1
|
Tarder-Stoll H, Baldassano C, Aly M. Consolidation Enhances Sequential Multistep Anticipation but Diminishes Access to Perceptual Features. Psychol Sci 2024; 35:1178-1199. [PMID: 39110746 PMCID: PMC11532645 DOI: 10.1177/09567976241256617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 04/19/2024] [Indexed: 08/10/2024] Open
Abstract
Many experiences unfold predictably over time. Memory for these temporal regularities enables anticipation of events multiple steps into the future. Because temporally predictable events repeat over days, weeks, and years, we must maintain-and potentially transform-memories of temporal structure to support adaptive behavior. We explored how individuals build durable models of temporal regularities to guide multistep anticipation. Healthy young adults (Experiment 1: N = 99, age range = 18-40 years; Experiment 2: N = 204, age range = 19-40 years) learned sequences of scene images that were predictable at the category level and contained incidental perceptual details. Individuals then anticipated upcoming scene categories multiple steps into the future, immediately and at a delay. Consolidation increased the efficiency of anticipation, particularly for events further in the future, but diminished access to perceptual features. Further, maintaining a link-based model of the sequence after consolidation improved anticipation accuracy. Consolidation may therefore promote efficient and durable models of temporal structure, thus facilitating anticipation of future events.
Collapse
Affiliation(s)
- Hannah Tarder-Stoll
- Department of Psychology, Columbia University
- Baycrest Health Sciences, Rotman Research Institute, Toronto, Canada
| | | | - Mariam Aly
- Department of Psychology, Columbia University
| |
Collapse
|
2
|
Barry DN, Love BC. A neural network account of memory replay and knowledge consolidation. Cereb Cortex 2022; 33:83-95. [PMID: 35213689 PMCID: PMC9758580 DOI: 10.1093/cercor/bhac054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/15/2022] Open
Abstract
Replay can consolidate memories through offline neural reactivation related to past experiences. Category knowledge is learned across multiple experiences, and its subsequent generalization is promoted by consolidation and replay during rest and sleep. However, aspects of replay are difficult to determine from neuroimaging studies. We provided insights into category knowledge replay by simulating these processes in a neural network which approximated the roles of the human ventral visual stream and hippocampus. Generative replay, akin to imagining new category instances, facilitated generalization to new experiences. Consolidation-related replay may therefore help to prepare us for the future as much as remember the past. Generative replay was more effective in later network layers functionally similar to the lateral occipital cortex than layers corresponding to early visual cortex, drawing a distinction between neural replay and its relevance to consolidation. Category replay was most beneficial for newly acquired knowledge, suggesting replay helps us adapt to changes in our environment. Finally, we present a novel mechanism for the observation that the brain selectively consolidates weaker information, namely a reinforcement learning process in which categories were replayed according to their contribution to network performance. This reinforces the idea of consolidation-related replay as an active rather than passive process.
Collapse
Affiliation(s)
- Daniel N Barry
- Department of Experimental Psychology, University College London, 26 Bedford Way, London WC1H0AP, UK
| | - Bradley C Love
- Department of Experimental Psychology, University College London, 26 Bedford Way, London WC1H0AP, UK
- The Alan Turing Institute, 96 Euston Road, London NW12DB, UK
| |
Collapse
|
3
|
Kim T, Kim S, Kang J, Kwon M, Lee SH. The Common Effects of Sleep Deprivation on Human Long-Term Memory and Cognitive Control Processes. Front Neurosci 2022; 16:883848. [PMID: 35720688 PMCID: PMC9201256 DOI: 10.3389/fnins.2022.883848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep deprivation is known to have adverse effects on various cognitive abilities. In particular, a lack of sleep has been reported to disrupt memory consolidation and cognitive control functions. Here, focusing on long-term memory and cognitive control processes, we review the consistency and reliability of the results of previous studies of sleep deprivation effects on behavioral performance with variations in the types of stimuli and tasks. Moreover, we examine neural response changes related to these behavioral changes induced by sleep deprivation based on human fMRI studies to determine the brain regions in which neural responses increase or decrease as a consequence of sleep deprivation. Additionally, we discuss about the possibility that light as an environmentally influential factor affects our sleep cycles and related cognitive processes.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sejin Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Joonyoung Kang
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Minjae Kwon
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- *Correspondence: Sue-Hyun Lee,
| |
Collapse
|
4
|
Schäfer SK, Wirth BE, Staginnus M, Becker N, Michael T, Sopp MR. Sleep's impact on emotional recognition memory: A meta-analysis of whole-night, nap, and REM sleep effects. Sleep Med Rev 2020; 51:101280. [DOI: 10.1016/j.smrv.2020.101280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 01/03/2023]
|
5
|
Dymond S, Llewellyn S. Time, Sleep, and Stimulus Equivalence-Based Relational Memory. PSYCHOLOGICAL RECORD 2019. [DOI: 10.1007/s40732-019-00343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Abichou K, La Corte V, Hubert N, Orriols E, Gaston-Bellegarde A, Nicolas S, Piolino P. Young and Older Adults Benefit From Sleep, but Not From Active Wakefulness for Memory Consolidation of What-Where-When Naturalistic Events. Front Aging Neurosci 2019; 11:58. [PMID: 30949043 PMCID: PMC6435496 DOI: 10.3389/fnagi.2019.00058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/28/2019] [Indexed: 11/13/2022] Open
Abstract
An extensive psychological literature shows that sleep actively promotes human episodic memory (EM) consolidation in younger adults. However, evidence for the benefit of sleep for EM consolidation in aging is still elusive. In addition, most of the previous studies used EM assessments that are very different from everyday life conditions and are far from considering all the hallmarks of this memory system. In this study, the effect of an extended period of sleep was compared to the effect of an extended period of active wakefulness on the EM consolidation of naturalistic events, using a novel (What-Where-When) EM task, rich in perceptual details and spatio-temporal context, presented in a virtual environment. We investigated the long-term What-Where-When and Details binding performances of young and elderly people before and after an interval of sleep or active wakefulness. Although we found a noticeable age-related decline in EM, both age groups benefited from sleep, but not from active wakefulness. In younger adults, only the period of sleep significantly enhanced the capacity to associate different components of EM (binding performance) and more specifically the free recall of what-when information. Interestingly, in the elderly, sleep significantly enhanced not only the recall of factual elements but also associated details and contextual information as well as the amount of high feature binding (i.e., What-Where-When and Details). Thus, this study evidences the benefit of sleep, and the detrimental effect of active wakefulness, on long-term feature binding, which is one of the core characteristics of EM, and its effectiveness in normal aging. However, further research should investigate whether this benefit is specific to sleep or more generally results from the effect of a post-learning period of reduced interference, which could also concern quiet wakefulness.
Collapse
Affiliation(s)
- Kouloud Abichou
- Laboratoire Mémoire Cerveau et Cognition (MC2Lab EA 7536), Institut de Psychologie, Université Sorbonne Paris Cité, Boulogne-Billancourt, France
| | - Valentina La Corte
- Laboratoire Mémoire Cerveau et Cognition (MC2Lab EA 7536), Institut de Psychologie, Université Sorbonne Paris Cité, Boulogne-Billancourt, France.,Institute of Memory and Alzheimer's Disease, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France
| | - Nicolas Hubert
- Laboratoire Mémoire Cerveau et Cognition (MC2Lab EA 7536), Institut de Psychologie, Université Sorbonne Paris Cité, Boulogne-Billancourt, France
| | - Eric Orriols
- Laboratoire Mémoire Cerveau et Cognition (MC2Lab EA 7536), Institut de Psychologie, Université Sorbonne Paris Cité, Boulogne-Billancourt, France
| | - Alexandre Gaston-Bellegarde
- Laboratoire Mémoire Cerveau et Cognition (MC2Lab EA 7536), Institut de Psychologie, Université Sorbonne Paris Cité, Boulogne-Billancourt, France
| | - Serge Nicolas
- Laboratoire Mémoire Cerveau et Cognition (MC2Lab EA 7536), Institut de Psychologie, Université Sorbonne Paris Cité, Boulogne-Billancourt, France.,Institut Universitaire de France, Paris, France
| | - Pascale Piolino
- Laboratoire Mémoire Cerveau et Cognition (MC2Lab EA 7536), Institut de Psychologie, Université Sorbonne Paris Cité, Boulogne-Billancourt, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
7
|
Wang JY, Weber FD, Zinke K, Noack H, Born J. Effects of Sleep on Word Pair Memory in Children - Separating Item and Source Memory Aspects. Front Psychol 2017; 8:1533. [PMID: 28943858 PMCID: PMC5594220 DOI: 10.3389/fpsyg.2017.01533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022] Open
Abstract
Word paired-associate learning is a well-established task to demonstrate sleep-dependent memory consolidation in adults as well as children. Sleep has also been proposed to benefit episodic features of memory, i.e., a memory for an event (item) bound into the spatiotemporal context it has been experienced in (source). We aimed to explore if sleep enhances word pair memory in children by strengthening the episodic features of the memory, in particular. Sixty-one children (8-12 years) studied two lists of word pairs with 1 h in between. Retrieval testing comprised cued recall of the target word of each word pair (item memory) and recalling in which list the word pair had appeared in (source memory). Retrieval was tested either after 1 h (short retention interval) or after 11 h, with this long retention interval covering either nocturnal sleep or daytime wakefulness. Compared with the wake interval, sleep enhanced separate recall of both word pairs and the lists per se, while recall of the combination of the word pair and the list it had appeared in remained unaffected by sleep. An additional comparison with adult controls (n = 37) suggested that item-source bound memory (combined recall of word pair and list) is generally diminished in children. Our results argue against the view that the sleep-induced enhancement in paired-associate learning in children is a consequence of sleep specifically enhancing the episodic features of the memory representation. On the contrary, sleep in children might strengthen item and source representations in isolation, while leaving the episodic memory representations (item-source binding) unaffected.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
- Graduate School of Neural and Behavioral Sciences, University of TübingenTübingen, Germany
| | - Frederik D. Weber
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
| | - Katharina Zinke
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
| | - Hannes Noack
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
- Department of Psychiatry and Psychotherapy, University of TübingenTübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of TübingenTübingen, Germany
- Werner Reichardt Center for Integrative Neuroscience, University of TübingenTübingen, Germany
| |
Collapse
|
8
|
A Role of Sleep in Forming Predictive Codes. COGNITIVE NEUROSCIENCE OF MEMORY CONSOLIDATION 2017. [DOI: 10.1007/978-3-319-45066-7_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Buzsáki G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015; 25:1073-188. [PMID: 26135716 PMCID: PMC4648295 DOI: 10.1002/hipo.22488] [Citation(s) in RCA: 973] [Impact Index Per Article: 108.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022]
Abstract
Sharp wave ripples (SPW-Rs) represent the most synchronous population pattern in the mammalian brain. Their excitatory output affects a wide area of the cortex and several subcortical nuclei. SPW-Rs occur during "off-line" states of the brain, associated with consummatory behaviors and non-REM sleep, and are influenced by numerous neurotransmitters and neuromodulators. They arise from the excitatory recurrent system of the CA3 region and the SPW-induced excitation brings about a fast network oscillation (ripple) in CA1. The spike content of SPW-Rs is temporally and spatially coordinated by a consortium of interneurons to replay fragments of waking neuronal sequences in a compressed format. SPW-Rs assist in transferring this compressed hippocampal representation to distributed circuits to support memory consolidation; selective disruption of SPW-Rs interferes with memory. Recently acquired and pre-existing information are combined during SPW-R replay to influence decisions, plan actions and, potentially, allow for creative thoughts. In addition to the widely studied contribution to memory, SPW-Rs may also affect endocrine function via activation of hypothalamic circuits. Alteration of the physiological mechanisms supporting SPW-Rs leads to their pathological conversion, "p-ripples," which are a marker of epileptogenic tissue and can be observed in rodent models of schizophrenia and Alzheimer's Disease. Mechanisms for SPW-R genesis and function are discussed in this review.
Collapse
Affiliation(s)
- György Buzsáki
- The Neuroscience Institute, School of Medicine and Center for Neural Science, New York University, New York, New York
| |
Collapse
|
10
|
Roumis DK, Frank LM. Hippocampal sharp-wave ripples in waking and sleeping states. Curr Opin Neurobiol 2015; 35:6-12. [PMID: 26011627 DOI: 10.1016/j.conb.2015.05.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 11/30/2022]
Abstract
Waking and sleeping states are privileged periods for distinct mnemonic processes. In waking behavior, rapid retrieval of previous experience aids memory-guided decision making. In sleep, a gradual series of reactivated associations supports consolidation of episodes into memory networks. Synchronized bursts of hippocampal place cells during events called sharp-wave ripples communicate associated neural patterns across distributed circuits in both waking and sleeping states. Differences between sleep and awake sharp-wave ripples, and in particular the accuracy of recapitulated experience, highlight their state-dependent roles in memory processes.
Collapse
Affiliation(s)
- Demetris K Roumis
- Center for Integrative Neuroscience and Department of Physiology, University of California, San Francisco, United States
| | - Loren M Frank
- Center for Integrative Neuroscience and Department of Physiology, University of California, San Francisco, United States.
| |
Collapse
|
11
|
Stamm AW, Nguyen ND, Seicol BJ, Fagan A, Oh A, Drumm M, Lundt M, Stickgold R, Wamsley EJ. Negative reinforcement impairs overnight memory consolidation. Learn Mem 2014; 21:591-6. [PMID: 25320351 PMCID: PMC4201816 DOI: 10.1101/lm.035196.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/05/2014] [Indexed: 11/27/2022]
Abstract
Post-learning sleep is beneficial for human memory. However, it may be that not all memories benefit equally from sleep. Here, we manipulated a spatial learning task using monetary reward and performance feedback, asking whether enhancing the salience of the task would augment overnight memory consolidation and alter its incorporation into dreaming. Contrary to our hypothesis, we found that the addition of reward impaired overnight consolidation of spatial memory. Our findings seemingly contradict prior reports that enhancing the reward value of learned information augments sleep-dependent memory processing. Given that the reward followed a negative reinforcement paradigm, consolidation may have been impaired via a stress-related mechanism.
Collapse
Affiliation(s)
- Andrew W Stamm
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Nam D Nguyen
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Benjamin J Seicol
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Abigail Fagan
- University of Rochester, Rochester, New York 14604, USA
| | - Angela Oh
- Harvard University, Cambridge, Massachusetts 02138, USA
| | - Michael Drumm
- Harvard University, Cambridge, Massachusetts 02138, USA
| | - Maureen Lundt
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Robert Stickgold
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02215, USA Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Erin J Wamsley
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02215, USA Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| |
Collapse
|
12
|
Such stuff as dreams are made on? Elaborative encoding, the ancient art of memory, and the hippocampus. Behav Brain Sci 2013; 36:589-607. [PMID: 24304746 DOI: 10.1017/s0140525x12003135] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis article argues that rapid eye movement (REM) dreaming is elaborative encoding for episodic memories. Elaborative encoding in REM can, at least partially, be understood through ancient art of memory (AAOM) principles: visualization, bizarre association, organization, narration, embodiment, and location. These principles render recent memories more distinctive through novel and meaningful association with emotionally salient, remote memories. The AAOM optimizes memory performance, suggesting that its principles may predict aspects of how episodic memory is configured in the brain. Integration and segregation are fundamental organizing principles in the cerebral cortex. Episodic memory networks interconnect profusely within the cortex, creating omnidirectional “landmark” junctions. Memories may be integrated at junctions but segregated along connecting network paths that meet at junctions. Episodic junctions may be instantiated during non–rapid eye movement (NREM) sleep after hippocampal associational function during REM dreams. Hippocampal association involves relating, binding, and integrating episodic memories into a mnemonic compositional whole. This often bizarre, composite image has not been present to the senses; it is not “real” because it hyperassociates several memories. During REM sleep, on the phenomenological level, this composite image is experienced as a dream scene. A dream scene may be instantiated as omnidirectional neocortical junction and retained by the hippocampus as an index. On episodic memory retrieval, an external stimulus (or an internal representation) is matched by the hippocampus against its indices. One or more indices then reference the relevant neocortical junctions from which episodic memories can be retrieved. Episodic junctions reach a processing (rather than conscious) level during normal wake to enable retrieval. If this hypothesis is correct, the stuff of dreams is the stuff of memory.
Collapse
|
13
|
Affiliation(s)
- Marion Inostroza
- Department of Medical Psychology and Behavioral Neurobiology and Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076 Tübingen, Germany; ,
- Departamento de Psicología, Universidad de Chile, Santiago, Chile
| | - Jan Born
- Department of Medical Psychology and Behavioral Neurobiology and Centre for Integrative Neuroscience (CIN), University of Tübingen, 72076 Tübingen, Germany; ,
| |
Collapse
|
14
|
Murre JMJ, Kristo G, Janssen SMJ. The effect of self-reported habitual sleep quality and sleep length on autobiographical memory. Memory 2013; 22:633-45. [PMID: 23815161 DOI: 10.1080/09658211.2013.811253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A large number of studies have recently shown effects of sleep on memory consolidation. In this study the effects of the sleep quality and sleep length on the retention of autobiographical memories are examined, using an Internet-based diary technique (Kristo, Janssen, & Murre, 2009). Each of over 600 participants recorded one recent personal event and was contacted after a retention interval that ranged from 2 to 46 days. Recall of the content, time, and details of the event were scored and related to sleep quality and sleep length as measured with the Pittsburgh Sleep Quality Index. Hierarchical regression analyses indicated that poor sleep quality, but not short sleep length, was associated with significantly lower recall at the longer retention periods (30-46 days), but not at the shorter ones (2-15 days), although the difference in recall between good and poor sleepers was small.
Collapse
Affiliation(s)
- Jaap M J Murre
- a Department of Psychology , University of Amsterdam , the Netherlands
| | | | | |
Collapse
|
15
|
Sleeping like a baby: Examining relations between habitual infant sleep, recall memory, and generalization across cues at 10 months. Infant Behav Dev 2013; 36:369-76. [DOI: 10.1016/j.infbeh.2013.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/19/2013] [Accepted: 02/21/2013] [Indexed: 11/18/2022]
|
16
|
Cipolli C, Mazzetti M, Plazzi G. Sleep-dependent memory consolidation in patients with sleep disorders. Sleep Med Rev 2013; 17:91-103. [DOI: 10.1016/j.smrv.2012.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 11/26/2022]
|
17
|
Abstract
Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.
Collapse
Affiliation(s)
- Björn Rasch
- Division of Biopsychology, Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
18
|
Inostroza M, Binder S, Born J. Sleep-dependency of episodic-like memory consolidation in rats. Behav Brain Res 2013; 237:15-22. [DOI: 10.1016/j.bbr.2012.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 10/27/2022]
|
19
|
Griessenberger H, Hoedlmoser K, Heib DPJ, Lechinger J, Klimesch W, Schabus M. Consolidation of temporal order in episodic memories. Biol Psychol 2012; 91:150-5. [PMID: 22705480 PMCID: PMC3427018 DOI: 10.1016/j.biopsycho.2012.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/30/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
Even though it is known that sleep benefits declarative memory consolidation, the role of sleep in the storage of temporal sequences has rarely been examined. Thus we explored the influence of sleep on temporal order in an episodic memory task followed by sleep or sleep deprivation. Thirty-four healthy subjects (17 men) aged between 19 and 28 years participated in the randomized, counterbalanced, between-subject design. Parameters of interests were NREM/REM cycles, spindle activity and spindle-related EEG power spectra. Participants of both groups (sleep group/sleep deprivation group) performed retrieval in the evening, morning and three days after the learning night. Results revealed that performance in temporal order memory significantly deteriorated over three days only in sleep deprived participants. Furthermore our data showed a positive relationship between the ratios of the (i) first NREM/REM cycle with more REM being associated with delayed temporal order recall. Most interestingly, data additionally indicated that (ii) memory enhancers in the sleep group show more fast spindle related alpha power at frontal electrode sites possibly indicating access to a yet to be consolidated memory trace. We suggest that distinct sleep mechanisms subserve different aspects of episodic memory and are jointly involved in sleep-dependent memory consolidation.
Collapse
Affiliation(s)
- H Griessenberger
- Laboratory for Sleep and Consciousness Research, University of Salzburg, Department of Psychology, Division of Physiological Psychology, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
20
|
Contribution of norepinephrine to emotional memory consolidation during sleep. Psychoneuroendocrinology 2011; 36:1342-50. [PMID: 21493010 DOI: 10.1016/j.psyneuen.2011.03.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/12/2011] [Accepted: 03/13/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND There is increasing evidence indicating that slow wave sleep (SWS) supports memory consolidation. This effect may in part originate from phasic noradrinergic (NE) activity occurring during SWS in the presence of tonically lowered NE levels. Here, we examined whether NE supports the consolidation of amygdala-dependent emotional memory during SWS. METHODS In a double-blind cross-over study, 15 men learned emotional and neutral materials (stories, pictures) in the evening before a 3-h period of early SWS-rich retention sleep, during which either placebo or clonidine, an α2-adrenoceptor agonist which blocks locus coeruleus NE release, was intravenously infused. Memory retrieval as well as affective ratings and heart rate responses to the pictures were assessed 23 h after learning. RESULTS Clonidine reduced plasma NE levels but had no effect on SWS. While retention of story content words and pictures per se remained unaffected, clonidine distinctly blocked the superiority of emotional compared to neutral memory for temporal order, with this superiority of emotional over neutral memories observed only in the placebo condition. Heart rate responses to pictures were not affected, but whereas under placebo conditions familiar negative pictures were rated less arousing and with a more negative valence compared to pictures not seen before; these differences were abolished after clonidine. CONCLUSION Given that memory for the temporal order of events depends on the hippocampus to a greater extent than item memory, our findings suggest that NE activity during early SWS-rich sleep facilitates consolidation of memories that involve both, a strong amygdalar and hippocampal component.
Collapse
|
21
|
Abstract
The electrophysiological properties of the sleeping brain profoundly influence memory function in various species, yet the molecular nature by which sleep and memory interact remains unclear. We summarize work that has established the cAMP-PKA-CREB intracellular signaling pathway as a major mechanism involved in the wakeful consolidation of memory in many organisms while highlighting newer evidence that this pathway has a role in sleep regulation, sleep deprivation and potentially sleep-memory interactions. We explore the possibility that sleep might influence memory processing by reactivating the same molecular cascades first recruited during learning during a sort of "molecular replay". Lastly, we discuss how new approaches together with established techniques will aid in our understanding of the nature of sleep-memory interactions.
Collapse
Affiliation(s)
- Pepe J Hernandez
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
22
|
Sleep effects on slow-brain-potential reflections of associative learning. Biol Psychol 2011; 86:219-29. [DOI: 10.1016/j.biopsycho.2010.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/12/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
|
23
|
Wamsley EJ, Tucker MA, Payne JD, Stickgold R. A brief nap is beneficial for human route-learning: The role of navigation experience and EEG spectral power. Learn Mem 2010; 17:332-6. [PMID: 20581255 DOI: 10.1101/lm.1828310] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here, we examined the effect of a daytime nap on changes in virtual maze performance across a single day. Participants either took a short nap or remained awake following training on a virtual maze task. Post-training sleep provided a clear performance benefit at later retest, but only for those participants with prior experience navigating in a three-dimensional (3D) environment. Performance improvements in experienced players were correlated with delta-rich stage 2 sleep. Complementing observations that learning-related brain activity is reiterated during post-navigation NREM sleep in rodents, the present data demonstrate that NREM sleep confers a performance advantage for spatial memory in humans.
Collapse
Affiliation(s)
- Erin J Wamsley
- Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
24
|
Diekelmann S, Wilhelm I, Born J. The whats and whens of sleep-dependent memory consolidation. Sleep Med Rev 2009; 13:309-21. [PMID: 19251443 DOI: 10.1016/j.smrv.2008.08.002] [Citation(s) in RCA: 348] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Marshall L, Born J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci 2007; 11:442-50. [PMID: 17905642 DOI: 10.1016/j.tics.2007.09.001] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/30/2007] [Accepted: 09/12/2007] [Indexed: 11/29/2022]
Abstract
There is now compelling evidence that sleep promotes the long-term consolidation of declarative and procedural memories. Behavioral studies suggest that sleep preferentially consolidates explicit aspects of these memories, which during encoding are possibly associated with activation in prefrontal-hippocampal circuitry. Hippocampus-dependent declarative memory benefits particularly from slow-wave sleep (SWS), whereas rapid-eye-movement (REM) sleep seems to benefit procedural aspects of memory. Consolidation of hippocampus-dependent memories relies on a dialog between the neocortex and hippocampus. Crucial features of this dialog are the neuronal reactivation of new memories in the hippocampus during SWS, which stimulates the redistribution of memory representations to neocortical networks; and the neocortical slow (<1Hz) oscillation that synchronizes hippocampal-to-neocortical information transfer to activity in other brain structures.
Collapse
Affiliation(s)
- Lisa Marshall
- University of Lübeck, Department of Neuroendocrinology, Haus 23a, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | |
Collapse
|
26
|
Diba K, Buzsáki G. Forward and reverse hippocampal place-cell sequences during ripples. Nat Neurosci 2007; 10:1241-2. [PMID: 17828259 PMCID: PMC2039924 DOI: 10.1038/nn1961] [Citation(s) in RCA: 718] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/16/2007] [Indexed: 11/09/2022]
Abstract
We report that temporal spike sequences from hippocampal place neurons of rats on an elevated track recurred in reverse order at the end of a run, but in forward order in anticipation of the run, coinciding with sharp waves. Vector distances between the place fields were reflected in the temporal structure of these sequences. This bidirectional re-enactment of temporal sequences may contribute to the establishment of higher-order associations in episodic memory.
Collapse
Affiliation(s)
- Kamran Diba
- Center for Molecular and Behavioral Neurobiology, Rutgers University, 197 University Ave, Newark, New Jersey 07102, USA.
| | | |
Collapse
|