1
|
Serio VB, Rosati D, Maffeo D, Rina A, Ghisalberti M, Bellan C, Spiga O, Mari F, Palmieri M, Frullanti E. The Personalized Inherited Signature Predisposing to Non-Small-Cell Lung Cancer in Non-Smokers. Cancers (Basel) 2024; 16:2887. [PMID: 39199663 PMCID: PMC11352340 DOI: 10.3390/cancers16162887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Lung cancer (LC) continues to be an important public health problem, being the most common form of cancer and a major cause of cancer deaths worldwide. Despite the great bulk of research to identify genetic susceptibility genes by genome-wide association studies, only few loci associated to nicotine dependence have been consistently replicated. Our previously published study in few phenotypically discordant sib-pairs identified a combination of germline truncating mutations in known cancer susceptibility genes in never-smoker early-onset LC patients, which does not present in their healthy sib. These results firstly demonstrated the presence of an oligogenic combination of disrupted cancer-predisposing genes in non-smokers patients, giving experimental support to a model of a "private genetic epidemiology". Here, we used a combination of whole-exome and RNA sequencing coupled with a discordant sib's model in a novel cohort of pairs of never-smokers early-onset LC patients and in their healthy sibs used as controls. We selected rare germline variants predicted as deleterious by CADD and SVM bioinformatics tools and absent in the healthy sib. Overall, we identified an average of 200 variants per patient, about 10 of which in cancer-predisposing genes. In most of them, RNA sequencing data reinforced the pathogenic role of the identified variants showing: (i) downregulation in LC tissue (indicating a "second hit" in tumor suppressor genes); (ii) upregulation in cancer tissue (likely oncogene); and (iii) downregulation in both normal and cancer tissue (indicating transcript instability). The combination of the two techniques demonstrates that each patient has an average of six (with a range from four to eight) private mutations with a functional effect in tumor-predisposing genes. The presence of a unique combination of disrupting events in the affected subjects may explain the absence of the familial clustering of non-small-cell lung cancer. In conclusion, these findings indicate that each patient has his/her own "predisposing signature" to cancer development and suggest the use of personalized therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Viola Bianca Serio
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Diletta Rosati
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Debora Maffeo
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Angela Rina
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Marco Ghisalberti
- Thoracic Surgery Unit, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy;
| | - Cristiana Bellan
- Department of Medical Biotechnology, Section of Pathology, University of Siena, 53100 Siena, Italy;
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| | - Francesca Mari
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
- UOC Laboratorio di Assistenza e Ricerca Traslazionale, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Maria Palmieri
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| | - Elisa Frullanti
- Cancer Genomics & Systems Biology Laboratory, University of Siena, 53100 Siena, Italy; (V.B.S.); (D.R.); (D.M.); (M.P.)
- Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (A.R.); (F.M.)
| |
Collapse
|
2
|
Maroni G, Krishnan I, Alfieri R, Maymi VA, Pandell N, Csizmadia E, Zhang J, Weetall M, Branstrom A, Braccini G, Cabrera San Millán E, Storti B, Bizzarri R, Kocher O, Daniela Sanchez Bassères DS, Welner RS, Magli MC, Merelli I, Clohessy JG, Ali A, Tenen DG, Levantini E. Tumor Microenvironment Landscapes Supporting EGFR-mutant NSCLC Are Modulated at the Single-cell Interaction Level by Unesbulin Treatment. CANCER RESEARCH COMMUNICATIONS 2024; 4:919-937. [PMID: 38546390 PMCID: PMC10964845 DOI: 10.1158/2767-9764.crc-23-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 01/26/2024] [Accepted: 03/12/2024] [Indexed: 11/03/2024]
Abstract
Lung cancer is the leading cause of cancer deaths. Lethal pulmonary adenocarcinomas (ADC) present with frequent mutations in the EGFR. Genetically engineered murine models of lung cancer expedited comprehension of the molecular mechanisms driving tumorigenesis and drug response. Here, we systematically analyzed the evolution of tumor heterogeneity in the context of dynamic interactions occurring with the intermingled tumor microenvironment (TME) by high-resolution transcriptomics. Our effort identified vulnerable tumor-specific epithelial cells, as well as their cross-talk with niche components (endothelial cells, fibroblasts, and tumor-infiltrating immune cells), whose symbiotic interface shapes tumor aggressiveness and is almost completely abolished by treatment with Unesbulin, a tubulin binding agent that reduces B cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) activity. Simultaneous magnetic resonance imaging (MRI) analysis demonstrated decreased tumor growth, setting the stage for future investigations into the potential of novel therapeutic strategies for EGFR-mutant ADCs. SIGNIFICANCE Targeting the TME is an attractive strategy for treatment of solid tumors. Here we revealed how EGFR-mutant landscapes are affected at the single-cell resolution level during Unesbulin treatment. This novel drug, by targeting cancer cells and their interactions with crucial TME components, could be envisioned for future therapeutic advancements.
Collapse
Affiliation(s)
- Giorgia Maroni
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Harvard Medical School, Boston, Massachusetts
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | | | - Roberta Alfieri
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | - Valerie A. Maymi
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Preclinical Murine Pharmacogenetics Core, Beth Israel Deaconess Cancer Center, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Nicole Pandell
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Preclinical Murine Pharmacogenetics Core, Beth Israel Deaconess Cancer Center, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Eva Csizmadia
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Junyan Zhang
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | - Giulia Braccini
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | | | - Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Olivier Kocher
- Harvard Medical School, Boston, Massachusetts
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Robert S. Welner
- Department of Medicine, Hemathology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Maria Cristina Magli
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | - Ivan Merelli
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
| | - John G. Clohessy
- Harvard Medical School, Boston, Massachusetts
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Preclinical Murine Pharmacogenetics Core, Beth Israel Deaconess Cancer Center, Dana-Farber/Harvard Cancer Center, Boston, Massachusetts
| | - Azhar Ali
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Daniel G. Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Elena Levantini
- Harvard Medical School, Boston, Massachusetts
- Institute of Biomedical Technologies, National Research Council (CNR), Pisa, Italy
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
3
|
Vaishnavi A, Kinsey CG, McMahon M. Preclinical Modeling of Pathway-Targeted Therapy of Human Lung Cancer in the Mouse. Cold Spring Harb Perspect Med 2024; 14:a041385. [PMID: 37788883 PMCID: PMC10760064 DOI: 10.1101/cshperspect.a041385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Animal models, particularly genetically engineered mouse models (GEMMs), continue to have a transformative impact on our understanding of the initiation and progression of hematological malignancies and solid tumors. Furthermore, GEMMs have been employed in the design and optimization of potent anticancer therapies. Increasingly, drug responses are assessed in mouse models either prior, or in parallel, to the implementation of precision medical oncology, in which groups of patients with genetically stratified cancers are treated with drugs that target the relevant oncoprotein such that mechanisms of drug sensitivity or resistance may be identified. Subsequently, this has led to the design and preclinical testing of combination therapies designed to forestall the onset of drug resistance. Indeed, mouse models of human lung cancer represent a paradigm for how a wide variety of GEMMs, driven by a variety of oncogenic drivers, have been generated to study initiation, progression, and maintenance of this disease as well as response to drugs. These studies have now expanded beyond targeted therapy to include immunotherapy. We highlight key aspects of the relationship between mouse models and the evolution of therapeutic approaches, including oncogene-targeted therapies, immunotherapies, acquired drug resistance, and ways in which successful antitumor strategies improve on efficiently translating preclinical approaches into successful antitumor strategies in patients.
Collapse
Affiliation(s)
- Aria Vaishnavi
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Conan G Kinsey
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah 84112, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
4
|
Hsu WL, Hsieh YT, Chen WM, Chien MH, Luo WJ, Chang JH, Devlin K, Su KY. High-fat diet induces C-reactive protein secretion, promoting lung adenocarcinoma via immune microenvironment modulation. Dis Model Mech 2023; 16:dmm050360. [PMID: 37929799 PMCID: PMC10651111 DOI: 10.1242/dmm.050360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
To understand the effects of a high-fat diet (HFD) on lung cancer progression and biomarkers, we here used an inducible mutant epidermal growth factor receptor (EGFR)-driven lung cancer transgenic mouse model fed a regular diet (RD) or HFD. The HFD lung cancer (LC-HFD) group exhibited significant tumor formation and deterioration, such as higher EGFR activity and proliferation marker expression, compared with the RD lung cancer (LC-RD) group. Transcriptomic analysis of the lung tissues revealed that the significantly changed genes in the LC-HFD group were highly enriched in immune-related signaling pathways, suggesting that an HFD alters the immune microenvironment to promote tumor growth. Cytokine and adipokine arrays combined with a comprehensive analysis using meta-database software indicated upregulation of C-reactive protein (CRP) in the LC-HFD group, which presented with increased lung cancer proliferation and metastasis; this was confirmed experimentally. Our results imply that an HFD can turn the tumor growth environment into an immune-related pro-tumorigenic microenvironment and demonstrate that CRP has a role in promoting lung cancer development in this microenvironment.
Collapse
Affiliation(s)
- Wei-Lun Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Yun-Ting Hsieh
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Wei-Ming Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Min-Hui Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Wei-Jia Luo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Jung-Hsuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kevin Devlin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 10055, Taiwan
| |
Collapse
|
5
|
Kim T, Jang TW, Choi CM, Kim MH, Lee SY, Chang YS, Lee KY, Kim SJ, Yang SH, Ryu JS, Lee JE, Lee SY, Park CK, Lee SH, Jang SH, Yoon SH, Oh HJ. Final Report on Real-World Effectiveness of Sequential Afatinib and Osimertinib in EGFR-Positive Advanced Non-Small Cell Lung Cancer: Updated Analysis of the RESET Study. Cancer Res Treat 2023; 55:1152-1170. [PMID: 37218139 PMCID: PMC10582551 DOI: 10.4143/crt.2023.493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
PURPOSE This study aimed to report the final analysis of time-on-treatment (TOT) and overall survival (OS) in patients with advanced-stage epidermal growth factor receptor (EGFR)+ non-small cell lung cancer (NSCLC) who received sequential afatinib and osimertinib and to compare the outcomes with other second-line regimens (comparator group). MATERIALS AND METHODS In this updated report, the existing medical records were reviewed and rechecked. TOT and OS were updated and analyzed according to clinical features using the Kaplan-Meier method and log-rank test. TOT and OS were compared with those of the comparator group, in which most patients received pemetrexed-based treatments. A multivariable Cox proportional hazard model was used to evaluate features that could affect survival outcomes. RESULTS The median observation time was 31.0 months. The follow-up period was extended to 20 months. A total of 401 patients who received first-line afatinib were analyzed (166 with T790M+ and second-line osimertinib, and 235 with unproven T790M and other second-line agents). Median TOTs on afatinib and osimertinib were 15.0 months (95% confidence interval [CI], 14.0 to 16.1) and 11.9 months (95% CI, 8.9 to 14.6), respectively. The median OS in the osimertinib group was 54.3 months (95% CI, 46.7 to 61.9), much longer than that in the comparator group. In patients who received osimertinib, the OS was longest with Del19+ (median, 59.1; 95% CI, 48.7 to 69.5). CONCLUSION This is one of the largest real-world studies reporting the encouraging activity of sequential afatinib and osimertinib in Asian patients with EGFR+ NSCLC who acquired the T790M mutation, particularly Del19+.
Collapse
Affiliation(s)
- Taeyun Kim
- Department of Internal Medicine, Samsung Medical Center, Seoul,
Korea
| | - Tae Won Jang
- Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan,
Korea
| | - Chang Min Choi
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul,
Korea
| | - Mi-Hyun Kim
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan,
Korea
| | - Sung Yong Lee
- Division of Pulmonology, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul,
Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University Gangnam Severance Hospital, Seoul,
Korea
| | - Kye Young Lee
- Department of Internal Medicine, Konkuk University Medical Center, Seoul,
Korea
| | - Seung Joon Kim
- Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Sei Hoon Yang
- Department of Internal Medicine, Wonkwang University Hospital, Iksan,
Korea
| | - Jeong Seon Ryu
- Department of Internal Medicine, Inha University Hospital, Incheon,
Korea
| | - Jeong Eun Lee
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon,
Korea
| | - Shin Yup Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu,
Korea
| | - Chan Kwon Park
- Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Sang Hoon Lee
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea
| | - Seung Hun Jang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang,
Korea
| | - Seong Hoon Yoon
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan,
Korea
| | - Hyung-Joo Oh
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun,
Korea
| |
Collapse
|
6
|
Kataoka K, Saito Y. Multiple Mutations within Individual Oncogenes: Examples and Clinical Implications. Keio J Med 2023; 72:88-92. [PMID: 36948612 DOI: 10.2302/kjm.2022-0026-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Gain-of-function mutations had been believed to function as a single mutation in oncogenes, although some secondary mutations, such as EGFR T790M mutations, are frequently acquired in patients that are resistant to tyrosine kinase inhibitor treatment. Recently, we and other investigators have reported that multiple mutations (MMs) frequently occur in the same oncogene before any therapy. In a recent pan-cancer study, we identified 14 pan-cancer oncogenes (such as PIK3CA and EGFR) and 6 cancer type-specific oncogenes that are significantly affected by MMs. Of these, 9% of cases with at least one mutation have MMs that are cis-presenting on the same allele. Interestingly, MMs show distinct mutational patterns in various oncogenes relative to single mutations in terms of mutation type, position, and amino acid substitution. Specifically, functionally weak, uncommon mutations are overrepresented in MMs, which enhance oncogenic activity in combination. Here, we present an overview of the current understanding of oncogenic MMs in human cancers and provide insights into their underlying mechanisms and clinical implications.
Collapse
Affiliation(s)
- Keisuke Kataoka
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Saito
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Nie L, Wang YN, Hsu JM, Hou J, Chu YY, Chan LC, Huo L, Wei Y, Deng R, Tang J, Hsu YH, Ko HW, Lim SO, Huang K, Chen MK, Chiu TJ, Cheng CC, Fang YF, Li CW, Goverdhan A, Wu HJ, Lee CC, Wang WL, Hsu J, Chiao P, Wang SC, Hung MC. Nuclear export signal mutation of epidermal growth factor receptor enhances malignant phenotypes of cancer cells. Am J Cancer Res 2023; 13:1209-1239. [PMID: 37168336 PMCID: PMC10164793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 05/13/2023] Open
Abstract
Nuclear epidermal growth factor receptor (EGFR) has been shown to be correlated with drug resistance and a poor prognosis in patients with cancer. Previously, we have identified a tripartite nuclear localization signal (NLS) within EGFR. To comprehensively determine the functions and underlying mechanism of nuclear EGFR and its clinical implications, we aimed to explore the nuclear export signal (NES) sequence of EGFR that is responsible for interacting with the exportins. We combined in silico prediction with site-directed mutagenesis approaches and identified a putative NES motif of EGFR, which is located in amino acid residues 736-749. Mutation at leucine 747 (L747) in the EGFR NES led to increased nuclear accumulation of the protein via a less efficient release of the exportin CRM1. Interestingly, L747 with serine (L747S) and with proline (L747P) mutations were found in both tyrosine kinase inhibitor (TKI)-treated and -naïve patients with lung cancer who had acquired or de novo TKI resistance and a poor outcome. Reconstituted expression of the single NES mutant EGFRL747P or EGFRL747S, but not the dual mutant along with the internalization-defective or NLS mutation, in lung cancer cells promoted malignant phenotypes, including cell migration, invasiveness, TKI resistance, and tumor initiation, supporting an oncogenic role of nuclear EGFR. Intriguingly, cells with germline expression of the NES L747 mutant developed into B cell lymphoma. Mechanistically, nuclear EGFR signaling is required for sustaining nuclear activated STAT3, but not for Erk. These findings suggest that EGFR functions are compartmentalized and that nuclear EGFR signaling plays a crucial role in tumor malignant phenotypes, leading to tumorigenesis in human cancer.
Collapse
Affiliation(s)
- Lei Nie
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Center for Molecular Medicine, China Medical University HospitalTaichung, Taiwan
| | - Junwei Hou
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Yu-Yi Chu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Longfei Huo
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Rong Deng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen UniversityGuangzhou, Guangdong, China
| | - Jun Tang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Department of Breast Oncology, Cancer Center, Sun Yat-Sen UniversityGuangzhou, Guangdong, China
| | - Yi-Hsin Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - How-Wen Ko
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of MedicineTaoyuan, Taiwan
| | - Seung-Oe Lim
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Kebin Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal UniversityGuilin, Guangxi, China
| | - Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Tai-Jan Chiu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Chien-Chia Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Yueh-Fu Fang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of MedicineTaoyuan, Taiwan
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Aarthi Goverdhan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Hsing-Ju Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Department of Medical Research, Chang Bing Show Chwan Memorial HospitalChanghua, Taiwan
| | - Cheng-Chung Lee
- Center for Molecular Medicine, China Medical University HospitalTaichung, Taiwan
| | - Wen-Ling Wang
- Center for Molecular Medicine, China Medical University HospitalTaichung, Taiwan
| | - Jennifer Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Paul Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
| | - Shao-Chun Wang
- Center for Molecular Medicine, China Medical University HospitalTaichung, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas, USA
- Center for Molecular Medicine, China Medical University HospitalTaichung, Taiwan
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, China Medical UniversityTaichung, Taiwan
| |
Collapse
|
8
|
Kleczko EK, Le AT, Hinz TK, Nguyen TT, Navarro A, Hu CJ, Selman AM, Clambey ET, Merrick DT, Lu S, Weiser-Evans M, Nemenoff RA, Heasley LE. Novel EGFR-mutant mouse models of lung adenocarcinoma reveal adaptive immunity requirement for durable osimertinib response. Cancer Lett 2023; 556:216062. [PMID: 36657561 PMCID: PMC10544803 DOI: 10.1016/j.canlet.2023.216062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
Lung cancers bearing oncogenically-mutated EGFR represent a significant fraction of lung adenocarcinomas (LUADs) for which EGFR-targeting tyrosine kinase inhibitors (TKIs) provide a highly effective therapeutic approach. However, these lung cancers eventually acquire resistance and undergo progression within a characteristically broad treatment duration range. Our previous study of EGFR mutant lung cancer patient biopsies highlighted the positive association of a TKI-induced interferon γ transcriptional response with increased time to treatment progression. To test the hypothesis that host immunity contributes to the TKI response, we developed novel genetically-engineered mouse models of EGFR mutant lung cancer bearing exon 19 deletions (del19) or the L860R missense mutation. Both oncogenic EGFR mouse models developed multifocal LUADs from which transplantable cancer cell lines sensitive to the EGFR-specific TKIs, gefitinib and osimertinib, were derived. When propagated orthotopically in the left lungs of syngeneic C57BL/6 mice, deep and durable shrinkage of the cell line-derived tumors was observed in response to daily treatment with osimertinib. By contrast, orthotopic tumors propagated in immune deficient nu/nu or Rag1-/- mice exhibited modest tumor shrinkage followed by rapid progression on continuous osimertinib treatment. Importantly, osimertinib treatment significantly increased intratumoral T cell content and decreased neutrophil content relative to diluent treatment. The findings provide strong evidence supporting the requirement for adaptive immunity in the durable therapeutic control of EGFR mutant lung cancer.
Collapse
Affiliation(s)
- Emily K Kleczko
- Departments of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anh T Le
- Departments of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Trista K Hinz
- Departments of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Teresa T Nguyen
- Departments of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Andre Navarro
- Departments of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cheng-Jun Hu
- Departments of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ana M Selman
- Departments of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric T Clambey
- Departments of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel T Merrick
- Departments of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sizhao Lu
- Departments of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mary Weiser-Evans
- Departments of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raphael A Nemenoff
- Departments of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Lynn E Heasley
- Departments of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.
| |
Collapse
|
9
|
Ravichandran R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166400. [PMID: 35341960 DOI: 10.1016/j.bbadis.2022.166400] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Autophagy is an intracellular self-degradative mechanism which responds to cellular conditions like stress or starvation and plays a key role in regulating cell metabolism, energy homeostasis, starvation adaptation, development and cell death. Numerous studies have stipulated the participation of autophagy in cancer, but the role of autophagy either as tumor suppressor or tumor promoter is not clearly understood. However, mechanisms by which autophagy promotes cancer involves a diverse range of modifications of autophagy associated proteins such as ATGs, Beclin-1, mTOR, p53, KRAS etc. and autophagy pathways like mTOR, PI3K, MAPK, EGFR, HIF and NFκB. Furthermore, several researches have highlighted a context-dependent, cell type and stage-dependent regulation of autophagy in cancer. Alongside this, the interaction between tumor cells and their microenvironment including hypoxia has a great potential in modulating autophagy response in favour to substantiate cancer cell metabolism, self-proliferation and metastasis. In this review article, we highlight the mechanism of autophagy and their contribution to cancer cell proliferation and development. In addition, we discuss about tumor microenvironment interaction and their consequence on selective autophagy pathways and the involvement of autophagy in various tumor types and their therapeutic interventions concentrated on exploiting autophagy as a potential target to improve cancer therapy.
Collapse
Affiliation(s)
- Rakesh Ravichandran
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | | | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India.
| |
Collapse
|
10
|
Tu E, McGlinchey K, Wang J, Martin P, Ching SL, Floc’h N, Kurasawa J, Starrett JH, Lazdun Y, Wetzel L, Nuttall B, Ng FS, Coffman KT, Smith PD, Politi K, Cooper ZA, Streicher K. Anti-PD-L1 and anti-CD73 combination therapy promotes T cell response to EGFR-mutated NSCLC. JCI Insight 2022; 7:e142843. [PMID: 35132961 PMCID: PMC8855814 DOI: 10.1172/jci.insight.142843] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/15/2021] [Indexed: 12/14/2022] Open
Abstract
Treatment with anti-PD-1 and anti-PD-L1 therapies has shown durable clinical benefit in non-small cell lung cancer (NSCLC). However, patients with NSCLC with epidermal growth factor receptor (EGFR) mutations do not respond as well to treatment as patients without an EGFR mutation. We show that EGFR-mutated NSCLC expressed higher levels of CD73 compared with EGFR WT tumors and that CD73 expression was regulated by EGFR signaling. EGFR-mutated cell lines were significantly more resistant to T cell killing compared with WT cell lines through suppression of T cell proliferation and function. In a xenograft mouse model of EGFR-mutated NSCLC, neither anti-PD-L1 nor anti-CD73 antibody alone inhibited tumor growth compared with the isotype control. In contrast, the combination of both antibodies significantly inhibited tumor growth, increased the number of tumor-infiltrating CD8+ T cells, and enhanced IFN-γ and TNF-α production of these T cells. Consistently, there were increases in gene expression that corresponded to inflammation and T cell function in tumors treated with the combination of anti-PD-L1 and anti-CD73. Together, these results further support the combination of anti-CD73 and anti-PD-L1 therapies in treating EGFR-mutated NSCLC, while suggesting that increased T cell activity may play a role in response to therapy.
Collapse
Affiliation(s)
| | - Kelly McGlinchey
- Research Early Oncology, AstraZeneca, Gaithersburg, Maryland, USA
| | | | | | | | - Nicolas Floc’h
- Oncology R&D, Bioscience, AstraZeneca, Cambridge, United Kingdom
| | - James Kurasawa
- Biologics Engineering, AstraZeneca, Gaithersburg, Maryland, USA
| | | | | | - Leslie Wetzel
- Research Early Oncology, AstraZeneca, Gaithersburg, Maryland, USA
| | | | | | | | - Paul D. Smith
- Oncology R&D, Bioscience, AstraZeneca, Cambridge, United Kingdom
| | - Katerina Politi
- Department of Pathology and Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | | | | |
Collapse
|
11
|
Arnal-Estapé A, Foggetti G, Starrett JH, Nguyen DX, Politi K. Preclinical Models for the Study of Lung Cancer Pathogenesis and Therapy Development. Cold Spring Harb Perspect Med 2021; 11:a037820. [PMID: 34518338 PMCID: PMC8634791 DOI: 10.1101/cshperspect.a037820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Experimental preclinical models have been a cornerstone of lung cancer translational research. Work in these model systems has provided insights into the biology of lung cancer subtypes and their origins, contributed to our understanding of the mechanisms that underlie tumor progression, and revealed new therapeutic vulnerabilities. Initially patient-derived lung cancer cell lines were the main preclinical models available. The landscape is very different now with numerous preclinical models for research each with unique characteristics. These include genetically engineered mouse models (GEMMs), patient-derived xenografts (PDXs) and three-dimensional culture systems ("organoid" cultures). Here we review the development and applications of these models and describe their contributions to lung cancer research.
Collapse
Affiliation(s)
- Anna Arnal-Estapé
- Department of Pathology
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | - Don X Nguyen
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Katerina Politi
- Department of Pathology
- Department of Internal Medicine (Section of Medical Oncology)
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| |
Collapse
|
12
|
Honkala A, Malhotra SV, Kummar S, Junttila MR. Harnessing the predictive power of preclinical models for oncology drug development. Nat Rev Drug Discov 2021; 21:99-114. [PMID: 34702990 DOI: 10.1038/s41573-021-00301-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/21/2022]
Abstract
Recent progress in understanding the molecular basis of cellular processes, identification of promising therapeutic targets and evolution of the regulatory landscape makes this an exciting and unprecedented time to be in the field of oncology drug development. However, high costs, long development timelines and steep rates of attrition continue to afflict the drug development process. Lack of predictive preclinical models is considered one of the key reasons for the high rate of attrition in oncology. Generating meaningful and predictive results preclinically requires a firm grasp of the relevant biological questions and alignment of the model systems that mirror the patient context. In doing so, the ability to conduct both forward translation, the process of implementing basic research discoveries into practice, as well as reverse translation, the process of elucidating the mechanistic basis of clinical observations, greatly enhances our ability to develop effective anticancer treatments. In this Review, we outline issues in preclinical-to-clinical translatability of molecularly targeted cancer therapies, present concepts and examples of successful reverse translation, and highlight the need to better align tumour biology in patients with preclinical model systems including tracking of strengths and weaknesses of preclinical models throughout programme development.
Collapse
Affiliation(s)
- Alexander Honkala
- Department of Cell Development & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sanjay V Malhotra
- Department of Cell Development & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shivaani Kummar
- Center for Experimental Therapeutics, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA. .,Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland, OR, USA.
| | | |
Collapse
|
13
|
Varma G, Seth P, de Souza PC, Callahan C, Pinto J, Vaidya M, Sonzogni O, Sukhatme V, Wulf GM, Grant AK. Visualizing the effects of lactate dehydrogenase (LDH) inhibition and LDH-A genetic ablation in breast and lung cancer with hyperpolarized pyruvate NMR. NMR IN BIOMEDICINE 2021; 34:e4560. [PMID: 34086382 PMCID: PMC8764798 DOI: 10.1002/nbm.4560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 05/12/2023]
Abstract
In many tumors, cancer cells take up large quantities of glucose and metabolize it into lactate, even in the presence of sufficient oxygen to support oxidative metabolism. It has been hypothesized that this malignant metabolic phenotype supports cancer growth and metastasis, and that reversal of this so-called "Warburg effect" may selectively harm cancer cells. Conversion of glucose to lactate can be reduced by ablation or inhibition of lactate dehydrogenase (LDH), the enzyme responsible for conversion of pyruvate to lactate at the endpoint of glycolysis. Recently developed inhibitors of LDH provide new opportunities to investigate the role of this metabolic pathway in cancer. Here we show that magnetic resonance spectroscopic imaging of hyperpolarized pyruvate and its metabolites in models of breast and lung cancer reveal that inhibition of LDH was readily visualized through reduction in label exchange between pyruvate and lactate, while genetic ablation of the LDH-A isoform alone had smaller effects. During the acute phase of LDH inhibition in breast cancer, no discernible bicarbonate signal was observed and small signals from alanine were unchanged.
Collapse
Affiliation(s)
- Gopal Varma
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pankaj Seth
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Patricia Coutinho de Souza
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Cody Callahan
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jocelin Pinto
- Department of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Manushka Vaidya
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Olmo Sonzogni
- Department of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Vikas Sukhatme
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Gerburg M. Wulf
- Department of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Aaron K. Grant
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Corresponding author: Aaron K. Grant, PhD, Department of Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, AN-232, 330 Brookline Avenue, Boston, MA 02215, USA,
| |
Collapse
|
14
|
De Novo T790M Mutation in an L858R Epidermal Growth Factor Receptor Mutant-Associated Lung Adenocarcinoma. Cancers (Basel) 2020; 12:cancers12103074. [PMID: 33096790 PMCID: PMC7589092 DOI: 10.3390/cancers12103074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/11/2020] [Accepted: 10/18/2020] [Indexed: 01/22/2023] Open
Abstract
Background: Lung cancer is the leading cause of mortality for cancer worldwide. A point mutation in exon 21 of the epidermal growth factor receptor resulting in the substitution of arginine for leucine at position 858 (L858R) is a frequent cause of lung adenocarcinoma. Tyrosine kinase inhibitors are effective for treating patients with lung cancer associated with mutant epidermal growth factor receptors but most tumors become resistant shortly after treatment. The substitution of methionine for threonine at position 790 (T790M) on exon 20 is the most frequently acquired mutation leading to resistance to tyrosine kinase inhibitors. Whether the T790M mutation occurred after tyrosine kinase inhibitor therapy or it already existed before therapy is unclear. Methods: Here, we developed mice with tetracycline-inducible lung-specific expression of the full-length genomic DNA of the human epidermal growth factor receptor containing an L858R mutation or both L858R and T790M mutations and evaluated de novo T790M mutation in untreated transgenic mice carrying a single L858R EGFR mutation. Results: The L858R mutation-associated lung adenocarcinoma acquired de novo T790 mutation without previous therapy. Conclusions: The results of this study suggest that lung tumors may spontaneously acquire T790M mutations without any drug-related selective pressure.
Collapse
|
15
|
The V654A second-site KIT mutation increases tumor oncogenesis and STAT activation in a mouse model of gastrointestinal stromal tumor. Oncogene 2020; 39:7153-7165. [PMID: 33024275 PMCID: PMC7718339 DOI: 10.1038/s41388-020-01489-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 01/02/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and arises in the gastrointestinal tract. Most GISTs are caused by activating mutations in the KIT receptor tyrosine kinase, such as the exon 11 KIT V559Δ mutation. The small molecule imatinib inhibits KIT and has been a mainstay of therapy in GIST. Unfortunately, imatinib-treated patients typically relapse, most often due to clonal emergence of the resistance-associated KIT V654A mutation. To determine the biologic impact of this second-site mutation in vivo, we created a mouse model with the corresponding V558Δ;V653A Kit double mutation restricted (a) spatially to ETV1+ cells, which include the interstitial cells of Cajal (ICCs) from which GISTs presumably originate, and (b) temporally through tamoxifen treatment after birth. This resulted in the first in vivo model of the most common second-site mutation associated with imatinib resistance in GIST and the first in vivo demonstration that cell-autonomous expression of mutant KIT in the ICC lineage leads to GIST. GISTs driven by the V558Δ;V653A Kit double mutation were resistant to imatinib, while cabozantinib was more effective in overcoming resistance than sunitinib. Compared to control mice with a single V558Δ Kit mutation, mice with a double V558Δ; V653A Kit mutation had increased tumor oncogenesis and associated KIT-dependent STAT activation. Our findings demonstrate that the biologic consequences of a second-site mutation in an oncogenic driver may include not only a mechanism for drug resistance, but changes in tumor oncogenic potential and differential activation of signaling pathways.
Collapse
|
16
|
Starrett JH, Guernet AA, Cuomo ME, Poels KE, van Alderwerelt van Rosenburgh IK, Nagelberg A, Farnsworth D, Price KS, Khan H, Ashtekar KD, Gaefele M, Ayeni D, Stewart TF, Kuhlmann A, Kaech SM, Unni AM, Homer R, Lockwood WW, Michor F, Goldberg SB, Lemmon MA, Smith PD, Cross DAE, Politi K. Drug Sensitivity and Allele Specificity of First-Line Osimertinib Resistance EGFR Mutations. Cancer Res 2020; 80:2017-2030. [PMID: 32193290 DOI: 10.1158/0008-5472.can-19-3819] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/06/2019] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
Osimertinib, a mutant-specific third-generation EGFR tyrosine kinase inhibitor, is emerging as the preferred first-line therapy for EGFR-mutant lung cancer, yet resistance inevitably develops in patients. We modeled acquired resistance to osimertinib in transgenic mouse models of EGFRL858R -induced lung adenocarcinoma and found that it is mediated largely through secondary mutations in EGFR-either C797S or L718V/Q. Analysis of circulating free DNA data from patients revealed that L718Q/V mutations almost always occur in the context of an L858R driver mutation. Therapeutic testing in mice revealed that both erlotinib and afatinib caused regression of osimertinib-resistant C797S-containing tumors, whereas only afatinib was effective on L718Q mutant tumors. Combination first-line osimertinib plus erlotinib treatment prevented the emergence of secondary mutations in EGFR. These findings highlight how knowledge of the specific characteristics of resistance mutations is important for determining potential subsequent treatment approaches and suggest strategies to overcome or prevent osimertinib resistance in vivo. SIGNIFICANCE: This study provides insight into the biological and molecular properties of osimertinib resistance EGFR mutations and evaluates therapeutic strategies to overcome resistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/10/2017/F1.large.jpg.
Collapse
Affiliation(s)
| | - Alexis A Guernet
- Discovery Biology, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Maria Emanuela Cuomo
- Discovery Biology, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, United Kingdom
| | - Kamrine E Poels
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Iris K van Alderwerelt van Rosenburgh
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
- Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
| | - Amy Nagelberg
- Department of Integrative Oncology, British Columbia Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, British Columbia Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Hina Khan
- Warren Alpert Medical School, Brown University, Providence, Rhode Island; and Lifespan Cancer Institute, Providence, Rhode Island
| | - Kumar Dilip Ashtekar
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
- Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
| | | | - Deborah Ayeni
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Tyler F Stewart
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Alexandra Kuhlmann
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute, La Jolla, California
| | - Arun M Unni
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
- Pathology and Laboratory Medicine Service, VA CT HealthCare System, West Haven, Connecticut
| | - William W Lockwood
- Department of Integrative Oncology, British Columbia Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Franziska Michor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; and Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, Massachusetts; The Broad Institute of Harvard and MIT, Cambridge, Massachusetts; and The Ludwig Center at Harvard, Boston, Massachusetts
| | - Sarah B Goldberg
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| | - Mark A Lemmon
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
- Cancer Biology Institute, Yale School of Medicine, New Haven, Connecticut
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - Paul D Smith
- R&D Oncology, AstraZeneca, Cambridge, United Kingdom
| | | | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut
- Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
17
|
de Alencar VTL, Formiga MN, de Lima VCC. Inherited lung cancer: a review. Ecancermedicalscience 2020; 14:1008. [PMID: 32104210 PMCID: PMC7039693 DOI: 10.3332/ecancer.2020.1008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Lung cancer is the most common cancer worldwide and has high rates of mortality. The major risk factor associated with this disease is tobacco smoke, but approximately 10%-25% of all lung cancer cases occur in patients who have never smoked. Data suggest that lung cancer in never-smokers has a different molecular profile, tumour microenvironment and epidemiology than that in smokers. Several risk factors have been associated with its occurrence, and the possibility of inherited predisposition is becoming clearer. A better understanding of this disease is essential for the future development of personalised screening, diagnosis and treatment approaches, with consequent reduction of mortality. In this review, we discuss historical studies of lung cancer in never-smokers and the currently available evidence of inherited predisposition to this disease.
Collapse
Affiliation(s)
| | - Maria Nirvana Formiga
- AC Camargo Cancer Center, R Prof Antônio Prudente, 211 São Paulo, SP 01509-010, Brazil
| | | |
Collapse
|
18
|
Cheng YI, Gan YC, Liu D, Davies MPA, Li WM, Field JK. Potential genetic modifiers for somatic EGFR mutation in lung cancer: a meta-analysis and literature review. BMC Cancer 2019; 19:1068. [PMID: 31703574 PMCID: PMC6842246 DOI: 10.1186/s12885-019-6317-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 10/31/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Accumulating evidence indicates inherited risk in the aetiology of lung cancer, although smoking exposure is the major attributing factor. Family history is a simple substitute for inherited susceptibility. Previous studies have shown some possible yet conflicting links between family history of cancer and EGFR mutation in lung cancer. As EGFR-mutated lung cancer favours female, never-smoker, adenocarcinoma and Asians, it may be argued that there may be some underlying genetic modifiers responsible for the pathogenesis of EGFR mutation. METHODS We searched four databases for all original articles on family history of malignancy and EGFR mutation status in lung cancer published up to July 2018. We performed a meta-analysis by using a random-effects model and odds ratio estimates. Heterogeneity and sensitivity were also investigated. Then we conducted a second literature research to curate case reports of familial lung cancers who studied both germline cancer predisposing genes and their somatic EGFR mutation status; and explored the possible links between cancer predisposing genes and EGFR mutation. RESULTS Eleven studies have been included in the meta-analysis. There is a significantly higher likelihood of EGFR mutation in lung cancer patients with family history of cancer than their counterparts without family history, preferentially in Asians (OR = 1.35[1.06-1.71], P = 0.01), those diagnosed with adenocarcinomas ((OR = 1.47[1.14-1.89], P = 0.003) and those with lung cancer-affected relatives (first and second-degree: OR = 1.53[1.18-1.99], P = 0.001; first-degree: OR = 1.76[1.36-2.28, P < 0.0001]). Familial lung cancers more likely have concurrent EGFR mutations along with mutations in their germline cancer predisposition genes including EGFR T790 M, BRCA2 and TP53. Certain mechanisms may contribute to the combination preferences between inherited mutations and somatic ones. CONCLUSIONS Potential genetic modifiers may contribute to somatic EGFR mutation in lung cancer, although current data is limited. Further studies on this topic are needed, which may help to unveil lung carcinogenesis pathways. However, caution is warranted in data interpretation due to limited cases available for the current study.
Collapse
Affiliation(s)
- Yue I Cheng
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Lung Cancer Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Yun Cui Gan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Michael P A Davies
- Lung Cancer Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Wei Min Li
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - John K Field
- Lung Cancer Research Group, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
19
|
Ayeni D, Miller B, Kuhlmann A, Ho PC, Robles-Oteiza C, Gaefele M, Levy S, de Miguel FJ, Perry C, Guan T, Krystal G, Lockwood W, Zelterman D, Homer R, Liu Z, Kaech S, Politi K. Tumor regression mediated by oncogene withdrawal or erlotinib stimulates infiltration of inflammatory immune cells in EGFR mutant lung tumors. J Immunother Cancer 2019; 7:172. [PMID: 31291990 PMCID: PMC6617639 DOI: 10.1186/s40425-019-0643-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
Background Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitors (TKIs) like erlotinib are effective for treating patients with EGFR mutant lung cancer; however, drug resistance inevitably emerges. Approaches to combine immunotherapies and targeted therapies to overcome or delay drug resistance have been hindered by limited knowledge of the effect of erlotinib on tumor-infiltrating immune cells. Methods Using mouse models, we studied the immunological profile of mutant EGFR-driven lung tumors before and after erlotinib treatment. Results We found that erlotinib triggered the recruitment of inflammatory T cells into the lungs and increased maturation of alveolar macrophages. Interestingly, this phenotype could be recapitulated by tumor regression mediated by deprivation of the EGFR oncogene indicating that tumor regression alone was sufficient for these immunostimulatory effects. We also found that further efforts to boost the function and abundance of inflammatory cells, by combining erlotinib treatment with anti-PD-1 and/or a CD40 agonist, did not improve survival in an EGFR-driven mouse model. Conclusions Our findings lay the foundation for understanding the effects of TKIs on the tumor microenvironment and highlight the importance of investigating targeted and immuno-therapy combination strategies to treat EGFR mutant lung cancer. Electronic supplementary material The online version of this article (10.1186/s40425-019-0643-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deborah Ayeni
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA
| | - Braden Miller
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Alexandra Kuhlmann
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Ping-Chih Ho
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA.,Present address: Department of Fundamental Oncology, University of Lausanne, Ludwig Cancer Research Lausanne Branch, Lausanne, Switzerland
| | | | - Mmaserame Gaefele
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Stellar Levy
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Curtis Perry
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Tianxia Guan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Gerald Krystal
- British Columbia Cancer Agency, B.C, Vancouver, V5Z 1L3, Canada
| | | | - Daniel Zelterman
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Robert Homer
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA.,VA Connecticut Healthcare System, Pathology and Laboratory Medicine Service, 950 Campbell Ave, West Haven, CT, 06516, USA
| | - Zongzhi Liu
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA
| | - Susan Kaech
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA.,Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA.,Present address: Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, SHM-I 234D, New Haven, CT, 06510, USA. .,Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06510, USA. .,Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
20
|
Chakroborty D, Kurppa KJ, Paatero I, Ojala VK, Koivu M, Tamirat MZ, Koivunen JP, Jänne PA, Johnson MS, Elo LL, Elenius K. An unbiased in vitro screen for activating epidermal growth factor receptor mutations. J Biol Chem 2019; 294:9377-9389. [PMID: 30952700 DOI: 10.1074/jbc.ra118.006336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/23/2019] [Indexed: 01/22/2023] Open
Abstract
Cancer tissues harbor thousands of mutations, and a given oncogene may be mutated at hundreds of sites, yet only a few of these mutations have been functionally tested. Here, we describe an unbiased platform for the functional characterization of thousands of variants of a single receptor tyrosine kinase (RTK) gene in a single assay. Our in vitro screen for activating mutations (iSCREAM) platform enabled rapid analysis of mutations conferring gain-of-function RTK activity promoting clonal growth. The screening strategy included a somatic model of cancer evolution and utilized a library of 7,216 randomly mutated epidermal growth factor receptor (EGFR) single-nucleotide variants that were tested in murine lymphoid Ba/F3 cells. These cells depend on exogenous interleukin-3 (IL-3) for growth, but this dependence can be compensated by ectopic EGFR overexpression, enabling selection for gain-of-function EGFR mutants. Analysis of the enriched mutants revealed EGFR A702V, a novel activating variant that structurally stabilized the EGFR kinase dimer interface and conferred sensitivity to kinase inhibition by afatinib. As proof of concept for our approach, we recapitulated clinical observations and identified the EGFR L858R as the major enriched EGFR variant. Altogether, iSCREAM enabled robust enrichment of 21 variants from a total of 7,216 EGFR mutations. These findings indicate the power of this screening platform for unbiased identification of activating RTK variants that are enriched under selection pressure in a model of cancer heterogeneity and evolution.
Collapse
Affiliation(s)
- Deepankar Chakroborty
- From the Institute of Biomedicine and Medicity Research Laboratories and.,the Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland.,the Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Kari J Kurppa
- From the Institute of Biomedicine and Medicity Research Laboratories and.,the Department of Medical Oncology and
| | - Ilkka Paatero
- the Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Veera K Ojala
- From the Institute of Biomedicine and Medicity Research Laboratories and.,the Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland.,the Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Marika Koivu
- From the Institute of Biomedicine and Medicity Research Laboratories and.,the Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku 20520, Finland.,the Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Mahlet Z Tamirat
- the Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Jussi P Koivunen
- the Department of Oncology and Radiotherapy, Oulu University Hospital and MRC Oulu, Oulu 90220, Finland, and
| | - Pasi A Jänne
- the Department of Medical Oncology and.,the Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Mark S Johnson
- the Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Laura L Elo
- the Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Klaus Elenius
- From the Institute of Biomedicine and Medicity Research Laboratories and .,the Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland.,the Department of Oncology, Turku University Hospital, Turku 20521, Finland
| |
Collapse
|
21
|
Jones RA, Franks SE, Moorehead RA. Comparative mRNA and miRNA transcriptome analysis of a mouse model of IGFIR-driven lung cancer. PLoS One 2018; 13:e0206948. [PMID: 30412601 PMCID: PMC6226179 DOI: 10.1371/journal.pone.0206948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/21/2018] [Indexed: 01/18/2023] Open
Abstract
Mouse models of cancer play an important role in elucidating the molecular mechanisms that contribute to tumorigenesis. The extent to which these models resemble one another and their human counterparts at the molecular level is critical in understanding tumorigenesis. In this study, we carried out a comparative gene expression analysis to generate a detailed molecular portrait of a transgenic mouse model of IGFIR-driven lung cancer. IGFIR-driven tumors displayed a strong resemblance with established mouse models of lung adenocarcinoma, particularly EGFR-driven models highlighted by elevated levels of the EGFR ligands Ereg and Areg. Cross-species analysis revealed a shared increase in human lung adenocarcinoma markers including Nkx2.1 and Napsa as well as alterations in a subset of genes with oncogenic and tumor suppressive properties such as Aurka, Ret, Klf4 and Lats2. Integrated miRNA and mRNA analysis in IGFIR-driven tumors identified interaction pairs with roles in ErbB signaling while cross-species analysis revealed coordinated expression of a subset of conserved miRNAs and their targets including miR-21-5p (Reck, Timp3 and Tgfbr3). Overall, these findings support the use of SPC-IGFIR mice as a model of human lung adenocarcinoma and provide a comprehensive knowledge base to dissect the molecular pathogenesis of tumor initiation and progression.
Collapse
Affiliation(s)
- Robert A. Jones
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah E. Franks
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Roger A. Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
22
|
Lee JS, Hur JY, Kim HJ, Lee KY, Kim WS. A Case of Concurrent De Novo C797S and L858R EGFR Mutation Detected in Stage IA Non-Small Cell Lung Cancer Patient. J Thorac Oncol 2018; 12:e179-e181. [PMID: 29074208 DOI: 10.1016/j.jtho.2017.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Jong Sik Lee
- Lung Cancer Center, Department of Pulmonary Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jae Young Hur
- Lung Cancer Center, Department of Pulmonary Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hee Joung Kim
- Lung Cancer Center, Department of Pulmonary Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kye Young Lee
- Lung Cancer Center, Department of Pulmonary Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea.
| | - Wan Seop Kim
- Department of Pathology, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Ryan MR, Sohl CD, Luo B, Anderson KS. The FGFR1 V561M Gatekeeper Mutation Drives AZD4547 Resistance through STAT3 Activation and EMT. Mol Cancer Res 2018; 17:532-543. [PMID: 30257990 DOI: 10.1158/1541-7786.mcr-18-0429] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/06/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
FGFR1 has been implicated in numerous cancer types including squamous cell lung cancer, a subset of non-small cell lung cancer with a dismal 5-year survival rate. Small-molecule inhibitors targeting FGFR1 are currently in clinical trials, with AZD4547 being one of the furthest along; however, the development of drug resistance is a major challenge for targeted therapies. A prevalent mechanism of drug resistance in kinases occurs through mutation of the gatekeeper residue, V561M in FGFR1; however, mechanisms underlying V561M resistance to AZD4547 are not fully understood. Here, the cellular consequences of the V561M gatekeeper mutation were characterized, and it was found that although AZD4547 maintains nanomolar affinity for V561M FGFR1, based on in vitro binding assays, cells expressing V561M demonstrate dramatic resistance to AZD4547 driven by increased STAT3 activation downstream of V561M FGFR1. The data reveal that the V561M mutation biases cells toward a more mesenchymal phenotype, including increased levels of proliferation, migration, invasion, and anchorage-independent growth, which was confirmed using CyTOF, a novel single-cell analysis tool. Using shRNA knockdown, loss of STAT3 restored sensitivity of cancer cells expressing V561M FGFR1 to AZD4547. Thus, the data demonstrate that combination therapies including FGFR and STAT3 may overcome V561M FGFR1-driven drug resistance in the clinic. IMPLICATIONS: The V561M FGFR1 gatekeeper mutation leads to devastating drug resistance through activation of STAT3 and the epithelial-mesenchymal transition; this study demonstrates that FGFR1 inhibitor sensitivity can be restored upon STAT3 knockdown.
Collapse
Affiliation(s)
- Molly R Ryan
- Department of Pharmacology, Yale University, New Haven, Connecticut
| | - Christal D Sohl
- Department of Pharmacology, Yale University, New Haven, Connecticut
| | - BeiBei Luo
- Department of Pharmacology, Yale University, New Haven, Connecticut
| | - Karen S Anderson
- Department of Pharmacology, Yale University, New Haven, Connecticut.
| |
Collapse
|
24
|
Testa U, Castelli G, Pelosi E. Lung Cancers: Molecular Characterization, Clonal Heterogeneity and Evolution, and Cancer Stem Cells. Cancers (Basel) 2018; 10:E248. [PMID: 30060526 PMCID: PMC6116004 DOI: 10.3390/cancers10080248] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer causes the largest number of cancer-related deaths in the world. Most (85%) of lung cancers are classified as non-small-cell lung cancer (NSCLC) and small-cell lung cancer (15%) (SCLC). The 5-year survival rate for NSCLC patients remains very low (about 16% at 5 years). The two predominant NSCLC histological phenotypes are adenocarcinoma (ADC) and squamous cell carcinoma (LSQCC). ADCs display several recurrent genetic alterations, including: KRAS, BRAF and EGFR mutations; recurrent mutations and amplifications of several oncogenes, including ERBB2, MET, FGFR1 and FGFR2; fusion oncogenes involving ALK, ROS1, Neuregulin1 (NRG1) and RET. In LSQCC recurrent mutations of TP53, FGFR1, FGFR2, FGFR3, DDR2 and genes of the PI3K pathway have been detected, quantitative gene abnormalities of PTEN and CDKN2A. Developments in the characterization of lung cancer molecular abnormalities provided a strong rationale for new therapeutic options and for understanding the mechanisms of drug resistance. However, the complexity of lung cancer genomes is particularly high, as shown by deep-sequencing studies supporting the heterogeneity of lung tumors at cellular level, with sub-clones exhibiting different combinations of mutations. Molecular studies performed on lung tumors during treatment have shown the phenomenon of clonal evolution, thus supporting the occurrence of a temporal tumor heterogeneity.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
25
|
An EGFR ligand promotes EGFR-mutant but not KRAS-mutant lung cancer in vivo. Oncogene 2018; 37:3894-3908. [PMID: 29662194 DOI: 10.1038/s41388-018-0240-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 12/19/2022]
Abstract
EGFR ligands (e.g., EGF and TGFA) have been shown to be clinically associated with poor survival in lung cancer. Since TGFA itself initiates autochthonous tumors in liver, breast, and pancreas but not in the lung in transgenic mice in vivo, it would appear that an EGFR ligand may not initiate but rather promote lung cancer. However, it has not been proven in vivo whether lung cancer is promoted by an EGFR ligand. Using transgenic mouse models conditionally expressing EGFRL858R or KrasG12D with TGFA (an EGFR ligand) in lung epithelium, we determined that TGFA promoted the growth of EGFRL858R-lung tumors in airway regions but not that of KrasG12D-lung tumors. Analysis of TCGA datasets identified ΔNp63 and AGR2 as potential key tumor-promoting regulators, which were highly induced in the TGFA-induced EGFRL858R-lung tumors. The expression of AGR2 was positively correlated with the expression of TGFA in human EGFR-mutant lung adenocarcinomas. The expression of TGFA in human EGFR-mutant lung adenocarcinomas but not in the EGFR wild-type lung adenocarcinoma was associated with poor survival. These results suggest that targeting EGFR ligands may benefit patients who carry EGFR-mutant lung tumors but will not benefit patients with KRAS-mutant lung tumors.
Collapse
|
26
|
Tseng JS, Su KY, Yang TY, Chen KC, Hsu KH, Chen HY, Tsai CR, Yu SL, Chang GC. The emergence of T790M mutation in EGFR-mutant lung adenocarcinoma patients having a history of acquired resistance to EGFR-TKI: focus on rebiopsy timing and long-term existence of T790M. Oncotarget 2018; 7:48059-48069. [PMID: 27384480 PMCID: PMC5217000 DOI: 10.18632/oncotarget.10351] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/29/2016] [Indexed: 01/04/2023] Open
Abstract
Different growth kinetics occurring between the sensitive and T790M-containing cells may result in the repopulation of tumor cells over time. Little information has yet been uncovered on whether rebiopsy timing influences the T790M detection rate. We enrolled a total of 98 epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma patients, who had a history of acquired resistance to EGFR-tyrosine kinase inhibitor (TKI) and available rebiopsy tumor specimens for reassessment of EGFR mutations. Rebiopsy was performed at the time of first EGFR-TKI progression in 54 patients (55.1%); for the other 44 patients (44.9%), rebiopsy was done with an interval from first EGFR-TKI progression (median 470.5 days, range 46-1742 days). Our results indicated that rebiopsy timing did not influence the detection rate of T790M and that the mutation could be identified in patients with a long EGFR-TKI-free interval. For patients without suitable lesions for rebiopsy at the time of EGFR-TKI progression, an attempt to rebiopsy should be considered during the subsequent treatment courses.
Collapse
Affiliation(s)
- Jeng-Sen Tseng
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuo-Hsuan Hsu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.,College of Medicine, National Taiwan University, Taipei, Taiwan.,College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chi-Ren Tsai
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Molecular Biology, National Chung-Hsing University, Taichung, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Center of Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Pathology and Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center for Optoelectronic Biomedicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
27
|
Gaut D, Sim MS, Yue Y, Wolf BR, Abarca PA, Carroll JM, Goldman JW, Garon EB. Clinical Implications of the T790M Mutation in Disease Characteristics and Treatment Response in Patients With Epidermal Growth Factor Receptor (EGFR)-Mutated Non-Small-Cell Lung Cancer (NSCLC). Clin Lung Cancer 2017; 19:e19-e28. [PMID: 28712979 DOI: 10.1016/j.cllc.2017.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 06/13/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND The secondary T790M mutation accounts for more than 50% of acquired tyrosine kinase inhibitor (TKI) resistance in patients with EGFR-mutated non-small-cell lung cancer (NSCLC). Recent reports suggest this resistance mutation may be more common among patients with longer progression-free survival (PFS) on first-line TKI therapy, but much is still unknown. MATERIALS AND METHODS Our group collected medical records from patients who underwent a biopsy for T790M mutation testing while screening for clinical trials involving the drug rociletinib (CO-1686), a T790M mutation-specific TKI. Medical records were retrospectively analyzed for demographic data, PFS, and best response to previous therapies. RESULTS Our patient cohort included 69 T790M+ patients and 28 T790M- patients. Patients who later developed a T790M mutation had a longer PFS on first-line TKI therapy (12.0 vs. 9.0 months, P = .021), but overall response rate (ORR) was the same (75.0% vs. 81.0%, P = .76). There was no difference in PFS on TKI rechallenge (4.0 vs. 3.0 months, P = .94), although there was a trend toward higher ORR in T790M+ patients (22.2% vs. 0%, P = .12). T790M+ patients had a longer PFS on initial chemotherapy treatment (5.0 vs. 4.0 months, P = .025) and a trend toward higher ORR (40.0% vs. 21.4%, P = .31). CONCLUSION Our study confirms that tumors expressing T790M have a more indolent progression of disease compared with their T790M- counterparts when treated with both first-line TKI and cytotoxic chemotherapy.
Collapse
Affiliation(s)
- Daria Gaut
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.
| | - Myung Shin Sim
- Division of General Internal Medicine and Health Services Research, Department of Medicine Statistics Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Yuguang Yue
- Division of General Internal Medicine and Health Services Research, Department of Medicine Statistics Core, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Brian R Wolf
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Phillip A Abarca
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - James M Carroll
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Jonathan W Goldman
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Edward B Garon
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
28
|
Passaro A, Guerini-Rocco E, Pochesci A, Vacirca D, Spitaleri G, Catania CM, Rappa A, Barberis M, de Marinis F. Targeting EGFR T790M mutation in NSCLC: From biology to evaluation and treatment. Pharmacol Res 2017; 117:406-415. [DOI: 10.1016/j.phrs.2017.01.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
|
29
|
Hassanein M, Hight MR, Buck JR, Tantawy MN, Nickels ML, Hoeksema MD, Harris BK, Boyd K, Massion PP, Manning HC. Preclinical Evaluation of 4-[18F]Fluoroglutamine PET to Assess ASCT2 Expression in Lung Cancer. Mol Imaging Biol 2016; 18:18-23. [PMID: 25971659 DOI: 10.1007/s11307-015-0862-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Alanine-serine-cysteine transporter 2 (ASCT2) expression has been demonstrated as a promising lung cancer biomarker. (2S,4R)-4-[(18)F]Fluoroglutamine (4-[(18)F]fluoro-Gln) positron emission tomography (PET) was evaluated in preclinical models of non-small cell lung cancer as a quantitative, non-invasive measure of ASCT2 expression. PROCEDURES In vivo microPET studies of 4-[(18)F]fluoro-Gln uptake were undertaken in human cell line xenograft tumor-bearing mice of varying ASCT2 levels, followed by a genetically engineered mouse model of epidermal growth factor receptor (EGFR)-mutant lung cancer. The relationship between a tracer accumulation and ASCT2 levels in tumors was evaluated by IHC and immunoblotting. RESULT 4-[(18)F]Fluoro-Gln uptake, but not 2-deoxy-2-[(18)F]fluoro-D-glucose, correlated with relative ASCT2 levels in xenograft tumors. In genetically engineered mice, 4-[(18)F]fluoro-Gln accumulation was significantly elevated in lung tumors, relative to normal lung and cardiac tissues. CONCLUSIONS 4-[(18)F]Fluoro-Gln PET appears to provide a non-invasive measure of ASCT2 expression. Given the potential of ASCT2 as a lung cancer biomarker, this and other tracers reflecting ASCT2 levels could emerge as precision imaging diagnostics in this setting.
Collapse
Affiliation(s)
- Mohamed Hassanein
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.,Thoracic Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Matthew R Hight
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jason R Buck
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Mohammed N Tantawy
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Michael L Nickels
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Megan D Hoeksema
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Bradford K Harris
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Kelli Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Pierre P Massion
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.,Thoracic Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
30
|
Abstract
Treatment advances have improved outcomes in patients with lung cancer, with a number of targeted therapies and immunotherapies now approved for patients with metastatic disease. Along with longer survival, modern treatment paradigms have increased therapeutic decision-making complexity underscoring informative imaging as paramount in guiding clinical care. In this review, we summarize challenges the thoracic oncologist encounters in common clinical settings. In addition, we explore unmet needs for future investigations with particular focus on positron emission tomography technology and immunotherapies.
Collapse
|
31
|
Herter-Sprie GS, Koyama S, Korideck H, Hai J, Deng J, Li YY, Buczkowski KA, Grant AK, Ullas S, Rhee K, Cavanaugh JD, Neupane NP, Christensen CL, Herter JM, Makrigiorgos GM, Hodi FS, Freeman GJ, Dranoff G, Hammerman PS, Kimmelman AC, Wong KK. Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. JCI Insight 2016; 1:e87415. [PMID: 27699275 DOI: 10.1172/jci.insight.87415] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Radiation therapy (RT), a critical modality in the treatment of lung cancer, induces direct tumor cell death and augments tumor-specific immunity. However, despite initial tumor control, most patients suffer from locoregional relapse and/or metastatic disease following RT. The use of immunotherapy in non-small-cell lung cancer (NSCLC) could potentially change this outcome by enhancing the effects of RT. Here, we report significant (up to 70% volume reduction of the target lesion) and durable (up to 12 weeks) tumor regressions in conditional Kras-driven genetically engineered mouse models (GEMMs) of NSCLC treated with radiotherapy and a programmed cell death 1 antibody (αPD-1). However, while αPD-1 therapy was beneficial when combined with RT in radiation-naive tumors, αPD-1 therapy had no antineoplastic efficacy in RT-relapsed tumors and further induced T cell inhibitory markers in this setting. Furthermore, there was differential efficacy of αPD-1 plus RT among Kras-driven GEMMs, with additional loss of the tumor suppressor serine/threonine kinase 11/liver kinase B1 (Stk11/Lkb1) resulting in no synergistic efficacy. Taken together, our data provide evidence for a close interaction among RT, T cells, and the PD-1/PD-L1 axis and underscore the rationale for clinical combinatorial therapy with immune modulators and radiotherapy.
Collapse
Affiliation(s)
- Grit S Herter-Sprie
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Shohei Koyama
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Vaccine Center
| | - Houari Korideck
- Division of Medical Physics and Biophysics, and.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Josephine Hai
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Jiehui Deng
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Yvonne Y Li
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Kevin A Buczkowski
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Aaron K Grant
- Division of MRI Research, Department of Radiology, and
| | - Soumya Ullas
- Longwood Small Animal Imaging Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Rhee
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Jillian D Cavanaugh
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Neermala Poudel Neupane
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Camilla L Christensen
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Jan M Herter
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - G Mike Makrigiorgos
- Division of Medical Physics and Biophysics, and.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - F Stephen Hodi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gordon J Freeman
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Vaccine Center
| | - Glenn Dranoff
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Vaccine Center
| | - Peter S Hammerman
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Lowe Center for Thoracic Oncology
| | - Alec C Kimmelman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Division of Genomic Stability and DNA Repair, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Kin Wong
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Cancer Vaccine Center.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Bombardelli L, Berns A. The steady progress of targeted therapies, promising advances for lung cancer. Ecancermedicalscience 2016; 10:638. [PMID: 27350784 PMCID: PMC4898931 DOI: 10.3332/ecancer.2016.638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 12/14/2022] Open
Abstract
Lung cancer remains one of the most complex and challenging cancers, being responsible for almost a third of all cancer deaths. This grim picture seems however to be changing, for at least a subset of lung cancers. The number of patients who can benefit from targeted therapies is steadily increasing thanks to the progress made in identifying actionable driver lesions in lung tumours. The success of the latest generation of EGFR and ALK inhibitors in the clinic not only illustrates the value of targeted therapies, but also shows how almost inevitably drug resistance develops. Therefore, more sophisticated approaches are needed to achieve long-term remissions. Although there are still significant barriers to be overcome, technological advances in early detection of relevant mutations and the opportunity to test new drugs in predictive preclinical models justify the hope that we will overcome these obstacles.
Collapse
Affiliation(s)
- Lorenzo Bombardelli
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; Skolkovo Institute of Science and Technology, Skolkovo Innovation Centre, Building 5, Moscow 143026, Russia
| |
Collapse
|
33
|
Saxon JA, Sherrill TP, Polosukhin VV, Sai J, Zaynagetdinov R, McLoed AG, Gulleman PM, Barham W, Cheng DS, Hunt RP, Gleaves LA, Richmond A, Young LR, Yull FE, Blackwell TS. Epithelial NF-κB signaling promotes EGFR-driven lung carcinogenesis via macrophage recruitment. Oncoimmunology 2016; 5:e1168549. [PMID: 27471643 DOI: 10.1080/2162402x.2016.1168549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/07/2023] Open
Abstract
Several studies have demonstrated that NF-κB activation is common in lung cancer; however, the mechanistic links between NF-κB signaling and tumorigenesis remain to be fully elucidated. We investigated the function of NF-κB signaling in epidermal growth factor receptor (EGFR)-mutant lung tumors using a transgenic mouse model with doxycycline (dox)-inducible expression of oncogenic EGFR in the lung epithelium with or without a dominant inhibitor of NF-κB signaling. NF-κB inhibition resulted in a significant reduction in tumor burden in both EGFR tyrosine kinase inhibitor (TKI)-sensitive and resistant tumors. However, NF-κB inhibition did not alter epithelial cell survival in vitro or in vivo, and no changes were detected in activation of EGFR downstream signaling pathways. Instead, we observed an influx of inflammatory cells (macrophages and neutrophils) in the lungs of mice with oncogenic EGFR expression that was blocked in the setting of NF-κB inhibition. To investigate whether inflammatory cells play a role in promoting EGFR-mutant lung tumors, we depleted macrophages and neutrophils during tumorigenesis and found that neutrophil depletion had no effect on tumor formation, but macrophage depletion caused a significant reduction in tumor burden. Together, these data suggest that epithelial NF-κB signaling supports carcinogenesis in a non-cell autonomous manner in EGFR-mutant tumors through recruitment of pro-tumorigenic macrophages.
Collapse
Affiliation(s)
- Jamie A Saxon
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Taylor P Sherrill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Jiqing Sai
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Allyson G McLoed
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Peter M Gulleman
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Whitney Barham
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Dong-Sheng Cheng
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Raphael P Hunt
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Ann Richmond
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA; Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Lisa R Young
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Yull
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Timothy S Blackwell
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Veterans Affairs Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
34
|
Gao SP, Chang Q, Mao N, Daly LA, Vogel R, Chan T, Liu SH, Bournazou E, Schori E, Zhang H, Brewer MR, Pao W, Morris L, Ladanyi M, Arcila M, Manova-Todorova K, de Stanchina E, Norton L, Levine RL, Altan-Bonnet G, Solit D, Zinda M, Huszar D, Lyden D, Bromberg JF. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors. Sci Signal 2016; 9:ra33. [PMID: 27025877 DOI: 10.1126/scisignal.aac8460] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non-small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells' dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC.
Collapse
Affiliation(s)
- Sizhi P Gao
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Qing Chang
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Ninghui Mao
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Laura A Daly
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Robert Vogel
- Computational Biology Program, MSKCC, New York, NY 10065, USA
| | - Tyler Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Shu Hui Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Eirini Bournazou
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Erez Schori
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Haiying Zhang
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College (WCMC), New York, NY 10021, USA
| | - Monica Red Brewer
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center (VICC), Nashville, TN 37232, USA. Personalized Cancer Medicine, VICC, Nashville, TN 37232, USA
| | - William Pao
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center (VICC), Nashville, TN 37232, USA. Personalized Cancer Medicine, VICC, Nashville, TN 37232, USA
| | - Luc Morris
- Department of Surgery, MSKCC, New York, NY 10065, USA
| | - Marc Ladanyi
- Department of Pathology, MSKCC, New York, NY 10065, USA. Human Oncology and Pathogenesis Program, MSKCC, New York, NY 10065, USA
| | - Maria Arcila
- Department of Pathology, MSKCC, New York, NY 10065, USA
| | | | | | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. WCMC, New York, NY 10021, USA
| | - Ross L Levine
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Human Oncology and Pathogenesis Program, MSKCC, New York, NY 10065, USA. WCMC, New York, NY 10021, USA
| | | | - David Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. Human Oncology and Pathogenesis Program, MSKCC, New York, NY 10065, USA. WCMC, New York, NY 10021, USA. Metastasis Research Center, MSKCC, New York, NY 10065, USA
| | | | | | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College (WCMC), New York, NY 10021, USA. Department of Pediatrics, MSKCC, New York, NY 10065, USA. Drukier Institute for Children's Health, Meyer Cancer Center, WCMC, New York, NY 10021, USA.
| | - Jacqueline F Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA. WCMC, New York, NY 10021, USA.
| |
Collapse
|
35
|
Schneeberger VE, Ren Y, Luetteke N, Huang Q, Chen L, Lawrence HR, Lawrence NJ, Haura EB, Koomen JM, Coppola D, Wu J. Inhibition of Shp2 suppresses mutant EGFR-induced lung tumors in transgenic mouse model of lung adenocarcinoma. Oncotarget 2016; 6:6191-202. [PMID: 25730908 PMCID: PMC4467431 DOI: 10.18632/oncotarget.3356] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/13/2015] [Indexed: 01/28/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutants drive lung tumorigenesis and are targeted for therapy. However, resistance to EGFR inhibitors has been observed, in which the mutant EGFR remains active. Thus, it is important to uncover mediators of EGFR mutant-driven lung tumors to develop new treatment strategies. The protein tyrosine phosphatase (PTP) Shp2 mediates EGF signaling. Nevertheless, it is unclear if Shp2 is activated by oncogenic EGFR mutants in lung carcinoma or if inhibiting the Shp2 PTP activity can suppress EGFR mutant-induced lung adenocarcinoma. Here, we generated transgenic mice containing a doxycycline (Dox)-inducible PTP-defective Shp2 mutant (tetO-Shp2CSDA). Using the rat Clara cell secretory protein (CCSP)-rtTA-directed transgene expression in the type II lung pneumocytes of transgenic mice, we found that the Gab1-Shp2 pathway was activated by EGFRL858R in the lungs of transgenic mice. Consistently, the Gab1-Shp2 pathway was activated in human lung adenocarcinoma cells containing mutant EGFR. Importantly, Shp2CSDA inhibited EGFRL858R-induced lung adenocarcinoma in transgenic animals. Analysis of lung tissues showed that Shp2CSDA suppressed Gab1 tyrosine phosphorylation and Gab1-Shp2 association, suggesting that Shp2 modulates a positive feedback loop to regulate its own activity. These results show that inhibition of the Shp2 PTP activity impairs mutant EGFR signaling and suppresses EGFRL858R-driven lung adenocarcinoma.
Collapse
Affiliation(s)
- Valentina E Schneeberger
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Division of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA
| | - Yuan Ren
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Noreen Luetteke
- Small Animal Modeling and Imaging Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Qingling Huang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Liwei Chen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Harshani R Lawrence
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Nicholas J Lawrence
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Eric B Haura
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida, USA.,Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Division of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA.,Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Domenico Coppola
- Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida, USA.,Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jie Wu
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Division of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA.,Department of Oncologic Sciences, University of South Florida College of Medicine, Tampa, Florida, USA
| |
Collapse
|
36
|
Amato KR, Wang S, Tan L, Hastings AK, Song W, Lovly CM, Meador CB, Ye F, Lu P, Balko JM, Colvin DC, Cates JM, Pao W, Gray NS, Chen J. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res 2016; 76:305-18. [PMID: 26744526 PMCID: PMC4715957 DOI: 10.1158/0008-5472.can-15-0717] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/14/2015] [Indexed: 01/18/2023]
Abstract
Despite the success of treating EGFR-mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKI), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI-resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib-resistant tumor cells harboring EGFR(T790M) mutations in vitro and inhibited tumor growth and progression in an inducible EGFR(L858R+T790M)-mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib-resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small-molecule inhibitor ALW-II-41-27 decreased both survival and proliferation of erlotinib-resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third-generation EGFR TKI AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI-resistant, EGFR-mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI-resistant tumors.
Collapse
Affiliation(s)
- Katherine R. Amato
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Shan Wang
- Division of Rheumatology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Li Tan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA,Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew K. Hastings
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Wenqiang Song
- Division of Rheumatology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Christine M. Lovly
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Catherine B. Meador
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Pengcheng Lu
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA
| | - Justin M. Balko
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Daniel C. Colvin
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Justin M. Cates
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | - William Pao
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA,Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA,Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jin Chen
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee. Division of Rheumatology and Immunology, Vanderbilt University, Nashville, Tennessee. Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee. Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee. Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
37
|
Talekar M, Trivedi M, Shah P, Ouyang Q, Oka A, Gandham S, Amiji MM. Combination wt-p53 and MicroRNA-125b Transfection in a Genetically Engineered Lung Cancer Model Using Dual CD44/EGFR-targeting Nanoparticles. Mol Ther 2015; 24:759-69. [PMID: 26686386 DOI: 10.1038/mt.2015.225] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/11/2015] [Indexed: 12/14/2022] Open
Abstract
Mutations in KRAS and p53 signaling pathways contribute to loss of responsiveness to current therapies and a decreased survival in lung cancer. In this study, we have investigated the delivery and transfection of wild-type (wt-) p53 and microRNA-125b (miR-125b) expressing plasmid DNA, in SK-LU-1 human lung adenocarcinoma cells as well as in Kras(G12D)/p53(fl/fl) (KP) genetically engineered mouse model of lung cancer. Systemic plasmid DNA delivery with dual CD44/EGFR-targeted hyaluronic acid (HA)-based nanoparticles (NPs) resulted in a 2- to 20-fold increase in wt-p53 and miR-125b gene expression in SK-LU-1 cells. This resulted in enhanced apoptotic activity as seen with increased APAF-1 and caspase-3 gene expression. Similarly, in vivo evaluations in KP mouse model indicated successful CD44/EGFR-targeted delivery. Tumor growth inhibition and apoptotic induction were also observed with (wt-p53+miR125b) combination therapy in KP tumor model. Lastly, J774.A1 murine macrophages co-cultured with transfected SK-LU-1 cells showed a 14- to 35-fold increase in the iNOS-Arg-1 ratio, supportive of previous results demonstrating a role of miR-125b in macrophage repolarization. Overall, these results show tremendous promise of wt-p53 and miR-125b gene therapy using dual CD44/EGFR-targeting HA NP vector for effective treatment of lung cancer.
Collapse
Affiliation(s)
- Meghna Talekar
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA.,Current address: Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Davie, Florida, USA
| | - Parin Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Qijun Ouyang
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Adwait Oka
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Srujan Gandham
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Lou Y, Pecot CV, Tran HT, DeVito VJ, Tang XM, Heymach JV, Luthra R, Wistuba II, Zuo Z, Tsao AS. Germline Mutation of T790M and Dual/Multiple EGFR Mutations in Patients With Lung Adenocarcinoma. Clin Lung Cancer 2015; 17:e5-11. [PMID: 26700910 DOI: 10.1016/j.cllc.2015.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/29/2015] [Accepted: 11/10/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Yanyan Lou
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chad V Pecot
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hai T Tran
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vikki J DeVito
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xi Ming Tang
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - John V Heymach
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Raja Luthra
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ignacio I Wistuba
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zhuang Zuo
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anne S Tsao
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
39
|
The EGFR-HER2 module: a stem cell approach to understanding a prime target and driver of solid tumors. Oncogene 2015; 35:2949-60. [PMID: 26434585 PMCID: PMC4820040 DOI: 10.1038/onc.2015.372] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 01/26/2023]
Abstract
The epidermal growth factor receptor (EGFR) and a coreceptor denoted HER2/ERBB2 are frequently overexpressed or mutated in solid tumors, such as carcinomas and gliomas. In line with driver roles, cancer drugs intercepting EGFR or HER2 currently outnumber therapies targeting other hubs of signal transduction. To explain the roles for EGFR and HER2 as prime drivers and targets, we take lessons from invertebrates and refer to homeostatic regulation of several mammalian tissues. The model we infer ascribes to the EGFR-HER2 module pivotal functions in rapid clonal expansion of progenitors called transient amplifying cells (TACs). Accordingly, TACs of tumors suffer from replication stress, and hence accumulate mutations. In addition, several lines of evidence propose that in response to EGF and related mitogens, TACs might undergo dedifferentiation into tissue stem cells, which might enable entry of oncogenic mutations into the stem cell compartment. According to this view, antibodies or kinase inhibitors targeting EGFR-HER2 effectively retard some solid tumors because they arrest mutation-enriched TACs and possibly inhibit their dedifferentiation. Deeper understanding of the EGFR-HER2 module and relations between cancer stem cells and TACs will enhance our ability to control a broad spectrum of human malignancies.
Collapse
|
40
|
V843I, a lung cancer predisposing EGFR mutation, is responsible for resistance to EGFR tyrosine kinase inhibitors. J Thorac Oncol 2015; 9:1377-84. [PMID: 25057940 DOI: 10.1097/jto.0000000000000241] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION We previously demonstrated that a family predisposed to lung cancer harbored a V843I substitution in the epidermal growth factor receptor (EGFR) protein. We report here the further characterization of this mutant EGFR protein in the context of tumorigenicity and resistance to tyrosine kinase inhibitors (TKIs) of EGFR activity. METHODS Phosphorylation of EGFR and downstream signaling proteins of lung adenocarcinoma cell lines with EGFR mutations was assayed by flow cytometry. Susceptibility to TKIs of these cell lines, with or without suppression of mutant EGFR expression by small inhibitory RNA (siRNA), was investigated using a cellular viability assay. Furthermore, protein modeling was used to predict TKI binding to EGFR protein carrying the V843I mutation. RESULTS Phosphorylation of EGFR and downstream signaling proteins was elevated upon transfection with an EGFR gene with the V843I. Although the cell line with V843I + L858R demonstrated resistance to EGFR-TKIs, the cells became susceptible to TKIs upon incubation with siRNA specific for the V843I allele. The structural analysis suggested that TKI binding to EGFR would be sterically hindered by Arg841 in the double-mutant (V843I + L858R) EGFR. CONCLUSIONS The V843I mutation contributes to tumorigenesis by promoting phosphorylation of EGFR and its downstream signaling proteins. This mutation also appears to provide resistance to EGFR-TKIs through structural modification of EGFR. These features are comparable with those in EGFR T790M mutation, suggesting that cases with germ-line V843I or T790M mutations could be categorized as a class of familial lung cancer syndrome with resistance to EGFR-TKIs.
Collapse
|
41
|
Kawabata S, Christine Hollander M, Munasinghe JP, Brinster LR, Mercado-Matos JR, Li J, Regales L, Pao W, Jänne PA, Wong KK, Butman JA, Lonser RR, Hansen MR, Gurgel RK, Vortmeyer AO, Dennis PA. Epidermal growth factor receptor as a novel molecular target for aggressive papillary tumors in the middle ear and temporal bone. Oncotarget 2015; 6:11357-68. [PMID: 26027747 PMCID: PMC4484461 DOI: 10.18632/oncotarget.3605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/13/2015] [Indexed: 01/11/2023] Open
Abstract
Adenomatous tumors in the middle ear and temporal bone are rare but highly morbid because they are difficult to detect prior to the development of audiovestibular dysfunction. Complete resection is often disfiguring and difficult because of location and the late stage at diagnosis, so identification of molecular targets and effective therapies is needed. Here, we describe a new mouse model of aggressive papillary ear tumor that was serendipitously discovered during the generation of a mouse model for mutant EGFR-driven lung cancer. Although these mice did not develop lung tumors, 43% developed head tilt and circling behavior. Magnetic resonance imaging (MRI) scans showed bilateral ear tumors located in the tympanic cavity. These tumors expressed mutant EGFR as well as active downstream targets such as Akt, mTOR and ERK1/2. EGFR-directed therapies were highly effective in eradicating the tumors and correcting the vestibular defects, suggesting these tumors are addicted to EGFR. EGFR activation was also observed in human ear neoplasms, which provides clinical relevance for this mouse model and rationale to test EGFR-targeted therapies in these rare neoplasms.
Collapse
MESH Headings
- Adenocarcinoma/metabolism
- Adenocarcinoma/pathology
- Adenoma/drug therapy
- Adenoma/metabolism
- Adenoma/pathology
- Animals
- Antineoplastic Agents/pharmacology
- Behavior, Animal
- Drug Design
- Ear Neoplasms/drug therapy
- Ear Neoplasms/genetics
- Ear Neoplasms/metabolism
- Ear Neoplasms/pathology
- Ear, Middle/drug effects
- Ear, Middle/metabolism
- Ear, Middle/pathology
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Female
- Genotype
- Humans
- Magnetic Resonance Imaging
- Male
- Mice, Transgenic
- Molecular Targeted Therapy
- Motor Activity
- Mutation
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Phenotype
- Promoter Regions, Genetic
- Pulmonary Surfactant-Associated Protein C/genetics
- Signal Transduction/drug effects
- Skull Neoplasms/drug therapy
- Skull Neoplasms/metabolism
- Skull Neoplasms/pathology
- Temporal Bone/drug effects
- Temporal Bone/metabolism
- Temporal Bone/pathology
- Uteroglobin/genetics
- Uteroglobin/metabolism
- X-Ray Microtomography
Collapse
Affiliation(s)
- Shigeru Kawabata
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Christine Hollander
- Medical Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Present address: Laboratory of Cancer Biology and Genetics, CCR, NCI, Bethesda, MD, USA
| | - Jeeva P. Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, USA
| | | | - José R. Mercado-Matos
- Medical Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jie Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Lucia Regales
- Memorial Sloan-Kettering Cancer Center, New York, USA
| | - William Pao
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Pasi A. Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John A. Butman
- Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD, USA
| | | | - Marlan R. Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Richard K. Gurgel
- Division of Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, UT, USA
| | | | - Phillip A. Dennis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
42
|
Eberlein CA, Stetson D, Markovets AA, Al-Kadhimi KJ, Lai Z, Fisher PR, Meador CB, Spitzler P, Ichihara E, Ross SJ, Ahdesmaki MJ, Ahmed A, Ratcliffe LE, O'Brien ELC, Barnes CH, Brown H, Smith PD, Dry JR, Beran G, Thress KS, Dougherty B, Pao W, Cross DAE. Acquired Resistance to the Mutant-Selective EGFR Inhibitor AZD9291 Is Associated with Increased Dependence on RAS Signaling in Preclinical Models. Cancer Res 2015; 75:2489-500. [PMID: 25870145 DOI: 10.1158/0008-5472.can-14-3167] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/17/2015] [Indexed: 12/30/2022]
Abstract
Resistance to targeted EGFR inhibitors is likely to develop in EGFR-mutant lung cancers. Early identification of innate or acquired resistance mechanisms to these agents is essential to direct development of future therapies. We describe the detection of heterogeneous mechanisms of resistance within populations of EGFR-mutant cells (PC9 and/or NCI-H1975) with acquired resistance to current and newly developed EGFR tyrosine kinase inhibitors, including AZD9291. We report the detection of NRAS mutations, including a novel E63K mutation, and a gain of copy number of WT NRAS or WT KRAS in cell populations resistant to gefitinib, afatinib, WZ4002, or AZD9291. Compared with parental cells, a number of resistant cell populations were more sensitive to inhibition by the MEK inhibitor selumetinib (AZD6244; ARRY-142886) when treated in combination with the originating EGFR inhibitor. In vitro, a combination of AZD9291 with selumetinib prevented emergence of resistance in PC9 cells and delayed resistance in NCI-H1975 cells. In vivo, concomitant dosing of AZD9291 with selumetinib caused regression of AZD9291-resistant tumors in an EGFRm/T790M transgenic model. Our data support the use of a combination of AZD9291 with a MEK inhibitor to delay or prevent resistance to AZD9291 in EGFRm and/or EGFRm/T790M tumors. Furthermore, these findings suggest that NRAS modifications in tumor samples from patients who have progressed on current or EGFR inhibitors in development may support subsequent treatment with a combination of EGFR and MEK inhibition.
Collapse
Affiliation(s)
- Catherine A Eberlein
- AstraZeneca Oncology Innovative Medicines, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Daniel Stetson
- AstraZeneca Oncology Innovative Medicines, Gatehouse Park, Waltham, Massachusetts
| | | | - Katherine J Al-Kadhimi
- AstraZeneca Oncology Innovative Medicines, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Zhongwu Lai
- AstraZeneca Oncology Innovative Medicines, Gatehouse Park, Waltham, Massachusetts
| | - Paul R Fisher
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Catherine B Meador
- Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Paula Spitzler
- Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Eiki Ichihara
- Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Sarah J Ross
- AstraZeneca Oncology Innovative Medicines, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Miika J Ahdesmaki
- AstraZeneca Oncology Innovative Medicines, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Ambar Ahmed
- AstraZeneca Oncology Innovative Medicines, Gatehouse Park, Waltham, Massachusetts
| | | | | | - Claire H Barnes
- AstraZeneca Oncology Innovative Medicines, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Henry Brown
- AstraZeneca Oncology Innovative Medicines, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Paul D Smith
- AstraZeneca Oncology Innovative Medicines, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Jonathan R Dry
- AstraZeneca Oncology Innovative Medicines, Gatehouse Park, Waltham, Massachusetts
| | - Garry Beran
- AstraZeneca Oncology Innovative Medicines, Alderley Park, Macclesfield, Cheshire, United Kingdom
| | - Kenneth S Thress
- AstraZeneca Oncology Innovative Medicines, Gatehouse Park, Waltham, Massachusetts
| | - Brian Dougherty
- AstraZeneca Oncology Innovative Medicines, Gatehouse Park, Waltham, Massachusetts
| | - William Pao
- Department of Medicine and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Darren A E Cross
- AstraZeneca Oncology Innovative Medicines, Alderley Park, Macclesfield, Cheshire, United Kingdom.
| |
Collapse
|
43
|
Gandara DR, Mack PC, Bult C, Li T, Lara PN, Riess JW, Astrow SH, Gandour-Edwards R, Cooke DT, Yoneda KY, Moore EH, Pan CX, Burich RA, David EA, Keck JG, Airhart S, Goodwin N, de Vere White RW, Liu ET. Bridging tumor genomics to patient outcomes through an integrated patient-derived xenograft platform. Clin Lung Cancer 2015; 16:165-72. [PMID: 25838158 DOI: 10.1016/j.cllc.2015.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 01/23/2023]
Abstract
New approaches to optimization of cancer drug development in the laboratory and the clinic will be required to fully achieve the goal of individualized, precision cancer therapy. Improved preclinical models that more closely reflect the now recognized genomic complexity of human cancers are needed. Here we describe a collaborative research project that integrates core resources of The Jackson Laboratory Basic Science Cancer Center with genomics and clinical research facilities at the UC Davis Comprehensive Cancer Center to establish a clinically and genomically annotated patient-derived xenograft (PDX) platform designed to enhance new drug development and strategies for targeted therapies. Advanced stage non-small-cell lung cancer (NSCLC) was selected for initial studies because of emergence of a number of "druggable" molecular targets, and recent recognition of substantial inter- and intrapatient tumor heterogeneity. Additionally, clonal evolution after targeted therapy interventions make this tumor type ideal for investigation of this platform. Using the immunodeficient NOD scid gamma mouse, > 200 NSCLC tumor biopsies have been xenotransplanted. During the annotation process, patient tumors and subsequent PDXs are compared at multiple levels, including histomorphology, clinically applicable molecular biomarkers, global gene expression patterns, gene copy number variations, and DNA/chromosomal alterations. NSCLC PDXs are grouped into panels of interest according to oncogene subtype and/or histologic subtype. Multiregimen drug testing, paired with next-generation sequencing before and after therapy and timed tumor pharmacodynamics enables determination of efficacy, signaling pathway alterations, and mechanisms of sensitivity-resistance in individual models. This approach should facilitate derivation of new therapeutic strategies and the transition to individualized therapy.
Collapse
Affiliation(s)
- David R Gandara
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA.
| | - Philip C Mack
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA
| | - Carol Bult
- The Jackson Laboratory, Bar Harbor, ME and Sacramento, CA
| | - Tianhong Li
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA
| | - Primo N Lara
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA
| | - Jonathan W Riess
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA
| | | | | | - David T Cooke
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA
| | - Ken Y Yoneda
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA
| | - Elizabeth H Moore
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA
| | - Chong-Xian Pan
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA
| | - Rebekah A Burich
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA
| | - Elizabeth A David
- University of California, Davis Comprehensive Cancer Center, Sacramento, CA
| | - James G Keck
- The Jackson Laboratory, Bar Harbor, ME and Sacramento, CA
| | - Susan Airhart
- The Jackson Laboratory, Bar Harbor, ME and Sacramento, CA
| | - Neal Goodwin
- The Jackson Laboratory, Bar Harbor, ME and Sacramento, CA
| | | | - Edison T Liu
- The Jackson Laboratory, Bar Harbor, ME and Sacramento, CA
| |
Collapse
|
44
|
Hereditary lung cancer syndrome targets never smokers with germline EGFR gene T790M mutations. J Thorac Oncol 2015; 9:456-63. [PMID: 24736066 DOI: 10.1097/jto.0000000000000130] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hereditary lung cancer syndromes are rare, and T790M germline mutations of the epidermal growth factor receptor (EGFR) gene predispose to the development of lung cancer. The goal of this study was to determine the clinical features and smoking status of lung cancer cases and unaffected family members with this germline mutation and to estimate its incidence and penetrance. METHODS We studied a family with germline T790M mutations over five generations (14 individuals) and combined our observations with data obtained from a literature search (15 individuals). RESULTS T790M germline mutations occurred in approximately 1% of non-small-cell lung cancer cases and in less than one in 7500 subjects without lung cancer. Both sporadic and germline T790M mutations were predominantly adenocarcinomas, favored female gender, and were occasionally multifocal. Of lung cancer tumors arising in T790M germline mutation carriers, 73% contained a second activating EGFR gene mutation. Inheritance was dominant. The odds ratio that T790M germline carriers who are smokers will develop lung cancer compared with never smoker carriers was 0.31 (p = 6.0E-05). There was an overrepresentation of never smokers with lung cancer with this mutation compared with the general lung cancer population (p = 7.4E-06). CONCLUSION Germline T790M mutations result in a unique hereditary lung cancer syndrome that targets never smokers, with a preliminary estimate of 31% risk for lung cancer in never smoker carriers, and this risk may be lower for heavy smokers. The resultant cancers share several features and differences with lung cancers containing sporadic EGFR mutations.
Collapse
|
45
|
Abstract
Activating mutations in epidermal growth factor receptor (EGFR) are present in a subset of lung cancers, and predict sensitivity to EGFR tyrosine kinase inhibitors. Acquisition of EGFR T790M is the most common mechanism of resistance to EGFR tyrosine kinase inhibitors and rarely is seen before treatment. Germline EGFR T790M mutations have been reported, although the penetrance and clinical significance of this mutation is unknown. We describe the identification of a patient with an EGFR T790M germline mutation and subsequent germline testing in her unaffected family members. Genetic testing revealed two additional EGFR T790M germline carriers, one of which was subsequently diagnosed with metastatic lung adenocarcinoma.
Collapse
|
46
|
Image-guided radiotherapy platform using single nodule conditional lung cancer mouse models. Nat Commun 2014; 5:5870. [PMID: 25519892 PMCID: PMC4271540 DOI: 10.1038/ncomms6870] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/14/2014] [Indexed: 12/14/2022] Open
Abstract
Close resemblance of murine and human trials is essential to achieve the best predictive value of animal-based translational cancer research. Kras-driven genetically engineered mouse models of non-small-cell lung cancer faithfully predict the response of human lung cancers to systemic chemotherapy. Owing to development of multifocal disease, however, these models have not been usable in studies of outcomes following focal radiotherapy (RT). We report the development of a preclinical platform to deliver state-of-the-art image-guided RT in these models. Presence of a single tumour as usually diagnosed in patients is modelled by confined injection of adenoviral Cre recombinase. Furthermore, three-dimensional conformal planning and state-of-the-art image-guided dose delivery are performed as in humans. We evaluate treatment efficacies of two different radiation regimens and find that Kras-driven tumours can temporarily be stabilized upon RT, whereas additional loss of either Lkb1 or p53 renders these lesions less responsive to RT.
Collapse
|
47
|
Yeh ES, Vernon-Grey A, Martin H, Chodosh LA. Tetracycline-regulated mouse models of cancer. Cold Spring Harb Protoc 2014; 2014:pdb.top069823. [PMID: 25275112 DOI: 10.1101/pdb.top069823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genetically engineered mouse models (GEMMs) have proven essential to the study of mammalian gene function in both development and disease. However, traditional constitutive transgenic mouse model systems are limited by the temporal and spatial characteristics of the experimental promoter used to drive transgene expression. To address this limitation, considerable effort has been dedicated to developing conditional and inducible mouse model systems. Although a number of approaches to generating inducible GEMMs have been pursued, several have been restricted by toxic or undesired physiological side effects of the compounds used to activate gene expression. The development of tetracycline (tet)-dependent regulatory systems has allowed for circumvention of these issues resulting in the widespread adoption of these systems as an invaluable tool for modeling the complex nature of cancer progression.
Collapse
Affiliation(s)
- Elizabeth S Yeh
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Ann Vernon-Grey
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Heather Martin
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104; Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
48
|
Epithelial growth factor receptor-activated nuclear factor κB signaling and its role in epithelial growth factor receptor-associated tumors. Cancer J 2014; 19:461-7. [PMID: 24270344 DOI: 10.1097/ppo.0000000000000001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dysregulated epithelial growth factor receptor (EGFR) signaling is directly associated with a number of cancers, such as brain, lung, and breast cancer. The downstream signaling pathways activated by EGFR have been extensively studied, such as PI3K/AKT pathway, MAPK (mitogen-activated protein kinase) pathway, and STAT (signal transducer and activator of transcription) pathway. There are growing numbers of evidence suggesting that EGFR activates nuclear factor κB (NF-κB), which is a key transcription factor controlling a variety of cellular functions. However, relatively less is known about the signal transduction mechanism that links EGFR to NF-κB activation. Here, we discuss recent progress in EGFR-induced NF-κB pathways, including the identification of CARMA3-Bcl10-MALT1 complex and protein kinase C[Latin Small Letter Open E] as 2 essential signaling components linking EGFR to the activation of IκBα kinase. In addition, we discuss the multifunctional roles of NF-κB in EGFR-associated tumors, including proliferation, tumor invasiveness, metabolism, tumor-promoting microenvironment, and EGFR tyrosine kinase inhibitor resistance.
Collapse
|
49
|
Dogan I, Kawabata S, Bergbower E, Gills JJ, Ekmekci A, Wilson W, Rudin CM, Dennis PA. SOX2 expression is an early event in a murine model of EGFR mutant lung cancer and promotes proliferation of a subset of EGFR mutant lung adenocarcinoma cell lines. Lung Cancer 2014; 85:1-6. [PMID: 24746758 PMCID: PMC4058091 DOI: 10.1016/j.lungcan.2014.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/04/2014] [Accepted: 03/22/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Primary and acquired resistance to EGFR TKIs in EGFR mutant lung cancer occurs primarily through secondary mutations in EGFR or Met amplification. Drug resistance can also be mediated by expression of pluripotency transcription factors, such as OCT4, SOX2 and NANOG that decrease terminal differentiation. In this study, we investigated the expression and role of SOX2 in model systems of EGFR mutant tumors. MATERIALS AND METHODS Immunoblotting or immunohistochemistry was used to assess expression of pluripotency transcription factors in lungs of transgenic mice or in human NSCLC cell lines. Expression of SOX2 was reduced by shRNA knockdown, and response to erlotinib and cellular proliferation were assessed. RESULTS AND CONCLUSION Induction of mutant EGFR in transgenic CCSP-rtTA/TetO-EGFR(L858R/T790M) mice correlated with increased OCT4 and SOX2 expression in lung tissue prior to tumor development. Established lung tumors retained SOX2 expression. To assess a role for SOX2 in tumorigenesis, a panel of NSCLC cell lines with activating EGFR mutations was assessed for SOX2 expression. Two of six cell lines with mutant EGFR showed detectable SOX2 levels, suggesting SOX2 expression did not correlate with EGFR mutation status. To assess the role of SOX2 in these cell lines, HCC827 and H1975 cells were infected with lentivirus containing SOX2 shRNA. Knockdown of SOX2 decreased proliferation in both cell lines and increased sensitivity to erlotinib in HCC827 cells. Because constitutive activation of the PI3K/Akt pathway is associated with EGFR TKI resistance, cells were treated with PI3K/AKT inhibitors and expression of SOX2 was examined. PI3K/Akt inhibitors decreased SOX2 expression in a time-dependent manner. These data suggest targeting SOX2 may provide therapeutic benefit in the subset of EGFR-mutant tumors with high constitutive levels of SOX2, and that until more direct means of inhibiting SOX2 are developed, PI3K/Akt inhibitors might be useful to inhibit SOX2 in EGFR TKI resistant tumors.
Collapse
Affiliation(s)
- Irem Dogan
- Medical Oncology Branch, National Cancer Institute, Bethesda, MD, USA; Gazi University, Faculty of Medicine, Department of Medical Biology and Genetics, Ankara, Turkey
| | - Shigeru Kawabata
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emily Bergbower
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Joell J Gills
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Abdullah Ekmekci
- Gazi University, Faculty of Medicine, Department of Medical Biology and Genetics, Ankara, Turkey
| | - Willie Wilson
- Medical Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Charles M Rudin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Phillip A Dennis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
50
|
Rapamycin prevents the development and progression of mutant epidermal growth factor receptor lung tumors with the acquired resistance mutation T790M. Cell Rep 2014; 7:1824-32. [PMID: 24931608 DOI: 10.1016/j.celrep.2014.05.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/17/2014] [Accepted: 05/18/2014] [Indexed: 02/02/2023] Open
Abstract
Lung cancer in never-smokers is an important disease often characterized by mutations in epidermal growth factor receptor (EGFR), yet risk reduction measures and effective chemopreventive strategies have not been established. We identify mammalian target of rapamycin (mTOR) as potentially valuable target for EGFR mutant lung cancer. mTOR is activated in human lung cancers with EGFR mutations, and this increases with acquisition of T790M mutation. In a mouse model of EGFR mutant lung cancer, mTOR activation is an early event. As a single agent, the mTOR inhibitor rapamycin prevents tumor development, prolongs overall survival, and improves outcomes after treatment with an irreversible EGFR tyrosine kinase inhibitor (TKI). These studies support clinical testing of mTOR inhibitors in order to prevent the development and progression of EGFR mutant lung cancers.
Collapse
|