1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Yu T, Lok BH. Strategies to Target Chemoradiotherapy Resistance in Small Cell Lung Cancer. Cancers (Basel) 2024; 16:3438. [PMID: 39456533 PMCID: PMC11506711 DOI: 10.3390/cancers16203438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Small cell lung cancer (SCLC) is a lethal form of lung cancer with few treatment options and a high rate of relapse. While SCLC is initially sensitive to first-line DNA-damaging chemo- and radiotherapy, relapse disease is almost universally therapy-resistant. As a result, there has been interest in understanding the mechanisms of therapeutic resistance in this disease. Conclusions: Progress has been made in elucidating these mechanisms, particularly as they relate to the DNA damage response and SCLC differentiation and transformation, leading to many clinical trials investigating new therapies and combinations. Yet there remain many gaps in our understanding, such as the effect of epigenetics or the tumor microenvironment on treatment response, and no single mechanism has been found to be ubiquitous, suggesting a significant heterogeneity in the mechanisms of acquired resistance. Nevertheless, the advancement of techniques in the laboratory and the clinic will improve our ability to study this disease, especially in patient populations, and identify methods to surmount therapeutic resistance.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Benjamin H. Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2M9, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 6 Queen’s Park Crescent, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
3
|
Hamada M, Varkoly KS, Riyadh O, Beladi R, Munuswamy-Ramanujam G, Rawls A, Wilson-Rawls J, Chen H, McFadden G, Lucas AR. Urokinase-Type Plasminogen Activator Receptor (uPAR) in Inflammation and Disease: A Unique Inflammatory Pathway Activator. Biomedicines 2024; 12:1167. [PMID: 38927374 PMCID: PMC11201033 DOI: 10.3390/biomedicines12061167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a unique protease binding receptor, now recognized as a key regulator of inflammation. Initially, uPA/uPAR was considered thrombolytic (clot-dissolving); however, recent studies have demonstrated its predominant immunomodulatory functions in inflammation and cancer. The uPA/uPAR complex has a multifaceted central role in both normal physiological and also pathological responses. uPAR is expressed as a glycophosphatidylinositol (GPI)-linked receptor interacting with vitronectin, integrins, G protein-coupled receptors, and growth factor receptors within a large lipid raft. Through protein-to-protein interactions, cell surface uPAR modulates intracellular signaling, altering cellular adhesion and migration. The uPA/uPAR also modifies extracellular activity, activating plasminogen to form plasmin, which breaks down fibrin, dissolving clots and activating matrix metalloproteinases that lyse connective tissue, allowing immune and cancer cell invasion and releasing growth factors. uPAR is now recognized as a biomarker for inflammatory diseases and cancer; uPAR and soluble uPAR fragments (suPAR) are increased in viral sepsis (COVID-19), inflammatory bowel disease, and metastasis. Here, we provide a comprehensive overview of the structure, function, and current studies examining uPAR and suPAR as diagnostic markers and therapeutic targets. Understanding uPAR is central to developing diagnostic markers and the ongoing development of antibody, small-molecule, nanogel, and virus-derived immune-modulating treatments that target uPAR.
Collapse
Affiliation(s)
- Mostafa Hamada
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Kyle Steven Varkoly
- Department of Internal Medicine, McLaren Macomb Hospital, Michigan State University College of Human Medicine, 1000 Harrington St., Mt Clemens, MI 48043, USA
| | - Omer Riyadh
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Roxana Beladi
- Department of Neurosurgery, Ascension Providence Hospital, Michigan State University College of Human Medicine, 16001 W Nine Mile Rd, Southfield, MI 48075, USA;
| | - Ganesh Munuswamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Alan Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Hao Chen
- Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Grant McFadden
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| |
Collapse
|
4
|
Sinha S, Hembram KC, Chatterjee S. Targeting signaling pathways in cancer stem cells: A potential approach for developing novel anti-cancer therapeutics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:157-209. [PMID: 38663959 DOI: 10.1016/bs.ircmb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Cancer stem cells (CSCs) have emerged as prime players in the intricate landscape of cancer development, progression, and resistance to traditional treatments. These unique cellular subpopulations own the remarkable capability of self-renewal and differentiation, giving rise to the diverse cellular makeup of tumors and fostering their recurrence following conventional therapies. In the quest for developing more effective cancer therapeutics, the focus has now shifted toward targeting the signaling pathways that govern CSCs behavior. This chapter underscores the significance of these signaling pathways in CSC biology and their potential as pivotal targets for the development of novel chemotherapy approaches. We delve into several key signaling pathways essential for maintaining the defining characteristics of CSCs, including the Wnt, Hedgehog, Notch, JAK-STAT, NF-κB pathways, among others, shedding light on their potential crosstalk. Furthermore, we highlight the latest advancements in CSC-targeted therapies, spanning from promising preclinical models to ongoing clinical trials. A comprehensive understanding of the intricate molecular aspects of CSC signaling pathways and their manipulation holds the prospective to revolutionize cancer treatment paradigms. This, in turn, could lead to more efficacious and personalized therapies with the ultimate goal of eradicating CSCs and enhancing overall patient outcomes. The exploration of CSC signaling pathways represents a key step towards a brighter future in the battle against cancer.
Collapse
Affiliation(s)
- Saptarshi Sinha
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Subhajit Chatterjee
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, United States.
| |
Collapse
|
5
|
Kumar AA, Vine KL, Ranson M. Recent Advances in Targeting the Urokinase Plasminogen Activator with Nanotherapeutics. Mol Pharm 2023. [PMID: 37119285 DOI: 10.1021/acs.molpharmaceut.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The aberrant proteolytic landscape of the tumor microenvironment is a key contributor of cancer progression. Overexpression of urokinase plasminogen activator (uPA) and/or its associated cell-surface receptor (uPAR) in tumor versus normal tissue is significantly associated with worse clinicopathological features and poorer patient survival across multiple cancer types. This is linked to mechanisms that facilitate tumor cell invasion and migration, via direct and downstream activation of various proteolytic processes that degrade the extracellular matrix─ultimately leading to metastasis. Targeting uPA has thus long been considered an attractive anticancer strategy. However, poor bioavailability of several uPA-selective small-molecule inhibitors has limited early clinical progress. Nanodelivery systems have emerged as an exciting method to enhance the pharmacokinetic (PK) profile of existing chemotherapeutics, allowing increased circulation time, improved bioavailability, and targeted delivery to tumor tissue. Combining uPA inhibitors with nanoparticle-based delivery systems thus offers a remarkable opportunity to overcome existing PK challenges associated with conventional uPA inhibitors, while leveraging potent candidates into novel targeted nanotherapeutics for an improved anticancer response in uPA positive tumors.
Collapse
Affiliation(s)
- Ashna A Kumar
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kara L Vine
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
6
|
Cheng LH, Hsu CC, Tsai HW, Liao WY, Yang PM, Liao TY, Hsieh HY, Chan TS, Tsai KK. ASPM Activates Hedgehog and Wnt Signaling to Promote Small Cell Lung Cancer Stemness and Progression. Cancer Res 2023; 83:830-844. [PMID: 36638332 DOI: 10.1158/0008-5472.can-22-2496] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Small cell lung cancer (SCLC) is among the most aggressive and lethal human malignancies. Most patients with SCLC who initially respond to chemotherapy develop disease relapse. Therefore, there is a pressing need to identify novel driver mechanisms of SCLC progression to unlock treatment strategies to improve patient prognosis. SCLC cells comprise subsets of cells possessing progenitor or stem cell properties, while the underlying regulatory pathways remain elusive. Here, we identified the isoform 1 of the neurogenesis-associated protein ASPM (ASPM-I1) as a prominently upregulated stemness-associated gene during the self-renewal of SCLC cells. The expression of ASPM-I1 was found to be upregulated in SCLC cells and tissues, correlated with poor patient prognosis, and indispensable for SCLC stemness and tumorigenesis. A reporter array screening identified multiple developmental signaling pathways, including Hedgehog (Hh) and Wnt pathways, whose activity in SCLC cells depended upon ASPM-I1 expression. Mechanistically, ASPM-I1 stabilized the Hh transcriptional factor GLI1 at the protein level through a unique exon-18-encoded region by competing with the E3 ligases β-TrCP and CUL3. In parallel, ASPM-I1 sustains the transcription of the Hh pathway transmembrane regulator SMO through the Wnt-DVL3-β-catenin signaling axis. Functional studies verified that the ASPM-I1-regulated Hh and Wnt activities significantly contributed to SCLC aggressiveness in vivo. Consistently, the expression of ASPM-I1 positively correlated with GLI1 and stemness markers in SCLC tissues. This study illuminates an ASPM-I1-mediated regulatory module that drives tumor stemness and progression in SCLC, providing an exploitable diagnostic and therapeutic target. SIGNIFICANCE ASPM promotes SCLC stemness and aggressiveness by stabilizing the expression of GLI1, DVL3, and SMO, representing a novel regulatory hub of Hh and Wnt signaling and targetable vulnerability.
Collapse
Affiliation(s)
- Li-Hsin Cheng
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chung-Chi Hsu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Wen-Ying Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Pei-Ming Yang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
| | - Tai-Yan Liao
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Hsiao-Yen Hsieh
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Tze-Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
7
|
Mishra A, Pathak Y, Mishra SK, Prakash H, Tripathi V. Natural compounds as a potential modifier of stem cells renewal: Comparative analysis. Eur J Pharmacol 2022; 938:175412. [PMID: 36427534 DOI: 10.1016/j.ejphar.2022.175412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cancer stem cells (CSCs) are indispensable for development, progression, drug resistance, and tumor metastasis. Current cancer-directed interventions target targeting rapidly dividing cancer cells and slow dividing CSCs, which are the root cause of cancer origin and recurrence. The most promising targets include several self-renewal pathways involved in the maintenance and renewal of CSCs, such as the Wnt/β-Catenin, Sonic Hedgehog, Notch, Hippo, Autophagy, and Ferroptosis. In view of safety, natural compounds are coming to the front line of treatment modalities for modifying various signaling pathways simultaneously involved in maintaining CSCs. Therefore, targeting CSCs with natural compounds is a promising approach to treating various types of cancers. In view of this, here we provide a comprehensive update on the current status of natural compounds that effectively tune key self-renewal pathways of CSCs. In addition, we highlighted surface expression markers in several types of cancer. We also emphasize how natural compounds target these self-renewal pathways to reduce therapy resistance and cancer recurrence properties of CSCs, hence providing valuable cancer therapeutic strategies. The inclusion of nutraceuticals is believed to enhance the therapeutic efficacy of current cancer-directed interventions significantly.
Collapse
Affiliation(s)
- Amaresh Mishra
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | - Yamini Pathak
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India
| | | | - Hridayesh Prakash
- Amity Institute of Virology and Immunology, Amity University, Uttar Pradesh, India
| | - Vishwas Tripathi
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201310, India.
| |
Collapse
|
8
|
Skurikhin EG, Ermakova N, Zhukova M, Pershina O, Pan E, Pakhomova A, Kogai L, Goldberg V, Simolina E, Skurikhina V, Widera D, Kubatiev A, Morozov SG, Kushlinskii N, Dygai A. Analysis of Circulating Tumor and Cancer Stem Cells Provides New Opportunities in Diagnosis and Treatment of Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms231810853. [PMID: 36142766 PMCID: PMC9503899 DOI: 10.3390/ijms231810853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Current methods for diagnosis and treatment of small cell lung cancer (SCLC) have only a modest efficacy. In this pilot study, we analyzed circulating tumor cells (CTCs) and cancer stem cells (CSCs) in patients with SCLC to search for new diagnostic and prognostic markers and novel approaches to improve the treatment of the disease. In other forms of lung cancer, we showed a heterogeneity of blood CTCs and CSCs populations, as well as changes in other cell populations (ALDH+, CD87+CD276+, and EGF+Axl+) in smokers. A number of CTCs and CSCs in patients with SCLC have been shown to be resistant to chemotherapy (CT). High cytotoxic activity and resistance to apoptosis of reprogrammed CD3+CD8+ T-lymphocytes (rTcells) in relation to naive CD3+CD8+ T-lymphocytes was demonstrated in a smoking patient with SCLC (Patient G) in vitro. The target for rTcells was patient G’s blood CSCs. Reprogramming of CD3+CD8+ T-lymphocytes was carried out with the MEK1/2 inhibitor and PD-1/PD-L1 pathway blocker nivolumab. The training procedure was performed with a suspension of dead CTCs and CSCs obtained from patient’s G blood. The presented data show a new avenue for personalized SCLC diagnosis and targeted improvement of chemotherapy based on the use of both CTCs and CSCs.
Collapse
Affiliation(s)
- Evgenii G. Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia
- Correspondence: ; Tel.: +7-3822-418-375
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia
| | - Mariia Zhukova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia
- Ministry of Health of the Russian Federation, Siberian State Medical University, Moskovski, 2, 634050 Tomsk, Russia
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia
| | - Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia
| | - Lena Kogai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia
- Ministry of Health of the Russian Federation, Siberian State Medical University, Moskovski, 2, 634050 Tomsk, Russia
| | - Victor Goldberg
- Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny, 5, 634009 Tomsk, Russia
| | - Elena Simolina
- Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny, 5, 634009 Tomsk, Russia
| | - Victoria Skurikhina
- Ministry of Health of the Russian Federation, Siberian State Medical University, Moskovski, 2, 634050 Tomsk, Russia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, Whiteknights Campus, Reading RG6 6AP, UK
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | | | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Lenin, 3, 634028 Tomsk, Russia
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| |
Collapse
|
9
|
Zhang C, Wang H. Accurate treatment of small cell lung cancer: Current progress, new challenges and expectations. Biochim Biophys Acta Rev Cancer 2022; 1877:188798. [PMID: 36096336 DOI: 10.1016/j.bbcan.2022.188798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022]
Abstract
Small cell lung cancer (SCLC) is a deadly disease with poor prognosis. Fast growing speed, inclination to metastasis, enrichment in cancer stem cells altogether constitute its aggressive nature. In stark contrast to non-small cell lung cancer (NSCLC) that strides vigorously on the road to precision oncology, SCLC has been on the embryonic path to achieve effective personalized treatments. The survival of patients with SCLC have not been improved greatly, which could be possibly due to our inadequate understanding of genetic alterations of SCLC. Recently, encouraging effects have been observed in patients with SCLC undergoing immunotherapy. However, exciting results have only been observed in a small fraction of patients with SCLC, warranting biomarkers predictive of responses as well as novel therapeutic strategies. In addition, SCLC has previously been viewed to be homogeneous. However, perspectives have been changed thanks to the advances in sequencing techniques and platforms, which unfolds the complex heterogeneity of SCLC both genetically and non-genetically, rendering the treatment of SCLC a further step forward into the precision era. To outline the road of SCLC towards precision oncology, we summarize the progresses and achievements made in precision treatment in SCLC in genomic, transcriptomic, epigenetic, proteomic and metabolic dimensions. Moreover, we conclude relevant therapeutic vulnerabilities in SCLC. Clinically tested drugs and clinical trials have also been demonstrated. Ultimately, we look into the opportunities and challenges ahead to advance the individualized treatment in pursuit of improved survival for patients with SCLC.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
10
|
Kapoor-Narula U, Lenka N. Cancer stem cells and tumor heterogeneity: Deciphering the role in tumor progression and metastasis. Cytokine 2022; 157:155968. [PMID: 35872504 DOI: 10.1016/j.cyto.2022.155968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Tumor heterogeneity, in principle, reflects the variation among different cancer cell populations. It can be termed inter- or intra-tumoral heterogeneity, respectively, based on its occurrence in various tissues from diverse patients or within a single tumor. The intra-tumoral heterogeneity is one of the leading causes of cancer progression and treatment failure, with the cancer stem cells (CSCs) contributing immensely to the same. These niche cells, similar to normal stem cells, possess the characteristics of self-renewal and differentiation into multiple cell types. Moreover, CSCs contribute to tumor growth and surveillance by promoting recurrence, metastasis, and therapeutic resistance. Diverse factors, including intracellular signalling pathways and tumor microenvironment (TME), play a vital role in regulating these CSCs. Although a panel of markers is considered to identify the CSC pool in various cancers, further research is needed to discriminate cancer-specific CSC markers in those. CSCs have also been found to be promising therapeutic targets for cancer therapy. Several small molecules, natural compounds, antibodies, chimeric antigen receptor T (CAR-T) cells, and CAR-natural killer (CAR-NK) cells have emerged as therapeutic tools for specific targeting of CSCs. Interestingly, many of these are in clinical trials too. Despite being a much-explored avenue of research for years, and we have come to understand its nitty-gritty, there is still a tremendous gap in our knowledge concerning its precise genesis and regulation. Hence, a concrete understanding is needed to assess the CSC-TME link and how to target different cancer-specific CSCs by designing newer tools. In this review, we have summarized CSC, its causative, different pathways and factors regulating its growth, association with tumor heterogeneity, and last but not least, discussed many of the promising CSC-targeted therapies for combating cancer metastasis.
Collapse
|
11
|
The Role of Fibrinolytic System in Health and Disease. Int J Mol Sci 2022; 23:ijms23095262. [PMID: 35563651 PMCID: PMC9101224 DOI: 10.3390/ijms23095262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022] Open
Abstract
The fibrinolytic system is composed of the protease plasmin, its precursor plasminogen and their respective activators, tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), counteracted by their inhibitors, plasminogen activator inhibitor type 1 (PAI-1), plasminogen activator inhibitor type 2 (PAI-2), protein C inhibitor (PCI), thrombin activable fibrinolysis inhibitor (TAFI), protease nexin 1 (PN-1) and neuroserpin. The action of plasmin is counteracted by α2-antiplasmin, α2-macroglobulin, TAFI, and other serine protease inhibitors (antithrombin and α2-antitrypsin) and PN-1 (protease nexin 1). These components are essential regulators of many physiologic processes. They are also involved in the pathogenesis of many disorders. Recent advancements in our understanding of these processes enable the opportunity of drug development in treating many of these disorders.
Collapse
|
12
|
Alfano D, Franco P, Stoppelli MP. Modulation of Cellular Function by the Urokinase Receptor Signalling: A Mechanistic View. Front Cell Dev Biol 2022; 10:818616. [PMID: 35493073 PMCID: PMC9045800 DOI: 10.3389/fcell.2022.818616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycosyl-phosphatidyl-inositol anchored (GPI) membrane protein. The uPAR primary ligand is the serine protease urokinase (uPA), converting plasminogen into plasmin, a broad spectrum protease, active on most extracellular matrix components. Besides uPA, the uPAR binds specifically also to the matrix protein vitronectin and, therefore, is regarded also as an adhesion receptor. Complex formation of the uPAR with diverse transmembrane proteins, including integrins, formyl peptide receptors, G protein-coupled receptors and epidermal growth factor receptor results in intracellular signalling. Thus, the uPAR is a multifunctional receptor coordinating surface-associated pericellular proteolysis and signal transduction, thereby affecting physiological and pathological mechanisms. The uPAR-initiated signalling leads to remarkable cellular effects, that include increased cell migration, adhesion, survival, proliferation and invasion. Although this is beyond the scope of this review, the uPA/uPAR system is of great interest to cancer research, as it is associated to aggressive cancers and poor patient survival. Increasing evidence links the uPA/uPAR axis to epithelial to mesenchymal transition, a highly dynamic process, by which epithelial cells can convert into a mesenchymal phenotype. Furthermore, many reports indicate that the uPAR is involved in the maintenance of the stem-like phenotype and in the differentiation process of different cell types. Moreover, the levels of anchor-less, soluble form of uPAR, respond to a variety of inflammatory stimuli, including tumorigenesis and viral infections. Finally, the role of uPAR in virus infection has received increasing attention, in view of the Covid-19 pandemics and new information is becoming available. In this review, we provide a mechanistic perspective, via the detailed examination of consolidated and recent studies on the cellular responses to the multiple uPAR activities.
Collapse
|
13
|
Manić L, Wallace D, Onganer PU, Taalab YM, Farooqi AA, Antonijević B, Buha Djordjevic A. Epigenetic mechanisms in metal carcinogenesis. Toxicol Rep 2022; 9:778-787. [PMID: 36561948 PMCID: PMC9764177 DOI: 10.1016/j.toxrep.2022.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 03/26/2022] [Indexed: 12/25/2022] Open
Abstract
Many metals exhibit genotoxic and/or carcinogenic effects. These toxic metals can be found ubiquitously - in drinking water, food, air, general use products, in everyday and occupational settings. Exposure to such carcinogenic metals can result in serious health disorders, including cancer. Arsenic, cadmium, chromium, nickel, and their compounds have already been recognized as carcinogens by the International Agency for Research on Cancer. This review summarizes a wide range of epigenetic mechanisms contributing to carcinogenesis induced by these metals, primarily including, but not limited to, DNA methylation, miRNA regulation, and histone posttranslational modifications. The mechanisms are described and discussed both from a metal-centric and a mechanism-centric standpoint. The review takes a broad perspective, putting the mechanisms in the context of real-life exposure, and aims to assist in guiding future research, particularly with respect to the assessment and control of exposure to carcinogenic metals and novel therapy development.
Collapse
Affiliation(s)
- Luka Manić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - David Wallace
- School of Biomedical Science, Oklahoma State University Center for Health Sciences, Tulsa, United States
| | - Pinar Uysal Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, UK
| | - Yasmeen M. Taalab
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany,Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Dakahlia Governate 35516, Egypt
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, RLMC, Lahore, Pakistan
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia,Correspondence to: Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
14
|
Zhai BT, Tian H, Sun J, Zou JB, Zhang XF, Cheng JX, Shi YJ, Fan Y, Guo DY. Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer. J Transl Med 2022; 20:135. [PMID: 35303878 PMCID: PMC8932206 DOI: 10.1186/s12967-022-03329-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Collapse
Affiliation(s)
- Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Ya-Jun Shi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yu Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
15
|
The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model. Int J Mol Sci 2022; 23:ijms23063073. [PMID: 35328492 PMCID: PMC8953941 DOI: 10.3390/ijms23063073] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease exhibiting uncontrollable cell growth and spreading to other parts of the organism. It is a heavy, worldwide burden for mankind with high morbidity and mortality. Therefore, groundbreaking research and innovations are necessary. Research in space under microgravity (µg) conditions is a novel approach with the potential to fight cancer and develop future cancer therapies. Space travel is accompanied by adverse effects on our health, and there is a need to counteract these health problems. On the cellular level, studies have shown that real (r-) and simulated (s-) µg impact survival, apoptosis, proliferation, migration, and adhesion as well as the cytoskeleton, the extracellular matrix, focal adhesion, and growth factors in cancer cells. Moreover, the µg-environment induces in vitro 3D tumor models (multicellular spheroids and organoids) with a high potential for preclinical drug targeting, cancer drug development, and studying the processes of cancer progression and metastasis on a molecular level. This review focuses on the effects of r- and s-µg on different types of cells deriving from thyroid, breast, lung, skin, and prostate cancer, as well as tumors of the gastrointestinal tract. In addition, we summarize the current knowledge of the impact of µg on cancerous stem cells. The information demonstrates that µg has become an important new technology for increasing current knowledge of cancer biology.
Collapse
|
16
|
Shmakova AA, Klimovich PS, Rysenkova KD, Popov VS, Gorbunova AS, Karpukhina AA, Karagyaur MN, Rubina KA, Tkachuk VA, Semina EV. Urokinase Receptor uPAR Downregulation in Neuroblastoma Leads to Dormancy, Chemoresistance and Metastasis. Cancers (Basel) 2022; 14:cancers14040994. [PMID: 35205745 PMCID: PMC8870350 DOI: 10.3390/cancers14040994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/05/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary uPAR is a membrane receptor that contributes to extracellular matrix remodeling and controls cellular adhesion, proliferation, survival, and migration. We demonstrate that the initially high uPAR expression predicts poor survival in neuroblastoma. However, relapsed neuroblastomas have a significantly decreased uPAR expression. uPAR downregulation in neuroblastoma cells leads to dormancy and resistance to chemotherapeutic drugs. In mice, low uPAR-expressing neuroblastoma cells formed smaller primary tumors but more frequent metastasis. Abstract uPAR is a membrane receptor that binds extracellular protease urokinase, contributes to matrix remodeling and plays a crucial role in cellular adhesion, proliferation, survival, and migration. uPAR overexpression in tumor cells promotes mitogenesis, opening a prospective avenue for targeted therapy. However, uPAR targeting in cancer has potential risks. We have recently shown that uPAR downregulation in neuroblastoma promotes epithelial-mesenchymal transition (EMT), potentially associated with metastasis and chemoresistance. We used data mining to evaluate the role of uPAR expression in primary and relapsed human neuroblastomas. To model the decreased uPAR expression, we targeted uPAR using CRISPR/Cas9 and shRNA in neuroblastoma Neuro2a cells and evaluated their chemosensitivity in vitro as well as tumor growth and metastasis in vivo. We demonstrate that the initially high PLAUR expression predicts poor survival in human neuroblastoma. However, relapsed neuroblastomas have a significantly decreased PLAUR expression. uPAR targeting in neuroblastoma Neuro2a cells leads to p38 activation and an increased p21 expression (suggesting a dormant phenotype). The dormancy in neuroblastoma cells can be triggered by the disruption of uPAR-integrin interaction. uPAR-deficient cells are less sensitive to cisplatin and doxorubicin treatment and exhibit lower p53 activation. Finally, low uPAR-expressing Neuro2a cells formed smaller primary tumors, but more frequent metastasis in mice. To the best of our knowledge, this is the first study revealing the pathological role of dormant uPAR-deficient cancer cells having a chemoresistant and motile phenotype.
Collapse
Affiliation(s)
- Anna A. Shmakova
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Polina S. Klimovich
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Karina D. Rysenkova
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Vladimir S. Popov
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Anna S. Gorbunova
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Anna A. Karpukhina
- Koltzov Institute of Developmental Biology, Russian Academy of Science, 117334 Moscow, Russia;
| | - Maxim N. Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Kseniya A. Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Vsevolod A. Tkachuk
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
| | - Ekaterina V. Semina
- National Cardiology Research Center of the Ministry of Health of the Russian Federation, Institute of Experimental Cardiology, 121552 Moscow, Russia; (A.A.S.); (P.S.K.); (K.D.R.); (V.A.T.)
- Faculty of Medicine, Lomonosov Moscow State University, 119192 Moscow, Russia; (V.S.P.); (A.S.G.); (M.N.K.); (K.A.R.)
- Correspondence:
| |
Collapse
|
17
|
Wang J, Zhou T, Liu Y, Chen S, Yu Z. Application of Nanoparticles in the Treatment of Lung Cancer With Emphasis on Receptors. Front Pharmacol 2022; 12:781425. [PMID: 35082668 PMCID: PMC8785094 DOI: 10.3389/fphar.2021.781425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is one of the malignant tumors that has seen the most rapid growth in terms of morbidity and mortality in recent years, posing the biggest threat to people’s health and lives. In recent years, the nano-drug loading system has made significant progress in the detection, diagnosis, and treatment of lung cancer. Nanomaterials are used to specifically target tumor tissue to minimize therapeutic adverse effects and increase bioavailability. It is achieved primarily through two mechanisms: passive targeting, which entails the use of enhanced penetration and retention (EPR) effect, and active targeting, which entails the loading recognition ligands for tumor marker molecules onto nanomaterials. However, it has been demonstrated that the EPR effect is effective in rodents but not in humans. Taking this into consideration, researchers paid significant attention to the active targeting nano-drug loading system. Additionally, it has been demonstrated to have a higher affinity and specificity for tumor cells. In this review, it describes the development of research into active targeted nano-drug delivery systems for lung cancer treatment from the receptors’ or targets’ perspective. We anticipate that this study will help biomedical researchers use nanoparticles (NPs) to treat lung cancer by providing more and novel drug delivery strategies or solid ligands.
Collapse
Affiliation(s)
- Jingyue Wang
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Ying Liu
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| | - Shuangmin Chen
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| | - Zhenxiang Yu
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Cortes-Dericks L, Galetta D. Impact of Cancer Stem Cells and Cancer Stem Cell-Driven Drug Resiliency in Lung Tumor: Options in Sight. Cancers (Basel) 2022; 14:267. [PMID: 35053430 PMCID: PMC8773978 DOI: 10.3390/cancers14020267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Causing a high mortality rate worldwide, lung cancer remains an incurable malignancy resistant to conventional therapy. Despite the discovery of specific molecular targets and new treatment strategies, there remains a pressing need to develop more efficient therapy to further improve the management of this disease. Cancer stem cells (CSCs) are considered the root of sustained tumor growth. This consensus corroborates the CSC model asserting that a distinct subpopulation of malignant cells within a tumor drives and maintains tumor progression with high heterogeneity. Besides being highly tumorigenic, CSCs are highly refractory to standard drugs; therefore, cancer treatment should be focused on eliminating these cells. Herein, we present the current knowledge of the existence of CSCs, CSC-associated mechanisms of chemoresistance, the ability of CSCs to evade immune surveillance, and potential CSC inhibitors in lung cancer, to provide a wider insight to drive a more efficient elimination of this pro-oncogenic and treatment-resistant cell fraction.
Collapse
Affiliation(s)
| | - Domenico Galetta
- Division of Thoracic Surgery, European Institute of Oncology, IRCCS, 20141 Milan, Italy;
- Department of Oncology and Hematology-Oncology-DIPO, University of Milan, 20122 Milan, Italy
| |
Collapse
|
19
|
Skurikhin E, Pershina O, Zhukova M, Widera D, Ermakova N, Pan E, Pakhomova A, Morozov S, Kubatiev A, Dygai A. Potential of Stem Cells and CART as a Potential Polytherapy for Small Cell Lung Cancer. Front Cell Dev Biol 2021; 9:778020. [PMID: 34926461 PMCID: PMC8678572 DOI: 10.3389/fcell.2021.778020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite the increasing urgency of the problem of treating small cell lung cancer (SCLC), information on the causes of its development is fragmentary. There is no complete understanding of the features of antitumor immunity and the role of the microenvironment in the development of SCLC resistance. This impedes the development of new methods for the diagnosis and treatment of SCLC. Lung cancer and chronic obstructive pulmonary disease (COPD) have common pathogenetic factors. COPD is a risk factor for lung cancer including SCLC. Therefore, the search for effective approaches to prevention, diagnosis, and treatment of SCLC in patients with COPD is an urgent task. This review provides information on the etiology and pathogenesis of SCLC, analyses the effectiveness of current treatment options, and critically evaluates the potential of chimeric antigen receptor T cells therapy (CART therapy) in SCLC. Moreover, we discuss potential links between lung cancer and COPD and the role of endothelium in the development of COPD. Finally, we propose a new approach for increasing the efficacy of CART therapy in SCLC.
Collapse
Affiliation(s)
- Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Mariia Zhukova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey Morozov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan Kubatiev
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
20
|
Therapeutic Targeting of Cancer Stem Cells in Lung, Head and Neck, and Bladder Cancers. Cancers (Basel) 2021; 13:cancers13205098. [PMID: 34680249 PMCID: PMC8534162 DOI: 10.3390/cancers13205098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Effective cancer treatment hinges upon overcoming therapeutic resistance mechanisms that allow for the continued proliferation of cancer cell subpopulations. Exposure to pharmacotherapy invariably leads to resistance as tumor cells with selected advantageous features evade destruction and alter the tumor composition. Cancer stem cells (CSCs) with features of plasticity that allow for regeneration and differentiation are particularly responsible for this phenomenon. Advances in tumor biology and molecular signaling have highlighted their role in neoplastic initiation, invasion, and maintenance. Novel strategies to direct therapy against these tumor cell subpopulations have the potential to dramatically alter tumor response and change the course of cancer care. Abstract Resistance to cancer therapy remains a significant obstacle in treating patients with various solid malignancies. Exposure to current chemotherapeutics and targeted agents invariably leads to therapy resistance, heralding the need for novel agents. Cancer stem cells (CSCs)—a subpopulation of tumor cells with capacities for self-renewal and multi-lineage differentiation—represent a pool of therapeutically resistant cells. CSCs often share physical and molecular characteristics with the stem cell population of the human body. It remains challenging to selectively target CSCs in therapeutically resistant tumors. The generation of CSCs and induction of therapeutic resistance can be attributed to several deregulated critical growth regulatory signaling pathways such as WNT/β-catenin, Notch, Hippo, and Hedgehog. Beyond growth regulatory pathways, CSCs also change the tumor microenvironment and resist endogenous immune attack. Thus, CSCs can interfere with each stage of carcinogenesis from malignant transformation to the onset of metastasis to tumor recurrence. A thorough review of novel targeted agents to act against CSCs is fundamental for advancing cancer treatment in the setting of both intrinsic and acquired resistance.
Collapse
|
21
|
Jung M, Han Y, Woo C, Ki CS. Pulmonary tissue-mimetic hydrogel niches for small cell lung cancer cell culture. J Mater Chem B 2021; 9:1858-1866. [PMID: 33533364 DOI: 10.1039/d0tb02609c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although small cell lung cancer (SCLC) is characterized by early metastasis and high resistance to most anti-cancer therapeutics, resulting in poor prognosis, surgical treatment is unavailable for most patients. Instead, clinical treatment for SCLC patients relies largely on chemotherapy. Therefore, an analysis platform supporting research into the physiology of SCLC cells and novel anti-cancer drugs is strongly needed. Decellularized extracellular matrix (dECM) hydrogel is a promising candidate cell-culture system that could provide a tissue-specific environment. However, dECM-based hydrogels have limited property control, poor mechanical properties, and loss of components during decellularization. In this study, porcine decellularized lung tissue and hyaluronic acid (HA) were hybridized via photopolymerization to form a pulmonary tissue-mimetic hydrogel. dECM solution was obtained by decellularization and pepsin digestion. The dECM and HA were then modified with methacrylic moieties, which produced dECM-methacrylate (dECM-MA) and HA methacrylate (HA-MA). dECM-MA/HA-MA hydrogels were fabricated by photopolymerization using a photoinitiator under UV light irradiation. The mechanical properties of the dECM-based hydrogel were compared with those of native tissue. SCLC cells (NCI-H69) were encapsulated in multiple types of dECM-based hydrogels, and they exhibited higher cell proliferation, drug resistance, and CD44 expression in the presence of dECM-MA and HA-MA than in the control condition.
Collapse
Affiliation(s)
- Mijung Jung
- Department of Agriculture, Forestry and Bioresources, Seoul National Univerisity, Seoul 08826, Republic of Korea.
| | - Yoobin Han
- Department of Agriculture, Forestry and Bioresources, Seoul National Univerisity, Seoul 08826, Republic of Korea.
| | - Changhee Woo
- Department of Agriculture, Forestry and Bioresources, Seoul National Univerisity, Seoul 08826, Republic of Korea.
| | - Chang Seok Ki
- Department of Agriculture, Forestry and Bioresources, Seoul National Univerisity, Seoul 08826, Republic of Korea. and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
22
|
Biagioni A, Chillà A, Del Rosso M, Fibbi G, Scavone F, Andreucci E, Peppicelli S, Bianchini F, Calorini L, Li Santi A, Ragno P, Margheri F, Laurenzana A. CRISPR/Cas9 uPAR Gene Knockout Results in Tumor Growth Inhibition, EGFR Downregulation and Induction of Stemness Markers in Melanoma and Colon Carcinoma Cell Lines. Front Oncol 2021; 11:663225. [PMID: 34055629 PMCID: PMC8163229 DOI: 10.3389/fonc.2021.663225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
uPAR is a globular protein, tethered to the cell membrane by a GPI-anchor involved in several cancer-related properties and its overexpression commonly correlates with poor prognosis and metastasis. We investigated the consequences of uPAR irreversible loss in human melanoma and colon cancer cell lines, knocking out its expression by CRISPR/Cas9. We analyzed through flow cytometry, western blotting and qPCR, the modulation of the most known cancer stem cells-associated genes and the EGFR while we observed the proliferation rate exploiting 2D and 3D cellular models. We also generated uPAR “rescue” expression cell lines as well as we promoted the expression of only its 3’UTR to demonstrate the involvement of uPAR mRNA in tumor progression. Knocking out PLAUR, uPAR-encoding gene, we observed an inhibited growth ratio unexpectedly coupled with a significant percentage of cells acquiring a stem-like phenotype. In vivo experiments demonstrated that uPAR loss completely abrogates tumorigenesis despite the gained stem-like profile. Nonetheless, we proved that the reintroduction of the 3’UTR of PLAUR gene was sufficient to restore the wild-type status validating the hypothesis that such a region may act as a “molecular sponge”. In particular miR146a, by binding PLAUR 3’ UTR region might be responsible for uPAR-dependent inhibition of EGFR expression.
Collapse
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Francesca Scavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anna Li Santi
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| |
Collapse
|
23
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1032] [Impact Index Per Article: 206.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
24
|
Aboubakar Nana F, Vanderputten M, Ocak S. Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential as a Therapeutic Target. Cancers (Basel) 2019; 11:E1683. [PMID: 31671774 PMCID: PMC6895835 DOI: 10.3390/cancers11111683] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the molecular steps leading to SCLC development and progression these last years. After four decades, the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion. FAK also plays a role in tumor immune evasion, epithelial-mesenchymal transition, DNA damage repair, radioresistance, and regulation of cancer stem cells. FAK is of particular interest in SCLC, being known for its aggressiveness. The inhibition of FAK in SCLC cell lines demonstrated significative decrease in cell proliferation, invasion, and migration, and induced cell cycle arrest and apoptosis. In this review, we will focus on the role of FAK in cancer cells and their microenvironment, and its potential as a therapeutic target in SCLC.
Collapse
Affiliation(s)
- Frank Aboubakar Nana
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, Cliniques Universitaires St-Luc, UCL, 1200 Brussels, Belgium.
| | - Marie Vanderputten
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Sebahat Ocak
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, 5530 Yvoir, Belgium.
| |
Collapse
|
25
|
Hochmair M, Rath B, Klameth L, Ulsperger E, Weinlinger C, Fazekas A, Plangger A, Zeillinger R, Hamilton G. Effects of salinomycin and niclosamide on small cell lung cancer and small cell lung cancer circulating tumor cell lines. Invest New Drugs 2019; 38:946-955. [PMID: 31446534 PMCID: PMC7340652 DOI: 10.1007/s10637-019-00847-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Tumor dissemination and recurrence is attributed to highly resistant cancer stem cells (CSCs) which may constitute a fraction of circulating tumor cells (CTCs). Small cell lung cancer (SCLC) constitutes a suitable model to investigate the relation of CTCs and CSCs due to rapid tumor spread and a high number of CTCs. Expansion of five SCLC CTC lines (BHGc7, 10, 16, 26 and UHGc5) in vitro at our institution allowed for the analysis of CSC markers and cytotoxicity of the CSC-selective drugs salinomycin and niclosamide against CTC single cell suspensions or CTC spheroids/ tumorospheres (TOS). Salinomycin exerted dose-dependent cytotoxicity against the SCLC lines but, with exception of BHGc7 TOS, there was no markedly enhanced activity against TOS. Similarly, niclosamide exhibits high activity against BHGc7 TOS and UHGc5 TOS but not against the other CTC spheroids. High expression of the CSC marker CD133 was restricted to three SCLC tumor lines and the BHGc10 CTC line. All SCLC CTCs are CD24-positive but lack expression of CD44 and ABCG2 in contrast to the SCLC tumor lines which show a phenotype more similar to that of CSCs. The stem cell marker SOX2 was found in all CTC lines and SCLC GLC14/16, whereas elevated expression of Oct-3/4 and Nanog was restricted to BHGc26 and UHGc5. In conclusion, the SCLC CTCs established from patients with relapsed disease lack a typical CSC phenotype in respect to chemosensitivity to CSC-selective drugs, surface markers, expression of pluripotent stem cell and transcription factors.
Collapse
Affiliation(s)
- Maximilian Hochmair
- Respiratory Oncology Unit, Otto Wagner Hospital, Baumgartner Höhe, Vienna, Austria
| | - Barbara Rath
- Department of Surgery, Medical University of Vienna, Spitalgasse, Vienna, Austria
| | - Lukas Klameth
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | - Christoph Weinlinger
- Respiratory Oncology Unit, Otto Wagner Hospital, Baumgartner Höhe, Vienna, Austria
| | - Andreas Fazekas
- Respiratory Oncology Unit, Otto Wagner Hospital, Baumgartner Höhe, Vienna, Austria
| | - Adelina Plangger
- Department of Surgery, Medical University of Vienna, Spitalgasse, Vienna, Austria
| | - Robert Zeillinger
- Department of Gynecology and Obstetrics, Molecular Oncology Group, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Department of Surgery, Medical University of Vienna, Spitalgasse, Vienna, Austria.
| |
Collapse
|
26
|
Brungs D, Lochhead A, Iyer A, Illemann M, Colligan P, Hirst NG, Splitt A, Liauw W, Vine KL, Pathmanandavel S, Carolan M, Becker TM, Aghmesheh M, Ranson M. Expression of cancer stem cell markers is prognostic in metastatic gastroesophageal adenocarcinoma. Pathology 2019; 51:474-480. [PMID: 31230819 DOI: 10.1016/j.pathol.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
Gastroesophageal adenocarcinoma is a common and highly lethal malignancy. Cancer stem cells (CSCs) have a key role in the development and progression of metastatic disease. While expression of CSC markers CD44, CD133 and aldehyde dehydrogenase 1 (ALDH1) in locoregional gastroesophageal cancer is known to be associated with poorer clinical outcomes, the significance of CSC marker expression in distal metastatic disease is unknown. We investigated the clinicopathological and prognostic associations of the CSC markers, CD44, CD133, and ALDH1, on metastatic deposits from gastroesophageal adenocarcinomas, and evaluated the association of CSC expression with urokinase-type plasminogen activator receptor (uPAR) expression. Of the 36 patients included in the study, 16 (44%) were positive for CD44, 13 (36%) were positive for CD133, and 26 (72%) were positive for ALDH1. CD44 expression was significantly associated with poorer overall survival (OS) in univariate [hazard ratio (HR) 2.9, 95% confidence interval (CI) 1.3-6.9, p=0.008] and multivariate analyses (HR 2.5, 95%CI 1.1-6.2, p=0.04). ALDH1 expression was significantly associated with poorer OS in univariate (HR 2.4, 95% CI 1.01-5.7, p=0.04) analysis but was not significant in multivariate analysis. Both CD44 and ALDH1 expression were significantly associated with uPAR expression. We found no association between CD133 expression and OS. CD44 expression on metastatic disease from gastroesophageal adenocarcinomas is an independent prognostic marker associated with poorer OS. These results expand current evidence to support the role of CSCs as biomarkers in metastatic gastroesophageal cancer.
Collapse
Affiliation(s)
- Daniel Brungs
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia; Illawarra Cancer Centre, Wollongong Hospital, Wollongong, NSW, Australia; CONCERT-Translational Cancer Research Centre, NSW, Australia.
| | | | - Anita Iyer
- Southern IML Pathology, Wollongong, NSW, Australia
| | - Martin Illemann
- Biotech Research Innovation Centre - BRIC, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Ashleigh Splitt
- Illawarra Cancer Centre, Wollongong Hospital, Wollongong, NSW, Australia
| | - Winston Liauw
- Department of Medical Oncology, St George Hospital, Sydney, NSW, Australia
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia; CONCERT-Translational Cancer Research Centre, NSW, Australia
| | | | - Martin Carolan
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Illawarra Cancer Centre, Wollongong Hospital, Wollongong, NSW, Australia; CONCERT-Translational Cancer Research Centre, NSW, Australia
| | - Therese M Becker
- CONCERT-Translational Cancer Research Centre, NSW, Australia; School of Medicine, University of Western Sydney, Liverpool, NSW, Australia; South Western Medical School, University of New South Wales, Liverpool, Australia; Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Morteza Aghmesheh
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Illawarra Cancer Centre, Wollongong Hospital, Wollongong, NSW, Australia; CONCERT-Translational Cancer Research Centre, NSW, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia; CONCERT-Translational Cancer Research Centre, NSW, Australia
| |
Collapse
|
27
|
Chen QY, Murphy A, Sun H, Costa M. Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicol Appl Pharmacol 2019; 377:114636. [PMID: 31228494 DOI: 10.1016/j.taap.2019.114636] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Chromium (Cr) is a naturally occurring metallic element found in the Earth's crust. While trivalent chromium ([Cr(III)] is considered non-carcinogenic, hexavalent chromium [Cr(VI)] has long been established as an IARC class I human carcinogen, known to induce cancers of the lung. Current literature suggests that Cr(VI) is capable of inducing carcinogenesis through both genetic and epigenetic mechanisms. Although much has been learned about the molecular etiology of Cr(VI)-induced lung carcinogenesis, more remains to be explored. In particular, the explicit epigenetic alterations induced by Cr(VI) in lung cancer including histone modifications and miRNAs, remain understudied. Through comprehensive review of available literature found between 1973 and 2019, this article provides a summary of updated understanding of the molecular mechanisms of Cr(VI)-carcinogenesis. In addition, this review identifies potential research gaps in the areas of histone modifications and miRNAs, which may prompt new niches for future research.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| |
Collapse
|
28
|
Wang K, Xing ZH, Jiang QW, Yang Y, Huang JR, Yuan ML, Wei MN, Li Y, Wang ST, Liu K, Shi Z. Targeting uPAR by CRISPR/Cas9 System Attenuates Cancer Malignancy and Multidrug Resistance. Front Oncol 2019; 9:80. [PMID: 30873379 PMCID: PMC6400983 DOI: 10.3389/fonc.2019.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
Urokinase plasminogen activator receptor (uPAR), a member of the lymphocyte antigen 6 protein superfamily, is overexpressed in different types of cancers and plays an important role in tumorigenesis and development. In this study, we successfully targeted uPAR by CRISPR/Cas9 system in two human cancer cell lines with two individual sgRNAs. Knockout of uPAR inhibited cell proliferation, migration and invasion. Furthermore, knockout of uPAR decreases resistance to 5-FU, cisplatin, docetaxel, and doxorubicin in these cells. Although there are several limitations in the application of CRISPR/Cas9 system for cancer patients, our study offers valuable evidences for the role of uPAR in cancer malignancy and drug resistance.
Collapse
Affiliation(s)
- Kun Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zi-Hao Xing
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Qi-Wei Jiang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jia-Rong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Meng-Ling Yuan
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Meng-Ning Wei
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yao Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Sheng-Te Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Kun Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhi Shi
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| |
Collapse
|
29
|
Rath B, Klameth L, Plangger A, Hochmair M, Ulsperger E, Huk I, Zeillinger R, Hamilton G. Expression of Proteolytic Enzymes by Small Cell Lung Cancer Circulating Tumor Cell Lines. Cancers (Basel) 2019; 11:cancers11010114. [PMID: 30669448 PMCID: PMC6357007 DOI: 10.3390/cancers11010114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive type of lung cancer which disseminates vigorously and has a dismal prognosis. Metastasis of SCLC is linked to an extremely high number of circulating tumor cells (CTCs), which form chemoresistant spheroids, termed tumorospheres. Intravasation and extravasation during tumor spread requires the activity of a number of proteases to disintegrate the stroma and vascular tissue. Generation of several permanent SCLC CTC lines allowed us to screen for the expression of 35 proteases using Western blot arrays. Cell culture supernatants of two CTC lines, namely BHGc7 and 10, were analyzed for secreted proteases, including matrix metalloproteinases (MMPs), ADAM/TS, cathepsins, kallikreins, and others, and compared to proteases expressed by SCLC cell lines (GLC14, GLC16, NCI-H526 and SCLC26A). In contrast to NCI-H526 and SCLC26A, MMP-9 was highly expressed in the two CTC lines and in GLC16 derived of a relapse. Furthermore, cathepsins (S, V, X/Z/P, A and D) were highly expressed in the CTC lines, whereas ADAM/TS and kallikreins were not detectable. In conclusion, SCLC CTCs express MMP-9 and a range of cathepsins for proteolysis and, aside from tissue degradation, these enzymes are involved in cell signaling, survival, and the chemoresistance of tumor cells.
Collapse
Affiliation(s)
- Barbara Rath
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Lukas Klameth
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Adelina Plangger
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | | | | | - Ihor Huk
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Robert Zeillinger
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center-Gynecological Cancer Unit, Medical University of Vienna, A-1090 Vienna, Austria.
| | - Gerhard Hamilton
- Department of Vascular Surgery, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
30
|
Heterogeneity of Small Cell Lung Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:41-57. [PMID: 31134494 DOI: 10.1007/978-3-030-14366-4_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Small cell lung cancer, a subtype of lung cancer is an extremely malignant disease due to its metastases and recurrence. Patients with SCLC develop resistance to chemotherapy and the disease relapses. This relapse and resistance are attributed to the heterogeneity of SCLC. Various factors such as recurrent mutations in key regulatory genes such as TP53, RB1, and myc, epigenetic changes, and cancer stem cells contribute to the observed heterogeneity. Cancer stem cell models predict neuroendocrine origin of SCLC. Though an unambiguous established CSC marker has not been assigned, markers CD133, CD44 have been found associated with SCLC. Genetically engineered mouse models (GEMMs) allow the validation of driver mutations and are necessary for design of targeted therapy. This chapter outlines the factors contributing to SCLC heterogeneity, detection methods, and the current therapy trials.
Collapse
|
31
|
Testa U, Castelli G, Pelosi E. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers (Basel) 2018; 10:E248. [PMID: 30060526 PMCID: PMC6116004 DOI: 10.3390/cancers10080248] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer causes the largest number of cancer-related deaths in the world. Most (85%) of lung cancers are classified as non-small-cell lung cancer (NSCLC) and small-cell lung cancer (15%) (SCLC). The 5-year survival rate for NSCLC patients remains very low (about 16% at 5 years). The two predominant NSCLC histological phenotypes are adenocarcinoma (ADC) and squamous cell carcinoma (LSQCC). ADCs display several recurrent genetic alterations, including: KRAS, BRAF and EGFR mutations; recurrent mutations and amplifications of several oncogenes, including ERBB2, MET, FGFR1 and FGFR2; fusion oncogenes involving ALK, ROS1, Neuregulin1 (NRG1) and RET. In LSQCC recurrent mutations of TP53, FGFR1, FGFR2, FGFR3, DDR2 and genes of the PI3K pathway have been detected, quantitative gene abnormalities of PTEN and CDKN2A. Developments in the characterization of lung cancer molecular abnormalities provided a strong rationale for new therapeutic options and for understanding the mechanisms of drug resistance. However, the complexity of lung cancer genomes is particularly high, as shown by deep-sequencing studies supporting the heterogeneity of lung tumors at cellular level, with sub-clones exhibiting different combinations of mutations. Molecular studies performed on lung tumors during treatment have shown the phenomenon of clonal evolution, thus supporting the occurrence of a temporal tumor heterogeneity.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
32
|
uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget 2018; 7:57351-57366. [PMID: 27385000 PMCID: PMC5302994 DOI: 10.18632/oncotarget.10344] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
There is strong evidence supporting the role of the plasminogen activator system in head and neck squamous cell carcinoma (HNSCC), particularly of its uPA (urokinase plasminogen activator) / uPAR (urokinase plasminogen activator receptor) and SERPINE1 components. Overexpression of uPA/uPAR and SERPINE1 enhances tumor cell migration and invasion and plays a key role in metastasis development, conferring poor prognosis. The apparent paradox of uPA/uPAR and its inhibitor SERPINE1 producing similar effects is solved by the identification of SERPINE1 activated signaling pathways independent of uPA inhibition. Both uPA/uPAR and SERPINE1 are directly linked to the induction of epithelial-to-mesenchymal transition, the acquisition of stem cell properties and resistance to antitumor agents. The aim of this review is to provide insight on the deregulation of these proteins in all these processes. We also summarize their potential value as prognostic biomarkers or potential drug targets in HNSCC patients. Concomitant overexpression of uPA/uPAR and SERPINE1 is associated with a higher risk of metastasis and could be used to identify patients that would benefit from an adjuvant treatment. In the future, the specific inhibitors of uPA/uPAR and SERPINE1, which are still under development, could be used to design new therapeutic strategies in HNSCCs.
Collapse
|
33
|
Guo H, Zhou LX, Ma H, Liu B, Cheng J, Ma YY, Zhao L. Soluble urokinase-type plasminogen activator receptor and urokinase-type plasminogen activator receptor contribute to chemoresistance in leukemia. Oncol Lett 2017; 14:383-389. [PMID: 28693180 DOI: 10.3892/ol.2017.6150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 02/23/2017] [Indexed: 12/29/2022] Open
Abstract
The soluble urokinase-type plasminogen activator receptor (suPAR) and the urokinase-type plasminogen activator receptor (uPAR) have been proposed as useful biomarkers of tumor progression. Recently, suPAR was associated with chemoresistance in lung cancer. However, its clinical significance in leukemia has not previously been investigated. The present study examined the plasma levels of suPAR and the expression of the uPAR on bone marrow (BM) cells in 86 patients with leukemia at diagnosis prior to chemotherapy and 26 normal subjects (control group). The plasma suPAR levels were measured using ELISA, whilst uPAR expression was assayed by flow cytometry analysis. In addition, cell surface uPAR expression on K562 and multidrug-resistant K562/ADM cell lines was studied by western blotting. On admission and follow-up, the levels of suPAR in patients with leukemia were significantly increased compared with controls. Systemic levels of suPAR were strongly associated with the numbers of white blood cells. A case was defined as uPAR-positive (uPAR+) if >20% of the gated cells expressed uPAR. In comparison with 26 healthy BM samples that were negative for uPAR expression, 48 (55.8%) of the 86 leukemia patients were uPAR+. uPAR expression on the cell surface of multidrug-resistant K562/ADM cells was increased compared with that on K562 cells. In conclusion, plasma suPAR expression may be a useful marker for subtype classification of patients with leukemia and cell surface uPAR may be associated with resistance to chemotherapy or disease progression.
Collapse
Affiliation(s)
- Hong Guo
- Critical Care Medicine Department, The First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lan-Xia Zhou
- Central Laboratory, The First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Haizhen Ma
- Department of Hematology, The First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Bei Liu
- Department of Hematology, The First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Juan Cheng
- Department of Hematology, The First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yun-Yun Ma
- Central Laboratory, The First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li Zhao
- Central Laboratory, The First Affiliated Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
34
|
Zakaria N, Satar NA, Abu Halim NH, Ngalim SH, Yusoff NM, Lin J, Yahaya BH. Targeting Lung Cancer Stem Cells: Research and Clinical Impacts. Front Oncol 2017; 7:80. [PMID: 28529925 PMCID: PMC5418222 DOI: 10.3389/fonc.2017.00080] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC), which is one of two types of lung cancer, accounts for 85–90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs) because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.
Collapse
Affiliation(s)
- Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Nazilah Abdul Satar
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Noor Hanis Abu Halim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Siti Hawa Ngalim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Narazah Mohd Yusoff
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Juntang Lin
- College of Life Science and Technology, Xinxiang Medical University (XXMU), Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University (XXMU), Xinxiang, China
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| |
Collapse
|
35
|
Wang S, Jiang L, Han Y, Chew SH, Ohara Y, Akatsuka S, Weng L, Kawaguchi K, Fukui T, Sekido Y, Yokoi K, Toyokuni S. Urokinase-type plasminogen activator receptor promotes proliferation and invasion with reduced cisplatin sensitivity in malignant mesothelioma. Oncotarget 2016; 7:69565-69578. [PMID: 27602956 PMCID: PMC5342498 DOI: 10.18632/oncotarget.11829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/25/2016] [Indexed: 11/25/2022] Open
Abstract
Malignant mesothelioma (MM) is a rare neoplasm associated with asbestos exposure. The prognosis of MM is poor because it is aggressive and highly resistant to chemotherapy. Using a rat model of asbestos-induced MM, we found elevated urokinase-type plasminogen activator receptor (uPAR; Plaur) expression in rat tissues, which was associated with poor prognosis. The proliferation, migration and invasion of MM cells were suppressed by uPAR knockdown and increased by overexpression experiments, irrespective of urokinase-type plasminogen activator (uPA; Plau) levels. More importantly, we found that uPAR expression is associated with sensitivity to cisplatin in MM through the PI3K/AKT pathway, which was demonstrated with specific inhibitors, LY294002 and Akti-1/2. uPAR knockdown significantly increased sensitivity to cisplatin whereas its overexpression significantly decreased cisplatin sensitivity. Furthermore, sera and tissues from MM patients showed significantly high uPAR levels, which suggested the pathogenic role of uPAR in the tumor biology of human MM. In conclusion, our findings indicate that uPAR levels are associated with malignant characteristics and cisplatin sensitivity of MM. In addition to the potential use of uPAR as a prognostic marker, the combination of uPAR abrogation and cisplatin may reveal a promising therapeutic approach for MM.
Collapse
Affiliation(s)
- Shenqi Wang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Li Jiang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Yipeng Han
- Department of Tumor Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Shan Hwu Chew
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Yuuki Ohara
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Liang Weng
- Department of Tumor Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Koji Kawaguchi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Takayuki Fukui
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Yoshitaka Sekido
- Department of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Nagoya, 464–8681, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466–8550, Japan
| |
Collapse
|
36
|
Abstract
Lung cancer remains a major cause of cancer-related deaths worldwide with unfavourable prognosis mainly due to the late stage of disease at presentation. High incidence and disease recurrence rates are a fact despite advances in treatment. Ongoing experimental and clinical observations suggest that the malignant phenotype in lung cancer is sustained by lung cancer stem cells (CSCs) which are putative stem cells situated throughout the airways that have the potential of initiating lung cancer formation. These cells share the common characteristic of increased proliferation and differentiation, long life span and resistance to chemotherapy and radiation therapy. This review summarises the current knowledge on their characteristics and phenotype.
Collapse
Affiliation(s)
- Georgia Hardavella
- 1 Department of Respiratory Medicine and Allergy, King's College, London, UK ; 2 Department of Respiratory Medicine, King's College Hospital, London, UK
| | - Rachel George
- 1 Department of Respiratory Medicine and Allergy, King's College, London, UK ; 2 Department of Respiratory Medicine, King's College Hospital, London, UK
| | - Tariq Sethi
- 1 Department of Respiratory Medicine and Allergy, King's College, London, UK ; 2 Department of Respiratory Medicine, King's College Hospital, London, UK
| |
Collapse
|
37
|
Continuous exposure of pancreatic cancer cells to dietary bioactive agents does not induce drug resistance unlike chemotherapy. Cell Death Dis 2016; 7:e2246. [PMID: 27253410 PMCID: PMC5143386 DOI: 10.1038/cddis.2016.157] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/31/2022]
Abstract
The repeated treatment of cancer cells with chemo- or radiotherapy induces therapy resistance, but it was previously unknown whether the same effect occurs upon continuous exposure of cancer cells to diet-derived chemopreventive agents. We elucidated this interesting question in pancreatic ductal adenocarcinoma, which is a highly aggressive cancer entity with a marked resistance toward gemcitabine and other cytotoxic drugs. The isothiocyanate sulforaphane, present in cruciferous vegetables, and the polyphenol quercetin, present in many fruits and vegetables induced apoptosis and reduced viability in gemcitabine-sensitive BxPC-3 cells but not in non-malignant ductal pancreas cells and mesenchymal stromal cells. In turn, BxPC-3 cells were treated with increasing concentrations of gemcitabine, sulforaphane or quercetin for more than 1 year and the surviving subclones Bx-GEM, Bx-SF and Bx-Q were selected, respectively. While Bx-GEM cells acquired a total resistance, Bx-SF or Bx-Q cells largely kept their sensitivity as proved by MTT assay, annexin staining and FACS analysis. The evaluation of the self-renewal-, differentiation- and migration-potential by colony formation, differentiation or migration assays demonstrated that cancer stem cell features were enriched in gemcitabine-resistant cells, but decreased in sulforaphane- and quercetin-long time-treated cells. These results were confirmed by orthotopic xenotransplantation of cancer cells to the mouse pancreas, where Bx-GEM formed large, Bx-Q small and Bx-SF cells almost undetectable tumors. An mRNA expression profiling array and subsequent gene set enrichment analysis and qRT-PCR confirmed that tumor progression markers were enriched in Bx-GEM, but reduced in Bx-SF and Bx-Q cells. This study demonstrates that the continuous exposure of pancreatic cancer cells to sulforaphane or quercetin does not induce resistance in surviving cells but reduces tumorigenicity by inhibition of tumor progression markers. These results highlight that cancer cells may not adapt to the preventive and therapeutic effects of a regular fruit- and vegetable-based diet.
Collapse
|
38
|
Cancer Stem Cells in Small Cell Lung Cancer Cell Line H446: Higher Dependency on Oxidative Phosphorylation and Mitochondrial Substrate-Level Phosphorylation than Non-Stem Cancer Cells. PLoS One 2016; 11:e0154576. [PMID: 27167619 PMCID: PMC4863974 DOI: 10.1371/journal.pone.0154576] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 04/15/2016] [Indexed: 02/07/2023] Open
Abstract
Recently, targeting cancer stem cells (CSCs) metabolism is becoming a promising therapeutic approach to improve cancer treatment outcomes. However, knowledge of the metabolic state of CSCs in small cell lung cancer is still lacking. In this study, we found that CSCs had significantly lower oxygen consumption rate and extracellular acidification rate than non-stem cancer cells. Meanwhile, this subpopulation of cells consumed less glucose, produced less lactate and maintained lower ATP levels. We also revealed that CSCs could produce more ATP through mitochondrial substrate-level phosphorylation during respiratory inhibition compared with non-stem cancer cells. Furthermore, they were more sensitive to suppression of oxidative phosphorylation. Therefore, oligomycin (inhibitor of oxidative phosphorylation) could severely impair sphere-forming and tumor-initiating abilities of CSCs. Our work suggests that CSCs represent metabolically inactive tumor subpopulations which sustain in a state showing low metabolic activity. However, mitochondrial substrate-level phosphorylation of CSCs may be more active than that of non-stem cancer cells. Moreover, CSCs showed preferential use of oxidative phosphorylation over glycolysis to meet their energy demand. These results extend our understanding of CSCs metabolism, potentially providing novel treatment strategies targeting metabolic pathways in small cell lung cancer.
Collapse
|
39
|
Owonikoko TK, Zhang G, Kim HS, Stinson RM, Bechara R, Zhang C, Chen Z, Saba NF, Pakkala S, Pillai R, Deng X, Sun SY, Rossi MR, Sica GL, Ramalingam SS, Khuri FR. Patient-derived xenografts faithfully replicated clinical outcome in a phase II co-clinical trial of arsenic trioxide in relapsed small cell lung cancer. J Transl Med 2016; 14:111. [PMID: 27142472 PMCID: PMC4855771 DOI: 10.1186/s12967-016-0861-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/12/2016] [Indexed: 02/03/2023] Open
Abstract
Background SCLC has limited treatment options and inadequate preclinical models. Promising activity of arsenic trioxide (ASO) recorded in conventional preclinical models of SCLC supported the clinical evaluation of ASO in patients. We assessed the efficacy of ASO in relapsed SCLC patients and in corresponding patient-derived xenografts (PDX). Methods Single arm, Simon 2-stage, phase II trial to enroll patients with relapsed SCLC who have failed at least one line of therapy. ASO was administered as an intravenous infusion over 1–2 h daily for 4 days in week 1 and for 2 days in weeks 2–6 of an 8-week cycle. Treatment continued until disease progression. Pretreatment tumor biopsy was employed for PDX generation through direct implantation into subcutaneous pockets of SCID mice without in vitro manipulation and serially propagated for five generations. Ex vivo efficacy of cisplatin (3 mg/kg i.p. weekly) and ASO (3.75 mg/kg i.p. every other day) was tested in PDX representative of platinum sensitive and platinum refractory SCLC. Results The best response in 17 evaluable patients was stable disease in 2 (12 %), progressive disease in 15 (88 %) patients and median time-to-progression of seven (range 1–7) weeks. PDX was successfully grown in 5 of 9 (56 %) transplanted biopsy samples. Serially-propagated PDXs preserved characteristic small cell histology and genomic stability confirmed by immunohistochemistry, short tandem repeat (STR) profiling and targeted sequencing. ASO showed in vitro cytotoxicity but lacked in vivo efficacy against SCLC PDX tumor growth. Conclusions Cisplatin inhibited growth of PDX derived from platinum-sensitive SCLC but was ineffective against PDX from platinum-refractory SCLC. Strong concordance between clinical and ex vivo effects of ASO and cisplatin in SCLC supports the use of PDX models to prescreen promising anticancer agents prior to clinical testing in SCLC patients. Trial Registration The study was registered at http://www.clinicaltrials.gov (NCT01470248) Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0861-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taofeek K Owonikoko
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA.
| | - Guojing Zhang
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Hyun S Kim
- Department of Radiology, Division of Interventional Radiology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | | | - Rabih Bechara
- Department of Medicine, Division of Interventional Pulmonology, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Chao Zhang
- Department of Biostatistics, Rollins School of Public Health and Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Zhengjia Chen
- Department of Biostatistics, Rollins School of Public Health and Biostatistics Shared Resource, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Nabil F Saba
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Suchita Pakkala
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Rathi Pillai
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Shi-Yong Sun
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Michael R Rossi
- Department of Radiation Oncology, Winship Cancer Institute, Atlanta, GA, 30322, USA.,Department of Pathology, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Gabriel L Sica
- Department of Pathology, Winship Cancer Institute, Atlanta, GA, 30322, USA
| | - Suresh S Ramalingam
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| | - Fadlo R Khuri
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, 1365C Clifton Road, NE, Suite C3080, Atlanta, GA, 30322, USA
| |
Collapse
|
40
|
Huang GH, Xu QF, Cui YH, Li N, Bian XW, Lv SQ. Medulloblastoma stem cells: Promising targets in medulloblastoma therapy. Cancer Sci 2016; 107:583-9. [PMID: 27171351 PMCID: PMC4970825 DOI: 10.1111/cas.12925] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/15/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Despite great improvements in the therapeutic regimen, relapse and leptomeningeal dissemination still pose great challenges to the long‐term survival of MB patients. Developing more effective strategies has become extremely urgent. In recent years, a number of malignancies, including MB, have been found to contain a subpopulation of cancer cells known as cancer stem cells (CSCs), or tumor initiating/propagating cells. The CSCs are thought to be largely responsible for tumor initiation, maintenance, dissemination, and relapse; therefore, their pivotal roles have revealed them to be promising targets in MB therapy. Our growing understanding of the major medulloblastoma molecular subgroups and the derivation of some of these groups from specific stem or progenitor cells adds additional layers to the CSC knowledge base. Herein we review the current knowledge of MB stem cells, highlight the molecular mechanisms relating to MB relapse and leptomeningeal dissemination, and incorporate these with the need to develop more effective and accurate therapies for MB patients.
Collapse
Affiliation(s)
- Guo-Hao Huang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qing-Fu Xu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ningning Li
- Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
41
|
Codony-Servat J, Verlicchi A, Rosell R. Cancer stem cells in small cell lung cancer. Transl Lung Cancer Res 2016; 5:16-25. [PMID: 26958490 PMCID: PMC4758966 DOI: 10.3978/j.issn.2218-6751.2016.01.01] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 12/11/2022]
Abstract
Small cell lung cancer (SCLC) is one of the most aggressive lung tumors, with poor survival rates. Although patients may initially respond to treatment, this is followed by rapid development of drug resistance and disease progression. SCLC patients often present with metastasis at time of diagnosis, ruling out surgery as a treatment option. Currently, treatment options for this disease remain limited and platinum-based chemotherapy is the treatment of choice. A better understanding of the biology of SCLC could allow us to identify new therapeutic targets. Cancer stem cell (CSC) theory is currently crucial in cancer research and could provide a viable explanation for the heterogeneity, drug resistance, recurrence and metastasis of several types of tumors. Some characteristics of SCLC, such as aggressiveness, suggest that this kind of tumor could be enriched in CSCs, and drug resistance in SCLC could be attributable to the existence of a CSC subpopulation in SCLC. Herein we summarize current understanding of CSC in SCLC, including the evidence for CSC markers and signaling pathways involved in stemness. We also discuss potential ongoing strategies and areas of active research in SCLC, such as immunotherapy, that focus on inhibition of signaling pathways and targeting molecules driving stemness. Understanding of signaling pathways and the discovery of new therapeutic markers specific to CSCs will lead to new advances in therapy and improvements in prognosis of SCLC patients. Therefore, evaluation of these CSC-specific molecules and pathways may become a routine part of SCLC diagnosis and therapy.
Collapse
|
42
|
MacDonagh L, Gray SG, Breen E, Cuffe S, Finn SP, O'Byrne KJ, Barr MP. Lung cancer stem cells: The root of resistance. Cancer Lett 2016; 372:147-56. [PMID: 26797015 DOI: 10.1016/j.canlet.2016.01.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
In the absence of specific treatable mutations, platinum-based chemotherapy remains the gold standard of treatment for lung cancer patients. However, 5-year survival rates remain poor due to the development of resistance and eventual relapse. Resistance to conventional cytotoxic therapies presents a significant clinical challenge in the treatment of this disease. The cancer stem cell (CSC) hypothesis suggests that tumors are arranged in a hierarchical structure, with the presence of a small subset of stem-like cells that are responsible for tumor initiation and growth. This CSC population has a number of key properties such as the ability to asymmetrically divide, differentiate and self-renew, in addition to having increased intrinsic resistance to therapy. While cytotoxic chemotherapy kills the bulk of tumor cells, CSCs are spared and have the ability to recapitulate the heterogenic tumor mass. The identification of lung CSCs and their role in tumor biology and treatment resistance may lead to innovative targeted therapies that may ultimately improve clinical outcomes in lung cancer patients. This review will focus on lung CSC markers, their role in resistance and their relevance as targets for future therapies.
Collapse
Affiliation(s)
- Lauren MacDonagh
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Eamon Breen
- Flow Cytometry Core Facility, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Sinead Cuffe
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland; Department of Histopathology, St. James's Hospital and Trinity College Dublin, Ireland
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia
| | - Martin P Barr
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland.
| |
Collapse
|
43
|
Leon G, MacDonagh L, Finn SP, Cuffe S, Barr MP. Cancer stem cells in drug resistant lung cancer: Targeting cell surface markers and signaling pathways. Pharmacol Ther 2015; 158:71-90. [PMID: 26706243 DOI: 10.1016/j.pharmthera.2015.12.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Despite advances in anti-cancer therapies such as chemotherapy, radiotherapy and targeted therapies, five-year survival rates remain poor (<15%). Inherent and acquired resistance has been identified as a key factor in reducing the efficacy of current cytotoxic therapies in the management of non-small cell lung cancer (NSCLC). There is growing evidence suggesting that cancer stem cells (CSCs) play a critical role in tumor progression, metastasis and drug resistance. Similar to normal tissue stem cells, CSCs exhibit significant phenotypic and functional heterogeneity. While CSCs have been reported in a wide spectrum of human tumors, the biology of CSCs in NSCLC remain elusive. Current anti-cancer therapies fail to eradicate CSC clones and instead, favor the expansion of the CSC pool and select for resistant CSC clones thereby resulting in treatment resistance and subsequent relapse in these patients. The identification of CSC-specific marker subsets and the targeted therapeutic destruction of CSCs remains a significant challenge. Strategies aimed at efficient targeting of CSCs are becoming increasingly important for monitoring the progress of cancer therapy and for evaluating new therapeutic approaches. This review focuses on the current knowledge of cancer stem cell markers in treatment-resistant lung cancer cells and the signaling cascades activated by these cells to maintain their stem-like properties. Recent progress in CSC-targeted drug development and the current status of novel agents in clinical trials are also reviewed.
Collapse
Affiliation(s)
- Gemma Leon
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Lauren MacDonagh
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland; Department of Histopathology, St James's Hospital, Dublin 8, Ireland
| | - Sinead Cuffe
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland
| | - Martin P Barr
- Thoracic Oncology Research Group, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St James's Hospital & Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
44
|
Pang LY, Argyle DJ. The evolving cancer stem cell paradigm: Implications in veterinary oncology. Vet J 2015; 205:154-60. [DOI: 10.1016/j.tvjl.2014.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/05/2014] [Accepted: 12/26/2014] [Indexed: 02/08/2023]
|
45
|
Gonias SL, Hu J. Urokinase receptor and resistance to targeted anticancer agents. Front Pharmacol 2015; 6:154. [PMID: 26283964 PMCID: PMC4515545 DOI: 10.3389/fphar.2015.00154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/10/2015] [Indexed: 12/31/2022] Open
Abstract
The urokinase receptor (uPAR) is a GPI-anchored membrane protein, which regulates protease activity at the cell surface and, in collaboration with a system of co-receptors, triggers cell-signaling and regulates gene expression within the cell. In normal tissues, uPAR gene expression is limited; however, in cancer, uPAR is frequently over-expressed and the gene may be amplified. Hypoxia, which often develops in tumors, further increases uPAR expression by cancer cells. uPAR-initiated cell-signaling promotes cancer cell migration, invasion, metastasis, epithelial-mesenchymal transition, stem cell-like properties, survival, and release from states of dormancy. Newly emerging data suggest that the pro-survival cell-signaling activity of uPAR may allow cancer cells to "escape" from the cytotoxic effects of targeted anticancer drugs. Herein, we review the molecular properties of uPAR that are responsible for its activity in cancer cells and its ability to counteract the activity of anticancer drugs.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, School of Medicine, University of California, San Diego , San Diego, CA, USA
| | - Jingjing Hu
- Department of Pathology, School of Medicine, University of California, San Diego , San Diego, CA, USA
| |
Collapse
|
46
|
Lane D, Matte I, Garde-Granger P, Laplante C, Carignan A, Rancourt C, Piché A. Inflammation-regulating factors in ascites as predictive biomarkers of drug resistance and progression-free survival in serous epithelial ovarian cancers. BMC Cancer 2015; 15:492. [PMID: 26122176 PMCID: PMC4486134 DOI: 10.1186/s12885-015-1511-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/19/2015] [Indexed: 12/25/2022] Open
Abstract
Background Platinum-based combination therapy is the standard first-line treatment for women with advanced serous epithelial ovarian carcinoma (EOC). However, about 20 % will not respond and are considered clinically resistant. The availability of biomarkers to predict responses to the initial therapy would provide a practical approach to identify women who would benefit from a more appropriate first-line treatment. Ascites is an attractive inflammatory fluid for biomarker discovery as it is easy and minimally invasive to obtain. The aim of this study was to evaluate whether six selected inflammation-regulating factors in ascites could serve as diagnostic or drug resistance biomarkers in patients with advanced serous EOC. Methods A total of 53 women with stage III/IV serous EOC and 10 women with benign conditions were enrolled in this study. Eleven of the 53 women with serous EOC were considered clinically resistant to treatment with progression-free survival < 6 months. Ascites were collected at the time of the debulking surgery and the levels of cytokines were measured by ELISA. The six selected cytokines were evaluated for their ability to discriminate serous EOC from benign controls, and to discriminate platinum resistant from platinum sensitive patients. Results Median ascites levels of IL-6, IL-10 and osteoprotegerin (OPG) were significantly higher in women with advanced serous EOC than in controls (P ≤ 0.012). There were no significant difference in the median ascites levels of leptin, soluble urokinase plasminogen activator receptor (suPAR) and CCL18 among serous EOC women and controls. In Receiver Operator curve (ROC) analysis, IL-6, IL-10 and OPG had a high area under the curve value of 0.905, 0.832 and 0.825 respectively for distinguishing EOC from benign controls. ROC analysis of individual cytokines revealed low discriminating potential to stratify patients according to their sensitivity to first-line treatment. The combination of biomarkers with the highest discriminating potential was with CA125 and leptin (AUC = 0.936, 95 % CI: 0.894–0.978). Conclusion IL-6 was found to be strongly associated with advanced serous EOC and could be used in combination with serum CA125 to discriminate benign and EOC. Furthermore, the combination of serum CA125 and ascites leptin was a strong predictor of clinical resistance to first-line therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1511-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denis Lane
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, J1H 5 N4, Sherbrooke, Canada.
| | - Isabelle Matte
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, J1H 5 N4, Sherbrooke, Canada.
| | - Perrine Garde-Granger
- Département de Pathologie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, J1H 5 N4, Sherbrooke, Canada.
| | - Claude Laplante
- Département de Pathologie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, J1H 5 N4, Sherbrooke, Canada.
| | - Alex Carignan
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, J1H 5 N4, Sherbrooke, Canada.
| | - Claudine Rancourt
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, J1H 5 N4, Sherbrooke, Canada.
| | - Alain Piché
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, J1H 5 N4, Sherbrooke, Canada.
| |
Collapse
|
47
|
Macrophages of M1 phenotype have properties that influence lung cancer cell progression. Tumour Biol 2015; 36:8715-25. [PMID: 26050228 DOI: 10.1007/s13277-015-3630-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/31/2015] [Indexed: 01/20/2023] Open
Abstract
Stromal macrophages of different phenotypes can contribute to the expression of proteins that affects metastasis such as urokinase-type plasminogen activator (uPA), its receptor uPAR, and plasminogen activator inhibitor-1 (PAI-1), but knowledge of how essential their contribution is in comparison to the cancer cells in small cell lung cancer (SCLC) and lung squamous cell carcinoma (SCC) is lacking. The expression of uPA, uPAR, and PAI-1 and of the matrix metalloproteinases (MMP)-2 and MMP-9 were studied in human macrophages of M1 and M2 phenotype and compared to a lung SCC (NCI-H520) and a SCLC (NCI-H69) cell line. Effects of treatment with conditioned media (CM) from M1 and M2 macrophages on the expression of these genes in H520 and H69 cells as well as effects on the cell growth were investigated. In addition, data on the stromal macrophages immunoreactivity of uPAR, MMP-2, and MMP-9 in a few SCC and SCLC biopsies was included. uPAR, MMP-2, and MMP-9 were confirmed in stromal cells including macrophages in the SCC and SCLC biopsies. In vitro, both macrophage phenotypes expressed considerably higher mRNA levels of uPA, uPAR, PAI-1, and MMP-9 compared to the cancer cell lines, and regarding uPAR, the highest level was found in the M1 macrophage phenotype. Furthermore, M1 CM treatment not only induced an upregulation of PAI-1 in both H520 and H69 cells but also inhibited cell growth in both cell lines, giving M1 macrophages both tumor-promoting and tumor-killing potential.
Collapse
|
48
|
Garofalo M, Croce CM. Role of microRNAs in maintaining cancer stem cells. Adv Drug Deliv Rev 2015; 81:53-61. [PMID: 25446141 PMCID: PMC4445133 DOI: 10.1016/j.addr.2014.11.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022]
Abstract
Increasing evidence sustains that the establishment and maintenance of many, if not all, human cancers are due to cancer stem cells (CSCs), tumor cells with stem cell properties, such as the capacity to self-renew or generate progenitor and differentiated cells. CSCs seem to play a major role in tumor metastasis and drug resistance, but albeit the potential clinical importance, their regulation at the molecular level is not clear. Recent studies have highlighted several miRNAs to be differentially expressed in normal and cancer stem cells and established their role in targeting genes and pathways supporting cancer stemness properties. This review focuses on the last advances on the role of microRNAs in the regulation of stem cell properties and cancer stem cells in different tumors.
Collapse
Affiliation(s)
- Michela Garofalo
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA; Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.
| | - Carlo M Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
49
|
McMahon BJ, Kwaan HC. Components of the Plasminogen-Plasmin System as Biologic Markers for Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 867:145-56. [PMID: 26530365 DOI: 10.1007/978-94-017-7215-0_10] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Members of the plasminogen-plasmin (PP) system participate in many physiologic functions. In particular, uPA, its receptor (uPAR) and its inhibitor PAI-1 play an important role in cell migration, cell proliferation and tissue remodeling. Through a number of interactions, these components of the PP system are also involved in the pathogenesis of many diseases. In cancer, they modulate the essential processes of tumor development, growth, invasion and metastasis as well as angiogenesis and fibrosis. Thus, quantification of uPA, uPAR and PAI-1 in tumors and, in some cases in the circulating blood, became of potential value in the prognostication of many types of cancer. These include cancer of the breast, stomach, colon and rectum, esophagus, pancreas, glioma, lung, kidney, prostate, uterine cervix, ovary, liver and bone. Published data are reviewed in this chapter. Clinical validation of the prognostic value has also been made, particularly in cancer of the breast. Inclusion of these biomarkers in the risk assessment of cancer patients is now considered in the risk-adapted management in carcinoma of the breast. Factors limiting its broader use are discussed with suggestions how these can be overcome. Hopefully the use of these biomarkers will be applied to other types of cancer in the near future.
Collapse
Affiliation(s)
- Brandon J McMahon
- Division of Hematology/Oncology, Feinberg School of Medicine, and the Robert H. Lurie Cancer, Northwestern University, Chicago, IL, USA.,Olson Pavilion, Room 8258, 710 N. Fairbanks Court, Chicago, IL, 60611, USA
| | - Hau C Kwaan
- Division of Hematology/Oncology, Feinberg School of Medicine, and the Robert H. Lurie Cancer, Northwestern University, Chicago, IL, USA. .,Olson Pavilion, Room 8258, 710 N. Fairbanks Court, Chicago, IL, 60611, USA.
| |
Collapse
|
50
|
Zhu Y, Luo M, Brooks M, Clouthier SG, Wicha MS. Biological and clinical significance of cancer stem cell plasticity. Clin Transl Med 2014; 3:32. [PMID: 26932376 PMCID: PMC4883980 DOI: 10.1186/s40169-014-0032-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/08/2014] [Indexed: 12/19/2022] Open
Abstract
In the past decade, the traditional view of cancers as a homogeneous collection of malignant cells is being replaced by a model of ever increasing complexity suggesting that cancers are complex tissues composed of multiple cell types. This complex model of tumorigenesis has been well supported by a growing body of evidence indicating that most cancers including those derived from blood and solid tissues display a hierarchical organization of tumor cells with phenotypic and functional heterogeneity and at the apex of this hierarchy are cells capable of self-renewal. These "tumor imitating cells" or "cancer stem cells" drive tumorigenesis and contribute to metastasis, treatment resistance and tumor relapse. Although tumor stem cells themselves may display both genetic and phenotypic heterogeneity, recent studies have demonstrated that cancer stem cells maintain plasticity to transition between mesenchymal-like (EMT) and epithelial-like (MET) states, which may be regulated by the tumor microenvironment. These stem cell state transitions may play a fundamental role in tumor progression and treatment resistance. In this review, we discuss the emerging knowledge regarding the plasticity of cancer stem cells with an emphasis on the signaling pathways and noncoding RNAs including microRNAs (miRNA) and long non-coding RNAs (lncRNAs) in regulation of this plasticity during tumor growth and metastasis. Lastly, we point out the importance of targeting both the EMT and MET states of CSCs in order to eliminate these lethal seeds of cancers.
Collapse
Affiliation(s)
- Yongyou Zhu
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| | - Ming Luo
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| | - Michael Brooks
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| | - Shawn G Clouthier
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| | - Max S Wicha
- University of Michigan Comprehensive Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, 48109, MI, USA.
| |
Collapse
|