1
|
Hartman AL, Myler PJ. Bunyavirales: Scientific Gaps and Prototype Pathogens for a Large and Diverse Group of Zoonotic Viruses. J Infect Dis 2023; 228:S376-S389. [PMID: 37849397 PMCID: PMC10582323 DOI: 10.1093/infdis/jiac338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Research directed at select prototype pathogens is part of the approach put forth by the National Institute of Allergy and Infectious Disease (NIAID) to prepare for future pandemics caused by emerging viruses. We were tasked with identifying suitable prototypes for four virus families of the Bunyavirales order (Phenuiviridae, Peribunyaviridae, Nairoviridae, and Hantaviridae). This is a challenge due to the breadth and diversity of these viral groups. While there are many differences among the Bunyavirales, they generally have complex ecological life cycles, segmented genomes, and cause a range of human clinical outcomes from mild to severe and even death. Here, we delineate potential prototype species that encompass the breadth of clinical outcomes of a given family, have existing reverse genetics tools or animal disease models, and can be amenable to a platform approach to vaccine testing. Suggested prototype pathogens outlined here can serve as a starting point for further discussions.
Collapse
Affiliation(s)
- Amy L Hartman
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Peter J Myler
- Department of Pediatrics and the Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| |
Collapse
|
2
|
Powers AM, Williamson LE, Carnahan RH, Crowe JE, Hyde JL, Jonsson CB, Nasar F, Weaver SC. Developing a Prototype Pathogen Plan and Research Priorities for the Alphaviruses. J Infect Dis 2023; 228:S414-S426. [PMID: 37849399 PMCID: PMC11007399 DOI: 10.1093/infdis/jiac326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
The Togaviridae family, genus, Alphavirus, includes several mosquito-borne human pathogens with the potential to spread to near pandemic proportions. Most of these are zoonotic, with spillover infections of humans and domestic animals, but a few such as chikungunya virus (CHIKV) have the ability to use humans as amplification hosts for transmission in urban settings and explosive outbreaks. Most alphaviruses cause nonspecific acute febrile illness, with pathogenesis sometimes leading to either encephalitis or arthralgic manifestations with severe and chronic morbidity and occasional mortality. The development of countermeasures, especially against CHIKV and Venezuelan equine encephalitis virus that are major threats, has included vaccines and antibody-based therapeutics that are likely to also be successful for rapid responses with other members of the family. However, further work with these prototypes and other alphavirus pathogens should target better understanding of human tropism and pathogenesis, more comprehensive identification of cellular receptors and entry, and better understanding of structural mechanisms of neutralization.
Collapse
Affiliation(s)
- Ann M Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Lauren E Williamson
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jennifer L Hyde
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Farooq Nasar
- Emerging Infectious Diseases Branch and Viral Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
Langsjoen RM, Key A, Shariatzadeh N, Jackson CR, Mahmood F, Arkun K, Alexandrescu S, Solomon IH, Piantadosi A. Eastern Equine Encephalitis Virus Diversity in Massachusetts Patients, 1938-2020. Am J Trop Med Hyg 2023; 109:387-396. [PMID: 37339758 PMCID: PMC10397450 DOI: 10.4269/ajtmh.23-0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/12/2023] [Indexed: 06/22/2023] Open
Abstract
Eastern equine encephalitis virus (EEEV) is a relatively little-studied alphavirus that can cause devastating viral encephalitis, potentially leading to severe neurological sequelae or death. Although case numbers have historically been low, outbreaks have been increasing in frequency and scale since the 2000 s. It is critical to investigate EEEV evolutionary patterns, especially within human hosts, to understand patterns of emergence, host adaptation, and within-host evolution. To this end, we obtained formalin-fixed paraffin-embedded tissue blocks from discrete brain regions from five contemporary (2004-2020) patients from Massachusetts, confirmed the presence of EEEV RNA by in situ hybridization (ISH) staining, and sequenced viral genomes. We additionally sequenced RNA from scrapings of historical slides made from brain sections of a patient in the first documented EEE outbreak in humans in 1938. ISH staining revealed the presence of RNA in all contemporary samples, and quantification loosely correlated with the proportion of EEEV reads in samples. Consensus EEEV sequences were generated for all six patients, including the sample from 1938; phylogenetic analysis using additional publicly available sequences revealed clustering of each study sample with like sequences from a similar region, whereas an intrahost comparison of consensus sequences between discrete brain regions revealed minimal changes. Intrahost single nucleotide variant (iSNV) analysis of four samples from two patients revealed the presence of tightly compartmentalized, mostly nonsynonymous iSNVs. This study contributes critical primary human EEEV sequences, including a historic sequence as well as novel intrahost evolution findings, contributing substantially to our understanding of the natural history of EEEV infection in humans.
Collapse
Affiliation(s)
- Rose M. Langsjoen
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Autum Key
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Nima Shariatzadeh
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Christopher R. Jackson
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Knarik Arkun
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Isaac H. Solomon
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anne Piantadosi
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Reyna RA, Weaver SC. Sequelae and Animal Modeling of Encephalitic Alphavirus Infections. Viruses 2023; 15:v15020382. [PMID: 36851596 PMCID: PMC9959775 DOI: 10.3390/v15020382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Eastern (EEEV), Venezuelan (VEEV), and western equine encephalitis viruses (WEEV) are members of the genus Alphavirus, family Togaviridae. Typically spread by mosquitoes, EEEV, VEEV, and WEEV induce febrile illness that may develop into more severe encephalitic disease, resulting in myriad severe neurologic sequelae for which there are no vaccines or therapeutics. Here, we summarize the clinical neurologic findings and sequelae induced by these three encephalitic viruses and describe the various animal models available to study them. We emphasize the crucial need for the development of advanced animal modeling combined with the use of telemetry, behavioral testing, and neuroimaging to facilitate a detailed mechanistic understanding of these encephalitic signs and sequelae. Through the use of these systems, much-needed therapeutics and vaccines can be developed.
Collapse
Affiliation(s)
- Rachel A. Reyna
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Scott C. Weaver
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence:
| |
Collapse
|
5
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
6
|
Williams JA, Long SY, Zeng X, Kuehl K, Babka AM, Davis NM, Liu J, Trefry JC, Daye S, Facemire PR, Iversen PL, Bavari S, Pitt ML, Nasar F. Eastern equine encephalitis virus rapidly infects and disseminates in the brain and spinal cord of cynomolgus macaques following aerosol challenge. PLoS Negl Trop Dis 2022; 16:e0010081. [PMID: 35533188 PMCID: PMC9084534 DOI: 10.1371/journal.pntd.0010081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) is mosquito-borne virus that produces fatal encephalitis in humans. We recently conducted a first of its kind study to investigate EEEV clinical disease course following aerosol challenge in a cynomolgus macaque model utilizing the state-of-the-art telemetry to measure critical physiological parameters. Here, we report the results of a comprehensive pathology study of NHP tissues collected at euthanasia to gain insights into EEEV pathogenesis. Viral RNA and proteins as well as microscopic lesions were absent in the visceral organs. In contrast, viral RNA and proteins were readily detected throughout the brain including autonomic nervous system (ANS) control centers and spinal cord. However, despite presence of viral RNA and proteins, majority of the brain and spinal cord tissues exhibited minimal or no microscopic lesions. The virus tropism was restricted primarily to neurons, and virus particles (~61–68 nm) were present within axons of neurons and throughout the extracellular spaces. However, active virus replication was absent or minimal in majority of the brain and was limited to regions proximal to the olfactory tract. These data suggest that EEEV initially replicates in/near the olfactory bulb following aerosol challenge and is rapidly transported to distal regions of the brain by exploiting the neuronal axonal transport system to facilitate neuron-to-neuron spread. Once within the brain, the virus gains access to the ANS control centers likely leading to disruption and/or dysregulation of critical physiological parameters to produce severe disease. Moreover, the absence of microscopic lesions strongly suggests that the underlying mechanism of EEEV pathogenesis is due to neuronal dysfunction rather than neuronal death. This study is the first comprehensive investigation into EEEV pathology in a NHP model and will provide significant insights into the evaluation of countermeasure. EEEV is an arbovirus endemic in parts of North America and is able to produce fatal encephalitis in humans and domesticated animals. Despite multiple human outbreaks during the last 80 years, there are still no therapeutic or vaccines to treat or prevent human disease. One critical obstacle in the development of effective countermeasure is the lack of insights into EEEV pathogenesis in a susceptible animal host. We recently conducted a study in cynomolgus macaques to investigate the disease course by measuring clinical parameters relevant to humans. Following infection, these parameters were rapidly and profoundly altered leading to severe disease. In this study, we examined the potential mechanisms that underlie pathogenesis to cause severe disease. The virus was present in many parts of the brain and spinal cord, however, minimal or no pathological lesions as well as active virus replication were observed. Additionally, neurons were the predominant target of EEEV infection and virus transport was facilitated via axonal transport system to spread neuron-to-neuron throughout the brain and spinal cord. These data show that EEEV likely hijacks essential transport system to rapidly spread in the brain and local/global neuronal dysfunction rather than neuronal death is the principal cause of severe disease.
Collapse
Affiliation(s)
- Janice A. Williams
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Simon Y. Long
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Kathleen Kuehl
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - April M. Babka
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Neil M. Davis
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Jun Liu
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - John C. Trefry
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sharon Daye
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Paul R. Facemire
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Patrick L. Iversen
- Therapeutics Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Sina Bavari
- Office of the Commander, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
| | - Margaret L. Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- Office of the Commander, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail: (MLP); , (FN)
| | - Farooq Nasar
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, United States of America
- * E-mail: (MLP); , (FN)
| |
Collapse
|
7
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|