1
|
Smith DJ, Queiroz-Telles F, Rabenja FR, Hay R, Bonifaz A, Grijsen ML, Blaizot R, Messina F, Song Y, Lockhart SR, Jordan A, Cavanaugh AM, Litvintseva AP, Chiller T, Schito M, de Hoog S, Vicente VA, Cornet M, Dagne DA, Ramarozatovo LS, de Azevedo CDMPES, Santos DWCL. A global chromoblastomycosis strategy and development of the global chromoblastomycosis working group. PLoS Negl Trop Dis 2024; 18:e0012562. [PMID: 39405322 PMCID: PMC11478817 DOI: 10.1371/journal.pntd.0012562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Chromoblastomycosis, an implantation mycosis, is a neglected tropical disease that causes decreased quality of life, stigma, and disability. The global burden of disease is unknown and data on disease epidemiology and outcomes are severely limited by a lack of access to needed diagnostic tools and therapeutics. The World Health Organization outlined targets for chromoblastomycosis in the Road Map for Neglected Tropical Diseases 2021-2030, but little progress has been made in initiating and implementing an effective control program globally. This lack of guiding policy and progress led to the recent formation of a Global Chromoblastomycosis Working Group which has developed a global chromoblastomycosis strategy. We describe this strategy, which outlines specific steps needed to improve technical progress, strategy and service delivery, and enablers. Clinicians, researchers, public and government officials, patients, and policy makers can align their time, expertise, and resources to improve the lives of communities affected by chromoblastomycosis through this strategy.
Collapse
Affiliation(s)
- Dallas J. Smith
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | | | | | | | - Alexandro Bonifaz
- Servicio de Dermatología, Hospital General de México “Dr. Eduardo Liceaga”, Mexico City, Mexico
| | - Marlous L. Grijsen
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Romain Blaizot
- Department of Dermatology, Andrée Rosemon Hospital, 97306 Cayenne, French Guiana
- Tropical Biome and Immunophysiopathology (TBIP), Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d’Infection et d’Immunité de Lille, Centre Hospitalier de Cayenne, Université de Guyane, Cayenne, French Guiana
| | - Fernando Messina
- Unidad Micología, Hospital de Enfermedades Infecciosas Francisco Javier Muñiz, Buenos Aires, Argentina, Hospital de Enfermedades Infecciosas Francisco Javier Muñiz, Buenos Aires, Argentina
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing China
| | - Shawn R. Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alexander Jordan
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Alyson M. Cavanaugh
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Anastasia P. Litvintseva
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Marco Schito
- Critical Path Institute, Tucson, Arizona, United States of America
| | - Sybren de Hoog
- Radboudumc/CWZ Center of Expertise in Mycology, Nijmegen, the Netherlands
| | | | | | - Daniel Argaw Dagne
- Department of Control of Neglected Tropical Diseases, WHO, Geneva, Switzerland
| | - Lala S. Ramarozatovo
- Hôpital Universitaire Joseph Raseta Befelatanana, Antananarivo, Madagascar
- Centre Hospitalier Universitaire de Befelatanana, Antananarivo, Madagascar
| | - Conceição de Maria Pedrozo e Silva de Azevedo
- Department of Medicine, Federal University of Maranhão, São Luís, Maranhão, Brazil
- Post-graduation Program of Health Science, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Daniel Wagner C. L. Santos
- Department of Infectious Diseases and Infection Control, Universidade Federal do Maranhão, Maranhão, Brazil
- Instituto D´Or de Pesquisa e Ensino, IDOR, Brazil
| |
Collapse
|
2
|
Lee JSF, Cohen RM, Khan RA, Burry J, Casas EC, Chung HY, Costa LH, Ford N, Galvao DLN, Giron N, Jarvis JN, Mondal M, Odionyi JJ, Casas CP, Rangaraj A, Rode J, Ruffell C, Sued O, Ribeiro I. Paving the way for affordable and equitable liposomal amphotericin B access worldwide. Lancet Glob Health 2024; 12:e1552-e1559. [PMID: 39151989 PMCID: PMC11345448 DOI: 10.1016/s2214-109x(24)00225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 08/19/2024]
Abstract
Amphotericin B has long been crucial for treating many serious infectious diseases, such as invasive fungal infections and visceral leishmaniasis, particularly for patients who are immunocompromised, including those with advanced HIV infection. The conventional amphotericin B deoxycholate formulation has largely been replaced in high-income countries with liposomal amphotericin B (LAmB), which has many advantages, including lower rates of adverse events, such as nephrotoxicity and anaemia. Despite an evident need for LAmB in low-income and middle-income countries, where mortality from invasive fungal infections is still substantial, many low-income and middle-income countries still often use the amphotericin B deoxycholate formulation because of a small number of generic formulations and the high price of the originator LAmB. The pricing of LAmB is also highly variable between countries. Overcoming supply barriers through the availability of additional quality-assured, generic formulations of LAmB at accessible prices would substantially facilitate equitable access and have a substantial effect on mortality attributable to deadly fungal infections.
Collapse
Affiliation(s)
| | - Rachel M Cohen
- Drugs for Neglected Diseases initiative, New York, NY, USA
| | | | - Jessica Burry
- Médecins Sans Frontières Access Campaign, Geneva, Switzerland
| | | | - Han Yang Chung
- Drugs for Neglected Diseases Initiative, Kuala Lumpur, Malaysia
| | | | - Nathan Ford
- World Health Organization, Geneva, Switzerland
| | | | - Nora Giron
- Pan American Health Organization Strategic Fund, Washington, DC, USA
| | - Joseph N Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK; UK & Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Mousumi Mondal
- Drugs for Neglected Diseases Initiative, New Delhi, India
| | | | | | - Ajay Rangaraj
- Department of HIV, Hepatitis and STIs, World Health Organization, Geneva, Switzerland
| | - Joelle Rode
- Drugs for Neglected Diseases Initiative, Rio de Janeiro, Brazil
| | - Carol Ruffell
- Drugs for Neglected Diseases Initiative Global Antibiotic R&D Partnership, Cape Town, South Africa
| | - Omar Sued
- Pan American Health Organization, Washington, DC, USA
| | - Isabela Ribeiro
- Drugs for Neglected Diseases Initiative, Geneva, Switzerland
| |
Collapse
|
3
|
Sousa GSM, De Oliveira RS, Souza AB, Monteiro RC, Santo EPTE, Franco Filho LC, Moraes DLO, De Sá SR, Da Silva SHM. Development of PCR-Multiplex Assays for Identification of the Herpotrichiellaceae Family and Agents Causing Chromoblastomycosis. J Fungi (Basel) 2024; 10:548. [PMID: 39194874 DOI: 10.3390/jof10080548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The Herpotrichiellaceae family is an important group of dematiaceous filamentous fungi, associated with a variety of pathogenic fungal species causing chromoblastomycosis (CBM) and phaeohyphomycosis (PHM), both with polymorphic clinical manifestations and worldwide incidence. Currently, the identification of this family and determination of the causative agent is challenging due to the subjectivity of morphological identification methods, necessitating the use of molecular techniques to complement diagnosis. In this context, genetic sequencing of the Internal Transcribed Spacer (ITS) has become the norm due to a lack of alternative molecular tools for identifying these agents. Therefore, this study aimed to develop PCR-Multiplex methodologies to address this gap. Sequences from the ITS and Large Subunit (LSU) of ribosomal DNA were used, and after manual curation and in vitro analyses, primers were synthesized for the identification of the targets. The primers were optimized and validated in vitro, resulting in two PCR-Multiplex methodologies: one for identifying the Herpotrichiellaceae family and the bantiana clade, and another for determining the species Fonsecaea pedrosoi and Fonsecaea monophora. Ultimately, the assays developed in this study aim to complement other identification approaches for these agents, reducing the need for sequencing, improving the management of these infections, and enhancing the accuracy of epidemiological information.
Collapse
Affiliation(s)
- Gabriel S M Sousa
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Rodrigo S De Oliveira
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Alex B Souza
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Ruan C Monteiro
- Laboratory of Emerging Fungal Pathogens, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Elaine P T E Santo
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Luciano C Franco Filho
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Denison L O Moraes
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Sarah R De Sá
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Silvia H M Da Silva
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| |
Collapse
|
4
|
Sousa IS, Tavares LFS, Silva BA, Moreno DSA, Alviano CS, Santos ALS, Kneipp LF. Calcineurin activity in Fonsecaea pedrosoi: tacrolimus and cyclosporine A inhibited conidia growth, filamentation and showed synergism with itraconazole. Braz J Microbiol 2024:10.1007/s42770-024-01463-2. [PMID: 39044105 DOI: 10.1007/s42770-024-01463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
Fonsecaea pedrosoi is a melanized fungus that causes chromoblastomycosis (CBM), a tropical neglected disease responsible for chronic and disability-related subcutaneous mycosis. Given the challenging nature of CBM treatment, the study of new targets and novel bioactive drugs capable of improving patient life quality is urgent. In the present work, we detected a calcineurin activity in F. pedrosoi conidial form, employing primarily colorimetric, immunoblotting and flow cytometry assays. Our findings reveal that the calcineurin activity of F. pedrosoi was stimulated by Ca2+/calmodulin, inhibited by EGTA and specific inhibitors, such as tacrolimus (FK506) and cyclosporine A (CsA), and proved to be insensitive to okadaic acid. In addition, FK506 and CsA were able to affect the cellular viability and the fungal proliferation. This effect was corroborated by transmission electron microscopy that showed both calcineurin inhibitors promoted profound changes in the ultrastructure of conidia, causing mainly cytoplasm condensation and intense vacuolization that are clear indication of cell death. Our data indicated that FK506 exhibited the highest effectiveness, with a minimum inhibitory concentration (MIC) of 3.12 mg/L, whereas CsA required 15.6 mg/L to inhibit 100% of conidial growth. Interestingly, when both were combined with itraconazole, they demonstrated anti-F. pedrosoi activity, exhibiting a synergistic effect. Moreover, the fungal filamentation was affected after treatment with both calcineurin inhibitors. These data corroborate with other calcineurin studies in fungal cells and open up further discussions aiming to establish the role of this enzyme as a potential target for antifungal therapy against CBM infections.
Collapse
Affiliation(s)
- Ingrid S Sousa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| | - Lucilene F S Tavares
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| | - Bianca A Silva
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-901, Brazil
| | - Daniela S A Moreno
- Laboratório de Estrutura de Microrganismos, IMPG, UFRJ, Rio de Janeiro, 21941-902, Brazil
| | - Celuta S Alviano
- Laboratório de Estrutura de Microrganismos, IMPG, UFRJ, Rio de Janeiro, 21941-902, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-901, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, 21941-901, Brazil
| | - Lucimar F Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil.
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, 21941-901, Brazil.
| |
Collapse
|
5
|
Mahmoudi H, Ramezanalipour Z, Khansari M, Meijer EFJ, Mahmoudi S, Spruijtenburg B, Rahimi Foroushani A, Gramishoar M, Kamali Sarvestani H. Chromoblastomycosis caused by Alternaria infectoria, concurrent with myiasis, in a recipient of a kidney transplant: a compelling case report. Front Med (Lausanne) 2024; 11:1396224. [PMID: 39081689 PMCID: PMC11286409 DOI: 10.3389/fmed.2024.1396224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Neglected tropical diseases (NTDs) pose a significant threat to the health of millions of people worldwide, particularly in impoverished populations in tropical and subtropical regions. The World Health Organization (WHO) considers certain fungal infections, such as chromoblastomycosis, as NTDs. Chromoblastomycosis is a chronic fungal infection affecting the skin and subcutaneous tissue, primarily found in tropical and subtropical regions of Latin America, Africa, and Asia. This case report presents a 46-year-old female patient with chromoblastomycosis who had a history of renal transplantation and was receiving immunosuppressive therapy. The patient exhibited dark, verrucous, and ulcerative lesions on the legs, and the diagnosis was confirmed through the microscopic examination of skin scrapings by observing medlar bodies. Two sequential fungal tissue cultures and ITS sequencing verified the presence of Alternaria infectoria, not formerly described in chromoblastomycosis. Moreover, observation of fly larvae in the lesions verified the diagnosis of myiasis. Treatment with voriconazole and terbinafine resulted in complete resolution of the lesions after 5 months. This case emphasizes the importance of considering chromoblastomycosis in individuals with occupational exposure in tropical areas, as well as the challenges associated with its diagnosis, coinfections, and treatment.
Collapse
Affiliation(s)
- Hamidreza Mahmoudi
- Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Ramezanalipour
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Khansari
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Eelco F. J. Meijer
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, Netherlands
| | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bram Spruijtenburg
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, Netherlands
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, Netherlands
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Gramishoar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasti Kamali Sarvestani
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Fathallah A, Chouaieb H, Saief MB, Ismaïl S, Said MB, Denning DW. The incidence and prevalence of serious fungal diseases in Tunisia. J Mycol Med 2024; 34:101479. [PMID: 38604083 DOI: 10.1016/j.mycmed.2024.101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/08/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
With increasing concern about the negative health impact of fungal disease, there is a need to survey what is and is not known about the epidemiology of these infections in Tunisia. We have estimated the incidence and prevalence of the most serious fungal diseases in Tunisia for the first time. Using published literature from Tunisia, or if absent other countries, we have estimated the burden of life-threatening fungal infections and those causing significant morbidity, using deterministic modeling, based on populations at greatest risk. An estimated 250,494 (2.12% of the Tunisian population) are affected by a serious fungal disease annually. Invasive and chronic pulmonary aspergillosis are relatively common with 708 and 2090 patients affected, partly linked to the prevalence of chronic obstructive pulmonary disease (COPD). Fungal asthma (allergic bronchopulmonary aspergillosis and severe asthma with fungal sensitization) have an estimated prevalence of 38,264 (5.8% of the adult asthma population). Fungal keratitis probably affects 1,761 eyes annually, often leading to uniocular blindness. Candidaemia and Candida peritonitis probably affect at least 680 people annually, with a high mortality. Recurrent vulvovaginal candidiasis probably affects over 200,000 women. While fungal diseases are regularly diagnosed in Tunisia, epidemiological studies with denominators are uncommon. Some fungal diseases are poorly addressed with the current diagnostic portfolio, and surveillance is lacking. Studies on these diseases and the implementation of a national program of surveillance are required.
Collapse
Affiliation(s)
- Akila Fathallah
- Laboratory of Parasitology - Mycology, Farhat Hached Hospital, Sousse, Tunisia; Department of Parasitology-Mycology, Faculty of Medicine of Sousse, University of Sousse Mohamed El Karoui Street, Bp 126,4002 Sousse, Tunisia
| | - Hamed Chouaieb
- Laboratory of Parasitology - Mycology, Farhat Hached Hospital, Sousse, Tunisia; Department of Parasitology-Mycology, Faculty of Medicine of Sousse, University of Sousse Mohamed El Karoui Street, Bp 126,4002 Sousse, Tunisia
| | - Moadh Ben Saief
- Laboratory of Parasitology - Mycology, Farhat Hached Hospital, Sousse, Tunisia
| | - Samar Ismaïl
- Laboratory of Parasitology - Mycology, Farhat Hached Hospital, Sousse, Tunisia; Department of Parasitology-Mycology, Faculty of Medicine of Sousse, University of Sousse Mohamed El Karoui Street, Bp 126,4002 Sousse, Tunisia
| | - Moncef Ben Said
- Laboratory of Parasitology - Mycology, Farhat Hached Hospital, Sousse, Tunisia; Department of Parasitology-Mycology, Faculty of Medicine of Sousse, University of Sousse Mohamed El Karoui Street, Bp 126,4002 Sousse, Tunisia
| | - David W Denning
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
7
|
Osborne W, Langman G, Ladoyanni E, Chue A. Nodular lesions of the buttock for 20 years: the challenge of chromoblastomycosis in non-endemic settings. BMJ Case Rep 2024; 17:e258097. [PMID: 38490708 PMCID: PMC10946373 DOI: 10.1136/bcr-2023-258097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Chromoblastomycosis is an implantation mycosis of the skin caused by certain species of melanised fungi. A man in his 50s, born in Kerala but living in England for 14 years, presented with a nodular lesion on his left buttock, which had been present for 20 years. Biopsy revealed muriform cells and fungal culture isolated Fonsecaea spp, consistent with a diagnosis of chromoblastomycosis. Treatment with oral terbinafine was initiated and changed to itraconazole based on results of antifungal susceptibility. Drug intolerance and low drug levels of itraconazole necessitated change to voriconazole and topical terbinafine. Despite long-term combined therapy, the lesions worsened, and the patient opted for surgical excision abroad. Recurrence was evident at surgical sites and combined therapy continues. Chromoblastomycosis is an insidious and burdensome neglected tropical disease. Within non-endemic countries, diagnosis remains challenging. A travel history and appropriate fungal investigations are vital.
Collapse
Affiliation(s)
- William Osborne
- Infectious Diseases & Tropical Medicine, Heartlands Hospital, Birmingham, UK
| | | | | | - Amy Chue
- Infectious Diseases & Tropical Medicine, Heartlands Hospital, Birmingham, UK
| |
Collapse
|
8
|
Rodríguez-Vargas C, Alastruey-Izquierdo A, Denning DW, Belén Araúz A. Estimated burden of fungal infections in Panama. J Mycol Med 2024; 34:101466. [PMID: 38382172 DOI: 10.1016/j.mycmed.2024.101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Data published on Panamanian fungal disease are scarce, mostly case reports. To date, there is no paper that compiles the burden of fungal disease Here we estimate for the first time the incidence and prevalence of fungal diseases in Panama. Data on fungal disease were obtained from different search engines: PubMed, Google Scholar, Scielo and Lilacs. For population and at risk diseases, we used statistics from worldometer, UNAIDS, and WHO. Incidence, prevalence, and absolute numbers were calculated based on the population at risk. Panamanian population in 2022 was 4,429,739. We estimated that 85,530 (1.93 %) people suffer from fungal diseases. The most frequent fungal infection was recurrent Candida vaginitis (3285/100,000). There are 31,000 HIV-infected people in Panama and based on the number of cases not receiving anti-retroviral therapy (14,570), and previous reports of prevalence of opportunistic infections, we estimated annual incidences of 4.0/100,000 for cryptococcal meningitis, 29.5/100,000 for oral candidiasis, 23.1/100,000 for esophageal candidiasis, 29.5/100,000 for Pneumocystis pneumonia, 15.1/100,000, and for histoplasmosis. For chronic pulmonary aspergillosis (CPA) and fungal asthma we used data from Guatemala and Colombia to estimate COPD and asthma prevalence and WHO report for tuberculosis. We estimated annual incidences of 6.1/100,000 for invasive aspergillosis and prevalence of 31.5/100,000 for CPA, 60.2/100,000 for allergic bronchopulmonary aspergillosis, and 79.5/100,000 for severe asthma with fungal sensitisation. Other incidence estimates were 5.0/100,000 for candidaemia, 0.20/100,000 for mucormycosis, and 4.97/100,000 for fungal keratitis. Even though this report on burden of fungal disease is a forward step, more epidemiological studies to validate these estimates are needed.
Collapse
Affiliation(s)
| | - Ana Alastruey-Izquierdo
- Global Action For Fungal Infections, 01564 Geneva, Switzerland; Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - David W Denning
- Global Action For Fungal Infections, 01564 Geneva, Switzerland; Manchester Fungal Infection Group, The University of Manchester and Manchester Academic Health Science Centre, Manchester, UK.
| | - Ana Belén Araúz
- Department of Infectious Diseases Hospital Santo Tomás, Panama
| |
Collapse
|
9
|
Sousa GSM, De Oliveira RS, De Souza AB, Monteiro RC, Santo EPTE, Franco Filho LC, Da Silva SHM. Identification of Chromoblastomycosis and Phaeohyphomycosis Agents through ITS-RFLP. J Fungi (Basel) 2024; 10:159. [PMID: 38392831 PMCID: PMC10890301 DOI: 10.3390/jof10020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
Chromoblastomycosis (CBM) and phaeohyphomycosis (FEO) are infections caused by melanized filamentous fungal agents, primarily found in tropical and subtropical regions. Both infections pose significant challenges for the correct identification of the causative agent due to their morphological similarity, making conventional methods of morphological analysis highly subjective. Therefore, molecular techniques are necessary for the precise determination of these species. In this regard, this study aimed to contribute to a new methodology based on PCR-RFLP for the identification of agents causing CBM and FEO. Sequences from the Internal Transcribed Spacer (ITS) region were used to identify potential restriction enzyme sites in silico, followed by in vitro validation using the selected restriction enzymes. The obtained results were compared with species identification through morphological analyses and sequencing. The results demonstrated that the PCR-RFLP applied in this study accurately identified two major agents of chromoblastomycosis, Fonsecaea pedrosoi and Fonsecaea monophora, as well as Cladophialophora bantiana and Exophiala dermatitidis, both causative agents of phaeohyphomycosis. In this context, the proposed assay can complement current methods for identifying these species, aiding in diagnosis, and contributing to the proper management of these infections.
Collapse
Affiliation(s)
- Gabriel S M Sousa
- Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66075-750, Brazil
| | - Rodrigo S De Oliveira
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Alex B De Souza
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Ruan C Monteiro
- Laboratory of Emerging Fungal Pathogens, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Elaine P T E Santo
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Luciano C Franco Filho
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| | - Silvia H M Da Silva
- Laboratório de Micoses Superficiais e Sistêmicas, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas, Ananindeua 67030-000, Brazil
| |
Collapse
|
10
|
Santos TADO, Soares LW, Oliveira LN, Moraes D, Mendes MS, Soares CMDA, Bailão AM, Bailão MGS. Zinc Starvation Induces Cell Wall Remodeling and Activates the Antioxidant Defense System in Fonsecaea pedrosoi. J Fungi (Basel) 2024; 10:118. [PMID: 38392790 PMCID: PMC10890210 DOI: 10.3390/jof10020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
The survival of pathogenic fungi in the host after invasion depends on their ability to obtain nutrients, which include the transition metal zinc. This essential micronutrient is required to maintain the structure and function of various proteins and, therefore, plays a critical role in various biological processes. The host's nutritional immunity limits the availability of zinc to pathogenic fungi mainly by the action of calprotectin, a component of neutrophil extracellular traps. Here we investigated the adaptive responses of Fonsecaea pedrosoi to zinc-limiting conditions. This black fungus is the main etiological agent of chromoblastomycosis, a chronic neglected tropical disease that affects subcutaneous tissues. Following exposure to a zinc-limited environment, F. pedrosoi induces a high-affinity zinc uptake machinery, composed of zinc transporters and the zincophore Pra1. A proteomic approach was used to define proteins regulated by zinc deprivation. Cell wall remodeling, changes in neutral lipids homeostasis, and activation of the antioxidant system were the main strategies for survival in the hostile environment. Furthermore, the downregulation of enzymes required for sulfate assimilation was evident. Together, the adaptive responses allow fungal growth and development and reveals molecules that may be related to fungal persistence in the host.
Collapse
Affiliation(s)
| | - Lucas Weba Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lucas Nojosa Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Dayane Moraes
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Millena Silva Mendes
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Alexandre Melo Bailão
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Mirelle Garcia Silva Bailão
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| |
Collapse
|
11
|
Holanda IRM, Lacerda PN, Silva CND, Camargo RMPD, Miola AC, Marques SA. Chromoblastomycosis in a renal transplant patient. An Bras Dermatol 2024; 99:142-145. [PMID: 37749021 DOI: 10.1016/j.abd.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 09/27/2023] Open
Affiliation(s)
- Ingrid Rocha Meireles Holanda
- Infectious Diseases, Dermatology, Imaging Diagnosis and Radiotherapy, Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| | - Priscila Neri Lacerda
- Infectious Diseases, Dermatology, Imaging Diagnosis and Radiotherapy, Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Carolina Nunhez da Silva
- Infectious Diseases, Dermatology, Imaging Diagnosis and Radiotherapy, Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Rosangela Maria Pires de Camargo
- Infectious Diseases, Dermatology, Imaging Diagnosis and Radiotherapy, Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Anna Carolina Miola
- Infectious Diseases, Dermatology, Imaging Diagnosis and Radiotherapy, Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Silvio Alencar Marques
- Infectious Diseases, Dermatology, Imaging Diagnosis and Radiotherapy, Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| |
Collapse
|
12
|
Rodríguez-Cerdeira C, Hernández-Castro R, Arenas R, Sandoval-Tress C, Gutiérrez-Murillo F, Martínez-Chavarría LC, Xicohtencatl-Cortes J, Fida M, Martinez-Herrera E. From Child to Old Man: A Slowly Evolving Case of Chromoblastomycosis Caused by Cladosporium cladosporioides. Antibiotics (Basel) 2023; 12:1713. [PMID: 38136747 PMCID: PMC10741158 DOI: 10.3390/antibiotics12121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Chromoblastomycosis is a chronic granulomatous mycosis of the skin and subcutaneous tissue caused by traumatic inoculation with dematiaceous fungi. This disease primarily affects agricultural workers, who are mostly men. We present a case of chromoblastomycosis in a 63-year-old male farmer patient with dermatosis over 50 years of evolution, with warty, erythematous, and scaly plaques that predominate on the left hemithorax. Direct examination with potassium hydroxide (KOH) revealed numerous fumagoid cells. Amplification and sequencing of the internal transcribed spacer (ITS) and translation elongation factor 1-alpha (TEF-1a) gene revealed that chromoblastomycosis was caused by Cladosporium cladosporioides. The chromoblastomycosis was treated with itraconazole and fluconazole without any improvement, and amphotericin B was administered with partial improvement.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cerdeira
- Fundación Vithas, Grupo Hospitalario Vithas, 28043 Madrid, Spain;
- Dermatology Department, Hospital do Vithas, 36206 Vigo, Spain
- European Women’s Dermatologic and Venereologic Society, 36700 Tui, Spain;
- Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires C1091, Argentina
| | - Rigoberto Hernández-Castro
- Departamento de Ecología y Agentes Patógenos, Hospital General Dr. Manuel Gea González, Tlalpan 14080, Mexico;
| | - Roberto Arenas
- Fundación Vithas, Grupo Hospitalario Vithas, 28043 Madrid, Spain;
- European Women’s Dermatologic and Venereologic Society, 36700 Tui, Spain;
- Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires C1091, Argentina
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan 14080, Mexico
| | - Cecilia Sandoval-Tress
- Departamento de Dermatología, Hospital General de Zona # 42 Instituto Mexicano del Seguro Social, Puerto Vallarta 48310, Mexico;
| | | | - Luary Carolina Martínez-Chavarría
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán 04510, Mexico;
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Dr. Federico Gómez, Cuauhtémoc 06720, Mexico;
| | - Monika Fida
- European Women’s Dermatologic and Venereologic Society, 36700 Tui, Spain;
- Dermatology Department, Medical University of Tirana, U.M.T., 1001 Tirana, Albania
| | - Erick Martinez-Herrera
- Fundación Vithas, Grupo Hospitalario Vithas, 28043 Madrid, Spain;
- European Women’s Dermatologic and Venereologic Society, 36700 Tui, Spain;
- Psychodermatology Task Force of the Ibero-Latin American College of Dermatology (CILAD), Buenos Aires C1091, Argentina
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico
| |
Collapse
|
13
|
Jenks JD, Prattes J, Wurster S, Sprute R, Seidel D, Oliverio M, Egger M, Del Rio C, Sati H, Cornely OA, Thompson GR, Kontoyiannis DP, Hoenigl M. Social determinants of health as drivers of fungal disease. EClinicalMedicine 2023; 66:102325. [PMID: 38053535 PMCID: PMC10694587 DOI: 10.1016/j.eclinm.2023.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
Disparities in social determinants of health (SDOH) play a significant role in causing health inequities globally. The physical environment, including housing and workplace environment, can increase the prevalence and spread of fungal infections. A number of professions are associated with increased fungal infection risk and are associated with low pay, which may be linked to crowded and sub-optimal living conditions, exposure to fungal organisms, lack of access to quality health care, and risk for fungal infection. Those involved and displaced from areas of armed conflict have an increased risk of invasive fungal infections. Lastly, a number of fungal plant pathogens already threaten food security, which will become more problematic with global climate change. Taken together, disparities in SDOH are associated with increased risk for contracting fungal infections. More emphasis needs to be placed on systematic approaches to better understand the impact and reducing the health inequities associated with these disparities.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, NC, United States of America
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, United States of America
| | - Juergen Prattes
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Sebastian Wurster
- Division of Internal Medicine, Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, United States of America
| | - Rosanne Sprute
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center of Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Danila Seidel
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center of Medical Mycology (ECMM), Cologne, Germany
| | - Matteo Oliverio
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Department I of Internal Medicine, University of Cologne, Cologne, Germany
| | - Matthias Egger
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Carlos Del Rio
- Emory Center for AIDS Research, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Hatim Sati
- Department of Global Coordination and Partnership on Antimicrobial Resistance, World Health Organization, Geneva, Switzerland
| | - Oliver A. Cornely
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging – Associated Diseases (CECAD), Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Center of Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center of Medical Mycology (ECMM), Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Koln), University of Cologne, Cologne, Germany
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, CA, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Dimitrios P. Kontoyiannis
- Division of Internal Medicine, Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, University of Texas, Houston, TX, United States of America
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
14
|
Potenciano da Silva KL, Moraes D, Lechner B, Lindner H, Haas H, Almeida Soares CM, Silva-Bailão MG, Bailão AM. Fonsecaea pedrosoi produces ferricrocin and can utilize different host iron sources. Fungal Biol 2023; 127:1512-1523. [PMID: 38097325 DOI: 10.1016/j.funbio.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 12/18/2023]
Abstract
The survival of living organisms depends on iron, one of the most abundant metals in the Earth's crust. Nevertheless, this micronutrient is poorly available in our aerobic atmosphere as well as inside the mammalian host. This problem is circumvented by the expression of high affinity iron uptake machineries, including the production of siderophores, in pathogenic fungi. Here we demonstrated that F. pedrosoi, the causative agent of the neglected tropical disease chromoblastomycosis, presents gene clusters for siderophore production. In addition, ten putative siderophore transporters were identified. Those genes are upregulated under iron starvation, a condition that induces the secretion of hydroxamates, as revealed by chrome azurol S assays. RP-HPLC and mass spectrometry analysis allowed the identification of ferricrocin as an intra- and extracellular siderophore. F. pedrosoi can grow in different iron sources, including the bacterial ferrioxamine B and the host proteins ferritin, hemoglobin and holotransferrin. Of note, addition of hemoglobin, lactoferrin and holotransferrin to the growth medium of macrophages infected with F. pedrosoi enhanced significantly fungal survival. The ability to produce siderophores in iron limited conditions added to the versatility to utilize different sources of iron are strategies that certainly may contribute to fungal survival inside the host.
Collapse
Affiliation(s)
| | - Dayane Moraes
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Beatrix Lechner
- Institute of Molecular Biology/ Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Herbert Lindner
- Institute of Medical Biochemistry/Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | - Hubertus Haas
- Institute of Molecular Biology/ Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | | | | | - Alexandre Melo Bailão
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
15
|
Belda W, Passero LFD, de Carvalho CHC, Mojica PCR, Vale PA. Chromoblastomycosis: New Perspective on Adjuvant Treatment with Acitretin. Diseases 2023; 11:162. [PMID: 37987273 PMCID: PMC10660773 DOI: 10.3390/diseases11040162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Chromoblastomycosis (CBM) is a neglected human disease, caused by different species of pigmented dematiaceous fungi that cause granulomatous and suppurative dermatosis. This infection is difficult to treat and there are limited therapeutic options, including terbinafine, itraconazole, and tioconazole. Classic treatment is administered for a long period of time, but some patients do not respond properly, and therefore, such therapeutic approaches possess low cure rates. Therefore, it is vital to develop new strategies for the treatment of CBM. In this regard, it has been observed that the association of immunomodulatory molecules such as glucan with therapy carried out with antifungal drugs improves cutaneous lesions in comparison to treatment with antifungal drugs alone, suggesting that drug association may be an interesting and significant approach to incorporate into CBM therapy. Thus, the aim of this work was to associate classical antifungal therapy with the adjuvants imiquimod and acitretin. In the present case, we reported a patient with extensive CBM caused by Fonsaecae pedrosoi, that affected an extensive area of the right leg, that was left without treatment for 11 years. He was treated with a classical combination of itraconazole and terbinafine via the oral route plus topical imiquimod and oral acitretin, as an adjuvant therapy. After five months of treatment, a significant regression of verrucous plaques was observed, suggesting that the use of these adjuvants combined with the classical antifungal drugs, intraconazole plus terbinafine, can reduce treatment time and rapidly improve the patient's quality of life. This result confirms that the use of coadjuvant drugs may be effective in the treatment of this infectious disease.
Collapse
Affiliation(s)
- Walter Belda
- Dermatology Department, Medical School, University of São Paulo, Sao Paulo 05403-000, Brazil; (C.H.C.d.C.); (P.C.R.M.); (P.A.V.)
- Laboratory of Pathology of Infectious Diseases, Medical School, University of São Paulo, Sao Paulo 01246-000, Brazil
| | - Luiz Felipe Domingues Passero
- Institute of Biosciences, São Paulo State University (UNESP), Sao Vicente 11330-900, Brazil;
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Sao Vicente 11350-011, Brazil
| | | | - Paula Celeste Rubiano Mojica
- Dermatology Department, Medical School, University of São Paulo, Sao Paulo 05403-000, Brazil; (C.H.C.d.C.); (P.C.R.M.); (P.A.V.)
| | - Pablo Andrade Vale
- Dermatology Department, Medical School, University of São Paulo, Sao Paulo 05403-000, Brazil; (C.H.C.d.C.); (P.C.R.M.); (P.A.V.)
| |
Collapse
|
16
|
Bongomin F, Ekeng BE, Kwizera R, Salmanton-García J, Kibone W, van Rhijn N, Govender NP, Meya DB, Osaigbovo II, Hamer DH, Oladele R, Denning DW. Fungal diseases in Africa: Closing the gaps in diagnosis and treatment through implementation research and advocacy. J Mycol Med 2023; 33:101438. [PMID: 38358796 PMCID: PMC11103624 DOI: 10.1016/j.mycmed.2023.101438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 02/16/2024]
Abstract
Fungal diseases impose an escalating burden on public health in Africa, exacerbated by issues such as delayed diagnosis, inadequate therapy, and limited access to healthcare resources, resulting in significant morbidity and mortality. Effectively tackling these challenges demands a comprehensive approach encompassing research, training, and advocacy initiatives. Recent clinical mycology surveys conducted by Global Action for Fungal Infection (GAFFI) and the European Confederation of Medical Mycology/International Society for Human and Animal Mycology (ECMM/ISHAM) have underscored gaps in fungal diagnostics and the availability and accessibility of antifungal therapy in Africa. The World Health Organization (WHO) Fungal Priority Pathogens List (FPPL) identifies fungi of critical or high importance to human health, providing a roadmap for action and highlighting the urgent need for prioritizing fungal diseases and developing targeted interventions within the African context. To enhance diagnosis and treatment, it is imperative to invest in comprehensive training programs for healthcare workers across all levels and disciplines. Equipping them with the necessary knowledge and skills will facilitate early detection, accurate diagnosis, and appropriate management of fungal infections. Moreover, implementation science research in medical mycology assumes a pivotal role in bridging the gap between knowledge and practice. By identifying the barriers and facilitators that influence the adoption of diagnostic techniques and public health interventions, tailored strategies can be formulated to improve their implementation within healthcare settings. Advocacy plays a critical role in raising awareness regarding the profound impact of fungal diseases on public health in Africa. Engaging policymakers, healthcare providers, researchers, industry experts and communities underscore the importance of addressing these diseases and galvanize efforts for change. Substantial investment in surveillance, research and development specifically focused on fungal diseases is indispensable for advancing our understanding of local epidemiology, developing effective interventions, and ultimately improving patient outcomes. In conclusion, closing the gaps in diagnosing and treating fungal diseases in Africa demands concerted research and advocacy initiatives to ensure better healthcare delivery, reduced mortality rates, and improved public health outcomes.
Collapse
Affiliation(s)
- Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, P.O. Box 166, Gulu, Uganda; Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| | - Bassey E Ekeng
- Department of Medical Microbiology and Parasitology, University of Calabar Teaching Hospital, Calabar, Nigeria
| | - Richard Kwizera
- Translational Research Laboratory, Department of Research, Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
| | - Jon Salmanton-García
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany; University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Winnie Kibone
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Norman van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nelesh P Govender
- National Institute for Communicable Diseases, a Division of the National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David B Meya
- Infectious Diseases Institute, Department of medicine, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
| | - Iriagbonse I Osaigbovo
- Department of Medical Microbiology, School of Medicine, College of Medical Sciences, University of Benin, Benin 300213, Nigeria
| | - Davidson H Hamer
- Department of Global Health, Boston University School of Public Health, Boston, United States; Section of Infectious Diseases, Boston University Chobanian & Avedisian School of Medicine, Boston, United States of America; National Emerging Infectious Disease Laboratory, Boston, United States; Center for Emerging Infectious Diseases Policy & Research, Boston University, Boston, MA, United States
| | - Rita Oladele
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos 101017, Nigeria
| | - David W Denning
- Manchester Fungal Infection Group, Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Lau WC, Damji Y, Orlowski GM. An unusually subtle presentation of chromoblastomycosis. JAAD Case Rep 2023; 40:11-13. [PMID: 37675069 PMCID: PMC10477729 DOI: 10.1016/j.jdcr.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Affiliation(s)
- William C. Lau
- Department of Dermatology, Boston Medical Center, Boston, Massachusetts
- Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Yasin Damji
- Department of Dermatology, Boston Medical Center, Boston, Massachusetts
- Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Gregory M. Orlowski
- Department of Dermatology, Boston Medical Center, Boston, Massachusetts
- Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| |
Collapse
|
18
|
Smith DJ, Gold JAW, Benedict K, Wu K, Lyman M, Jordan A, Medina N, Lockhart SR, Sexton DJ, Chow NA, Jackson BR, Litvintseva AP, Toda M, Chiller T. Public Health Research Priorities for Fungal Diseases: A Multidisciplinary Approach to Save Lives. J Fungi (Basel) 2023; 9:820. [PMID: 37623591 PMCID: PMC10455901 DOI: 10.3390/jof9080820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Fungal infections can cause severe disease and death and impose a substantial economic burden on healthcare systems. Public health research requires a multidisciplinary approach and is essential to help save lives and prevent disability from fungal diseases. In this manuscript, we outline the main public health research priorities for fungal diseases, including the measurement of the fungal disease burden and distribution and the need for improved diagnostics, therapeutics, and vaccines. Characterizing the public health, economic, health system, and individual burden caused by fungal diseases can provide critical insights to promote better prevention and treatment. The development and validation of fungal diagnostic tests that are rapid, accurate, and cost-effective can improve testing practices. Understanding best practices for antifungal prophylaxis can optimize prevention in at-risk populations, while research on antifungal resistance can improve patient outcomes. Investment in vaccines may eliminate certain fungal diseases or lower incidence and mortality. Public health research priorities and approaches may vary by fungal pathogen.
Collapse
Affiliation(s)
- Dallas J. Smith
- Mycotic Diseases Branch, Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.A.W.G.); (K.B.); (K.W.); (M.L.); (A.J.); (N.M.); (S.R.L.); (D.J.S.); (N.A.C.); (B.R.J.); (A.P.L.); (M.T.)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Tom Chiller
- Mycotic Diseases Branch, Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (J.A.W.G.); (K.B.); (K.W.); (M.L.); (A.J.); (N.M.); (S.R.L.); (D.J.S.); (N.A.C.); (B.R.J.); (A.P.L.); (M.T.)
| |
Collapse
|
19
|
Coelho RA, Figueiredo-Carvalho MHG, Almeida-Silva F, de Souza Rabello VB, de Souza GR, Sangenito LS, Joffe LS, Santos ALSD, da Silva Lourenço MC, Rodrigues ML, Almeida-Paes R. Repurposing Benzimidazoles against Causative Agents of Chromoblastomycosis: Albendazole Has Superior In Vitro Activity Than Mebendazole and Thiabendazole. J Fungi (Basel) 2023; 9:753. [PMID: 37504741 PMCID: PMC10381309 DOI: 10.3390/jof9070753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Chromoblastomycosis (CBM) is a neglected human implantation mycosis caused by several dematiaceous fungal species. Currently available therapy is usually associated with physical methods, especially surgery, and with high refractoriness. Therefore, drug discovery for CBM is essential. Drug repositioning is a strategy used to facilitate the discovery of new treatments for several diseases. The aim of this study was to discover substances with antifungal activity against CBM agents from a collection of drugs previously approved for use in human diseases. A screening was performed with the NIH Clinical Collection against Fonsecaea pedrosoi. Ten substances, with clinical applicability in CBM, inhibited fungal growth by at least 60%. The minimum inhibitory concentration (MIC) of these substances was determined against other CBM agents, and the benzimidazoles albendazole, mebendazole and thiabendazole presented the lowest MIC values. The selectivity index, based on MIC and cytotoxicity of these substances, revealed albendazole to be more selective. To investigate a possible synergism of this benzimidazole with itraconazole and terbinafine, the chequerboard method was used. All interactions were classified as indifferent. Our current results suggest that benzimidazoles have repositioning potential against CBM agents. Albendazole seems to be the most promising, since it presented the highest selectivity against all dematiaceous fungi tested.
Collapse
Affiliation(s)
- Rowena Alves Coelho
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Vanessa Brito de Souza Rabello
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Gabriela Rodrigues de Souza
- Plataforma de Bioensaios RPT 11B, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Leandro Stefano Sangenito
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Nilópolis 26530-060, RJ, Brazil
| | - Luna Sobrino Joffe
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11792, USA
| | - André Luis Souza Dos Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Maria Cristina da Silva Lourenço
- Plataforma de Bioensaios RPT 11B, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba 81350-010, PR, Brazil
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
20
|
Lionakis MS. Exploiting antifungal immunity in the clinical context. Semin Immunol 2023; 67:101752. [PMID: 37001464 PMCID: PMC10192293 DOI: 10.1016/j.smim.2023.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Indexed: 03/31/2023]
Abstract
The continuous expansion of immunocompromised patient populations at-risk for developing life-threatening opportunistic fungal infections in recent decades has helped develop a deeper understanding of antifungal host defenses, which has provided the foundation for eventually devising immune-based targeted interventions in the clinic. This review outlines how genetic variation in certain immune pathway-related genes may contribute to the observed clinical variability in the risk of acquisition and/or severity of fungal infections and how immunogenetic-based patient stratification may enable the eventual development of personalized strategies for antifungal prophylaxis and/or vaccination. Moreover, this review synthesizes the emerging cytokine-based, cell-based, and other immunotherapeutic strategies that have shown promise as adjunctive therapies for boosting or modulating tissue-specific antifungal immune responses in the context of opportunistic fungal infections.
Collapse
Affiliation(s)
- Michail S Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
21
|
Fróes LAR, Toma TS, Jachiet M, Rousset L, Poderoso RE, Trindade MAB. Bacterial, fungal and parasitic co-infections in leprosy: A scoping review. PLoS Negl Trop Dis 2023; 17:e0011334. [PMID: 37216331 DOI: 10.1371/journal.pntd.0011334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND In leprosy patients, the most commonly reported non-viral co-infections are Tuberculosis, Leishmaniasis, Chromoblastomycosis and Helminths. The presence of a secondary infection is believed to increase the likelihood of leprosy reactions. The purpose of this review was to describe the clinical and epidemiological characteristics of the most reported bacterial, fungal, and parasitic co-infections in leprosy. METHODOLOGY/PRINCIPAL FINDINGS Following the PRISMA Extension for Scoping Reviews guidelines, a systematic literature search was conducted by two independent reviewers, resulting in the inclusion of 89 studies. For tuberculosis, a total of 211 cases were identified, with a median age of 36 years and male predominance (82%). Leprosy was the initial infection in 89% of cases, 82% of individuals had multibacillary disease, and 17% developed leprosy reactions. For leishmaniasis, 464 cases were identified, with a median age of 44 years and male predominance (83%). Leprosy was the initial infection in 44% of cases, 76% of individuals presented with multibacillary disease, and 18% developed leprosy reactions. Regarding chromoblastomycosis, we identified 19 cases with a median age of 54 years and male predominance (88%). Leprosy was the primary infection in 66% of cases, 70% of individuals had multibacillary disease, and 35% developed leprosy reactions. Additionally, we found 151 cases of co-infection with leprosy and helminths, with a median age of 43 years and male predominance (68%). Leprosy was the primary infection in 66% of cases, and 76% of individuals presented with multibacillary disease, while the occurrence of leprosy reactions varied from 37% to 81% across studies. CONCLUSION We observed a male-dominated pattern of co-infections among working-age individuals with multibacillary leprosy. Unlike prior studies reporting increased leprosy reactions in chronic viral co-infections, our findings did not indicate any increase among bacterial, fungal, or parasitic co-infections. Rather, co-infections with tuberculosis and leishmaniasis appeared to reduce leprosy reactions.
Collapse
Affiliation(s)
| | - Tereza Setsuko Toma
- Núcleo de Evidências, Instituto de Saúde, Secretaria de Estado da Saúde, São Paulo, SP, Brasil
| | - Marie Jachiet
- Service de Dermatologie, Hôpital saint Louis APHP Paris, Université Paris Cité
| | - Laurie Rousset
- Service de Dermatologie, Hôpital saint Louis APHP Paris, Université Paris Cité
| | | | | |
Collapse
|
22
|
Oliveira M, Oliveira D, Lisboa C, Boechat JL, Delgado L. Clinical Manifestations of Human Exposure to Fungi. J Fungi (Basel) 2023; 9:jof9030381. [PMID: 36983549 PMCID: PMC10052331 DOI: 10.3390/jof9030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Biological particles, along with inorganic gaseous and particulate pollutants, constitute an ever-present component of the atmosphere and surfaces. Among these particles are fungal species colonizing almost all ecosystems, including the human body. Although inoffensive to most people, fungi can be responsible for several health problems, such as allergic fungal diseases and fungal infections. Worldwide fungal disease incidence is increasing, with new emerging fungal diseases appearing yearly. Reasons for this increase are the expansion of life expectancy, the number of immunocompromised patients (immunosuppressive treatments for transplantation, autoimmune diseases, and immunodeficiency diseases), the number of uncontrolled underlying conditions (e.g., diabetes mellitus), and the misusage of medication (e.g., corticosteroids and broad-spectrum antibiotics). Managing fungal diseases is challenging; only four classes of antifungal drugs are available, resistance to these drugs is increasing, and no vaccines have been approved. The present work reviews the implications of fungal particles in human health from allergic diseases (i.e., allergic bronchopulmonary aspergillosis, severe asthma with fungal sensitization, thunderstorm asthma, allergic fungal rhinosinusitis, and occupational lung diseases) to infections (i.e., superficial, subcutaneous, and systemic infections). Topics such as the etiological agent, risk factors, clinical manifestations, diagnosis, and treatment will be revised to improve the knowledge of this growing health concern.
Collapse
Affiliation(s)
- Manuela Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Ipatimup-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Diana Oliveira
- CRN-Unidade de Reabilitação AVC, Centro de Reabilitação do Norte, Centro Hospitalar de Vila Nova de Gaia/Espinho, Avenida dos Sanatórios 127, 4405-565 Vila Nova de Gaia, Portugal
| | - Carmen Lisboa
- Serviço de Microbiologia, Departamento de Patologia, Faculdade de Medicina do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Serviço de Dermatologia, Centro Hospitalar Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CINTESIS@RISE-Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - José Laerte Boechat
- CINTESIS@RISE-Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Luís Delgado
- CINTESIS@RISE-Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Serviço de Imunologia Básica e Clínica, Departamento de Patologia, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Laboratório de Imunologia, Serviço de Patologia Clínica, Centro Hospitalar e Universitário de São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
23
|
Silver(I) 1,10-Phenanthroline Complexes Are Active against Fonsecaea pedrosoi Viability and Negatively Modulate Its Potential Virulence Attributes. J Fungi (Basel) 2023; 9:jof9030356. [PMID: 36983524 PMCID: PMC10057124 DOI: 10.3390/jof9030356] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 03/17/2023] Open
Abstract
The genus Fonsecaea is one of the etiological agents of chromoblastomycosis (CBM), a chronic subcutaneous disease that is difficult to treat. This work aimed to evaluate the effects of copper(II), manganese(II) and silver(I) complexes coordinated with 1,10-phenanthroline (phen)/1,10-phenanthroline-5,6-dione (phendione) on Fonsecaea spp. Our results revealed that most of these complexes were able to inhibit F. pedrosoi, F. monophora and F. nubica conidial viability with minimum inhibitory concentration (MIC) values ranging from 0.6 to 100 µM. The most effective complexes against F. pedrosoi planktonic conidial cells, the main etiologic agent of CBM, were [Ag(phen)2]ClO4 and [Ag2(3,6,9-tdda)(phen)4].EtOH, (tdda: 3,6,9-trioxaundecanedioate), displaying MIC values equal to 1.2 and 0.6 µM, respectively. These complexes were effective in reducing the viability of F. pedrosoi biofilm formation and maturation. Silver(I)-tdda-phen, combined with itraconazole, reduced the viability and extracellular matrix during F. pedrosoi biofilm development. Moreover, both silver(I) complexes inhibited either metallo- or aspartic-type peptidase activities of F. pedrosoi as well as its conidia into mycelia transformation and melanin production. In addition, the complexes induced the production of intracellular reactive oxygen species in F. pedrosoi. Taken together, our data corroborate the antifungal action of metal-phen complexes, showing they represent a therapeutic option for fungal infections, including CBM.
Collapse
|
24
|
Bai J, Qiao J. Chromoblastomycosis. QJM 2023; 116:133. [PMID: 36086953 DOI: 10.1093/qjmed/hcac221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- J Bai
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Hangzhou 310003, China
| | - J Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
25
|
Favilla LD, Herman TS, Goersch CDS, de Andrade RV, Felipe MSS, Bocca AL, Fernandes L. Expanding the Toolbox for Functional Genomics in Fonsecaea pedrosoi: The Use of Split-Marker and Biolistic Transformation for Inactivation of Tryptophan Synthase ( trpB) Gene. J Fungi (Basel) 2023; 9:jof9020224. [PMID: 36836338 PMCID: PMC9963410 DOI: 10.3390/jof9020224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Chromoblastomycosis (CBM) is a disease caused by several dematiaceous fungi from different genera, and Fonsecaea is the most common which has been clinically isolated. Genetic transformation methods have recently been described; however, molecular tools for the functional study of genes have been scarcely reported for those fungi. In this work, we demonstrated that gene deletion and generation of the null mutant by homologous recombination are achievable for Fonsecaea pedrosoi by the use of two approaches: use of double-joint PCR for cassette construction, followed by delivery of the split-marker by biolistic transformation. Through in silico analyses, we identified that F. pedrosoi presents the complete enzymatic apparatus required for tryptophan (trp) biosynthesis. The gene encoding a tryptophan synthase trpB -which converts chorismate to trp-was disrupted. The ΔtrpB auxotrophic mutant can grow with external trp supply, but germination, viability of conidia, and radial growth are defective compared to the wild-type and reconstituted strains. The use of 5-FAA for selection of trp- phenotypes and for counter-selection of strains carrying the trp gene was also demonstrated. The molecular tools for the functional study of genes, allied to the genetic information from genomic databases, significantly boost our understanding of the biology and pathogenicity of CBM causative agents.
Collapse
Affiliation(s)
- Luísa Dan Favilla
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Tatiana Sobianski Herman
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Patology, Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Camila da Silva Goersch
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Microbial Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Rosangela Vieira de Andrade
- Graduate Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Federal District, Taguatinga 70790-160, Brazil
| | - Maria Sueli Soares Felipe
- Graduate Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Campus Asa Norte, Asa Norte, Federal District, Taguatinga 70790-160, Brazil
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Molecular Patology, Faculty of Medicine, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
| | - Larissa Fernandes
- Laboratory of Applied Immunology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Graduate Program in Microbial Biology, Institute of Biology, Campus Darcy Ribeiro, University of Brasília, Asa Norte, Federal District, Brasilia 70910-900, Brazil
- Centro Metropolitano, Faculty of Ceilândia, Campus UnB Ceilândia, University of Brasília, Ceilândia Sul, Federal District, Brasilia 72220-275, Brazil
- Correspondence:
| |
Collapse
|
26
|
Kidd SE, Abdolrasouli A, Hagen F. Fungal Nomenclature: Managing Change is the Name of the Game. Open Forum Infect Dis 2023; 10:ofac559. [PMID: 36632423 PMCID: PMC9825814 DOI: 10.1093/ofid/ofac559] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/18/2022] [Indexed: 01/09/2023] Open
Abstract
Fungal species have undergone and continue to undergo significant nomenclatural change, primarily due to the abandonment of dual species nomenclature in 2013 and the widespread application of molecular technologies in taxonomy allowing correction of past classification errors. These have effected numerous name changes concerning medically important species, but by far the group causing most concern are the Candida yeasts. Among common species, Candida krusei, Candida glabrata, Candida guilliermondii, Candida lusitaniae, and Candida rugosa have been changed to Pichia kudriavzevii, Nakaseomyces glabrata, Meyerozyma guilliermondii, Clavispora lusitaniae, and Diutina rugosa, respectively. There are currently no guidelines for microbiology laboratories on implementing changes, and there is ongoing concern that clinicians will dismiss or misinterpret laboratory reports using unfamiliar species names. Here, we have outlined the rationale for name changes across the major groups of clinically important fungi and have provided practical recommendations for managing change.
Collapse
Affiliation(s)
- Sarah E Kidd
- Correspondence: Sarah E. Kidd, BMedSc(Hons), PhD , National Mycology Reference Centre, SA Pathology, Frome Road, Adelaide, South Australia 5000, Australia ()
| | - Alireza Abdolrasouli
- Department of Medical Microbiology, King's College Hospital, London, United Kingdom,Department of Infectious Diseases, Imperial College London, London, United Kingdom
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands,Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands,Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
27
|
An L, Jia G, Tan J, Yang L, Wang Y, Li L. Analysis of the synergistic antifungal activity of everolimus and antifungal drugs against dematiaceous fungi. Front Cell Infect Microbiol 2023; 13:1131416. [PMID: 36909734 PMCID: PMC9996166 DOI: 10.3389/fcimb.2023.1131416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Chromoblastomycosis (CBM) is a form of chronic mycosis that affects the skin and mucous membranes and is caused by species of dematiaceous fungi including Exophiala spp., Phialophora spp., and Fonsecaea spp. The persistence of this disease and limitations associated with single-drug treatment have complicated efforts to adequately manage this condition. Methods In this study, a microdilution assay was used to explore the synergistic antifungal activity of everolimus (EVL) in combination with itraconazole (ITC), voriconazole (VRC), posaconazole (POS), and amphotericin B (AMB) against a range of clinical dematiaceous fungal isolates. Results These analyses revealed that the EVL+POS and EVL+ITC exhibited superior in vitro synergistic efficacy, respectively inhibiting the growth of 64% (14/22) and 59% (13/22) of tested strains. In contrast, the growth of just 9% (2/22) of tested strains was inhibited by a combination of EVL+AMB, and no synergistic efficacy was observed for the combination of EVL+VRC. Discussion Overall, these findings indicate that EVL holds promise as a novel drug that can be synergistically combined with extant antifungal drugs to improve their efficacy, thereby aiding in the treatment of CBM.
Collapse
Affiliation(s)
- Lulu An
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gengpei Jia
- Department of General Medicine, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, China
| | - Jingwen Tan
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lianjuan Yang
- Department of Medical Mycology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuemei Wang
- Department of Clinical Laboratory, Shibei Hospital, Shanghai, China
| | - Lei Li
- Department of Clinical Laboratory, Shibei Hospital, Shanghai, China
- *Correspondence: Lei Li,
| |
Collapse
|
28
|
Kim JSTW, Santos FGD, Enokihara MMSES, Hirata SH, Tomimori J, Ogawa MM. Cutaneous chromoblastomycosis mimicking melanoma in a renal transplant recipient. Med Mycol Case Rep 2022; 38:41-43. [DOI: 10.1016/j.mmcr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
|
29
|
Ray A, Aayilliath K A, Banerjee S, Chakrabarti A, Denning DW. Burden of Serious Fungal Infections in India. Open Forum Infect Dis 2022; 9:ofac603. [PMID: 36589484 PMCID: PMC9792086 DOI: 10.1093/ofid/ofac603] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/08/2022] [Indexed: 12/27/2022] Open
Abstract
Background Fungal disease is frequent in India, but its incidence and prevalence are unclear. This review aims at defining the frequency or burden of various fungal infections in India. Methods A systematic review of the literature on the PubMed, Embase, and Web of Science (WOS) databases was conducted using appropriate search strings. Deterministic modeling determined annual incidence and prevalence estimates for multiple life- and sight-threatening infections with significant morbidity. Results Literature searches yielded >2900 papers; 434 papers with incidence/prevalence/proportion data were analyzed. An estimated 57 251 328 of the 1 393 400 000 people in India (4.1%) suffer from a serious fungal disease. The prevalence (in millions) of recurrent vulvovaginal candidiasis is 24.3, allergic bronchopulmonary aspergillosis is 2.0, tinea capitis in school-age children is 25, severe asthma with fungal sensitization is 1.36, chronic pulmonary aspergillosis is 1.74, and chronic fungal rhinosinusitis is 1.52. The annual incidence rates of Pneumocystis pneumonia (58 400), invasive aspergillosis (250 900), mucormycosis (195 000), esophageal candidiasis in HIV (266 600), candidemia (188 000), fungal keratitis (1 017 100), and cryptococcal meningitis (11 500) were also determined. Histoplasmosis, talaromycosis, mycetoma, and chromoblastomycosis were less frequent. Conclusions India's fungal burden is high and underappreciated in clinical practice.
Collapse
Affiliation(s)
- Animesh Ray
- Department of Medicine, AIIMS, New Delhi, India
| | | | | | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - David W Denning
- Manchester Fungal Infection Group, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Global Action For Fungal Infections, Geneva, Switzerland
| |
Collapse
|
30
|
Bongomin F, Ekeng BE, Kibone W, Nsenga L, Olum R, Itam-Eyo A, Kuate MPN, Pebolo FP, Davies AA, Manga M, Ocansey B, Kwizera R, Baluku JB. Invasive Fungal Diseases in Africa: A Critical Literature Review. J Fungi (Basel) 2022; 8:jof8121236. [PMID: 36547569 PMCID: PMC9853333 DOI: 10.3390/jof8121236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Invasive fungal diseases (IFDs) are of huge concern in resource-limited settings, particularly in Africa, due to the unavailability of diagnostic armamentarium for IFDs, thus making definitive diagnosis challenging. IFDs have non-specific systemic manifestations overlapping with more frequent illnesses, such as tuberculosis, HIV, and HIV-related opportunistic infections and malignancies. Consequently, IFDs are often undiagnosed or misdiagnosed. We critically reviewed the available literature on IFDs in Africa to provide a better understanding of their epidemiology, disease burden to guide future research and interventions. Cryptococcosis is the most encountered IFD in Africa, accounting for most of the HIV-related deaths in sub-Saharan Africa. Invasive aspergillosis, though somewhat underdiagnosed and/or misdiagnosed as tuberculosis, is increasingly being reported with a similar predilection towards people living with HIV. More cases of histoplasmosis are also being reported with recent epidemiological studies, particularly from Western Africa, showing high prevalence rates amongst presumptive tuberculosis patients and patients living with HIV. The burden of pneumocystis pneumonia has reduced significantly probably due to increased uptake of anti-retroviral therapy among people living with HIV both in Africa, and globally. Mucormycosis, talaromycosis, emergomycosis, blastomycosis, and coccidiomycosis have also been reported but with very few studies from the literature. The emergence of resistance to most of the available antifungal drugs in Africa is yet of huge concern as reported in other regions. IFDs in Africa is much more common than it appears and contributes significantly to morbidity and mortality. Huge investment is needed to drive awareness and fungi related research especially in diagnostics and antifungal therapy.
Collapse
Affiliation(s)
- Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu P.O. Box 166, Uganda
- Correspondence:
| | - Bassey E. Ekeng
- Department of Medical Microbiology and Parasitology, University of Calabar Teaching Hospital, Calabar P.O. Box 540281, Nigeria
| | - Winnie Kibone
- Department of Medicine, School of Medicine, Makerere University, Kampala P.O. Box 7072, Uganda
| | - Lauryn Nsenga
- Department of Medicine, School of Medicine, Kabale University, Kabale P.O. Box 317, Uganda
| | - Ronald Olum
- Department of Medicine, St. Francis’s Hospital Nsambya, Kampala P.O. Box 7176, Uganda
| | - Asa Itam-Eyo
- Department of Internal Medicine, University of Calabar Teaching Hospital, Calabar P.O. Box 540281, Nigeria
| | | | - Francis Pebalo Pebolo
- Department of Reproductive Health, Faculty of Medicine, Gulu University, Gulu P.O. Box 166, Uganda
| | - Adeyinka A. Davies
- Department of Medical Microbiology and Parasitology, Olabisi Onabanjo University Teaching Hospital, Sagamu P.O. Box 121102, Nigeria
| | - Musa Manga
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 4114 McGavran-Greenberg, 135 Dauer Drive, Chapel Hill, NC 27599, USA
| | - Bright Ocansey
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Richard Kwizera
- Translational Research Laboratory, Department of Research, Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala P.O. Box 22418, Uganda
| | - Joseph Baruch Baluku
- Division of Pulmonology, Kiruddu National Referral Hospital, Kampala P.O. Box 7178, Uganda
- Makerere Lung Institute, College of Health Sciences, Makerere University, Kampala P.O. Box 22418, Uganda
| |
Collapse
|
31
|
Pagliari C, Kanashiro-Galo L, Sotto MN. Inflammasome and Inflammatory Programmed Cell Death in Chromoblastomycosis. Mycopathologia 2022; 188:63-70. [PMID: 36273348 DOI: 10.1007/s11046-022-00679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/05/2022] [Indexed: 10/24/2022]
Abstract
Chromoblastomycosis (CBM) is a chronic, progressive fungal disease of the skin and subcutaneous tissue caused by a group of dematiaceous fungi. Verrucous lesions present parasite-rich granulomas and predominance of a Th2 patterns of cytokines. The inflammasome constitutes a macromolecular protein complex that play a role in the activation of caspase 1 that cleaves pro-IL1β and pro-IL18, essential mediators of inflammation, and also activates pyroptosis. We intended to explore the presence and a possible role of inflammasome elements in cutaneous human lesions in CBM, considering the expression of IL1β, IL18, caspase 1, NLRP1, and also RIPK3, a key downstream component of necroptosis signaling. 35 skin biopsies of cutaneous lesions of verrucous form of CBM and 10 biopsies from normal skin were selected. The diagnosis was based on histological and clinical analysis. An immunohistochemical protocol was performed. The histopathological analysis evidenced epidermis with hyperkeratosis, irregular acanthosis, and micro abscesses. The dermis presented suppurative granulomas and inflammatory infiltrate composed by giant cells, macrophages, epithelioid cells, lymphocytes, and some eosinophils. Positive cells were distributed in the inflammatory infiltrate, with an increased number of cells expressing caspase 1, IL1β and IL18. Cells expressing RIPK3 and NLRP1 were less frequent. The intense presence of caspase 1, IL1β and IL18, allied to NLRP1 expression, suggest that inflammasome and pyroptosis could play a role in the immune response against fungal agents of CBM. Our results, allied to data from literature, could suggest that inflammasome-mediated response and pyroptosis could be a target to be explored to decrease CBM lesions.
Collapse
|
32
|
Coelho RA, Alves GM, Figueiredo-Carvalho MHG, Almeida-Silva F, de Souza GR, Lourenço MCDS, Brito-Santos F, Amaral ACF, Almeida-Paes R. New possibilities for chromoblastomycosis and phaeohyphomycosis treatment: identification of two compounds from the MMV Pathogen Box® that present synergism with itraconazole. Mem Inst Oswaldo Cruz 2022; 117:e220089. [PMID: 36102413 PMCID: PMC9467274 DOI: 10.1590/0074-02760220089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Black fungi of the Herpotrichiellaceae family are agents of chromoblastomycosis and phaeohyphomycosis. There are few therapeutic options for these infections and it is common to associate antifungal drugs in their treatment. OBJECTIVES To investigate the Medicines for Malaria Venture (MMV) Pathogen Box® for possible compounds presenting synergism with antifungal drugs used to treat black fungal infections. METHODS An initial screening of the Pathogen Box® compounds was performed in combination with itraconazole or terbinafine at sub-inhibitory concentrations against Fonsecaea pedrosoi. Hits were further tested against eight Herpotrichiellaceae using the checkerboard method. FINDINGS No synergism was observed with terbinafine. MMV687273 (SQ109) and MMV688415 showed synergism with itraconazole against F. pedrosoi. Synergism of these compounds was confirmed with some black fungi by the checkerboard method. SQ109 and itraconazole presented synergism for Exophiala dermatitidis, F. pedrosoi, F. monophora and F. nubica, with fungicidal activity for F. pedrosoi and F. monophora. MMV688415 presented synergism with itraconazole only for F. pedrosoi, with fungicidal activity. The synergic compounds had high selectivity index values when combined with itraconazole. MAIN CONCLUSIONS These compounds in combination, particularly SQ109, are promising candidates to treat Fonsecaea spp. and E. dermatitidis infections, which account for most cases of chromoblastomycosis and phaeohyphomycosis.
Collapse
Affiliation(s)
- Rowena Alves Coelho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| | - Gabriela Machado Alves
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| | | | - Fernando Almeida-Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| | - Gabriela Rodrigues de Souza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Plataforma de Bioensaios RPT 11B, Rio de Janeiro, RJ, Brasil
| | - Maria Cristina da Silva Lourenço
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Plataforma de Bioensaios RPT 11B, Rio de Janeiro, RJ, Brasil
| | | | - Ana Claudia Fernandes Amaral
- Fundação Oswaldo Cruz-Fiocruz, Farmanguinhos, Laboratório de Produtos Naturais e Derivados, Rio de Janeiro, RJ, Brasil
| | - Rodrigo Almeida-Paes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia Evandro Chagas, Laboratório de Micologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
33
|
Sousa IS, Mello TP, Pereira EP, Granato MQ, Alviano CS, Santos ALS, Kneipp LF. Biofilm Formation by Chromoblastomycosis Fungi Fonsecaea pedrosoi and Phialophora verrucosa: Involvement with Antifungal Resistance. J Fungi (Basel) 2022; 8:jof8090963. [PMID: 36135688 PMCID: PMC9504689 DOI: 10.3390/jof8090963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with chromoblastomycosis (CBM) suffer chronic tissue lesions that are hard to treat. Considering that biofilm is the main growth lifestyle of several pathogens and it is involved with both virulence and resistance to antimicrobial drugs, we have investigated the ability of CBM fungi to produce this complex, organized and multicellular structure. Fonsecaea pedrosoi and Phialophora verrucosa conidial cells were able to adhere on a polystyrene abiotic substrate, differentiate into hyphae and produce a robust viable biomass containing extracellular matrix. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed the tridimensional architecture of the mature biofilms, revealing a dense network of interconnected hyphae, inner channels and amorphous extracellular polymeric material. Interestingly, the co-culture of each fungus with THP-1 macrophage cells, used as a biotic substrate, induced the formation of a mycelial trap covering and damaging the macrophages. In addition, the biofilm-forming cells of F. pedrosoi and P. verrucosa were more resistant to the conventional antifungal drugs than the planktonic-growing conidial cells. The efflux pump activities of P. verrucosa and F. pedrosoi biofilms were significantly higher than those measured in conidia. Taken together, the data pointed out the biofilm formation by CBM fungi and brought up a discussion of the relevance of studies about their antifungal resistance mechanisms.
Collapse
Affiliation(s)
- Ingrid S. Sousa
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Thaís P. Mello
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Elaine P. Pereira
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Marcela Q. Granato
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Celuta S. Alviano
- Laboratório de Estrutura de Microrganismos, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - André L. S. Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
| | - Lucimar F. Kneipp
- Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos (LTBBF), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Rede Micologia RJ—Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Correspondence:
| |
Collapse
|
34
|
Huang C, Deng W, Zhang Y, Zhang K, Ma Y, Song Y, Wan Z, Wang X, Li R. CARD9 deficiency predisposing chromoblastomycosis: A case report and comparative transcriptome study. Front Immunol 2022; 13:984093. [PMID: 36159827 PMCID: PMC9500462 DOI: 10.3389/fimmu.2022.984093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
CARD9 mutations are known to predispose patients to phaeohyphomycosis caused by different dematiaceous fungal species. In this study, we report for the first time a patient of chromoblastomycosis caused by Phialophora expanda, who harbored CARD9 mutation. Through a series of in vivo and in vitro studies, especially a comparative transcriptome study, we compared this case with our former patient suffering from phaeohyphomycosis caused by Phialophora americana. We showed that P. expanda is prone to forming sclerotic bodies both in vitro and in Card9 knockout mice, and has a stronger immunogenicity than P. americana. These data preliminary demonstrated that besides host defense, fungal specificity also contributed to the clinical phenotype in CARD9 deficient patients with dematiaceous fungal infections.
Collapse
Affiliation(s)
- Chen Huang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Weiwei Deng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yi Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Kai Zhang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yubo Ma
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yinggai Song
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiaowen Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- *Correspondence: Xiaowen Wang, ; Ruoyu Li,
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- *Correspondence: Xiaowen Wang, ; Ruoyu Li,
| |
Collapse
|
35
|
Pereira JAL, de Moraes LS, de Sena CBC, do Nascimento JLM, Rodrigues APD, da Silva SHM, Silva EO. Inhibition of Melanization by Kojic Acid Promotes Cell Wall Disruption of the Human Pathogenic Fungus Fonsecaea sp. Pathogens 2022; 11:pathogens11080925. [PMID: 36015045 PMCID: PMC9414132 DOI: 10.3390/pathogens11080925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Chromoblastomycosis (CBM) is a chronic human subcutaneous mycosis caused by various aetiologic agents. CBM does not have an established treatment but may be managed using antifungal agents, surgical removal of the lesions, or cryotherapy. Kojic acid (KA), a known tyrosinase inhibitor with a variety of biological actions, including fungistatic action against the fungus Cryptococcus neoformans, mediated by inhibiting melanin production, seems to be an alternative to improve the treatment of CBM. The aim of the present study was to analyze the action of KA against the pathogenic fungus Fonsecaea sp., an aetiological agent of CBM. The fungal culture was incubated with KA, and the amount of melanin was assessed, followed by cytochemical detection. Subsequently, the samples were analyzed by light microscopy, transmission and scanning electron microscopy. Culture analysis revealed that 100 g/mL KA significantly decreased the melanization of the fungus and the exocytosis of melanin into the culture supernatant. Additionally, KA induced less growth of biofilm formation and intense disruption of the cell wall, and decreased the number of melanin-containing vesicles in the culture supernatant. Finally, KA inhibited fungal filamentation in culture and the subsequent phagocytosis process. Thus, KA may be a promising substance to help in the treatment of CBM.
Collapse
Affiliation(s)
- Jorge Augusto Leão Pereira
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Lienne Silveira de Moraes
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro 21040-900, RJ, Brazil
- Pharmaceutical Sciences Post Graduation Program, Health and Biological Sciences Department, Federal University of Amapa (UNIFAP), Macapá 68903-329, AP, Brazil
| | - Chubert Bernardo Castro de Sena
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT—NIM), Rio de Janeiro 21040-900, RJ, Brazil
| | - José Luiz Martins do Nascimento
- Pharmaceutical Sciences Post Graduation Program, Health and Biological Sciences Department, Federal University of Amapa (UNIFAP), Macapá 68903-329, AP, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT—NIM), Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Ana Paula D. Rodrigues
- National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro 21040-900, RJ, Brazil
- Laboratory of Electron Microscopy, Evandro Chagas Institute, Ministry of Health, Belém 66093-020, PA, Brazil
| | - Silvia Helena Marques da Silva
- Laboratory of Superficial and Systemic Mycoses, Evandro Chagas Institute, Department of Mycology and Bacteriology, Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Edilene O. Silva
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro 21040-900, RJ, Brazil
- Correspondence: ; Tel.: +055-9132-0175-46
| |
Collapse
|
36
|
Guevara A, Vicente VA, de Souza Lima BJF, Nery AF, Hagen F, Hahn RC. Chromoblastomycosis-Leprosy Co-Infection in Central West Brazil. Presentation of Three Cases and Literature Review. Mycopathologia 2022; 187:363-374. [PMID: 35764905 PMCID: PMC9325793 DOI: 10.1007/s11046-022-00646-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Chromoblastomycosis and leprosy are chronic diseases with high prevalence in tropical and subtropical regions. Brazil is one of the countries with the highest incidence and prevalence for both diseases, however, reports of co-infections are scarce. The aim of this study was to describe three cases of chromoblastomycosis-leprosy co-infection in patients from Mato Grosso state, Brazil. A review of chromoblastomycosis-leprosy co-infection was performed of English, Portuguese and Spanish publications in LILACS, SciELO, PubMed and Web of Science databases using the descriptors (chromoblastomycosis OR cromoblastomicose OR cromoblastomicosis) AND (leprosy OR hanseníase OR lepra), without time period delimitation. Nineteen cases were included, 16 cases were published in 11 articles, plus the three cases reported in the current study. Most reported coninfection cases came from Brazil. Majority of the patients were male with a mean age of 52.2 years. Farmer was the main occupational activity reported. In 12 patients, the clinical signs and symptoms of leprosy started first. No contacts with patients affected by leprosy, armadillos or history of injuries at the anatomical site of chromoblastomycosis lesions were reported. Five leprosy patients who received steroid treatment for leprosy reactions or neuropathies, were diagnosed with chromoblastomycosis during immunosuppressive therapy. Four cases (21.1%) were reported among the elderly patients. Co-infections in patients with chromoblastomycosis or leprosy are uncommon, but the possibility should always be considered, especially if the patient is undergoing immunosuppressive treatment or is elder.
Collapse
Affiliation(s)
- Armando Guevara
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Vânia Aparecida Vicente
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Bruna Jacomel F de Souza Lima
- Microbiology, Parasitology and Pathology Post-Graduation Program, Department of Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Andréia Ferreira Nery
- Júlio Muller University Hospital - Ebserh, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Ferry Hagen
- Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Rosane Christine Hahn
- Laboratory of Mycology/Research, Faculty of Medicine, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil.
- Júlio Muller University Hospital - Ebserh, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil.
| |
Collapse
|
37
|
Lmimouni BE, Hennequin C, Penney ROS, Denning DW. Estimated Incidence and Prevalence of Serious Fungal Infections in Morocco. J Fungi (Basel) 2022; 8:414. [PMID: 35448645 PMCID: PMC9025078 DOI: 10.3390/jof8040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Few data are published from Morocco on fungal disease, although numerous case reports attest to a wide range of conditions in the country. Here, we estimate for the first time the incidence and prevalence of serious fungal diseases in the country. Detailed literature searches in English and French were conducted for all serious fungal infections. Demographic and individual underlying condition prevalence or annual incidence were obtained from UNAIDS (HIV), WHO (TB) and other international sources. Deterministic modelling was then applied to estimate fungal disease burden. Morocco's population in 2021 was 36,561,800. Multiple publications describe various fungal diseases, but epidemiological studies are rare. The most frequent serious fungal infections were tinea capitis (7258/100,000) and recurrent vulvovaginal candidiasis (2794/100,000 females). Chronic pulmonary aspergillosis is also common at a prevalence of 19,290 (53/100,000) because of the relatively high rate of tuberculosis. The prevalence of asthma in adults exceeds one million, of whom fungal asthma (including allergic bronchopulmonary aspergillosis (ABPA)) probably affects 42,150 (115/100,000). Data are scant on candidaemia (estimated at 5/100,000), invasive aspergillosis (estimated at 4.1/100,000), HIV-related complications such as cryptococcal meningitis and Pneumocystis pneumonia and mucormycosis. Fungal keratitis is estimated at 14/100,000). Mycetoma and chromoblastomycosis are probably rare. Fungal disease is probably common in Morocco and diagnostic capacity is good in the teaching hospitals. These estimates need confirmation with methodologically robust epidemiological studies.
Collapse
Affiliation(s)
- Badre Eddine Lmimouni
- Parasitology and Medical Mycology Laboratory, Military Hospital Teaching Mohammed the Fifth, BioInova Research Center, Faculty of Medicine and Pharmacy, University Mohammed the Fifth, Rabat 10100, Morocco;
| | - Christophe Hennequin
- Service de Parasitologie-Mycologie, Hôpital Saint-Antoine, AP-HP, 75012 Paris, France;
- Centre de Recherche Saint-Antoine, CRSA, Inserm, Sorbonne Université, 75012 Paris, France
| | | | - David W. Denning
- Global Action for Fungal Infections, 1208 Geneva, Switzerland;
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
38
|
Maubon D, Garnaud C, Ramarozatovo LS, Fahafahantsoa RR, Cornet M, Rasamoelina T. Molecular Diagnosis of Two Major Implantation Mycoses: Chromoblastomycosis and Sporotrichosis. J Fungi (Basel) 2022; 8:jof8040382. [PMID: 35448613 PMCID: PMC9027143 DOI: 10.3390/jof8040382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Chromoblastomycosis and sporotrichosis are the two main implantation mycoses that are now recognized as fungal neglected tropical diseases (NTDs). Their laboratory diagnosis mainly relies on direct microscopy, histopathology, and identification of the fungus by culture. However, to be appropriately used, these techniques require mycological expertise that is not widely available and may be absent in peripheral health care facilities in endemic areas. In addition, they lack sensitivity and specificity, and the culture for isolation and identification can have a long time-to-results period. Molecular methods, including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), have been developed in well-equipped reference laboratories. They greatly improve the rapidity and accuracy of diagnosis; in particular, for species identification. Recently, PCR and sequencing have paved the way for more user-friendly point-of-care tests, such as those based on LAMP or RCA technologies, which can be used in basic healthcare settings and even in field consultations.
Collapse
Affiliation(s)
- Danièle Maubon
- Translational Innovation in Medicine and Complexity, Centre National de la Recherche Scientifique, Université Grenoble Alpes, Domaine de la Merci, Centre Hospitalier Universitaire Grenoble Alpes, Service de Parasitologie-Mycologie, Bd de la Chantourne, CEDEX, 38706 La Tronche, France; (D.M.); (C.G.)
| | - Cécile Garnaud
- Translational Innovation in Medicine and Complexity, Centre National de la Recherche Scientifique, Université Grenoble Alpes, Domaine de la Merci, Centre Hospitalier Universitaire Grenoble Alpes, Service de Parasitologie-Mycologie, Bd de la Chantourne, CEDEX, 38706 La Tronche, France; (D.M.); (C.G.)
| | | | | | - Muriel Cornet
- Translational Innovation in Medicine and Complexity, Centre National de la Recherche Scientifique, Université Grenoble Alpes, Domaine de la Merci, Centre Hospitalier Universitaire Grenoble Alpes, Service de Parasitologie-Mycologie, Bd de la Chantourne, CEDEX, 38706 La Tronche, France; (D.M.); (C.G.)
- Correspondence:
| | | |
Collapse
|
39
|
Abstract
As the at-risk population expands and new antifungal resistance patterns develop, it is critical to understand and recognize cutaneous manifestations of old and emerging fungal diseases. PURPOSE OF REVIEW The aim of this review is to provide an overview of the most frequent and emerging deep cutaneous fungal infections following either primary inoculation or secondary spread after haematogenous seeding in disseminated infections in different geographical areas. RECENT FINDINGS Fungal skin and soft tissue infections (SSTIs) encompass a variety of pathological conditions based on the site of the infection, route of acquisition of the pathogen, epidemiological setting and the virulence of the fungus in relation to the host. The approach to a patient suspected of having a fungal SSTI is complex and usually poses a major diagnostic challenge. The treatment approach should include attempts at immune reconstitution, targeted antifungal therapy and/or aggressive surgical debridement. SUMMARY Fungal SSTIs can be an important cause of morbidity and mortality in both immunocompromised and immunocompetent patients and are being reported with increasing frequency worldwide.
Collapse
|
40
|
In vivo reflectance confocal microscopy, dermoscopy, high-frequency ultrasonography, and histopathology features in a case of chromoblastomycosis. PLoS Negl Trop Dis 2022; 16:e0010226. [PMID: 35239668 PMCID: PMC8893326 DOI: 10.1371/journal.pntd.0010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Agudelo Higuita NI, Varela Bustillo D, Denning DW. Burden of serious fungal infections in Honduras. Mycoses 2022; 65:429-439. [PMID: 35165955 DOI: 10.1111/myc.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND The burden of serious fungal infections in Honduras is unknown. The diagnosis of fungal diseases relies on almost exclusively on microscopy and culture limiting an accurate estimate of the burden of disease. OBJECTIVES The primary objective of the study was to estimate the burden of serious fungal infections in Honduras using previously described methods. METHODS National and international demographic data on population, HIV, tuberculosis, asthma, COPD and cancer were obtained. A thorough literature search was done for all epidemiological studies and case series of serious fungal diseases. Using these risk populations and whatever incidence and prevalence could be found that was most pertinent to Honduras, a burden estimate was derived. RESULTS The estimated number of serious fungal infection was estimated to be between 178,772 and 179,624 with nearly 2300 cases of these representing opportunistic infections in people living with HIV. The incidence of histoplasmosis and cryptococcosis in people living with HIV is high and estimated to be 4.3 and 4.6 cases per 100,000 population respectively. Approximately 12,247-13,099 cases of aspergillosis and 164,227 of other serious fungal infections were estimated to occur each year. CONCLUSION An accurate estimate of the burden of serious fungal infections in Honduras is unknown but based on our results, likely significant. Serious fungal infections represent an important public health problem in Honduras affecting approximately 1.8% of the population. There is a clear need for better access to diagnostic tools and antifungals to conduct research to better understand the impact of fungal diseases in Honduras.
Collapse
Affiliation(s)
- Nelson Iván Agudelo Higuita
- Department of Medicine, Section of Infectious Diseases, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Diana Varela Bustillo
- Department of Medicine, Infectious Diseases Service, Hospital Escuela, Tegucigalpa, Honduras
| | - David W Denning
- Manchester Fungal Infection Group, Core Technology Facility, The University of Manchester and the Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
42
|
Borrás P, Messina F, Abrantes R, Iachini R, Minatel L, Santiso G. First report of phaeohyphomycosis caused by Phialophora americana in a domestic cat from Argentina. JFMS Open Rep 2022; 8:20551169221077611. [PMID: 35281676 PMCID: PMC8908401 DOI: 10.1177/20551169221077611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Case summary A 10-year-old male neutered domestic shorthair cat from Quilmes (Province of Buenos Aires, Argentina) presented at the Infectious Diseases and Parasitology Unit with a hyperpigmented nodule of 5 cm diameter on the nasal plane with a small ulceration of more than 1 year’s evolution. A scaly and hyperpigmented alopecic lesion of 3 cm in diameter was found on the lower edge of the tail. The patient was under immunosuppressive therapy with corticosteroids for lymphoplasmacytic duodenitis. Samples of the lesion present on the nasal plane were taken under a surgical procedure. In the wet mount preparations, pigmented irregular hyphae were observed. They developed dark colonies when cultured on Sabouraud medium. On micromorphology, structures compatible with Phialophora species were identified. PCR and sequencing of ITS (ITS1-5.8S-ITS2) confirmed Phialophora americana as the etiologic agent. A therapeutic scheme that included a combination of itraconazole oral solution (1.5 mg/kg PO q12h) with terbinafine (30 mg/kg PO q24h) was indicated for a period of 10 months. The patient died of complications resulting from its underlying disease. Relevance and novel information As far as the authors are aware, this is the first study to report P americana as an etiologic agent of phaeohyphomycosis in cats. In this case study, the species was identified using molecular tests.
Collapse
Affiliation(s)
- Pablo Borrás
- Infectious Diseases and Parasitology Unit, Panda Veterinary Clinic, Buenos Aires, Argentina
| | - Fernando Messina
- Mycology Unit, Francisco Javier Muñiz Infectious Diseases Hospital, Buenos Aires, Argentina
| | - Rubén Abrantes
- Superficial Mycoses and Mycelial Fungi Service, Mycology Department, INEI ANLIS 'Dr Carlos G Malbrán', Buenos Aires, Argentina
| | - Ricardo Iachini
- Biochemical and Microbiological Lab, Instituto de Zoonosis 'Luis Pasteur', Buenos Aires, Argentina
| | - Leonardo Minatel
- Veterinary Pathology, Faculty of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Santiso
- Mycology Unit, Francisco Javier Muñiz Infectious Diseases Hospital, Buenos Aires, Argentina
| |
Collapse
|