 million cases of SBE and from 81,000 to 138,000 deaths with 400,000 survivors suffering permanent physical and psychological disabilities. There are more than 3000 species of snakes around the world: 600 are venomous and over 200 are considered to be medically important because of their clinical effects. The severity of SBE depends on several factors among which bite localization, snake's size, condition of glands and teeth, bite angle and bite duration, the microflora of the snake's mouth and victim's skin, age of the victim, weight, health status, and victim's activity after a bite. Snake venoms are mixtures of protein families, and each of these families contains many different toxins or toxin isoforms. Based on their effects, snake venoms can be classified as hemotoxic, neurotoxic, or cytotoxic and they can all act together involving multiple tissues and organs. When the bite is fatal, the mechanism of death is primarily related to the paralysis of respiratory muscles, which causes asphyxia and hypoxic-ischemic encephalopathy, but also anaphylactic shock, hemorrhagic shock, cardiomyopathy, acute tubular necrosis (ATN). The purpose of this literature review is to evaluate epidemiological and post-mortem examination findings in fatal SBEs in order to better understand the pathophysiological mechanisms, thus helping pathologists in defining the correct diagnosis.
Collapse
Affiliation(s)
- Alessandro Feola
- Department Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Luciano Armanni 5, 80138 Naples, Italy; (A.F.); (B.D.P.); (P.Z.); (C.P.C.)
| | - Gian Luca Marella
- Department of Surgical Sciences, University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy;
| | - Anna Carfora
- Department Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Luciano Armanni 5, 80138 Naples, Italy; (A.F.); (B.D.P.); (P.Z.); (C.P.C.)
| | - Bruno Della Pietra
- Department Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Luciano Armanni 5, 80138 Naples, Italy; (A.F.); (B.D.P.); (P.Z.); (C.P.C.)
| | - Pierluca Zangani
- Department Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Luciano Armanni 5, 80138 Naples, Italy; (A.F.); (B.D.P.); (P.Z.); (C.P.C.)
| | - Carlo Pietro Campobasso
- Department Experimental Medicine, University of Campania “Luigi Vanvitelli”, via Luciano Armanni 5, 80138 Naples, Italy; (A.F.); (B.D.P.); (P.Z.); (C.P.C.)
| |
Collapse
|