1
|
Madhurantakam S, Karnam JB, Dhamu VN, Seetaraman S, Gates-Hollingsworth MA, AuCoin DP, Clark DV, Schully KL, Muthukumar S, Prasad S. Electrochemical Immunoassay for Capturing Capsular Polysaccharide of Burkholderia pseudomallei: Early Onsite Detection of Melioidosis. ACS Infect Dis 2024; 10:2118-2126. [PMID: 38712884 DOI: 10.1021/acsinfecdis.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This study presented the detection and quantification of capsular polysaccharide (CPS) as a biomarker for the diagnosis of melioidosis. After successfully screening four monoclonal antibodies (mAbs) previously determined to bind CPS molecules, the team developed a portable electrochemical immunosensor based on antibody-antigen interactions. The biosensor was able to detect CPS with a wide detection range from 0.1pg/mL to 1 μg/mL. The developed biosensor achieved high sensitivity for the detection of CPS spiked into both urine and serum. The developed assay platform was successfully programmed into a Windows app, and the sensor performance was evaluated with different spiked concentrations. The rapid electro-analytical device (READ) sensor showed great unprecedented sensitivity for the detection of CPS molecules in both serum and urine, and results were cross-validated with ELISA methods.
Collapse
Affiliation(s)
- Sasya Madhurantakam
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75083, United States
| | | | - Vikram Narayanan Dhamu
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75083, United States
| | | | | | - David P AuCoin
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, United States
| | - Danielle V Clark
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Henry M. Jackson Foundation for the Advancement for Military Medicine, Inc., Bethesda, Maryland 20817, United States
| | - Kevin L Schully
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft. Detrick, Maryland 21702, United States
| | | | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75083, United States
- EnLiSense LLC, Allen, Texas 75013, United States
| |
Collapse
|
2
|
Dhawan S, Dittrich S, Arafah S, Ongarello S, Mace A, Panapruksachat S, Boutthasavong L, Adsamouth A, Thongpaseuth S, Davong V, Vongsouvath M, Ashley EA, Robinson MT, Blacksell SD. Diagnostic accuracy of DPP Fever Panel II Asia tests for tropical fever diagnosis. PLoS Negl Trop Dis 2024; 18:e0012077. [PMID: 38598549 PMCID: PMC11034646 DOI: 10.1371/journal.pntd.0012077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/22/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Fever is the most frequent symptom in patients seeking care in South and Southeast Asia. The introduction of rapid diagnostic tests (RDTs) for malaria continues to drive patient management and care. Malaria-negative cases are commonly treated with antibiotics without confirmation of bacteraemia. Conventional laboratory tests for differential diagnosis require skilled staff and appropriate access to healthcare facilities. In addition, introducing single-disease RDTs instead of conventional laboratory tests remains costly. To overcome some of the delivery challenges of multiple separate tests, a multiplexed RDT with the capacity to diagnose a diverse range of tropical fevers would be a cost-effective solution. In this study, a multiplex lateral flow immunoassay (DPP Fever Panel II Assay) that can detect serum immunoglobulin M (IgM) and specific microbial antigens of common fever agents in Asia (Orientia tsutsugamushi, Rickettsia typhi, Leptospira spp., Burkholderia pseudomallei, Dengue virus, Chikungunya virus, and Zika virus), was evaluated. METHODOLOGY/PRINCIPAL FINDINGS Whole blood (WB) and serum samples from 300 patients with undefined febrile illness (UFI) recruited in Vientiane, Laos PDR were tested using the DPP Fever Panel II, which consists of an Antibody panel and Antigen panel. To compare reader performance, results were recorded using two DPP readers, DPP Micro Reader (Micro Reader 1) and DPP Micro Reader Next Generation (Micro Reader 2). WB and serum samples were run on the same fever panel and read on both micro readers in order to compare results. ROC analysis and equal variance analysis were performed to inform the diagnostic validity of the test compared against the respective reference standards of each fever agent (S1 Table). Overall better AUC values were observed in whole blood results. No significant difference in AUC performance was observed when comparing whole blood and serum sample testing, except for when testing for R. typhi IgM (p = 0.04), Leptospira IgM (p = 0.02), and Dengue IgG (p = 0.03). Linear regression depicted R2 values had ~70% agreement across WB and serum samples, except when testing for leptospirosis and Zika, where the R2 values were 0.37 and 0.47, respectively. No significant difference was observed between the performance of Micro Reader 1 and Micro Reader 2, except when testing for the following pathogens: Zika IgM, Zika IgG, and B pseudomallei CPS Ag. CONCLUSIONS/SIGNIFICANCE These results demonstrate that the diagnostic accuracy of the DPP Fever Panel II is comparable to that of commonly used RDTs. The optimal cut-off would depend on the use of the test and the desired sensitivity and specificity. Further studies are required to authenticate the use of these cut-offs in other endemic regions. This multiplex RDT offers diagnostic benefits in areas with limited access to healthcare and has the potential to improve field testing capacities. This could improve tropical fever management and reduce the public health burden in endemic low-resource areas.
Collapse
Affiliation(s)
- Sandhya Dhawan
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sabine Dittrich
- FIND, Campus Biotech, Geneva, Switzerland
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Aurelian Mace
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Siribun Panapruksachat
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Latsaniphone Boutthasavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Aphaphone Adsamouth
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Soulignasak Thongpaseuth
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Viengmon Davong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Elizabeth A. Ashley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Matthew T. Robinson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| | - Stuart D. Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR
| |
Collapse
|
3
|
Meumann EM, Limmathurotsakul D, Dunachie SJ, Wiersinga WJ, Currie BJ. Burkholderia pseudomallei and melioidosis. Nat Rev Microbiol 2024; 22:155-169. [PMID: 37794173 DOI: 10.1038/s41579-023-00972-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is found in soil and water of tropical and subtropical regions globally. Modelled estimates of the global burden predict that melioidosis remains vastly under-reported, and a call has been made for it to be recognized as a neglected tropical disease by the World Health Organization. Severe weather events and environmental disturbance are associated with increased case numbers, and it is anticipated that, in some regions, cases will increase in association with climate change. Genomic epidemiological investigations have confirmed B. pseudomallei endemicity in newly recognized regions, including the southern United States. Melioidosis follows environmental exposure to B. pseudomallei and is associated with comorbidities that affect the immune response, such as diabetes, and with socioeconomic disadvantage. Several vaccine candidates are ready for phase I clinical trials. In this Review, we explore the global burden, epidemiology and pathophysiology of B. pseudomallei as well as current diagnostics, treatment recommendations and preventive measures, highlighting research needs and priorities.
Collapse
Affiliation(s)
- Ella M Meumann
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia.
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Willem J Wiersinga
- Division of Infectious Diseases, Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
4
|
Li Y, He X, Deng L, Chen H, Chen X, Mao X, Xiang Y. Serodiagnosis of Abdominal Abscess Caused by Burkholderia pseudomallei: Case Report and Literature Review. Infect Drug Resist 2023; 16:5613-5625. [PMID: 37650004 PMCID: PMC10464891 DOI: 10.2147/idr.s421739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis can be responsible for a wide spectrum of clinical manifestations and heterogeneous prognoses, with a high mortality in the acute onset. We report a case of a deep abdominal abscess with sepsis secondary to melioidosis in a young farmer from a non-high-risk population. Emergency medical treatment was administered according to the detection of serum antibodies against Hcp1, the results of which provided etiological evidence of B. pseudomallei infection for the timely and properly antimicrobial therapy in the absence of direct evidence of melioidosis. To our knowledge, this is the first reported case of serodiagnosis of acute exacerbation of melioidosis in China.
Collapse
Affiliation(s)
- Yuanli Li
- Department of Clinical Laboratory, Sanya People’s Hospital, Sanya, Hainan, People’s Republic of China
| | - Xiaoyi He
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Ling Deng
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Hai Chen
- Department of Clinical Laboratory, Sanya People’s Hospital, Sanya, Hainan, People’s Republic of China
| | - Xi Chen
- Department of Clinical Laboratory, Sanya People’s Hospital, Sanya, Hainan, People’s Republic of China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Yang Xiang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Laboratory Medicine Science, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| |
Collapse
|
5
|
Settles EW, Sonderegger D, Shannon AB, Celona KR, Lederer R, Yi J, Seavey C, Headley K, Mbegbu M, Harvey M, Keener M, Allender C, Hornstra H, Monroy FP, Woerle C, Theobald V, Mayo M, Currie BJ, Keim P. Development and evaluation of a multiplex serodiagnostic bead assay (BurkPx) for accurate melioidosis diagnosis. PLoS Negl Trop Dis 2023; 17:e0011072. [PMID: 36753506 PMCID: PMC9907819 DOI: 10.1371/journal.pntd.0011072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/06/2023] [Indexed: 02/09/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is a gram-negative soil bacterium well recognized in Southeast Asia and northern Australia. However, wider and expanding global distribution of B. pseudomallei has been elucidated. Early diagnosis is critical for commencing the specific therapy required to optimize outcome. Serological testing using the indirect hemagglutination (IHA) antibody assay has long been used to augment diagnosis of melioidosis and to monitor progress. However, cross reactivity and prior exposure may complicate the diagnosis of current clinical disease (melioidosis). The goal of our study was to develop and initially evaluate a serology assay (BurkPx) that capitalized upon host response to multiple antigens. Antigens were selected from previous studies for expression/purification and conjugation to microspheres for multiantigen analysis. Selected serum samples from non-melioidosis controls and serial samples from culture-confirmed melioidosis patients were used to characterize the diagnostic power of individual and combined antigens at two times post admission. Multiple variable models were developed to evaluate multivariate antigen reactivity, identify important antigens, and determine sensitivity and specificity for the diagnosis of melioidosis. The final multiplex assay had a diagnostic sensitivity of 90% and specificity of 93%, which was superior to any single antigen in side-by-side comparisons. The sensitivity of the assay started at >85% for the initial serum sample after admission and increased to 94% 21 days later. Weighting antigen contribution to each model indicated that certain antigen contributed to diagnosis more than others, which suggests that the number of antigens in the assay can be decreased. In summation, the BurkPx assay can facilitate the diagnosis of melioidosis and potentially improve on currently available serology assays. Further evaluation is now required in both melioidosis-endemic and non-endemic settings.
Collapse
Affiliation(s)
- Erik W. Settles
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Derek Sonderegger
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Austin B. Shannon
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Kimberly R. Celona
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Rachel Lederer
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jinhee Yi
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Courtney Seavey
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Kyle Headley
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mimi Mbegbu
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Maxx Harvey
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mitch Keener
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Chris Allender
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Heidie Hornstra
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Fernando P. Monroy
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Celeste Woerle
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Vanessa Theobald
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Department and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
6
|
Melioidosis and Burkholderia pseudomallei : progress in epidemiology, diagnosis, treatment and vaccination. Curr Opin Infect Dis 2022; 35:517-523. [PMID: 35942848 DOI: 10.1097/qco.0000000000000869] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Melioidosis and its causative bacterium Burkholderia pseudomallei are being found in unexpected locations and bacterial genotyping is providing new insights into global spread and where and how individuals are being infected. This review summarizes recent studies covering the epidemiology, diagnosis, treatment, and prevention of melioidosis. RECENT FINDINGS Whole-genome sequencing of B. pseudomallei from patients and environmental sampling is informing the phylogeography of B. pseudomallei at regional, continental, and global levels, while also defining the epidemiology for individual cases. The situation in Africa remains the most unresolved, while the evolving story of B. pseudomallei in the Americas may establish that B. pseudomallei is endemic in parts of southern USA. Guidelines for diagnosis and treatment of melioidosis are well established, and published mortality has decreased from 50% or higher to 10% or lower in some countries but access to laboratory and therapeutic resources are not available or are extremely limited in many melioidosis-endemic regions. SUMMARY The enormous clinical diversity of melioidosis and the complexities of laboratory diagnosis and of treatment make it a sentinel disease for highlighting the continuing global disparities in access to and provision of healthcare.
Collapse
|
7
|
Amornchai P, Hantrakun V, Wongsuvan G, Boonsri C, Yoosuk S, Nilsakul J, Blacksell SD, West TE, Lubell Y, Limmathurotsakul D. Sensitivity and specificity of DPP® Fever Panel II Asia in the diagnosis of malaria, dengue and melioidosis. J Med Microbiol 2022; 71:001584. [PMID: 35994523 PMCID: PMC7613707 DOI: 10.1099/jmm.0.001584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/13/2022] [Indexed: 12/25/2022] Open
Abstract
Introduction. Rapid diagnostic tests (RDTs) that can facilitate the diagnosis of a panel of tropical infectious diseases are critically needed. DPP® Fever Panel II Asia is a multiplex lateral flow immunoassay comprising antigen and IgM panels for the diagnosis of pathogens that commonly cause febrile illness in Southeast Asia.Hypothesis/Gap Statement. Accuracy of DPP® Fever Panel II Asia has not been evaluated in clinical studies.Aim. To evaluate the sensitivity and specificity of DPP® Fever Panel II Asia for malaria, dengue and melioidosis.Methodology. We conducted a cohort-based case-control study. Both cases and controls were derived from a prospective observational study of patients presenting with community-acquired infections and sepsis in northeast Thailand (Ubon sepsis). We included 143 and 98 patients diagnosed with malaria or dengue based on a positive PCR assay and 177 patients with melioidosis based on a culture positive for Burkholderia pseudomallei. Controls included 200 patients who were blood culture-positive for Staphylococcus aureus, Escherichia coli or Klebsiella pneumoniae, and cases of the other diseases. Serum samples collected from all patients within 24 h of admission were stored and tested using the DPP® Fever Panel II Asia antigen and IgM multiplex assays. We selected cutoff values for each individual assay corresponding to a specificity of ≥95 %. When assessing diagnostic tests in combination, results were considered positive if either individual test was positive.Results. Within the DPP® Fever Panel II Asia antigen assay, a combination of pLDH and HRPII for malaria had a sensitivity of 91 % and a specificity of 97 %. The combination of dengue NS1 antigen and dengue antibody tests had a sensitivity of 61 % and a specificity of 91 %. The B. pseudomallei CPS antigen test had a sensitivity of 27 % and a specificity of 97 %. An odds ratio of 2.34 (95 % CI 1.16-4.72, P=0.02) was observed for the association between CPS positivity and mortality among melioidosis patients.Conclusion. The performance of the DPP® Fever Panel II Asia for diagnosis of malaria was high and that for dengue and melioidosis was relatively limited. For all three diseases, performance was comparable to that of other established RDTs. The potential operational advantages of a multiplex and quantitative point-of-care assay are substantial and warrant further investigation.
Collapse
Affiliation(s)
- Premjit Amornchai
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Viriya Hantrakun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gumphol Wongsuvan
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chaiyaporn Boonsri
- Medical Department, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Sasinaphon Yoosuk
- Medical Department, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Jiraporn Nilsakul
- Pathology Department, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Stuart D. Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - T. Eoin West
- Division of Pulmonary and Critical Care Medicine, Harborview Medical Center, University of Washington, Seattle, Washington, USA
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yoel Lubell
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Correction: Evaluation of antigen-detecting and antibody-detecting diagnostic test combinations for diagnosing melioidosis. PLoS Negl Trop Dis 2022; 16:e0010095. [PMID: 35653655 PMCID: PMC9162502 DOI: 10.1371/journal.pntd.0010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
9
|
Park JH, Park EK, Cho YK, Shin IS, Lee H. Normalizing the Optical Signal Enables Robust Assays with Lateral Flow Biosensors. ACS OMEGA 2022; 7:17723-17731. [PMID: 35664567 PMCID: PMC9161384 DOI: 10.1021/acsomega.2c00793] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/25/2022] [Indexed: 06/04/2023]
Abstract
Lateral flow assays (LFAs) are widely adopted for fast, on-site molecular diagnostics. Obtaining high-precision assay results, however, remains challenging and often requires a dedicated optical setup to control the imaging environment. Here, we describe quick light normalization exam (qLiNE) that transforms ubiquitous smartphones into a robust LFA reader. qLiNE used a reference card, printed with geometric patterns and color standards, for real-time optical calibration: a photo of an LFA test strip was taken along with the card, and the image was processed using a smartphone app to correct shape distortion, illumination brightness, and color imbalances. This approach yielded consistent optical signal, enabling quantitative molecular analyses under different illumination conditions. We adapted qLiNE to detect cortisol, a known stress hormone, in saliva samples at point-of-use settings. The assay was fast (15 min) and sensitive (detection limit, 0.16 ng/mL). The serial qLiNE assay detected diurnal cycles of cortisol levels as well as stress-induced cortisol increase.
Collapse
Affiliation(s)
- Jin-Ho Park
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Eung-Kyu Park
- QSTAG
CO., LTD., 165 Convencia-daero,
Yeonsu-gu, Incheon 21998, Republic of Korea
| | - Young Kwan Cho
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Chemistry, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Ik-Soo Shin
- QSTAG
CO., LTD., 165 Convencia-daero,
Yeonsu-gu, Incheon 21998, Republic of Korea
- Department
of Chemistry, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic
of Korea
| | - Hakho Lee
- Center
for Systems Biology, Massachusetts General
Hospital, Boston, Massachusetts 02114, United States
- Department
of Radiology, Massachusetts General Hospital
and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
10
|
Currie BJ, Woerle C, Mayo M, Meumann EM, Baird RW. What is the role of lateral flow immunoassay for the diagnosis of melioidosis? Open Forum Infect Dis 2022; 9:ofac149. [PMID: 35493111 PMCID: PMC9043003 DOI: 10.1093/ofid/ofac149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/19/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Culture of Burkholderia pseudomallei remains the gold standard for diagnosis of melioidosis but is not possible in many resource-limited settings where melioidosis is endemic. Direct identification of B. pseudomallei antigen in clinical samples has been developed using a lateral flow immunoassay (LFA) targeting B. pseudomallei capsular polysaccharide.
Methods
We summarised the findings from the 8 studies to date of the Active Melioidosis Detect (AMD) LFA and compared these with our results from 232 patients with culture-confirmed melioidosis. We have also optimised the methodology for testing different clinical samples.
Results
Sensitivity and specificity for different samples was broadly similar in our study to those published from Thailand, India, Laos and Malaysia. 130/232 (56%) of our melioidosis patients were positive on one or more AMD tests: 27% for serum (rising to 39% in those with bacteremic melioidosis and 68% in those with septic shock); 63% for urine (72% in bacteremic melioidosis and 90% in septic shock); 85% in sputum that was culture positive; and 83% in pus that was culture positive. Heating sputum and pus samples increased sensitivity. Faint false positive urine bands seen on earlier AMD versions were not seen when re-tested using the most recent version, AMD-Plus.
Conclusions
While sensitivity of melioidosis LFA is low overall for blood samples, there is potential for use as a rapid diagnostic; testing serum and urine from those with severe sepsis who may have melioidosis and testing sputum and pus samples from clinically relevant scenarios. Prospective studies of patients with sepsis and other clinical presentations resembling melioidosis are required to ascertain if the specificity of AMD-PLUS is adequate to enable diagnosis of melioidosis with a high positive predictive value.
Collapse
Affiliation(s)
- Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Department of Infectious Diseases and Pathology and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Celeste Woerle
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Ella M Meumann
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Department of Infectious Diseases and Pathology and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Robert W Baird
- Department of Infectious Diseases and Pathology and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|