1
|
Herrera-Moreno JF, Trejo-Valdivia B, Tolentino M, Wright RO, Baccarelli AA, Wright RJ, Niedzwieck MM, Téllez-Rojo MM, Tamayo-Ortiz M. Do not exclude your observations: Negative cortisol awakening responses (CAR) may be biologically relevant. Psychoneuroendocrinology 2025; 175:107417. [PMID: 40023887 DOI: 10.1016/j.psyneuen.2025.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The Cortisol Awakening Response (CAR) is the change in cortisol concentrations within 30-40 minutes after waking from sleep and is frequently used in stress research. Since a positive CAR is expected, we hypothesized that negative values could be associated to an underlying health condition (reflected in hematological parameters) or to environmental exposures such as lead (Pb), which has neuroendocrine effects including altered cortisol diurnal rhythms. Our aim was to analyze the prevalence of negative CAR values and their association with hematological parameters and blood Pb (BPb) levels in pregnant women (n = 900). Cortisol was measured by luminescence immunoassay in two-day saliva samples. CAR was estimated as the difference between the first (time of awakening) and second (45 min after) cortisol concentrations for each collection day and was operationalized as: both days positive (CAR-PP, 23 %), either day with a negative (CAR-NP/PN, 40 %), and both negative (CAR-NN, 37 %). A complete blood count was done using a coulter hematology analyzer. BPb was analyzed by inductively coupled plasma-mass spectrometry. Associations between hematological variables and CAR groups were analyzed using adjusted multinomial logistic regression models. Probabilities were estimated to assess the influence of BPb and hematological variables between CAR groups. The median (25th, 75th) CAR for the first collection day was -2.76 nmol/L (-16.55, 14.62) and -4.14 nmol/L (-17.66, 13.24) for the second day. Women with higher concentrations of leukocytes, eosinophils, basophils, and BPb were more likely to belong to CAR-NN or CAR-NP/PN groups. Compared to women with CAR-PP, those with CAR-NP/PN and CAR-NN had inverse associations for leukocyte levels and higher BPb concentrations. We conclude that negative CAR values could be an indicator of an underlying health condition or associated with environmental exposures such as Pb. Research should consider a thorough assessment of negative CAR values before excluding them from analyses.
Collapse
Affiliation(s)
- Jose F Herrera-Moreno
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; Secretaría de Ciencia, Humanidades, Tecnología e Innovación (Secihti), Padrón de Investigadoras e Investigadores por, México
| | - Belem Trejo-Valdivia
- Centro de Investigación en Nutrición y Salud, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.
| | - Maricruz Tolentino
- Department of Nutrition and Bio programming, National Institute of Perinatology, Mexico City 11000, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Rosalind J Wright
- Department of Pediatrics, Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan M Niedzwieck
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Téllez-Rojo
- Centro de Investigación en Nutrición y Salud, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Marcela Tamayo-Ortiz
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Suckow MA, Bolton ID, McDowell MA. Overview and Approaches for Handling of Animal Models of Leishmaniasis. Comp Med 2024; 74:148-155. [PMID: 39107941 PMCID: PMC11267445 DOI: 10.30802/aalas-cm-24-029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 08/10/2024]
Abstract
Leishmaniasis, a disease of global relevance, results from infection with the protozoan parasite, Leishmania, which is transmitted to susceptible hosts through the bite of sand flies. Multiple forms of leishmaniasis may occur, including cutaneous, mucocutaneous, and visceral. Research with animal models remains an important approach to help define basic pathophysi- ologic processes associated with infection and disease. In this regard, mice and hamsters represent the most commonly used models. The severity of leishmaniasis in animal models depends on several factors, including genotype of the host and parasite and the dose and route of administration of the parasite to the host, and severity of outcome may range from subclinical to severe illness. This review provides basic background on leishmaniasis, relevant animal models, the pathophysiology and clinical signs in animals used as models of leishmaniasis, and general approaches to mitigate risk to personnel.
Collapse
Affiliation(s)
- Mark A Suckow
- Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky
| | - Iris D Bolton
- Freimann Life Science Center, University of Notre Dame, Notre Dame, Indiana; and
| | - Mary Ann McDowell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
3
|
Aboyadak IM, Soliman MK, Nageeb HM, Ali NG. The role of Aeromonas genotyping in virulence for Dicentrarchus labrax. JOURNAL OF FISH DISEASES 2024; 47:e13878. [PMID: 37881027 DOI: 10.1111/jfd.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Aeromonas septicemia still represents a serious challenge facing the global aquaculture sector. In the present study, Aeromonas caviae and A. veronii were isolated from four diseased European seabass (Dicentrarchus labrax) farms experiencing a high mortality rate. Diseased fish showed haemorrhages on the external body surface with exophthalmia, cataracts, scale desquamation, skin ulcers and fin erosions. The most common post-mortem findings were congested internal organs, particularly the liver and posterior kidney. Twenty-eight A. Veronii and 11 A. caviae isolates were identified biochemically by the Vitek 2 system and then confirmed by PCR and phylogenetic analysis. Hemolysin (hlyA) and aerolysin (aer) were the most abundant virulence genes in the recovered isolates, followed by cytotoxic enterotoxin (act) and heat-stable enterotoxin (ast). A. caviae was more virulent than A. veronii for D. labrax fingerlings as LD50 ranging between (>1 × 108 -6.2 × 107 ) for A. veronii and (2.9 × 107 -8.3 × 107 ) for A. caviae. The sensitivity test indicated the effectiveness of norfloxacin, doxycycline and oxytetracycline against the tested isolates. Serum cortisol significantly increased in the infected groups, while catalase and glutathione peroxidase activities significantly decreased at 2 days post-infection (DPI) and then increased at 6 DPI. The presence of virulence genes was associated with bacterial pathogenicity expressed in fish mortality rate. Virulence genes also drastically affect cortisol levels more than catalase and glutathione peroxidase levels.
Collapse
Affiliation(s)
| | | | | | - Nadia Gabr Ali
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| |
Collapse
|
4
|
Frigerio ED, Guizelini CDC, Jussiani GG, Março KS, de Melo GD, Watanabe TTN, Machado GF. Lymphocytic hypophysitis in dogs infected with Leishmania spp. Front Vet Sci 2023; 10:1208919. [PMID: 37781278 PMCID: PMC10537919 DOI: 10.3389/fvets.2023.1208919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Background Morphological involvement of endocrine glands, such as the pituitary gland, remain uninvestigated in dogs with canine visceral leishmaniasis. Therefore, this study investigated the presence of amastigotes of Leishmania spp. and characterized inflammatory changes, highlighting the involvement of TCD3+ lymphocytes in different regions of the pituitary gland of dogs. Methods Samples were collected from 21 naturally infected dogs and 5 control, uninfected dogs. The different pituitary regions were analyzed in histological sections stained with hematoxylin and eosin (HE) under light microscopy. Inflammation was classified by intensity in a score from 0 to 3, absent (0), mild (1), moderate (2), and marked (3). The immunohistochemical (IHC) evaluation was performed in five high-power fields (hot spot) in a 40x objective of each region with manual counting (Image J1.52ª) of the TCD3+ lymphocytes and for amastigotes analyzed in 40x and 100x objectives. The Shapiro-Wilk test was used to assess the normality of the data. Differences between groups were determined by the Mann Whitney test. The correlation between variables was assessed by Sperman's correlation test. p < 0.05 were considered statistically significant. Results Amastigotes from the pituitary glands of two infected dogs were identified using IHC. The histopathological evaluation stained with hematoxylin and eosin showed greater intensity of inflammation in the pars distalis and pars intermedia regions of infected dogs. IHC for TCD3+ lymphocytes showed a higher median number of immunolabeled cells in pars nervosa in the infected group than in the control group (p < 0.05); and expecting a variation in the distribution and number of these cells in naturally infected dogs, the median of the control group was considered a cut-off point, an increase in T lymphocytes (p < 0.05) was also observed in the pars intermedia and pars distalis of an infected subgroup (n = 10). A moderate significant correlation between the intensity of inflammation and the number of immunolabeled TCD3+ lymphocytes was established in the analyzed pituitary regions, characterizing the occurrence of hypophysitis. Conclusion These findings presuppose that inflammation and/or the parasite in the pituitary region can result in gland dysfunction, worsening the clinical condition of the patient and compromising the efficiency of treatment and prognosis.
Collapse
Affiliation(s)
- Edenilson Doná Frigerio
- Department of Veterinary Clinics, Surgery and Reproduction, Faculty of Veterinary Medicine, São Paulo State University, UNESP, Araçatuba, Brazil
| | - Cecilia de Castro Guizelini
- Department of Veterinary Clinics, Surgery and Reproduction, Faculty of Veterinary Medicine, São Paulo State University, UNESP, Araçatuba, Brazil
| | - Giulia Gonçalves Jussiani
- Department of Veterinary Clinics, Surgery and Reproduction, Faculty of Veterinary Medicine, São Paulo State University, UNESP, Araçatuba, Brazil
| | - Karen Santos Março
- Department of Veterinary Clinics, Surgery and Reproduction, Faculty of Veterinary Medicine, São Paulo State University, UNESP, Araçatuba, Brazil
| | - Guilherme Dias de Melo
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, Paris, France
| | - Tatiane Terumi Negrão Watanabe
- Department Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Gisele Fabrino Machado
- Department of Veterinary Clinics, Surgery and Reproduction, Faculty of Veterinary Medicine, São Paulo State University, UNESP, Araçatuba, Brazil
| |
Collapse
|
5
|
Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Front Immunol 2022; 13:865395. [PMID: 35464430 PMCID: PMC9022210 DOI: 10.3389/fimmu.2022.865395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular “Yin-Yang” in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular “Yin-Yang” switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Maxime Schoovaerts
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|