1
|
Qin Y, Zhang C, Liu F, Chen Q, Yang Y, Wang Y, Chen G. Establishment of double probes rolling circle amplification combined with lateral flow dipstick for rapid detection of Chattonella marina. HARMFUL ALGAE 2020; 97:101857. [PMID: 32732057 DOI: 10.1016/j.hal.2020.101857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Chattonella marina is one of the main algae that could cause harmful algal blooms. It has killed a large number of cultured fish in coastal areas of many countries, causing serious economic losses. Therefore, it is necessary to establish a method that can specifically detect C. marina at pre-bloom abundance, so that timely measures can be taken before this alga causes harm. In this study, a long probe, a short probe and a pair of amplification primers were first designed by using the internal transcribed spacer (ITS) sequence of C. marina as the target gene and using the CD74 gene of a distant species Gallus gallus as the base sequence. The double probes rolling circle amplification (dpRCA) system was then established with the designed probes and amplification primers. A novel detection protocol referred to as dpRCA-LFD by combining the dpRCA products and lateral flow dipstick (LFD) was finally established, which can make the detection results visible to the naked eyes. The reaction conditions of dpRCA were optimized and the optimal conditions were as follows: cycle number of ligation reaction, 12; ligation temperature, 58 °C; amplification temperature, 60 °C; and amplification time, 60 min. The specificity test that was performed using the optimized dpRCA conditions indicated that dpRCA-LFD was exclusively specific for the target alga. The tests with the genomic DNA of C. marina and the recombinant plasmid containing the ITS sequence of C. marina showed that the sensitivity of dpRCA-LFD was 100 times higher than that of conventional PCR. The detection limit (DL) for the genomic DNA was 8.3 × 10-3 ng µL-1 (8.3 × 10-3 ng per reaction), and the DL for the recombinant plasmid DNA was 7.8 copies µL-1 (7.8 copies per reaction). The practicality of the developed dpRCA-LFD was further validated by test with the spiked samples containing C. marina and field samples. The simulative test showed that the dpRCA-LFD has a DL of 10 cells mL-1. The dpRCA-LFD could successfully recognize the target cells from the field samples. In summary, the dpRCA-LFD established in this study has advantages of good specificity, high sensitivity, and easily visible detection results, and therefore is promising for the analysis of C. marina in field samples.
Collapse
Affiliation(s)
- Yue Qin
- College of Oceanology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, Shandong Province 264209, PR China
| | - Chunyun Zhang
- College of Oceanology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, Shandong Province 264209, PR China; School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| | - Fuguo Liu
- College of Oceanology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, Shandong Province 264209, PR China
| | - Qixin Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, Shandong Province 264209, PR China
| | - Yuchen Yang
- College of Oceanology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, Shandong Province 264209, PR China
| | - Yuanyuan Wang
- College of Oceanology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, Shandong Province 264209, PR China
| | - Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Wenhua West Road, 2#, Weihai, Shandong Province 264209, PR China.
| |
Collapse
|
2
|
Chen W, Zeng D, Shen R, Ma X, Zhang Q, Chen L, Liu YG, Zhu Q. Rapid in vitro splicing of coding sequences from genomic DNA by isothermal recombination reaction-based PCR. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1191374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Wenxuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Dongchang Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xingliang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qunyu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Chauhan N, Hoti SL. An alternative strategy to generate coding sequence of macrophage migration inhibitory factor-2 of Wuchereria bancrofti. Indian J Med Res 2016; 143:232-7. [PMID: 27121522 PMCID: PMC4859133 DOI: 10.4103/0971-5916.180217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background & objectives: Different developmental stages of Wuchereria bancrofti, the major causal organism of lymphatic filariasis (LF), are difficult to obtain. Beside this limitation, to obtain complete coding sequence (CDS) of a gene one has to isolate mRNA and perform subsequent cDNA synthesis which is laborious and not successful at times. In this study, an alternative strategy employing polymerase chain reaction (PCR) was optimized and validated, to generate CDS of Macrophage migration Inhibitory Factor-2 (wbMIF-2), a gene expressed in the transition stage between L3 to L4. Methods: The genomic DNA of W. bancrofti microfilariae was extracted and used to amplify the full length wbMIF-2 gene (4.275 kb). This amplified product was used as a template for amplifying the exons separately, using the overlapping primers, which were then assembled through another round of PCR. Results: A simple strategy was developed based on PCR, which is used routinely in molecular biology laboratories. The amplified CDS of 363 bp of wbMIF-2 generated using genomic DNA splicing technique was devoid of any intronic sequence. Interpretation & conclusions: The cDNA of wbMIF-2 gene was successfully amplified from genomic DNA of microfilarial stage of W. bancrofti thus circumventing the use of inaccessible L3-L4 transitional stage of this parasite. This strategy is useful for generating CDS of genes from parasites that have restricted availability.
Collapse
Affiliation(s)
| | - S L Hoti
- Division of Microbiology & Immunology, Vector Control Research Centre (ICMR), Puducherry; Scientist 'G' and Director-in-Charge, Regional Medical Research Centre (ICMR), Nehru Nagar, Belagavi 590 010, Karnataka, India
| |
Collapse
|
4
|
Ramteke MP, Patel KJ, Godbole M, Vyas M, Karve K, Choughule A, Prabhash K, Dutt A. CRE: a cost effective and rapid approach for PCR-mediated concatenation of KRAS and EGFR exons: Rapid way to detect EGFR and KRAS mutations. F1000Res 2015; 4:160. [PMID: 27127615 PMCID: PMC4830212 DOI: 10.12688/f1000research.6663.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2016] [Indexed: 02/05/2023] Open
Abstract
Molecular diagnostics has changed the way lung cancer patients are treated worldwide. Of several different testing methods available, PCR followed by directed sequencing and amplification refractory mutation system (ARMS) are the two most commonly used diagnostic methods worldwide to detect mutations at KRAS exon 2 and EGFR kinase domain exons 18-21 in lung cancer. Compared to ARMS, the PCR followed by directed sequencing approach is relatively inexpensive but more cumbersome to perform. Moreover, with a limiting amount of genomic DNA from clinical formalin-fixed, paraffin-embedded (FFPE) specimens or fine biopsies of lung tumors, multiple rounds of PCR and sequencing reactions often get challenging. Here, we report a cost-effective single multiplex-PCR based method, CRE (for Co-amplification of five K RAS and E GFR exons), followed by concatenation of the PCR product as a single linear fragment for direct sequencing. CRE is a robust protocol that can be adapted for routine use in clinical diagnostics with reduced variability, cost and turnaround time requiring a minimal amount of template DNA extracted from FFPE or fresh frozen tumor samples. As a proof of principle, CRE is able to detect the activating EGFR L858R and T790M EGFR mutations in lung cancer cell line and primary tumors.
Collapse
Affiliation(s)
- Manoj P. Ramteke
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, 410210, India
| | - Kuldeep J Patel
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, 410210, India
| | - Mukul Godbole
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, 410210, India
| | - Maulik Vyas
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, 410210, India
| | - Kunal Karve
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, 410210, India
| | - Anuradha Choughule
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, 400012, India
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, 400012, India
| | - Amit Dutt
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, 410210, India
| |
Collapse
|
5
|
Construction of a chimeric secretory IgA and its neutralization activity against avian influenza virus H5N1. J Immunol Res 2014; 2014:394127. [PMID: 24741594 PMCID: PMC3987799 DOI: 10.1155/2014/394127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/07/2014] [Indexed: 01/06/2023] Open
Abstract
Secretory immunoglobulin A (SIgA) acts as the first line of defense against respiratory pathogens. In this assay, the variable regions of heavy chain (VH) and Light chain (VL) genes from a mouse monoclonal antibody against H5N1 were cloned and fused with human IgA constant regions. The full-length chimeric light and heavy chains were inserted into a eukaryotic expressing vector and then transfected into CHO/dhfr-cells. The chimeric monomeric IgA antibody expression was confirmed by using ELISA, SDS-PAGE, and Western blot. In order to obtain a dimeric secretory IgA, another two expressing plasmids, namely, pcDNA4/His A-IgJ and pcDNA4/His A-SC, were cotransfected into the CHO/dhfr-cells. The expression of dimeric SIgA was confirmed by using ELISA assay and native gel electrophoresis. In microneutralization assay on 96-well immunoplate, the chimeric SIgA showed neutralization activity against H5N1 virus on MDCK cells and the titer was determined to be 1 : 64. On preadministrating intranasally, the chimeric SIgA could prevent mice from lethal attack by using A/Vietnam/1194/04 H5N1 with a survival rate of 80%. So we concluded that the constructed recombinant chimeric SIgA has a neutralization capability targeting avian influenza virus H5N1 infection in vitro and in vivo.
Collapse
|
6
|
Fedchenko VI, Kaloshin AA, Mezhevikina LM, Buneeva OA, Medvedev AE. Construction of the coding sequence of the transcription variant 2 of the human Renalase gene and its expression in the prokaryotic system. Int J Mol Sci 2013; 14:12764-79. [PMID: 23783275 PMCID: PMC3709811 DOI: 10.3390/ijms140612764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 05/23/2013] [Accepted: 06/05/2013] [Indexed: 01/03/2023] Open
Abstract
Renalase is a recently discovered protein, involved in regulation of blood pressure in humans and animals. Although several splice variants of human renalase mRNA transcripts have been recognized, only one protein product, hRenalase1, has been found so far. In this study, we have used polymerase chain reaction (PCR)-based amplification of individual exons of the renalase gene and their joining for construction of full-length hRenalase2 coding sequence followed by expression of hRenalase2 as a polyHis recombinant protein in Escherichia coli cells. To date this is the first report on synthesis and purification of hRenalase2. Applicability of this approach was verified by constructing hRenalase1 coding sequence, its sequencing and expression in E. coli cells. hRenalase1 was used for generation of polyclonal antiserum in sheep. Western blot analysis has shown that polyclonal anti-renalase1 antibodies effectively interact with the hRenalase2 protein. The latter suggests that some functions and expression patterns of hRenalase1 documented by antibody-based data may be attributed to the presence of hRenalase2. The realized approach may be also used for construction of coding sequences of various (especially weakly expressible) genes, their transcript variants, etc.
Collapse
Affiliation(s)
- Valerii I. Fedchenko
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10 Pogodinskaya Street, Moscow 119121, Russia; E-Mails: (V.I.F.); (A.A.K.); ; (O.A.B.)
| | - Alexei A. Kaloshin
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10 Pogodinskaya Street, Moscow 119121, Russia; E-Mails: (V.I.F.); (A.A.K.); ; (O.A.B.)
| | - Lyudmila M. Mezhevikina
- Institute Cell Biophysics, Russian Academy of Sciences, 3 Institutskaya Street, Pushchino, Moscow Region, Moscow 142290, Russia; E-Mail:
| | - Olga A. Buneeva
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10 Pogodinskaya Street, Moscow 119121, Russia; E-Mails: (V.I.F.); (A.A.K.); ; (O.A.B.)
| | - Alexei E. Medvedev
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10 Pogodinskaya Street, Moscow 119121, Russia; E-Mails: (V.I.F.); (A.A.K.); ; (O.A.B.)
| |
Collapse
|
7
|
Verma D, Jin S, Kanagaraj A, Singh ND, Daniel J, Kolattukudy PE, Miller M, Daniell H. Expression of fungal cutinase and swollenin in tobacco chloroplasts reveals novel enzyme functions and/or substrates. PLoS One 2013; 8:e57187. [PMID: 23451186 PMCID: PMC3581449 DOI: 10.1371/journal.pone.0057187] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/18/2013] [Indexed: 12/22/2022] Open
Abstract
In order to produce low-cost biomass hydrolyzing enzymes, transplastomic lines were generated that expressed cutinase or swollenin within chloroplasts. While swollenin expressing plants were homoplasmic, cutinase transplastomic lines remained heteroplasmic. Both transplastomic lines showed interesting modifications in their phenotype, chloroplast structure, and functions. Ultrastructural analysis of chloroplasts from cutinase- and swollenin-expressing plants did not show typical lens shape and granal stacks. But, their thylakoid membranes showed unique scroll like structures and chloroplast envelope displayed protrusions, stretching into the cytoplasm. Unusual honeycomb structures typically observed in etioplasts were observed in mature chloroplasts expressing swollenin. Treatment of cotton fiber with chloroplast-derived swollenin showed enlarged segments and the intertwined inner fibers were irreversibly unwound and fully opened up due to expansin activity of swollenin, causing disruption of hydrogen bonds in cellulose fibers. Cutinase transplastomic plants showed esterase and lipase activity, while swollenin transplastomic lines lacked such enzyme activities. Higher plants contain two major galactolipids, monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), in their chloroplast thylakoid membranes that play distinct roles in their structural organization. Surprisingly, purified cutinase effectively hydrolyzed DGDG to MGDG, showing alpha galactosidase activity. Such hydrolysis resulted in unstacking of granal thylakoids in chloroplasts and other structural changes. These results demonstrate DGDG as novel substrate and function for cutinase. Both MGDG and DGDG were reduced up to 47.7% and 39.7% in cutinase and 68.5% and 67.5% in swollenin expressing plants. Novel properties and functions of both enzymes reported here for the first time should lead to better understanding and enhanced biomass hydrolysis.
Collapse
Affiliation(s)
- Dheeraj Verma
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Shuangxia Jin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Anderson Kanagaraj
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Nameirakpam D. Singh
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Jaiyanth Daniel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Pappachan E. Kolattukudy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Michael Miller
- Research Instrumentation Facility, Auburn University, Auburn, Alabama, United States of America
| | - Henry Daniell
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
8
|
Orlova NA, Orlov AV, Vorobiev II. A modular assembly cloning technique (aided by the BIOF software tool) for seamless and error-free assembly of long DNA fragments. BMC Res Notes 2012; 5:303. [PMID: 22709633 PMCID: PMC3539906 DOI: 10.1186/1756-0500-5-303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular cloning of DNA fragments >5 kbp is still a complex task. When no genomic DNA library is available for the species of interest, and direct PCR amplification of the desired DNA fragment is unsuccessful or results in an incorrect sequence, molecular cloning of a PCR-amplified region of the target sequence and assembly of the cloned parts by restriction and ligation is an option. Assembled components of such DNA fragments can be connected together by ligating the compatible overhangs produced by different restriction endonucleases. However, designing the corresponding cloning scheme can be a complex task that requires a software tool to generate a list of potential connection sites. FINDINGS The BIOF program presented here analyzes DNA fragments for all available restriction enzymes and provides a list of potential sites for ligation of DNA fragments with compatible overhangs. The cloning scheme, which is called modular assembly cloning (MAC), is aided by the BIOF program. MAC was tested on a practical dataset, namely, two non-coding fragments of the translation elongation factor 1 alpha gene from Chinese hamster ovary cells. The individual fragment lengths exceeded 5 kbp, and direct PCR amplification produced no amplicons. However, separation of the target fragments into smaller regions, with downstream assembly of the cloned modules, resulted in both target DNA fragments being obtained with few subsequent steps. CONCLUSIONS Implementation of the MAC software tool and the experimental approach adopted here has great potential for simplifying the molecular cloning of long DNA fragments. This approach may be used to generate long artificial DNA fragments such as in vitro spliced cDNAs.
Collapse
|
9
|
Agrawal P, Verma D, Daniell H. Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis. PLoS One 2011; 6:e29302. [PMID: 22216240 PMCID: PMC3247253 DOI: 10.1371/journal.pone.0029302] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 11/23/2011] [Indexed: 11/26/2022] Open
Abstract
Lignocellulosic ethanol offers a promising alternative to conventional fossil fuels. One among the major limitations in the lignocellulosic biomass hydrolysis is unavailability of efficient and environmentally biomass degrading technologies. Plant-based production of these enzymes on large scale offers a cost-effective solution. Cellulases, hemicellulases including mannanases and other accessory enzymes are required for conversion of lignocellulosic biomass into fermentable sugars. β-mannanase catalyzes endo-hydrolysis of the mannan backbone, a major constituent of woody biomass. In this study, the man1 gene encoding β-mannanase was isolated from Trichoderma reesei and expressed via the chloroplast genome. PCR and Southern hybridization analysis confirmed site-specific transgene integration into the tobacco chloroplast genomes and homoplasmy. Transplastomic plants were fertile and set viable seeds. Germination of seeds in the selection medium showed inheritance of transgenes into the progeny without any Mendelian segregation. Expression of endo-β-mannanase for the first time in plants facilitated its characterization for use in enhanced lignocellulosic biomass hydrolysis. Gel diffusion assay for endo-β-mannanase showed the zone of clearance confirming functionality of chloroplast-derived mannanase. Endo-β-mannanase expression levels reached up to 25 units per gram of leaf (fresh weight). Chloroplast-derived mannanase had higher temperature stability (40 °C to 70 °C) and wider pH optima (pH 3.0 to 7.0) than E.coli enzyme extracts. Plant crude extracts showed 6-7 fold higher enzyme activity than E.coli extracts due to the formation of disulfide bonds in chloroplasts, thereby facilitating their direct utilization in enzyme cocktails without any purification. Chloroplast-derived mannanase when added to the enzyme cocktail containing a combination of different plant-derived enzymes yielded 20% more glucose equivalents from pinewood than the cocktail without mannanase. Our results demonstrate that chloroplast-derived mannanase is an important component of enzymatic cocktail for woody biomass hydrolysis and should provide a cost-effective solution for its diverse applications in the biofuel, paper, oil, pharmaceutical, coffee and detergent industries.
Collapse
Affiliation(s)
- Pankaj Agrawal
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Dheeraj Verma
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
10
|
Jin S, Kanagaraj A, Verma D, Lange T, Daniell H. Release of hormones from conjugates: chloroplast expression of β-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters. PLANT PHYSIOLOGY 2011; 155:222-35. [PMID: 21068365 PMCID: PMC3075761 DOI: 10.1104/pp.110.160754] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 11/06/2010] [Indexed: 05/19/2023]
Abstract
Transplastomic tobacco (Nicotiana tabacum) plants expressing β-glucosidase (Bgl-1) show modified development. They flower 1 month earlier with an increase in biomass (1.9-fold), height (1.5-fold), and leaf area (1.6-fold) than untransformed plants. Trichome density on the upper and lower leaf surfaces of BGL-1 plants increase by 10- and 7-fold, respectively, harboring 5-fold more glandular trichomes (as determined by rhodamine B staining), suggesting that BGL-1 lines produce more sugar esters than control plants. Gibberellin (GA) levels were investigated because it is a known regulator of flowering time, plant height, and trichome development. Both GA(1) and GA(4) levels are 2-fold higher in BGL-1 leaves than in untransformed plants but do not increase in other organs. In addition, elevated levels of other plant hormones, including zeatin and indole-3-acetic acid, are observed in BGL-1 lines. Protoplasts from BGL-1 lines divide and form calli without exogenous hormones. Cell division in protoplasts is enhanced 7-fold in the presence of exogenously applied zeatin-O-glucoside conjugate, indicating the release of active hormones from their conjugates. Whitefly (Bemisia tabaci) and aphid (Myzus persicae) populations in control plants are 18 and 15 times higher than in transplastomic lines, respectively. Lethal dose to kill 50% of the test population values of 26.3 and 39.2 μg per whitefly and 23.1 and 35.2 μg per aphid for BGL-1 and untransformed control exudates, respectively, confirm the enhanced toxicity of transplastomic exudates. These data indicate that increase in sugar ester levels in BGL-1 lines might function as an effective biopesticide. This study provides a novel strategy for designing plants for enhanced biomass production and insect control by releasing plant hormones or sugar esters from their conjugates stored within their chloroplasts.
Collapse
Affiliation(s)
| | | | | | | | - Henry Daniell
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, Florida 32816–2364 (S.J., A.K., D.V., H.D.); Institute of Plant Biology, Department of Plant Physiology and Biochemistry, Technical University of Braunschweig, Braunschweig D–38106, Germany (T.L.)
| |
Collapse
|
11
|
Verma D, Kanagaraj A, Jin S, Singh ND, Kolattukudy PE, Daniell H. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:332-50. [PMID: 20070870 PMCID: PMC2854225 DOI: 10.1111/j.1467-7652.2009.00486.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
It is widely recognized that biofuel production from lignocellulosic materials is limited by inadequate technology to efficiently and economically release fermentable sugars from the complex multi-polymeric raw materials. Therefore, endoglucanases, exoglucanase, pectate lyases, cutinase, swollenin, xylanase, acetyl xylan esterase, beta glucosidase and lipase genes from bacteria or fungi were expressed in Escherichia coli or tobacco chloroplasts. A PCR-based method was used to clone genes without introns from Trichoderma reesei genomic DNA. Homoplasmic transplastomic lines showed normal phenotype and were fertile. Based on observed expression levels, up to 49, 64 and 10, 751 million units of pectate lyases or endoglucanase can be produced annually, per acre of tobacco. Plant production cost of endoglucanase is 3100-fold, and pectate lyase is 1057 or 1480-fold lower than the same recombinant enzymes sold commercially, produced via fermentation. Chloroplast-derived enzymes had higher temperature stability and wider pH optima than enzymes expressed in E. coli. Plant crude-extracts showed higher enzyme activity than E. coli with increasing protein concentration, demonstrating their direct utility without purification. Addition of E. coli extracts to the chloroplast-derived enzymes significantly decreased their activity. Chloroplast-derived crude-extract enzyme cocktails yielded more (up to 3625%) glucose from filter paper, pine wood or citrus peel than commercial cocktails. Furthermore, pectate lyase transplastomic plants showed enhanced resistance to Erwina soft rot. This is the first report of using plant-derived enzyme cocktails for production of fermentable sugars from lignocellulosic biomass. Limitations of higher cost and lower production capacity of fermentation systems are addressed by chloroplast-derived enzyme cocktails.
Collapse
Affiliation(s)
- Dheeraj Verma
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Biomolecular Science Building, 4000 Central Florida Blvd, Orlando, FL 32816-2364, USA
| | - Anderson Kanagaraj
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Biomolecular Science Building, 4000 Central Florida Blvd, Orlando, FL 32816-2364, USA
| | - Shuangxia Jin
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Biomolecular Science Building, 4000 Central Florida Blvd, Orlando, FL 32816-2364, USA
| | - Nameirakpam D. Singh
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Biomolecular Science Building, 4000 Central Florida Blvd, Orlando, FL 32816-2364, USA
| | - Pappachan E Kolattukudy
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Biomolecular Science Building, 4000 Central Florida Blvd, Orlando, FL 32816-2364, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Biomolecular Science Building, 4000 Central Florida Blvd, Orlando, FL 32816-2364, USA
| |
Collapse
|