1
|
Ammam I, Brunet CD, Boukenaoui-Ferrouk N, Peyroux J, Berthier S, Boutonnat J, Rahal K, Bitam I, Maurin M. Francisella tularensis PCR detection in Cape hares (Lepus capensis) and wild rabbits (Oryctolagus cuniculus) in Algeria. Sci Rep 2022; 12:21451. [PMID: 36509808 PMCID: PMC9743112 DOI: 10.1038/s41598-022-25188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Tularemia is a zoonosis caused by the bacterium Francisella tularensis. Leporids are primary sources of human infections in the northern hemisphere. Africa is classically considered free of tularemia, but recent data indicate that this dogma might be wrong. We assessed the presence of this disease in wild leporids in Algeria. Between 2014 and 2018, we collected 74 leporids carcasses from spontaneously dead or hunted animals. Francisella tularensis DNA was detected by specific real-time PCR tests in 7/36 (19.44%) Cape hares (Lepus capensis) and 5/38 (13.15%) wild rabbits (Oryctolagus cuniculus). Known tularemia arthropod vectors infested half of the PCR-positive animals. At necropsy, F. tularensis-infected animals presented with an enlarged spleen (n = 12), enlarged adrenal glands (12), liver discoloration (12), hemorrhages (11), and pneumonia (11). Immunohistological examination of liver tissue from one animal was compatible with the presence of F. tularensis. Our study demonstrates the existence of tularemia in lagomorphs in Algeria. It should encourage investigations to detect this disease among the human population of this country.
Collapse
Affiliation(s)
- Imene Ammam
- grid.32139.3a0000 0004 0633 7931Institute of Veterinary Sciences, University of Blida 1, Blida, Algeria ,Laboratory of Biodiversity and Environment: Interactions, Genome, University of Sciences and Technology Houari Boumedienne, Algiers, Algeria
| | - Camille D. Brunet
- grid.4444.00000 0001 2112 9282University Grenoble Alpes, CNRS, TIMC, 38000 Grenoble, France
| | - Nouria Boukenaoui-Ferrouk
- grid.32139.3a0000 0004 0633 7931Institute of Veterinary Sciences, University of Blida 1, Blida, Algeria ,grid.420190.e0000 0001 2293 1293Laboratory of Research on Arid Zones Lands (LRZA), Faculty of Biological Sciences (FSB), Houari Boumediene University of Science and Technology (USTHB), BP 32, 16111 Bab Ezzouar, Algiers Algeria
| | - Julien Peyroux
- grid.4444.00000 0001 2112 9282University Grenoble Alpes, CNRS, TIMC, 38000 Grenoble, France
| | - Sylvie Berthier
- grid.410529.b0000 0001 0792 4829Grenoble Alpes University Hospital, 38000 Grenoble, France
| | - Jean Boutonnat
- grid.410529.b0000 0001 0792 4829Grenoble Alpes University Hospital, 38000 Grenoble, France
| | - Karim Rahal
- grid.32139.3a0000 0004 0633 7931Institute of Veterinary Sciences, University of Blida 1, Blida, Algeria
| | - Idir Bitam
- Laboratory of Biodiversity and Environment: Interactions, Genome, University of Sciences and Technology Houari Boumedienne, Algiers, Algeria ,Superior School of Food Sciences and Food Industries of Algiers, El Harrach, Algeria
| | - Max Maurin
- grid.4444.00000 0001 2112 9282University Grenoble Alpes, CNRS, TIMC, 38000 Grenoble, France ,grid.410529.b0000 0001 0792 4829Grenoble Alpes University Hospital, 38000 Grenoble, France
| |
Collapse
|
2
|
Kukla R, Kračmarová R, Ryšková L, Bavlovič J, Pellantová V, Bolehovská R, Fajfr M, Pavlík I, Boštík P. Francisella tularensis caused cervical lymphadenopathy in little children after a tick bite: Two case reports and a short literature review. Ticks Tick Borne Dis 2021; 13:101893. [PMID: 34990926 DOI: 10.1016/j.ttbdis.2021.101893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
Although Francisella (F.) tularensis is a well-described and understood zoonotic pathogen, its importance in Central Europe is relatively minor and, as such, tularaemia may be missed in the differential diagnosis. The annual incidence of tularaemia in the Czech Republic is relatively stable with up to 100 reported cases per year, except in the epidemic years 1998 and 1999 with 225 and 222 reported cases, respectively. It is, however, higher in comparison with the neighbouring countries. The common route of transmission in Central Europe is handling infected animals. Tularaemia is not commonly recognized as a tick-borne disease. Here we report two rare cases of a tick bite-associated ulceroglandular form of tularaemia in 2.5-year-old and 6.5-year-old children presenting with cervical lymphadenopathy. The unusual and interesting features of those cases are the young age and relatively uncommon route of transmission suggesting possible changes in the epidemiology of tularaemia in the Czech Republic. Therefore, the infection with F. tularensis should be considered in the differential diagnosis after a tick bite even in infants.
Collapse
Affiliation(s)
- Rudolf Kukla
- Institute of Clinical Microbiology, University Hospital and Charles University, Faculty of Medicine in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Renata Kračmarová
- Clinic of Infectious Diseases, University Hospital, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Lenka Ryšková
- Institute of Clinical Microbiology, University Hospital and Charles University, Faculty of Medicine in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Jan Bavlovič
- Institute of Clinical Microbiology, University Hospital and Charles University, Faculty of Medicine in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic; Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebešská 1575, 50001 Hradec Králové, Czech Republic
| | - Věra Pellantová
- Clinic of Infectious Diseases, University Hospital, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Radka Bolehovská
- Institute of Clinical Microbiology, University Hospital and Charles University, Faculty of Medicine in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Miroslav Fajfr
- Institute of Clinical Microbiology, University Hospital and Charles University, Faculty of Medicine in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - Ivo Pavlík
- Faculty of Regional Development and International Studies, Mendel University in Brno, tr. Generála Píky 7, 61300, Brno, Czech Republic
| | - Pavel Boštík
- Institute of Clinical Microbiology, University Hospital and Charles University, Faculty of Medicine in Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Klimentova J, Rehulka P, Pavkova I, Kubelkova K, Bavlovic J, Stulik J. Cross-Species Proteomic Comparison of Outer Membrane Vesicles and Membranes of Francisella tularensis subsp. tularensis versus subsp. holarctica. J Proteome Res 2021; 20:1716-1732. [PMID: 33543941 DOI: 10.1021/acs.jproteome.0c00917] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Release of outer membrane vesicles (OMV) is an important phenomenon in Gram-negative bacteria playing multiple roles in their lifestyle, including in relation to virulence and host-pathogen interaction. Francisella tularensis, unlike other bacteria, releases unusually shaped, tubular OMV. We present a proteomic comparison of OMV and membrane fractions from two F. tularensis strains: moderately virulent subsp. holarctica strain FSC200 and highly virulent subsp. tularensis strain SchuS4. Proteomic comparison studies routinely evaluate samples from the same proteome, but sometimes we must compare samples from closely related organisms. This raises quantification issues. We propose a novel approach to cross-species proteomic comparison based on an intersection protein database from the individual single-species databases. This is less prone to quantification errors arising from differences in the sequences. Consecutively comparing subproteomes of OMV and membranes of the two strains allows distinguishing differences in relative protein amounts caused by global expression changes from those caused by preferential protein packing to OMV or membranes. Among the proteins most differently packed into OMV between the two strains, we detected proteins involved in biosynthesis and metabolism of bacterial envelope components like O-antigen, lipid A, phospholipids, and fatty acids, as well as some major structural outer membrane proteins. The data are available via ProteomeXchange with identifier PXD022406.
Collapse
Affiliation(s)
- Jana Klimentova
- Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Pavel Rehulka
- Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Ivona Pavkova
- Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Klara Kubelkova
- Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Jan Bavlovic
- Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, University of Defence, Hradec Kralove 500 01, Czech Republic
| | - Jiri Stulik
- Faculty of Military Health Sciences, Department of Molecular Pathology and Biology, University of Defence, Hradec Kralove 500 01, Czech Republic
| |
Collapse
|
4
|
Seiwald S, Simeon A, Hofer E, Weiss G, Bellmann-Weiler R. Tularemia Goes West: Epidemiology of an Emerging Infection in Austria. Microorganisms 2020; 8:E1597. [PMID: 33081341 PMCID: PMC7602993 DOI: 10.3390/microorganisms8101597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
The zoonotic disease tularemia is caused by the Gram-negative bacterium Francisella tularensis, with the two major subspecies tularensis and holarctica being responsible for infections in humans and animals. The F. tularensis subspecies holarctica is less virulent and prevalent in Europe and Asia. Over the last few centuries, few epidemic outbreaks and low numbers of infections have been registered in the eastern part of Austria, specifically in the provinces of Lower Austria, Burgenland, and Styria. The reported infections were mostly associated with hunting hares and the skinning of carcasses. Within the last decade, ticks have been identified as important vectors in Tyrol and served as first evidence for the spread of F. tularensis to Western Austria. In 2018, the pathogen was detected in hares in the provinces of Tyrol, Vorarlberg, and Salzburg. We presume that F. tularensis is now established in most regions of Austria, and that the investigation of potential host and vector animals should be spotlighted by public institutions. Tularemia in humans presents with various clinical manifestations. As glandular, ulceroglandular, and typhoidal forms occur in Austria, this infectious disease should be considered as a differential diagnosis of unknown fever.
Collapse
Affiliation(s)
- Stefanie Seiwald
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (A.S.); (G.W.)
| | - Anja Simeon
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (A.S.); (G.W.)
| | - Erwin Hofer
- Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety (AGES), 2340 Mödling, Austria;
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (A.S.); (G.W.)
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (A.S.); (G.W.)
| |
Collapse
|
5
|
Busch A, Homeier-Bachmann T, Abdel-Glil MY, Hackbart A, Hotzel H, Tomaso H. Using affinity propagation clustering for identifying bacterial clades and subclades with whole-genome sequences of Francisella tularensis. PLoS Negl Trop Dis 2020; 14:e0008018. [PMID: 32991594 PMCID: PMC7523947 DOI: 10.1371/journal.pntd.0008018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022] Open
Abstract
By combining a reference-independent SNP analysis and average nucleotide identity (ANI) with affinity propagation clustering (APC), we developed a significantly improved methodology allowing resolving phylogenetic relationships, based on objective criteria. These bioinformatics tools can be used as a general ruler to determine phylogenetic relationships and clustering of bacteria, exemplary done with Francisella (F.) tularensis. Molecular epidemiology of F. tularensis is currently assessed mostly based on laboratory methods and molecular analysis. The high evolutionary stability and the clonal nature makes Francisella ideal for subtyping with single nucleotide polymorphisms (SNPs). Sequencing and real-time PCR can be used to validate the SNP analysis. We investigate whole-genome sequences of 155 F. tularensis subsp. holarctica isolates. Phylogenetic testing was based on SNPs and average nucleotide identity (ANI) as reference independent, alignment-free methods taking small-scale and large-scale differences within the genomes into account. Especially the whole genome SNP analysis with kSNP3.0 allowed deciphering quite subtle signals of systematic differences in molecular variation. Affinity propagation clustering (APC) resulted in three clusters showing the known clades B.4, B.6, and B.12. These data correlated with the results of real-time PCR assays targeting canSNPs loci. Additionally, we detected two subtle sub-clusters. SplitsTree was used with standard-setting using the aligned SNPs from Parsnps. Together APC, HierBAPS, and SplitsTree enabled us to generate hypotheses about epidemiologic relationships between bacterial clusters and describing the distribution of isolates. Our data indicate that the choice of the typing technique can increase our understanding of the pathogenesis and transmission of diseases with the eventual for prevention. This is opening perspectives to be applied to other bacterial species. The data provide evidence that Germany might be the collision zone where the clade B.12, also known as the East European clade, overlaps with the clade B.6, also known as the Iberian clade. Described methods allow generating a new, more detailed perspective for F. tularensis subsp. holarctica phylogeny. These results may encourage to determine phylogenetic relationships and clustering of other bacteria the same way.
Collapse
Affiliation(s)
- Anne Busch
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- * E-mail:
| | - Timo Homeier-Bachmann
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Mostafa Y. Abdel-Glil
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Anja Hackbart
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
6
|
Hennebique A, Boisset S, Maurin M. Tularemia as a waterborne disease: a review. Emerg Microbes Infect 2019; 8:1027-1042. [PMID: 31287787 PMCID: PMC6691783 DOI: 10.1080/22221751.2019.1638734] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Francisella tularensis is a Gram-negative, intracellular bacterium causing the zoonosis tularemia. This highly infectious microorganism is considered a potential biological threat agent. Humans are usually infected through direct contact with the animal reservoir and tick bites. However, tularemia cases also occur after contact with a contaminated hydro-telluric environment. Water-borne tularemia outbreaks and sporadic cases have occurred worldwide in the last decades, with specific clinical and epidemiological traits. These infections represent a major public health and military challenge. Human contaminations have occurred through consumption or use of F. tularensis-contaminated water, and various aquatic activities such as swimming, canyoning and fishing. In addition, in Sweden and Finland, mosquitoes are primary vectors of tularemia due to infection of mosquito larvae in contaminated aquatic environments. The mechanisms of F. tularensis survival in water may include the formation of biofilms, interactions with free-living amoebae, and the transition to a 'viable but nonculturable' state, but the relative contribution of these possible mechanisms remains unknown. Many new aquatic species of Francisella have been characterized in recent years. F. tularensis likely shares with these species an ability of long-term survival in the aquatic environment, which has to be considered in terms of tularemia surveillance and control.
Collapse
Affiliation(s)
- Aurélie Hennebique
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| | - Sandrine Boisset
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| |
Collapse
|
7
|
Busch A, Thomas P, Zuchantke E, Brendebach H, Neubert K, Gruetzke J, Al Dahouk S, Peters M, Hotzel H, Neubauer H, Tomaso H. Revisiting Francisella tularensis subsp. holarctica, Causative Agent of Tularemia in Germany With Bioinformatics: New Insights in Genome Structure, DNA Methylation and Comparative Phylogenetic Analysis. Front Microbiol 2018; 9:344. [PMID: 29593661 PMCID: PMC5859110 DOI: 10.3389/fmicb.2018.00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/30/2022] Open
Abstract
Francisella (F.) tularensis is a highly virulent, Gram-negative bacterial pathogen and the causative agent of the zoonotic disease tularemia. Here, we generated, analyzed and characterized a high quality circular genome sequence of the F. tularensis subsp. holarctica strain 12T0050 that caused fatal tularemia in a hare. Besides the genomic structure, we focused on the analysis of oriC, unique to the Francisella genus and regulating replication in and outside hosts and the first report on genomic DNA methylation of a Francisella strain. The high quality genome was used to establish and evaluate a diagnostic whole genome sequencing pipeline. A genotyping strategy for F. tularensis was developed using various bioinformatics tools for genotyping. Additionally, whole genome sequences of F. tularensis subsp. holarctica isolates isolated in the years 2008–2015 in Germany were generated. A phylogenetic analysis allowed to determine the genetic relatedness of these isolates and confirmed the highly conserved nature of F. tularensis subsp. holarctica.
Collapse
Affiliation(s)
- Anne Busch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Eric Zuchantke
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Holger Brendebach
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Kerstin Neubert
- Algorithmic Bioinformatics, Department of Mathematics and Computer Science, Institute of Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Josephine Gruetzke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Martin Peters
- Standort Arnsberg, Chemisches und Veterinäruntersuchungsamt Westfalen, Arnsberg, Germany
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
8
|
Abstract
Many biological agents have been strategic pathogenic agents throughout history. Some have even changed history as a consequence of early discoveries of their use as weapons of war. Many of these bioagents can be easily isolated from the environment, and some have recently been genetically manipulated to become more pathogenic for biowarfare. However, it is difficult to determine accidental outbreaks of disease from intentional exposures. In this review, we examine how molecular tools have been used in combination with forensic research to resolve cases of unusual outbreaks and trace the source of the biocrime. New technologies are also discussed in terms of their crucial role impacting forensic science. The anthrax event of 2001 serves as an example of the real threat of bioterrorism and the employment of bioagents as weapons against a population. The Amerithrax investigation has given us lessons of the highest resolution possible with new technologies capable of distinguishing isolates at the base-pair level of sensitivity. In addition, we discuss the implications of proper sanitation to avoid waterborne diseases. The use of new methods in forensic science and health-related surveillance will be invaluable in determining the source of any new disease outbreak, and these data will allow for a quick response to any type of public health threat, whether accidental or purposely initiated.
Collapse
|
9
|
Whole-Genome Relationships among Francisella Bacteria of Diverse Origins Define New Species and Provide Specific Regions for Detection. Appl Environ Microbiol 2017; 83:AEM.02589-16. [PMID: 27881415 DOI: 10.1128/aem.02589-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a highly virulent zoonotic pathogen that causes tularemia and, because of weaponization efforts in past world wars, is considered a tier 1 biothreat agent. Detection and surveillance of F. tularensis may be confounded by the presence of uncharacterized, closely related organisms. Through DNA-based diagnostics and environmental surveys, novel clinical and environmental Francisella isolates have been obtained in recent years. Here we present 7 new Francisella genomes and a comparison of their characteristics to each other and to 24 publicly available genomes as well as a comparative analysis of 16S rRNA and sdhA genes from over 90 Francisella strains. Delineation of new species in bacteria is challenging, especially when isolates having very close genomic characteristics exhibit different physiological features-for example, when some are virulent pathogens in humans and animals while others are nonpathogenic or are opportunistic pathogens. Species resolution within Francisella varies with analyses of single genes, multiple gene or protein sets, or whole-genome comparisons of nucleic acid and amino acid sequences. Analyses focusing on single genes (16S rRNA, sdhA), multiple gene sets (virulence genes, lipopolysaccharide [LPS] biosynthesis genes, pathogenicity island), and whole-genome comparisons (nucleotide and protein) gave congruent results, but with different levels of discrimination confidence. We designate four new species within the genus; Francisella opportunistica sp. nov. (MA06-7296), Francisella salina sp. nov. (TX07-7308), Francisella uliginis sp. nov. (TX07-7310), and Francisella frigiditurris sp. nov. (CA97-1460). This study provides a robust comparative framework to discern species and virulence features of newly detected Francisella bacteria. IMPORTANCE DNA-based detection and sequencing methods have identified thousands of new bacteria in the human body and the environment. In most cases, there are no cultured isolates that correspond to these sequences. While DNA-based approaches are highly sensitive, accurately assigning species is difficult without known near relatives for comparison. This ambiguity poses challenges for clinical cases, disease epidemics, and environmental surveillance, for which response times must be short. Many new Francisella isolates have been identified globally. However, their species designations and potential for causing human disease remain ambiguous. Through detailed genome comparisons, we identified features that differentiate F. tularensis from clinical and environmental Francisella isolates and provide a knowledge base for future comparison of Francisella organisms identified in clinical samples or environmental surveys.
Collapse
|
10
|
Sarva ST, Waldo RH, Belland RJ, Klose KE. Comparative Transcriptional Analyses of Francisella tularensis and Francisella novicida. PLoS One 2016; 11:e0158631. [PMID: 27537327 PMCID: PMC4990168 DOI: 10.1371/journal.pone.0158631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/20/2016] [Indexed: 01/18/2023] Open
Abstract
Francisella tularensis is composed of a number of subspecies with varied geographic distribution, host ranges, and virulence. In view of these marked differences, comparative functional genomics may elucidate some of the molecular mechanism(s) behind these differences. In this study a shared probe microarray was designed that could be used to compare the transcriptomes of Francisella tularensis subsp. tularensis Schu S4 (Ftt), Francisella tularensis subsp. holarctica OR960246 (Fth), Francisella tularensis subsp. holarctica LVS (LVS), and Francisella novicida U112 (Fn). To gain insight into expression differences that may be related to the differences in virulence of these subspecies, transcriptomes were measured from each strain grown in vitro under identical conditions, utilizing a shared probe microarray. The human avirulent Fn strain exhibited high levels of transcription of genes involved in general metabolism, which are pseudogenes in the human virulent Ftt and Fth strains, consistent with the process of genome decay in the virulent strains. Genes encoding an efflux system (emrA2 cluster of genes), siderophore (fsl operon), acid phosphatase, LPS synthesis, polyamine synthesis, and citrulline ureidase were all highly expressed in Ftt when compared to Fn, suggesting that some of these may contribute to the relative high virulence of Ftt. Genes expressed at a higher level in Ftt when compared to the relatively less virulent Fth included genes encoding isochorismatases, cholylglycine hydrolase, polyamine synthesis, citrulline ureidase, Type IV pilus subunit, and the Francisella Pathogenicity Island protein PdpD. Fth and LVS had very few expression differences, consistent with the derivation of LVS from Fth. This study demonstrated that a shared probe microarray designed to detect transcripts in multiple species/subspecies of Francisella enabled comparative transcriptional analyses that may highlight critical differences that underlie the relative pathogenesis of these strains for humans. This strategy could be extended to other closely-related bacterial species for inter-strain and inter-species analyses.
Collapse
Affiliation(s)
- Siva T. Sarva
- University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Robert H. Waldo
- University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Robert J. Belland
- University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Dept. of Biology, University of Texas San Antonio, San Antonio, TX, United States of America
- * E-mail:
| |
Collapse
|
11
|
Maurin M, Gyuranecz M. Tularaemia: clinical aspects in Europe. THE LANCET. INFECTIOUS DISEASES 2016; 16:113-124. [PMID: 26738841 DOI: 10.1016/s1473-3099(15)00355-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022]
Abstract
Tularaemia is a zoonotic disease caused by Francisella tularensis, a Gram-negative, facultative intracellular bacterium. Typically, human and animal infections are caused by F tularensis subspecies tularensis (type A) strains mainly in Canada and USA, and F tularensis subspecies holarctica (type B) strains throughout the northern hemisphere, including Europe. In the past, the epidemiological, clinical, therapeutic, and prognostic aspects of tularaemia reported in the English medical literature were mainly those that had been reported in the USA, where the disease was first described. Tularaemia has markedly changed in the past decade, and a large number of studies have provided novel data for the disease characteristics in Europe. In this Review we aim to emphasise the specific and variable aspects of tularaemia in different European countries. In particular, two natural lifecycles of F tularensis have been described in this continent, although not fully characterised, which are associated with different modes of transmission, clinical features, and public health burdens of tularaemia.
Collapse
Affiliation(s)
- Max Maurin
- Centre National de Référence des Francisella, Département des Agents Infectieux, Institut de Biologie et Pathologie, CHU de Grenoble, Grenoble, cedex 9, France; Université Grenoble Alpes and Centre National de la Recherche Scientifique, Laboratoire Adaptation et Pathogénie des Microorganismes, IMR 5163, Grenoble, France.
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary; OIE Reference Laboratory for Tularemia, Budapest, Country
| |
Collapse
|
12
|
Gunnell MK, Robison RA, Adams BJ. Natural Selection in Virulence Genes of Francisella tularensis. J Mol Evol 2016; 82:264-78. [PMID: 27177502 DOI: 10.1007/s00239-016-9743-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
Abstract
A fundamental tenet of evolution is that alleles that are under negative selection are often deleterious and confer no evolutionary advantage. Negatively selected alleles are removed from the gene pool and are eventually extinguished from the population. Conversely, alleles under positive selection do confer an evolutionary advantage and lead to an increase in the overall fitness of the organism. These alleles increase in frequency until they eventually become fixed in the population. Francisella tularensis is a zoonotic pathogen and a potential biothreat agent. The most virulent type of F. tularensis, Type A, is distributed across North America with Type A.I occurring mainly in the east and Type A.II appearing mainly in the west. F. tularensis is thought to be a genome in decay (losing genes) because of the relatively large number of pseudogenes present in its genome. We hypothesized that the observed frequency of gene loss/pseudogenes may be an artifact of evolution in response to a changing environment, and that genes involved in virulence should be under strong positive selection. To test this hypothesis, we sequenced and compared whole genomes of Type A.I and A.II isolates. We analyzed a subset of virulence and housekeeping genes from several F. tularensis subspecies genomes to ascertain the presence and extent of positive selection. Eleven previously identified virulence genes were screened for positive selection along with 10 housekeeping genes. Analyses of selection yielded one housekeeping gene and 7 virulence genes which showed significant evidence of positive selection at loci implicated in cell surface structures and membrane proteins, metabolism and biosynthesis, transcription, translation and cell separation, and substrate binding and transport. Our results suggest that while the loss of functional genes through disuse could be accelerated by negative selection, the genome decay in Francisella could also be the byproduct of adaptive evolution driven by complex interactions between host, pathogen, and thier environment, as evidenced by several of its virulence genes which are undergoing strong, positive selection.
Collapse
Affiliation(s)
- Mark K Gunnell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA. .,Microbiology Branch, Life Sciences Division, Dugway Proving Ground, Dugway, UT, 84022, USA.
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Byron J Adams
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|
13
|
Abstract
Twenty years ago, the publication of the first bacterial genome sequence, from Haemophilus influenzae, shook the world of bacteriology. In this Timeline, we review the first two decades of bacterial genome sequencing, which have been marked by three revolutions: whole-genome shotgun sequencing, high-throughput sequencing and single-molecule long-read sequencing. We summarize the social history of sequencing and its impact on our understanding of the biology, diversity and evolution of bacteria, while also highlighting spin-offs and translational impact in the clinic. We look forward to a 'sequencing singularity', where sequencing becomes the method of choice for as-yet unthinkable applications in bacteriology and beyond.
Collapse
Affiliation(s)
- Nicholas J Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark J Pallen
- Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
14
|
Larson MA, Nalbantoglu U, Sayood K, Zentz EB, Bartling AM, Francesconi SC, Fey PD, Dempsey MP, Hinrichs SH. Francisella tularensis Subtype A.II Genomic Plasticity in Comparison with Subtype A.I. PLoS One 2015; 10:e0124906. [PMID: 25918839 PMCID: PMC4412822 DOI: 10.1371/journal.pone.0124906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/09/2015] [Indexed: 11/26/2022] Open
Abstract
Although Francisella tularensis is considered a monomorphic intracellular pathogen, molecular genotyping and virulence studies have demonstrated important differences within the tularensis subspecies (type A). To evaluate genetic variation within type A strains, sequencing and assembly of a new subtype A.II genome was achieved for comparison to other completed F. tularensis type A genomes. In contrast with the F. tularensis A.I strains (SCHU S4, FSC198, NE061598, and TI0902), substantial genomic variation was observed between the newly sequenced F. tularensis A.II strain (WY-00W4114) and the only other publically available A.II strain (WY96-3418). Genome differences between WY-00W4114 and WY96-3418 included three major chromosomal translocations, 1580 indels, and 286 nucleotide substitutions of which 159 were observed in predicted open reading frames and 127 were located in intergenic regions. The majority of WY-00W4114 nucleotide deletions occurred in intergenic regions, whereas most of the insertions and substitutions occurred in predicted genes. Of the nucleotide substitutions, 48 (30%) were synonymous and 111 (70%) were nonsynonymous. WY-00W4114 and WY96-3418 nucleotide polymorphisms were predominantly G/C to A/T allelic mutations, with WY-00W4114 having more A+T enrichment. In addition, the A.II genomes contained a considerably higher number of intact genes and longer repetitive sequences, including transposon remnants than the A.I genomes. Together these findings support the premise that F. tularensis A.II may have a fitness advantage compared to the A.I subtype due to the higher abundance of functional genes and repeated chromosomal sequences. A better understanding of the selective forces driving F. tularensis genetic diversity and plasticity is needed.
Collapse
Affiliation(s)
- Marilynn A. Larson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| | - Ufuk Nalbantoglu
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Khalid Sayood
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Emily B. Zentz
- OpGen Inc., Gaithersburg, Maryland, United States of America
| | - Amanda M. Bartling
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | | | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael P. Dempsey
- United States Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, Ohio, United States of America
| | - Steven H. Hinrichs
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
15
|
Lamont EA, Wang P, Enomoto S, Borewicz K, Abdallah A, Isaacson RE, Sreevatsan S. A combined enrichment and aptamer pulldown assay for Francisella tularensis detection in food and environmental matrices. PLoS One 2014; 9:e114622. [PMID: 25536105 PMCID: PMC4275185 DOI: 10.1371/journal.pone.0114622] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis, a Gram-negative bacterium and causative agent of tularemia, is categorized as a Class A select agent by the Centers for Disease Control and Prevention due to its ease of dissemination and ability to cause disease. Oropharyngeal and gastrointestinal tularemia may occur due to ingestion of contaminated food and water. Despite the concern to public health, little research is focused on F. tularensis detection in food and environmental matrices. Current diagnostics rely on host responses and amplification of F. tularensis genetic elements via Polymerase Chain Reaction; however, both tools are limited by development of an antibody response and limit of detection, respectively. During our investigation to develop an improved culture medium to aid F. tularensis diagnostics, we found enhanced F. tularensis growth using the spent culture filtrate. Addition of the spent culture filtrate allowed for increased detection of F. tularensis in mixed cultures of food and environmental matrices. Ultraperformance liquid chromatography (UPLC)/MS analysis identified several unique chemicals within the spent culture supernatant of which carnosine had a matching m/z ratio. Addition of 0.625 mg/mL of carnosine to conventional F. tularensis medium increased the growth of F. tularensis at low inoculums. In order to further enrich F. tularensis cells, we developed a DNA aptamer cocktail to physically separate F. tularensis from other bacteria present in food and environmental matrices. The combined enrichment steps resulted in a detection range of 1-106 CFU/mL (starting inoculums) in both soil and lettuce backgrounds. We propose that the two-step enrichment process may be utilized for easy field diagnostics and subtyping of suspected F. tularensis contamination as well as a tool to aid in basic research of F. tularensis ecology.
Collapse
Affiliation(s)
- Elise A. Lamont
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ping Wang
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Shinichiro Enomoto
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Klaudyna Borewicz
- Molecular Ecology Group, Wageningen University, Dreijenplen 10, 6703HB, Wageningen, Netherlands
| | - Ahmed Abdallah
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Richard E. Isaacson
- Department of Veterinary Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Veterinary Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
16
|
Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis. BMC Microbiol 2014; 14:169. [PMID: 24961323 PMCID: PMC4230796 DOI: 10.1186/1471-2180-14-169] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/19/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Francisella isolates from patients suffering from tularemia in Germany are generally strains of the species F. tularensis subsp. holarctica. To our knowledge, no other Francisella species are known for Germany. Recently, a new Francisella species could be isolated from a water reservoir of a cooling tower in Germany. RESULTS We identified a Francisella sp. (isolate W12-1067) whose 16S rDNA is 99% identical to the respective nucleotide sequence of the recently published strain F. guangzhouensis. The overall sequence identity of the fopA, gyrA, rpoA, groEL, sdhA and dnaK genes is only 89%, indicating that strain W12-1067 is not identical to F. guangzhouensis. W12-1067 was isolated from a water reservoir of a cooling tower of a hospital in Germany. The growth optimum of the isolate is approximately 30°C, it can grow in the presence of 4-5% NaCl (halotolerant) and is able to grow without additional cysteine within the medium. The strain was able to replicate within a mouse-derived macrophage-like cell line. The whole genome of the strain was sequenced (~1.7 mbp, 32.2% G + C content) and the draft genome was annotated. Various virulence genes common to the genus Francisella are present, but the Francisella pathogenicity island (FPI) is missing. However, another putative type-VI secretion system is present within the genome of strain W12-1067. CONCLUSIONS Isolate W12-1067 is closely related to the recently described F. guangzhouensis species and it replicates within eukaryotic host cells. Since W12-1067 exhibits a putative new type-VI secretion system and F. tularensis subsp. holarctica was found not to be the sole species in Germany, the new isolate is an interesting species to be analyzed in more detail. Further research is needed to investigate the epidemiology, ecology and pathogenicity of Francisella species present in Germany.
Collapse
|
17
|
Kingry LC, Petersen JM. Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 2014; 4:35. [PMID: 24660164 PMCID: PMC3952080 DOI: 10.3389/fcimb.2014.00035] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/22/2014] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is the causative agent of the acute disease tularemia. Due to its extreme infectivity and ability to cause disease upon inhalation, F. tularensis has been classified as a biothreat agent. Two subspecies of F. tularensis, tularensis and holarctica, are responsible for tularemia in humans. In comparison, the closely related species F. novicida very rarely causes human illness and cases that do occur are associated with patients who are immune compromised or have other underlying health problems. Virulence between F. tularensis and F. novicida also differs in laboratory animals. Despite this varying capacity to cause disease, the two species share ~97% nucleotide identity, with F. novicida commonly used as a laboratory surrogate for F. tularensis. As the F. novicida U112 strain is exempt from U.S. select agent regulations, research studies can be carried out in non-registered laboratories lacking specialized containment facilities required for work with virulent F. tularensis strains. This review is designed to highlight phenotypic (clinical, ecological, virulence, and pathogenic) and genomic differences between F. tularensis and F. novicida that warrant maintaining F. novicida and F. tularensis as separate species. Standardized nomenclature for F. novicida is critical for accurate interpretation of experimental results, limiting clinical confusion between F. novicida and F. tularensis and ensuring treatment efficacy studies utilize virulent F. tularensis strains.
Collapse
Affiliation(s)
- Luke C Kingry
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention Fort Collins, CO, USA
| | - Jeannine M Petersen
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention Fort Collins, CO, USA
| |
Collapse
|
18
|
Ahn YY, Lee DS, Burd H, Blank W, Kapatral V. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents. PLoS One 2014; 9:e85195. [PMID: 24454817 PMCID: PMC3893172 DOI: 10.1371/journal.pone.0085195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 11/29/2013] [Indexed: 11/29/2022] Open
Abstract
The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.
Collapse
Affiliation(s)
- Yong-Yeol Ahn
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
| | - Deok-Sun Lee
- Department of Natural Medical Sciences and Department of Physics, Inha University, Incheon, Korea
| | - Henry Burd
- Igenbio.Inc, Chicago, Illinois, United States of America
| | - William Blank
- Igenbio.Inc, Chicago, Illinois, United States of America
| | - Vinayak Kapatral
- Igenbio.Inc, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
19
|
Schunder E, Rydzewski K, Grunow R, Heuner K. First indication for a functional CRISPR/Cas system in Francisella tularensis. Int J Med Microbiol 2013; 303:51-60. [PMID: 23333731 DOI: 10.1016/j.ijmm.2012.11.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/21/2012] [Accepted: 11/25/2012] [Indexed: 11/26/2022] Open
Abstract
Francisella tularensis is a zoonotic agent and the subspecies novicida is proposed to be a water-associated bacterium. The intracellular pathogen F. tularensis causes tularemia in humans and is known for its potential to be used as a biological threat. We analyzed the genome sequence of F. tularensis subsp. novicida U112 in silico for the presence of a putative functional CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system. CRISPR/Cas systems are known to encode an RNA-guided adaptive immunity-like system to protect bacteria against invading genetic elements like bacteriophages and plasmids. In this work, we present a first indication that F. tularensis subsp. novicida encodes a functional CRISPR/Cas defence system. Additionally, we identified various spacer DNAs homologous to a putative phage present within the genome of F. tularensis subsp. novicida-like strain 3523. CRISPR/Cas is also present in F. tularensis subsp. tularensis, holarctica, and mediasiatica, but these systems seem to be non-functional.
Collapse
Affiliation(s)
- Eva Schunder
- Cellular Interactions of Bacterial Pathogens, Centre for Biological Security, Division 2 (ZBS2), Robert Koch-Institute, Berlin, Germany
| | | | | | | |
Collapse
|
20
|
Gunnell MK, Lovelace CD, Satterfield BA, Moore EA, O’Neill KL, Robison RA. A multiplex real-time PCR assay for the detection and differentiation of Francisella tularensis subspecies. J Med Microbiol 2012; 61:1525-1531. [DOI: 10.1099/jmm.0.046631-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Mark K. Gunnell
- Microbiology Branch, Life Sciences Division, Dugway Proving Ground, Dugway, UT 84022, USA
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Charity D. Lovelace
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Benjamin A. Satterfield
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Emily A. Moore
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Richard A. Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
21
|
The class A β-lactamase FTU-1 is native to Francisella tularensis. Antimicrob Agents Chemother 2011; 56:666-71. [PMID: 22083489 DOI: 10.1128/aac.05305-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The class A β-lactamase FTU-1 produces resistance to penicillins and ceftazidime but not to any other β-lactam antibiotics tested. FTU-1 hydrolyzes penicillin antibiotics with catalytic efficiencies of 10(5) to 10(6) M(-1) s(-1) and cephalosporins and carbapenems with catalytic efficiencies of 10(2) to 10(3) M(-1) s(-1), but the monobactam aztreonam and the cephamycin cefoxitin are not substrates for the enzyme. FTU-1 shares 21 to 34% amino acid sequence identity with other class A β-lactamases and harbors two cysteine residues conserved in all class A carbapenemases. FTU-1 is the first weak class A carbapenemase that is native to Francisella tularensis.
Collapse
|
22
|
Common ancestry and novel genetic traits of Francisella novicida-like isolates from North America and Australia as revealed by comparative genomic analyses. Appl Environ Microbiol 2011; 77:5110-22. [PMID: 21666011 DOI: 10.1128/aem.00337-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella novicida is a close relative of Francisella tularensis, the causative agent of tularemia. The genomes of F. novicida-like clinical isolates 3523 (Australian strain) and Fx1 (Texas strain) were sequenced and compared to F. novicida strain U112 and F. tularensis strain Schu S4. The strain 3523 chromosome is 1,945,310 bp and contains 1,854 protein-coding genes. The strain Fx1 chromosome is 1,913,619 bp and contains 1,819 protein-coding genes. NUCmer analyses revealed that the genomes of strains Fx1 and U112 are mostly colinear, whereas the genome of strain 3523 has gaps, translocations, and/or inversions compared to genomes of strains Fx1 and U112. Using the genome sequence data and comparative analyses with other members of the genus Francisella, several strain-specific genes that encode putative proteins involved in RTX toxin production, polysaccharide biosynthesis/modification, thiamine biosynthesis, glucuronate utilization, and polyamine biosynthesis were identified. The RTX toxin synthesis and secretion operon of strain 3523 contains four open reading frames (ORFs) and was named rtxCABD. Based on the alignment of conserved sequences upstream of operons involved in thiamine biosynthesis from various bacteria, a putative THI box was identified in strain 3523. The glucuronate catabolism loci of strains 3523 and Fx1 contain a cluster of nine ORFs oriented in the same direction that appear to constitute an operon. Strains U112 and Schu S4 appeared to have lost the loci for RTX toxin production, thiamine biosynthesis, and glucuronate utilization as a consequence of host adaptation and reductive evolution. In conclusion, comparative analyses provided insights into the common ancestry and novel genetic traits of these strains.
Collapse
|
23
|
Whole-genome sequencing reveals distinct mutational patterns in closely related laboratory and naturally propagated Francisella tularensis strains. PLoS One 2010; 5:e11556. [PMID: 20657845 PMCID: PMC2906517 DOI: 10.1371/journal.pone.0011556] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/06/2010] [Indexed: 12/19/2022] Open
Abstract
The F. tularensis type A strain FSC198 from Slovakia and a second strain FSC043, which has attenuated virulence, are both considered to be derivatives of the North American F. tularensis type A strain SCHU S4. These strains have been propagated under different conditions: the FSC198 has undergone natural propagation in the environment, while the strain FSC043 has been cultivated on artificial media in laboratories. Here, we have compared the genome sequences of FSC198, FSC043, and SCHU S4 to explore the possibility that the contrasting propagation conditions may have resulted in different mutational patterns. We found four insertion/deletion events (INDELs) in the strain FSC043, as compared to the SCHU S4, while no single nucleotide polymorphisms (SNPs) or variable number of tandem repeats (VNTRs) were identified. This result contrasts with previously reported findings for the strain FSC198, where eight SNPs and three VNTR differences, but no INDELs exist as compared to the SCHU S4 strain. The mutations detected in the laboratory and naturally propagated type A strains, respectively, demonstrate distinct patterns supporting that analysis of mutational spectra might be a useful tool to reveal differences in past growth conditions. Such information may be useful to identify leads in a microbial forensic investigation.
Collapse
|
24
|
Zivna L, Krocova Z, Härtlova A, Kubelkova K, Zakova J, Rudolf E, Hrstka R, Macela A, Stulik J. Activation of B cell apoptotic pathways in the course of Francisella tularensis infection. Microb Pathog 2010; 49:226-36. [PMID: 20600796 DOI: 10.1016/j.micpath.2010.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/02/2010] [Accepted: 06/07/2010] [Indexed: 02/07/2023]
Abstract
Francisella tularensis is a facultative intracellular, gram-negative bacterium that induces apoptosis in macrophages and B cells. Here we show apoptotic pathways that are activated in the Ramos human B cell line in the course of F. tularensis infection. Live bacteria F. tularensis FSC200 activate caspases 8, 9 and 3, as well as Bid; release cytochrome c and apoptosis-inducing factor from mitochondria; and induce depolarization of mitochondrial membrane potential in the Ramos cell line, thus leading these cells to apoptosis. Unlike live bacteria, killed F. tularensis FSC200 bacteria activated only caspase 3, and did not cause apoptosis of Ramos cells as measured by annexin V. Killed bacteria also caused accumulation of anti-apoptotic protein Bclx(L) in mitochondrial membranes. Thus, live F. tularensis activates both caspase pathways (receptor-mediated and intrinsic) as well as caspase-independent mitochondrial death.
Collapse
Affiliation(s)
- Lucie Zivna
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Asare R, Abu Kwaik Y. Molecular complexity orchestrates modulation of phagosome biogenesis and escape to the cytosol of macrophages by Francisella tularensis. Environ Microbiol 2010; 12:2559-86. [PMID: 20482590 DOI: 10.1111/j.1462-2920.2010.02229.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Upon entry of Francisella tularensis to macrophages, the Francisella-containing phagosome (FCP) is trafficked into an acidified late endosome-like phagosome with limited fusion to the lysosomes followed by rapid escape into the cytosol where the organism replicates. Although the Francisella Pathogenicity Island (FPI), which encodes a type VI-like secretion apparatus, is required for modulation of phagosome biogenesis and escape into the cytosol, the mechanisms involved are not known. To decipher the molecular bases of modulation of biogenesis of the FCP and bacterial escape into the macrophage cytosol, we have screened a comprehensive mutant library of F. tularensis ssp. novicida for their defect in proliferation within human macrophages, followed by characterization of modulation of phagosome biogenesis and bacterial escape into the cytosol. Our data show that at least 202 genes are required for intracellular proliferation within macrophages. Among the 125 most defective mutants in intracellular proliferation, we show that the FCP of at least 91 mutants colocalize persistently with the late endosomal/lysosomal marker LAMP-1 and fail to escape into the cytosol, as determined by fluorescence-based phagosome integrity assays and transmission electron microscopy. At least 34 genes are required for proliferation within the cytosol but do not play a detectable role in modulation of phagosome biogenesis and bacterial escape into the cytosol. Our data indicate a tremendous adaptation and metabolic reprogramming by F. tularensis to adjust to the micro-environmental and nutritional cues within the FCP, and these adjustments play essential roles in modulation of phagosome biogenesis and escape into the cytosol of macrophages as well as proliferation in the cytosol. The plethora of the networks of genes that orchestrate F. tularensis-mediated modulation of phagosome biogenesis, phagosomal escape and bacterial proliferation within the cytosol is novel, complex and involves an unusually large portion of the genome of an intracellular pathogen.
Collapse
Affiliation(s)
- Rexford Asare
- Department of Microbiology and Immunology, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | |
Collapse
|
26
|
Moliner C, Fournier PE, Raoult D. Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol Rev 2010. [DOI: 10.1111/j.1574-6976.2009.00209.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
27
|
Lewis T, Loman NJ, Bingle L, Jumaa P, Weinstock GM, Mortiboy D, Pallen MJ. High-throughput whole-genome sequencing to dissect the epidemiology of Acinetobacter baumannii isolates from a hospital outbreak. J Hosp Infect 2010; 75:37-41. [PMID: 20299126 DOI: 10.1016/j.jhin.2010.01.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/21/2010] [Indexed: 11/28/2022]
Abstract
Shared care of military and civilian patients has resulted in transmission of multidrug-resistant Acinetobacter baumannii (MDR-Aci) from military casualties to civilians. Current typing technologies have been useful in revealing relationships between isolates of A. baumannii but they are unable to resolve differences between closely related isolates from small-scale outbreaks, where chains of transmission are often unclear. In a recent hospital outbreak in Birmingham, six patients were colonised with MDR-Aci isolates indistinguishable using standard techniques. We used whole-genome sequencing to identify single nucleotide polymorphisms in these isolates, allowing us to discriminate between alternative epidemiological hypotheses in this setting.
Collapse
Affiliation(s)
- T Lewis
- Department of Medical Microbiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
In out of area military missions soldiers are potentially exposed to bacteria that are endemic in tropical areas and can be used as biological agents. It can be difficult to culture these bacteria due to sample contamination, low number of bacteria or pretreatment with antibiotics. Commercial biochemical identification systems are not optimized for these agents which can result in misidentification. Immunological assays are often not commercially available or not specific. Real-time PCR assays are very specific and sensitive and can shorten the time required to establish a diagnosis markedly. Therefore, real-time PCRs for the identification of Bacillus anthracis, Brucella spp., Burkholderia mallei und Burkholderia pseudomallei, Francisella tularensis und Yersinia pestis have been developed. PCR results can be false negative due to inadequate clinical samples, low number of bacteria in samples, DNA degradation, inhibitory substances and inappropriate DNA preparation. Hence, it is crucial to cultivate the organisms as a prerequisite for adequate antibiotic therapy and typing of the agent. In a bioterrorist scenario samples have to be treated according to rules applied in forensic medicine and documentation has to be flawless.
Collapse
|
29
|
Nalbantoglu U, Sayood K, Dempsey MP, Iwen PC, Francesconi SC, Barabote RD, Xie G, Brettin TS, Hinrichs SH, Fey PD. Large direct repeats flank genomic rearrangements between a new clinical isolate of Francisella tularensis subsp. tularensis A1 and Schu S4. PLoS One 2010; 5:e9007. [PMID: 20140244 PMCID: PMC2815774 DOI: 10.1371/journal.pone.0009007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 01/07/2010] [Indexed: 12/25/2022] Open
Abstract
Francisella tularensis subspecies tularensis consists of two separate populations A1 and A2. This report describes the complete genome sequence of NE061598, an F. tularensis subspecies tularensis A1 isolated in 1998 from a human with clinical disease in Nebraska, United States of America. The genome sequence was compared to Schu S4, an F. tularensis subspecies tularensis A1a strain originally isolated in Ohio in 1941. It was determined that there were 25 nucleotide polymorphisms (22 SNPs and 3 indels) between Schu S4 and NE061598; two of these polymorphisms were in potential virulence loci. Pulsed-field gel electrophoresis analysis demonstrated that NE061598 was an A1a genotype. Other differences included repeat sequences (n = 11 separate loci), four of which were contained in coding sequences, and an inversion and rearrangement probably mediated by insertion sequences and the previously identified direct repeats I, II, and III. Five new variable-number tandem repeats were identified; three of these five were unique in NE061598 compared to Schu S4. Importantly, there was no gene loss or gain identified between NE061598 and Schu S4. Interpretation of these data suggests there is significant sequence conservation and chromosomal synteny within the A1 population. Further studies are needed to determine the biological properties driving the selective pressure that maintains the chromosomal structure of this monomorphic pathogen.
Collapse
Affiliation(s)
- Ufuk Nalbantoglu
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Khalid Sayood
- Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Michael P. Dempsey
- Division of Microbiology, Armed Forces Institute of Pathology, Washington, D.C., United States of America
| | - Peter C. Iwen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | | | - Ravi D. Barabote
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Gary Xie
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Thomas S. Brettin
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Steven H. Hinrichs
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
30
|
GroEL and lipopolysaccharide from Francisella tularensis live vaccine strain synergistically activate human macrophages. Infect Immun 2010; 78:1797-806. [PMID: 20123721 DOI: 10.1128/iai.01135-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, interacts with host cells of innate immunity in an atypical manner. For most Gram-negative bacteria, the release of lipopolysaccharide (LPS) from their outer membranes stimulates an inflammatory response. When LPS from the attenuated live vaccine strain (LVS) or the highly virulent Schu S4 strain of F. tularensis was incubated with human umbilical vein endothelial cells, neither species of LPS induced expression of the adhesion molecule E-selectin or secretion of the chemokine CCL2. Moreover, a high concentration (10 microg/ml) of LVS or Schu S4 LPS was required to stimulate production of CCL2 by human monocyte-derived macrophages (huMDM). A screen for alternative proinflammatory factors of F. tularensis LVS identified the heat shock protein GroEL as a potential candidate. Recombinant LVS GroEL at a concentration of 10 microg/ml elicited secretion of CXCL8 and CCL2 by huMDM through a TLR4-dependent mechanism. When 1 microg of LVS GroEL/ml was added to an equivalent amount of LVS LPS, the two components synergistically activated the huMDM to produce CXCL8. Schu S4 GroEL was less stimulatory than LVS GroEL and showed a lesser degree of synergy when combined with Schu S4 LPS. These findings suggest that the intrinsically low proinflammatory activity of F. tularensis LPS may be increased in the infected human host through interactions with other components of the bacterium.
Collapse
|
31
|
Humans and evolutionary and ecological forces shaped the phylogeography of recently emerged diseases. Nat Rev Microbiol 2009; 7:813-21. [PMID: 19820723 DOI: 10.1038/nrmicro2219] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of human civilizations and global commerce has led to the emergence and worldwide circulation of many infectious diseases. Anthrax, plague and tularaemia are three zoonotic diseases that have been intensely studied through genome characterization of the causative species and phylogeographical analyses. A few highly fit genotypes in each species represent the causative agents for most of the observed disease cases. Together, mutational and selective forces create highly adapted pathogens, but this must be coupled with ecological opportunities for global expansion. This Review describes the distributions of the bacteria that cause anthrax, plague and tularaemia and investigates the forces that created clonal structures in these species.
Collapse
|
32
|
Francisella tularensis type A strains cause the rapid encystment of Acanthamoeba castellanii and survive in amoebal cysts for three weeks postinfection. Appl Environ Microbiol 2009; 75:7488-500. [PMID: 19820161 DOI: 10.1128/aem.01829-09] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Francisella tularensis, the causative agent of the zoonotic disease tularemia, has recently gained increased attention due to the emergence of tularemia in geographical areas where the disease has been previously unknown and to the organism's potential as a bioterrorism agent. Although F. tularensis has an extremely broad host range, the bacterial reservoir in nature has not been conclusively identified. In this study, the ability of virulent F. tularensis strains to survive and replicate in the amoeba Acanthamoeba castellanii was explored. We observe that A. castellanii trophozoites rapidly encyst in response to F. tularensis infection and that this rapid encystment phenotype is caused by factor(s) secreted by amoebae and/or F. tularensis into the coculture medium. Further, our results indicate that in contrast to the live vaccine strain LVS, virulent strains of F. tularensis can survive in A. castellanii cysts for at least 3 weeks postinfection and that the induction of rapid amoeba encystment is essential for survival. In addition, our data indicate that pathogenic F. tularensis strains block lysosomal fusion in A. castellanii. Taken together, these data suggest that interactions between F. tularensis strains and amoebae may play a role in the environmental persistence of F. tularensis.
Collapse
|
33
|
Functional expression of Francisella tularensis FabH and FabI, potential antibacterial targets. Protein Expr Purif 2009; 65:83-91. [DOI: 10.1016/j.pep.2008.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/12/2008] [Accepted: 11/17/2008] [Indexed: 11/19/2022]
|
34
|
Phylogeography of Francisella tularensis: global expansion of a highly fit clone. J Bacteriol 2009; 191:2474-84. [PMID: 19251856 DOI: 10.1128/jb.01786-08] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis contains several highly pathogenic subspecies, including Francisella tularensis subsp. holarctica, whose distribution is circumpolar in the northern hemisphere. The phylogeography of these subspecies and their subclades was examined using whole-genome single nucleotide polymorphism (SNP) analysis, high-density microarray SNP genotyping, and real-time-PCR-based canonical SNP (canSNP) assays. Almost 30,000 SNPs were identified among 13 whole genomes for phylogenetic analysis. We selected 1,655 SNPs to genotype 95 isolates on a high-density microarray platform. Finally, 23 clade- and subclade-specific canSNPs were identified and used to genotype 496 isolates to establish global geographic genetic patterns. We confirm previous findings concerning the four subspecies and two Francisella tularensis subsp. tularensis subpopulations and identify additional structure within these groups. We identify 11 subclades within F. tularensis subsp. holarctica, including a new, genetically distinct subclade that appears intermediate between Japanese F. tularensis subsp. holarctica isolates and the common F. tularensis subsp. holarctica isolates associated with the radiation event (the B radiation) wherein this subspecies spread throughout the northern hemisphere. Phylogenetic analyses suggest a North American origin for this B-radiation clade and multiple dispersal events between North America and Eurasia. These findings indicate a complex transmission history for F. tularensis subsp. holarctica.
Collapse
|
35
|
Didelot X, Darling A, Falush D. Inferring genomic flux in bacteria. Genes Dev 2009; 19:306-17. [PMID: 19015321 PMCID: PMC2652212 DOI: 10.1101/gr.082263.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 10/29/2008] [Indexed: 11/24/2022]
Abstract
Acquisition and loss of genetic material are essential forces in bacterial microevolution. They have been repeatedly linked with adaptation of lineages to new lifestyles, and in particular, pathogenicity. Comparative genomics has the potential to elucidate this genetic flux, but there are many methodological challenges involved in inferring evolutionary events from collections of genome sequences. Here we describe a model-based method for using whole-genome sequences to infer the patterns of genome content evolution. A fundamental property of our model is that it allows the rates at which genetic elements are gained or lost to vary in time and from one lineage to another. Our approach is purely sequence based, and does not rely on gene identification. We show how inference can be performed under our model and illustrate its use on three datasets from Francisella tularensis, Streptococcus pyogenes, and Escherichia coli. In all three examples, we found interesting variations in the rates of genetic material gain and loss, which strongly correlate with their lifestyle. The algorithms we describe are implemented in a computer software named GenoPlast.
Collapse
Affiliation(s)
- Xavier Didelot
- Department of Statistics, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | |
Collapse
|
36
|
Abstract
Genomes from all of the crucial bacterial pathogens of humans, plants and animals have now been sequenced, as have genomes from many of the important commensal, symbiotic and environmental microorganisms. Analysis of these sequences has revealed the forces that shape pathogen evolution and has brought to light unexpected aspects of pathogen biology. The finding that horizontal gene transfer and genome decay have key roles in the evolution of bacterial pathogens was particularly surprising. It has also become evident that even the definitions for 'pathogen' and 'virulence factor' need to be re-evaluated.
Collapse
|