1
|
Tan C, Huang S, Xu L, Zhang T, Yuan X, Li Z, Chen M, Chen C, Yan Q. Cross-talk between oxidative stress and lipid metabolism regulators reveals molecular clusters and immunological characterization in polycystic ovarian syndrome. Lipids Health Dis 2024; 23:248. [PMID: 39143634 PMCID: PMC11325768 DOI: 10.1186/s12944-024-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Changes in the oxidative stress and lipid metabolism (OSLM) pathways play important roles in polycystic ovarian syndrome (PCOS) pathogenesis and development. Consequently, a systematic analysis of genes related to OSLM was conducted to identify molecular clusters and explore new biomarkers that are helpful for the diagnostic of PCOS. METHODS Gene expression and clinical data from 22 PCOS women and 14 normal women were obtained from the GEO database (GSE34526, GSE95728, and GSE106724). Consensus clustering identified OSLM-related molecular clusters, and WGCNA revealed co-expression patterns. The immune microenvironment was quantitatively assessed utilizing the CIBERSORT algorithm. Multiple machine learning models and connectivity map analyses were subsequently applied to explore potential biomarkers for PCOS, and nomograms were employed to develop a predictive multigene model of PCOS. Finally, the OSLM status of PCOS and the hub genes expression profiles were preliminarily verified using TUNEL, qRT‒PCR, western blot, and IHC assays in a PCOS mouse model. RESULTS 19 differential expression genes (DEGs) related to OSLM were identified. Based on 19 DEGs that were strongly influenced by OSLM, PCOS patients were stratified into two distinct clusters, designated Cluster 1 and Cluster 2. Distinct differences in the immune cell proportions existed in normal and two PCOS clusters. The random forest showed the best results, with the least cross-entropy and the utmost AUC (cross-entropy: 0.111 AUC: 0.960). Among the 19 OSLM-related genes, CXCR1, ACP5, CEACAM3, S1PR4, and TCF7 were identified by a Bayesian network and had a good fit with PCOS disease risk by the nomogram (AUC: 0.990 CI: 0.968-1.000). TUNEL assays revealed more severe DNA damage within the ovarian granule cells of PCOS mice than in those of normal mice (P < 0.001). The RNA and protein expression levels of the five hub genes were significantly elevated in PCOS mice, which was consistent with the results of the bioinformatics analyses. CONCLUSION A novel predictive model was constructed for PCOS patients and five hub genes were identified as potential biomarkers to offer novel insights into clinical diagnostic strategies for PCOS.
Collapse
Affiliation(s)
- Cuiyu Tan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Shuqiang Huang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Liying Xu
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Tongtong Zhang
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Xiaojun Yuan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Zhihong Li
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Miaoqi Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Cairong Chen
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
- Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| | - Qiuxia Yan
- Center for Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
- Guangdong Engineering Technology Research Center of Urinary Continence and Reproductive Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong, 511518, China.
| |
Collapse
|
2
|
Bergwik J, Bhongir RKV, Padra M, Adler A, Olm F, Lång P, Lindstedt S, Andersson G, Egesten A, Tanner L. Macrophage expressed tartrate-resistant acid phosphatase 5 promotes pulmonary fibrosis progression. Immunology 2024; 171:583-594. [PMID: 38178705 DOI: 10.1111/imm.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder involving scarring of pulmonary tissue and a subsequent decrease in respiratory capacity, ultimately resulting in death. Tartrate resistant acid phosphatase 5 (ACP5) plays a role in IPF but the exact mechanisms are yet to be elucidated. In this study, we have utilized various perturbations of the bleomycin mouse model of IPF including genetic knockout, RANKL inhibition, and macrophage adoptive transfer to further understand ACP5's role in pulmonary fibrosis. Genetic ablation of Acp5 decreased immune cell recruitment to the lungs and reduced the levels of hydroxyproline (reflecting extracellular matrix-production) as well as histological damage. Additionally, gene expression profiling of murine lung tissue revealed downregulation of genes including Ccl13, Mmp13, and Il-1α that encodes proteins specifically related to immune cell recruitment and macrophage/fibroblast interactions. Furthermore, antibody-based neutralization of RANKL, an important inducer of Acp5 expression, reduced immune cell recruitment but did not decrease fibrotic lung development. Adoptive transfer of Acp5-/- bone marrow-derived monocyte (BMDM) macrophages 7 or 14 days after bleomycin administration resulted in reductions of cytokine production and decreased levels of lung damage, compared to adoptive transfer of WT control macrophages. Taken together, the data presented in this study suggest that macrophage derived ACP5 plays an important role in development of pulmonary fibrosis and could present a tractable target for therapeutic intervention in IPF.
Collapse
Affiliation(s)
- Jesper Bergwik
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi Kiran Varma Bhongir
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Médea Padra
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Anna Adler
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Cardiothoracic Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Lindstedt
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Cardiothoracic Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
3
|
Summers KM, Bush SJ, Wu C, Hume DA. Generation and network analysis of an RNA-seq transcriptional atlas for the rat. NAR Genom Bioinform 2022; 4:lqac017. [PMID: 35265836 PMCID: PMC8900154 DOI: 10.1093/nargab/lqac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
Abstract
The laboratory rat is an important model for biomedical research. To generate a comprehensive rat transcriptomic atlas, we curated and downloaded 7700 rat RNA-seq datasets from public repositories, downsampled them to a common depth and quantified expression. Data from 585 rat tissues and cells, averaged from each BioProject, can be visualized and queried at http://biogps.org/ratatlas. Gene co-expression network (GCN) analysis revealed clusters of transcripts that were tissue or cell type restricted and contained transcription factors implicated in lineage determination. Other clusters were enriched for transcripts associated with biological processes. Many of these clusters overlap with previous data from analysis of other species, while some (e.g. expressed specifically in immune cells, retina/pineal gland, pituitary and germ cells) are unique to these data. GCN analysis on large subsets of the data related specifically to liver, nervous system, kidney, musculoskeletal system and cardiovascular system enabled deconvolution of cell type-specific signatures. The approach is extensible and the dataset can be used as a point of reference from which to analyse the transcriptomes of cell types and tissues that have not yet been sampled. Sets of strictly co-expressed transcripts provide a resource for critical interpretation of single-cell RNA-seq data.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute—University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Chunlei Wu
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David A Hume
- Mater Research Institute—University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
4
|
Lopes MES, Marcantonio CC, de Molon RS, Cerri PS, Salmon CR, Mofatto LS, Nociti Junior FH, Deschner J, Cirelli JA, Nogueira AVB. Obesity influences the proteome of periodontal ligament tissues following periodontitis induction in rats. J Periodontal Res 2022; 57:545-557. [PMID: 35246839 DOI: 10.1111/jre.12983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Many studies have been conducted to better understand the molecular mechanism involved with periodontitis progression. There has been growing interest in the potential impact of obesity on periodontitis onset and progression, but the mechanisms involved remain to be elucidated. The present study was designed to determine the impact of obesity on experimentally induced periodontitis in rats and identify novel pathways involved. METHODS Sixteen Holtzman rats were distributed into two groups (n = 8): ligature-induced periodontitis (P) and obesity plus ligature-induced periodontitis (OP). Obesity was induced by a high-fat diet for 70 days, whereas periodontitis was induced for 20 days, with a cotton thread placed around the upper first molars bilaterally. Alveolar bone loss was measured by microtomographic analysis and histologically by histometry on the hemimaxillae. The protein composition of the periodontal ligament was evaluated by proteomic analysis. RESULTS Data analysis (body weight, adipose tissue weight, and blood test) confirmed obesity induction, whereas bone loss was confirmed by micro-CT and histologic analyses. Proteome analysis from the periodontal ligament tissues (PDL) identified 819 proteins, 53 exclusive to the P group, 28 exclusive to the OP group, and 738 commonly expressed. Validation was performed by immunohistochemistry for selected proteins (spondin1, vinculin, and TRAP). CONCLUSION Histologically, it was found that obesity did not significantly affect bone loss resulting from periodontitis. However, the present study's findings indicated that obesity affects the proteome of PDL submitted to experimental periodontitis, allowing for identifying potential targets for personalized approaches.
Collapse
Affiliation(s)
- Maria Eduarda Scordamaia Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Paulo Sérgio Cerri
- Department of Morphology, School of Dentistry at Araraquara, São Paulo State University, Araraquara, Brazil
| | - Cristiane Ribeiro Salmon
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Luciana Souto Mofatto
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Francisco Humberto Nociti Junior
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil.,São Leopoldo Mandic Research Center, Campinas, Brazil
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil.,Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
5
|
Lång P, Patlaka C, Andersson G. Tartrate-resistant acid phosphatase type 5/ACP5 promotes cell cycle entry of 3T3-L1 preadipocytes by increasing IGF-1/Akt signaling. FEBS Lett 2021; 595:2616-2627. [PMID: 34418080 DOI: 10.1002/1873-3468.14184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/10/2022]
Abstract
Tartrate-resistant acid phosphatase (TRAP, encoded by ACP5)-overexpressing mice exhibit hyperplastic obesity. As the molecular mechanism remains elusive, the aims were to characterize the effect of TRAP on preadipocyte proliferation. We investigated cell cycle entry and signal transduction, that is, insulin-like growth factor 1 (IGF-1)/ insulin receptor substrate 1 (IRS-1) and the Akt signaling pathways, in 3T3-L1 preadipocytes treated with the TRAP 5a isoform. Results show that TRAP 5a increases S-phase entry. TRAP 5a stimulation increases IGF-1 mRNA and IRS-1 activation, indicative of insulin-like growth factor 1 receptor (IGF1R) activation. Furthermore, TRAP 5a stimulation resulted in Akt signaling pathway activation and subsequent increased nuclear translocation of β-catenin. In conclusion, TRAP 5a increases proliferation of preadipocytes in a dose-dependent fashion by promoting entry into S-phase. Part of this effect is likely due to increased IGF-1 signaling through the Akt signaling pathway.
Collapse
Affiliation(s)
- Pernilla Lång
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Christina Patlaka
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
6
|
Patlaka C, Tubic B, Lång P, Paulie S, Swolin-Eide D, Magnusson P, Andersson G. Intensive weight gain therapy in patients with anorexia nervosa results in improved serum tartrate-resistant acid phosphatase (TRAP) 5a and 5b isoform protein levels. Eat Weight Disord 2020; 25:1387-1397. [PMID: 31531762 PMCID: PMC7508747 DOI: 10.1007/s40519-019-00776-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/03/2019] [Indexed: 11/29/2022] Open
Abstract
AIM Tartrate-resistant acid phosphatase (TRAP) exists as isoforms 5a and 5b. TRAP 5a is a biomarker of chronic inflammation and influences adipose tissue and 5b associates with bone metabolism/pathologies. The aim was to investigate the association of serum TRAP 5a/5b isoforms with fat and bone markers and anthropometric parameters in patients with anorexia nervosa (AN) during weight gain therapy. METHODS Twenty-five Swedish female AN patients, age 16-24 years, were treated for 12 weeks with a high-energy diet with six meals daily. Serum TRAP 5a/5b, markers of fat/glucose metabolism, markers of bone resorption and formation were measured. Parameters of bone and body composition were assessed by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. RESULTS BMI increased from median 15.4 kg/m2 to 19.0 kg/m2, p < 0.0001. TRAP 5a and 5a/5b ratio increased but TRAP 5b decreased during the study. TRAP Δ5a and Δ5b correlated with Δinsulin and Δadiponectin, respectively. TRAP 5b correlated with trabecular density at start but not at week 12. At 12 weeks, TRAP 5b correlated with CTX, and Δ decrease in TRAP 5b correlated to Δ increase in bone-specific alkaline phosphatase. CONCLUSIONS This clinical interventional study resulted in increased BMI in patients with AN. The decreased TRAP 5b protein levels confirm a role for TRAP 5b as a marker of bone resorption, whereas increased TRAP 5a seemed to derive from systemic changes in bone as well as metabolic changes. The combined detection of TRAP 5a and TRAP 5b in serum could be an indicator of improved bone metabolism. LEVEL OF EVIDENCE Level III, prospective interventional cohort study.
Collapse
Affiliation(s)
- Christina Patlaka
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Bojan Tubic
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
| | | | - Diana Swolin-Eide
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Magnusson
- Department of Clinical Chemistry, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
7
|
Mira-Pascual L, Patlaka C, Desai S, Paulie S, Näreoja T, Lång P, Andersson G. A Novel Sandwich ELISA for Tartrate-Resistant Acid Phosphatase 5a and 5b Protein Reveals that Both Isoforms are Secreted by Differentiating Osteoclasts and Correlate to the Type I Collagen Degradation Marker CTX-I In Vivo and In Vitro. Calcif Tissue Int 2020; 106:194-207. [PMID: 31654098 DOI: 10.1007/s00223-019-00618-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
Abstract
Tartrate-resistant acid phosphatase type 5 (TRAP) exists as two isoforms, 5a and 5b. 5b is a marker of osteoclast number and 5a of chronic inflammation; however, its association with bone resorption is unknown. In this study, a double-TRAP 5a/5b sandwich ELISA measuring 5a and 5b protein in the same sample was developed. TRAP 5a and 5b protein levels were evaluated as osteoclast differentiation/activity markers in serum and in culture, and their correlation to the resorption marker CTX-I was examined. Serum TRAP 5a and 5b concentrations in healthy men were 4.4 ± 0.6 ng/ml and 1.3 ± 0.2 ng/ml, respectively, and they correlated moderately to each other suggesting that their secretion is coupled under healthy conditions. A correlation was also observed between serum TRAP 5a and 5b with CTX-I, suggesting that both TRAP isoforms associate with osteoclast number. During osteoclast differentiation on plastic/bone, predominantly 5b increased in media/lysate from M-CSF/RANKL-stimulated CD14+ PBMCs. However, substantial levels of 5a were detected at later stages suggesting that both isoforms are secreted from differentiating OCs. More TRAP 5b was released on bone indicating a connection to osteoclast resorptive activity, and a peak in TRAP 5b/5a-ratio coincided with rapid CTX-I release. At the end of the culture period of M-CSF + RANKL-stimulated CD14+ PBMCs, there was a correlation between the secretion of TRAP 5a and 5b proteins with CTX-I. The correlation of not only 5b but also 5a with collagen degradation, both in serum and osteoclast cultures indicates that a considerable proportion of the TRAP 5a originates from osteoclasts and may reflect a hitherto undisclosed regulatory mechanism during bone resorption and bone remodeling.
Collapse
Affiliation(s)
- Laia Mira-Pascual
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden
| | - Christina Patlaka
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden
| | - Suchita Desai
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden
| | | | - Tuomas Näreoja
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden.
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden.
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden
| |
Collapse
|
8
|
Mira-Pascual L, Tran AN, Andersson G, Näreoja T, Lång P. A Sub-Clone of RAW264.7-Cells Form Osteoclast-Like Cells Capable of Bone Resorption Faster than Parental RAW264.7 through Increased De Novo Expression and Nuclear Translocation of NFATc1. Int J Mol Sci 2020; 21:E538. [PMID: 31947698 PMCID: PMC7013577 DOI: 10.3390/ijms21020538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
The murine macrophage cell line RAW264.7 is extensively used as a progenitor to study osteoclast (OC) differentiation. RAW264.7 is a heterogeneous cell line, containing sub-clones with different abilities to form OCs. The aim of this study was to identify characteristics within the heterogeneous RAW264.7 cells that define sub-clones with an augmented ability to form bone-resorbing OCs (H9), as well as sub-clones representing non-OCs (J8). RAW264.7 sub-clones were isolated by single cell cloning. Selection was based on TRAP/cathepsin K expression in sub-clone cultures without added RANKL. Sub-clones before and after differentiation with RANKL were assayed for multiple OC-characteristics. Sub-clone H9 cells presented a higher expression of OC-markers in cultures without added RANKL compared to the parental RAW264.7. After 6 days of RANKL stimulation, sub-clone H9 cells had equal expression levels of OC-markers with RAW264.7 and formed OCs able to demineralize hydroxyapatite. However, sub-clone H9 cells displayed rapid differentiation of OC already at Day 2 compared to Day 4 from parental RAW264.7, and when cultured on plastic and on bone they were more efficient in resorption. This rapid differentiation was likely due to high initial expression/nuclear translocation of OC master transcription factor, NFATc1. In contrast to H9, J8 cells expressed initially very low levels of OC-markers, and they did not respond to RANKL-stimulation by developing OC-characteristics/OC-marker expression. Hence, H9 is an additional clone suitable for experimental setup requiring rapid differentiation of large numbers of OCs.
Collapse
Affiliation(s)
- Laia Mira-Pascual
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
| | - Anh N. Tran
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
- Musculoskeletal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB 252ZD, UK
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
| | - Tuomas Näreoja
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
| | - Pernilla Lång
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé, 8, SE-141 52 Stockholm, Sweden; (L.M.-P.); (A.N.T.); (G.A.)
| |
Collapse
|
9
|
Patlaka C, Mira Pascual L, Paulie S, Henriksson AF, Arner P, Lång P, Andersson G. The adipokine tartrate-resistant acid phosphatase 5a in serum correlates to adipose tissue expansion in obesity. Biomarkers 2017; 22:764-774. [DOI: 10.1080/1354750x.2017.1334155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Christina Patlaka
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Laia Mira Pascual
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | - Anni-Frid Henriksson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
10
|
Shih KC, Janckila AJ, Lee WJ, Chou YC, Huang CJ, Kwok CF, Ho LT, Chao TY. Effects of bariatric weight loss surgery on glucose metabolism, inflammatory cytokines, and serum tartrate-resistant acid phosphatase 5a in obese Chinese adults. Clin Chim Acta 2016; 453:197-202. [DOI: 10.1016/j.cca.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023]
|
11
|
Patlaka C, Mai HA, Lång P, Andersson G. The growth factor-like adipokine tartrate-resistant acid phosphatase 5a interacts with the rod G3 domain of adipocyte-produced nidogen-2. Biochem Biophys Res Commun 2014; 454:446-52. [PMID: 25450682 DOI: 10.1016/j.bbrc.2014.10.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 12/28/2022]
Abstract
The adipokine tartrate resistant acid phosphatase (TRAP) 5a isoform exerts a growth factor-effect on pre-adipocytes. This study aimed to identify potential TRAP 5a interacting proteins in pre-adipocytes using pull down assays in combination with mass spectrometry. Nidogen-2, a protein shown to be expressed intracellularly and for secretion by pre-adipocytes, was shown to interact, through its globular G3 domain, with TRAP 5a in vitro. In vivo, TRAP 5a interacted with nidogen-2 in cultured 3T3-L1 mouse pre-adipocytes, as well as with transforming growth factor-β (TGF-β) interacting protein (TRIP-1), which is a protein that has previously been suggested to interact with TRAP in bone. In addition, TRAP 5a and nidogen-2 co-localized in adipose tissue cells in situ. These results indicate that TRAP 5a interacts with nidogen-2 and TRIP-1 in pre-adipocytic cells.
Collapse
Affiliation(s)
- Christina Patlaka
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Hong Anh Mai
- Linköping University, Institute of Technology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
| | - Pernilla Lång
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
12
|
Solberg LB, Stang E, Brorson SH, Andersson G, Reinholt FP. Tartrate-resistant acid phosphatase (TRAP) co-localizes with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in lysosomal-associated membrane protein 1 (LAMP1)-positive vesicles in rat osteoblasts and osteocytes. Histochem Cell Biol 2014; 143:195-207. [PMID: 25201349 PMCID: PMC4298672 DOI: 10.1007/s00418-014-1272-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
Abstract
Tartrate-resistant acid phosphatase (TRAP) is well known as an osteoclast marker; however, a recent study from our group demonstrated enhanced number of TRAP + osteocytes as well as enhanced levels of TRAP located to intracellular vesicles in osteoblasts and osteocytes in experimental osteoporosis in rats. Such vesicles were especially abundant in osteoblasts and osteocytes in cancellous bone as well as close to bone surface and intracortical remodeling sites. To further investigate TRAP in osteoblasts and osteocytes, long bones from young, growing rats were examined. Immunofluorescence confocal microscopy displayed co-localization of TRAP with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in hypertrophic chondrocytes and diaphyseal osteocytes with Pearson's correlation coefficient ≥0.8. Transmission electron microscopy showed co-localization of TRAP and RANKL in lysosomal-associated membrane protein 1 (LAMP1) + vesicles in osteoblasts and osteocytes supporting the results obtained by confocal microscopy. Recent in vitro data have demonstrated OPG as a traffic regulator for RANKL to LAMP1 + secretory lysosomes in osteoblasts and osteocytes, which seem to serve as temporary storage compartments for RANKL. Our in situ observations indicate that TRAP is located to RANKL-/OPG-positive secretory lysosomes in osteoblasts and osteocytes, which may have implications for osteocyte regulation of osteoclastogenesis.
Collapse
Affiliation(s)
- L B Solberg
- Department of Pathology, The Core Facility for Advanced Electron Microscopy, Oslo University Hospital, Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway,
| | | | | | | | | |
Collapse
|
13
|
Caveolae-mediated endocytosis of the glucosaminoglycan-interacting adipokine tartrate resistant acid phosphatase 5a in adipocyte progenitor lineage cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:495-507. [PMID: 24316135 DOI: 10.1016/j.bbamcr.2013.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 11/23/2022]
Abstract
Adipogenesis depends on growth factors controlling proliferation/differentiation of mesenchymal stem cells (MSCs). Membrane binding and endocytosis of growth factors are often coupled to receptor activation and downstream signaling leading to specific cellular responses. The novel adipokine tartrate-resistant acid phosphatase (TRAP) 5a exhibits a growth factor-like effect on MSCs and pre-adipocytes and induces hyperplastic obesity in vivo. However its molecular interaction with pre-adipocytes remains unknown. Therefore, this study aimed to investigate membrane interaction of TRAP and its endocytosis routes in pre-adipocytes. Confocal and/or electron microscopy were used to detect TRAP in untreated or TRAP 5a/b treated pre-adipocytes under conditions that allow or inhibit endocytosis in combination with co-staining of endocytotic vesicles. TRAP interaction with heparin/heparan sulfate was verified by gel filtration. It could be shown that TRAP 5a, but not 5b, binds to the membrane of pre-adipocytes where it co-localizes with heparin-sulfate proteoglycan glypican-4. Also in vitro, TRAP 5a exhibited affinity for both heparin and heparan sulfate with heparin inhibiting its enzyme activity. Upon caveolae-mediated endocytosis of saturating levels of TRAP 5a, TRAP 5a co-localized intracellularly with glypican-4 and late endosomal marker Rab-7 positive vesicles. The protein was also located in multivesicular bodies (MVBs) but did not co-localize with lysosomal marker LAMP-1. TRAP 5a endocytosis was also detectable in pre-osteoblasts, but not fibroblasts, embryonic MSCs or mature adipocytes. These results indicate that TRAP 5a exhibits binding to cell surface, endocytosis and affinity to glucosaminoglycans (GAGs) in pre-adipocyte and pre-osteoblast lineage cells in a manner similar to other heparin-binding growth factors.
Collapse
|
14
|
Koizumi G, Kumai T, Egawa S, Yatomi K, Hayashi T, Oda G, Ohba K, Iwai S, Watanabe M, Matsumoto N, Oguchi K. Gene expression in the vascular wall of the aortic arch in spontaneously hypertensive hyperlipidemic model rats using DNA microarray analysis. Life Sci 2013; 93:495-502. [PMID: 23994198 DOI: 10.1016/j.lfs.2013.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 07/31/2013] [Accepted: 08/16/2013] [Indexed: 01/11/2023]
Abstract
AIMS In recent years, there has been an increase in patients with arteriosclerosis and the risk of lifestyle-related diseases. However, the pathogenesis and medication of atherosclerosis have not been elucidated. We developed a rat model of lifestyle-related diseases by feeding a high-fat diet and 30% sucrose solution (HFDS) to spontaneously hypertensive hyperlipidemic rats (SHHR) and reported that this model is a useful model of early atherosclerosis. In order to elucidate the pathogenesis of early atherosclerosis, we searched for atherosclerosis-related genes by microarray analysis using the aortic arch rat model of lifestyle-related diseases. MAIN METHODS Four-month-old male Sprague-Dawley rats and SHHR were each divided into two normal diet (ND) groups and two HFDS groups. After a four-month treatment, the expression of mRNA in the aortic arch was detected using the oligo DNA microarray one-color method and quantified using real-time PCR. KEY FINDINGS In this study, we detected 39 genes in microarray analysis. Esm1, Retnlb Mkks, and Grem2 showed particularly marked changes in gene expression in the SHHR-HFDS group. Compared with the SD-ND group, the SHHR-HFDS group had an increase in Mkks gene expression of about 26-fold and an approximately 22-fold increase in the expression of Grem2. Similarly, the expression of Esm1 increased by about 12-fold and that of Retnlg by about 10-fold as shown by quantitative real-time PCR. SIGNIFICANCE This study suggested that these four genes might be important in early atherosclerosis development.
Collapse
Affiliation(s)
- Go Koizumi
- Department of Pharmacology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Department of Pharmacogenomics, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama, Kanagawa 227-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hegde V, Dhurandhar N. Microbes and obesity—interrelationship between infection, adipose tissue and the immune system. Clin Microbiol Infect 2013; 19:314-20. [DOI: 10.1111/1469-0691.12157] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 01/07/2013] [Indexed: 01/16/2023]
|
16
|
Dhurandhar NV. Insulin sparing action of adenovirus 36 and its E4orf1 protein. J Diabetes Complications 2013; 27:191-9. [PMID: 23246247 DOI: 10.1016/j.jdiacomp.2012.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 02/06/2023]
Abstract
Additional drugs are required to effectively manage diabetes and its complications. Recent studies have revealed protective effects of Ad36, a human adenovirus, and its E4orf1 protein on glucose disposal, which may be creatively harnessed to develop novel anti-diabetic agents. Experimental Ad36 infection improves hyperglycemia in animal models and natural Ad36 infection in humans is associated with better glycemic control. Available data indicate distinctive advantages for a drug that may mimic the action of Ad36/E4orf1. The key features of such a potential drug include the ability to increase glucose uptake by adipose tissue and skeletal muscle, to reduce hepatic glucose output independent of proximal insulin signaling, and to up-regulate adiponectin and its hepatic action. The effect of Ad36/E4orf1 on hepatocyte metabolism suggests a role for treating hepatic steatosis. Despite these potential advantages, considerable research is required before such a drug is developed. The in vivo efficacy and safety of E4orf1 in improving hyperglycemia remain unknown, and an appropriate drug delivery system is required. Nonetheless, Ad36 E4orf1 offers a research opportunity to develop a new anti-diabetic agent with multiple potential advantages and conceptually advances the use of a rather unconventional source, microbial proteins, for anti-diabetic drug development.
Collapse
Affiliation(s)
- Nikhil V Dhurandhar
- Infections and Obesity laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
17
|
Gimble JM, Nuttall ME. The relationship between adipose tissue and bone metabolism. Clin Biochem 2012; 45:874-9. [PMID: 22429519 DOI: 10.1016/j.clinbiochem.2012.03.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The authors have set out to evaluate the literature relevant to the dynamic regulation of adipogenesis and osteogenesis. DESIGN AND METHODS A detailed search of the past and recent literature was conducted on Pubmed using a combination of keywords including: adipogenesis, bone marrow, hematopoiesis, mesenchymal stromal/stem cell, and osteogenesis. RESULTS Throughout one's lifespan, the bone marrow microenvironment provides a unique niche for mesenchymal stromal/stem cells (BMSCs) and hematopoietic stem cells (HSCs). The marrow changes as a function of biological age and pathophysiology. Historically, clinical biochemistry has observed these changes from an HSC and hematological perspective. Nevertheless, these changes also reflect the balance between BMSC adipogenic and osteogenic processes which can display an inverse or reciprocal relationship. Multiple hormonal factors and nuclear hormone receptor ligands and drugs are responsible for BMSC lineage selection. Data from a number of laboratories now implicates endocrine feedback loops between extramedullary adipose depots and the central nervous system. CONCLUSIONS This concise review provides a perspective on the mechanisms regulating BMSC differentiation in the context of biological aging, obesity, and osteoporosis.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
18
|
Gradin P, Hollberg K, Cassady AI, Lång P, Andersson G. Transgenic overexpression of tartrate-resistant acid phosphatase is associated with induction of osteoblast gene expression and increased cortical bone mineral content and density. Cells Tissues Organs 2012; 196:68-81. [PMID: 22248481 DOI: 10.1159/000330806] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2011] [Indexed: 11/19/2022] Open
Abstract
Bone remodeling is a central event in the maintenance of skeletal tissue, and involves cycles of resorption followed by the formation of bone tissue. The activity of osteoclasts and osteoblasts during these cycles is tightly regulated by systemic and local factors coupling the action of these cells. Tartrate-resistant acid phosphatase (TRAP) is predominantly expressed in bone by osteoclasts but has also been detected in osteoblasts and osteocytes. Moreover, TRAP can stimulate the differentiation of mesenchymal lineage cells, i.e. progenitors of osteoblasts and adipocytes. In order to further explore the effects of TRAP on bone turnover, the structural and molecular phenotypes of osteoclasts and osteoblasts were assessed in TRAP-overexpressing transgenic mice. Transgenic mice of both sexes display increased cortical bone mineral content and density, which cannot be accounted for by decreased bone resorption since osteoclast numbers and resorptive activity do not differ from wild-type mice. Examination of the osteoblast phenotype revealed that markers of bone formation, i.e. procollagen type I N-terminal propeptides, and osteoblast lineage markers as well as the TRAP 1B mRNA transcript are increased in TRAP-overexpressing mice. Expression of the osteoclast-selective TRAP 1C mRNA is not increased in TRAP transgenic mice. Elevated expression of TRAP mRNA and protein were detected in osteoblasts, osteocytes and in the bone matrix of TRAP transgenic mice, suggesting that TRAP overexpression in osteoblast lineage cells is associated with increased cortical bone mineral content and density. The data presented here support the hypothesis that TRAP overexpression in the osteoblastic cell lineage stimulates the differentiation and/or activation of these cells.
Collapse
Affiliation(s)
- Per Gradin
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
19
|
Lehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl 2011; 6:91-101. [PMID: 22213627 DOI: 10.1002/prca.201100052] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 01/04/2023]
Abstract
Adipose tissue is a major endocrine organ, releasing signaling and mediator proteins, termed adipokines, via which adipose tissue communicates with other organs. Expansion of adipose tissue in obesity alters adipokine secretion which may contribute to the development of metabolic diseases. Consequently, this correlation has emphasized the importance to further characterize the adipocyte secretion profile, and several attempts have been made to characterize the complex nature of the adipose tissue secretome by utilizing diverse proteomic profiling approaches. Although the entirety of human adipokines is still incompletely characterized, to date more than 600 potentially secretory proteins were identified providing a rich source to identify putative novel biomarkers associated with metabolic diseases.
Collapse
Affiliation(s)
- Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany.
| | | | | |
Collapse
|
20
|
Klimcakova E, Roussel B, Kovacova Z, Kovacikova M, Siklova-Vitkova M, Combes M, Hejnova J, Decaunes P, Maoret JJ, Vedral T, Viguerie N, Bourlier V, Bouloumié A, Stich V, Langin D. Macrophage gene expression is related to obesity and the metabolic syndrome in human subcutaneous fat as well as in visceral fat. Diabetologia 2011; 54:876-87. [PMID: 21267541 DOI: 10.1007/s00125-010-2014-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 11/25/2010] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS Our goal was to identify a set of human adipose tissue macrophage (ATM)-specific markers and investigate whether their gene expression in subcutaneous adipose tissue (SAT) as well as in visceral adipose tissue (VAT) is related to obesity and to the occurrence of the metabolic syndrome. METHODS ATM-specific markers were identified by DNA microarray analysis of adipose tissue cell types isolated from SAT of lean and obese individuals. We then analysed gene expression of these markers by reverse transcription quantitative PCR in paired samples of SAT and VAT from 53 women stratified into four groups (lean, overweight, obese and obese with the metabolic syndrome). Anthropometric measurements, euglycaemic-hyperinsulinaemic clamp, blood analysis and computed tomography scans were performed. RESULTS A panel of 24 genes was selected as ATM-specific markers based on overexpression in ATM compared with other adipose tissue cell types. In SAT and VAT, gene expression of ATM markers was lowest in lean and highest in the metabolic syndrome group. mRNA levels in the two fat depots were negatively correlated with glucose disposal rate and positively associated with indices of adiposity and the metabolic syndrome. CONCLUSIONS/INTERPRETATION In humans, expression of ATM-specific genes increases with the degree of adiposity and correlates with markers of insulin resistance and the metabolic syndrome to a similar degree in SAT and in VAT.
Collapse
Affiliation(s)
- E Klimcakova
- Franco-Czech Laboratory for Clinical Research on Obesity, Department of Sports Medicine, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
De Giorgio MR, Yoshioka M, St-Amand J. A single dose of dihydrotestosterone induced a myogenic transcriptional program in female intra-abdominal adipose tissue. J Steroid Biochem Mol Biol 2010; 122:53-64. [PMID: 20206260 DOI: 10.1016/j.jsbmb.2010.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 02/14/2010] [Accepted: 02/24/2010] [Indexed: 01/03/2023]
Abstract
Sex steroids are key regulators of adipose tissue (AT) mass, determining gender-specific differences in fat distribution and accumulation. With the aim of exploring the relevance and peculiarities of androgen action in female intra-abdominal AT, we used the serial analysis of gene expression (SAGE) method to analyze the AT transcriptome in four groups of female mice: intact, ovariectomized (OVX), OVX plus dihydrotestosterone (DHT) injection at 3h or 24h before sacrifice (DHT3h, DHT24h). An average of 19555 transcript species was examined in retroperitoneal fat. We found a total of 321 transcripts differentially modulated by DHT and OVX, including 125 novel genes. Several genes involved in energy metabolism/ATP production were up-regulated by DHT, whereas important regulators of lipid metabolism were reduced. Transcripts involved in Ca(2+) uptake/release, cell signalling, cell defence and protein expression were differentially modulated by DHT. A surprising number of myogenic genes were up-regulated, including myosin light and heavy polypeptides, troponins, as well as several actin-binding proteins. These results suggest that DHT24h may have induced a myogenic-like transcriptional program in adipocytes. The present study sheds light on the distinctive female transcriptional pattern acutely induced by androgens in intra-abdominal fat, and may add new insights into the global understanding of menopausal endocrinology and its association to intra-abdominal obesity.
Collapse
Affiliation(s)
- Maria Rita De Giorgio
- Functional Genomics Laboratory, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center, Québec City, Canada
| | | | | |
Collapse
|
22
|
Klöting N, Fasshauer M, Dietrich A, Kovacs P, Schön MR, Kern M, Stumvoll M, Blüher M. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 2010; 299:E506-15. [PMID: 20570822 DOI: 10.1152/ajpendo.00586.2009] [Citation(s) in RCA: 604] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The association between obesity and impaired insulin sensitivity has long been recognized, although a subgroup of obese individuals seems to be protected from insulin resistance. In this study, we systematically studied differences in adipose tissue biology between insulin-sensitive (IS) and insulin-resistant (IR) individuals with morbid obesity. On the basis of glucose infusion rate during euglycemic hyperinsulinemic clamps, 60 individuals with a BMI of 45 +/- 1.3 kg/m(2) were divided into an IS and IR group matched for age, sex, and body fat prior to elective surgery. We measured fat distribution, circulating adipokines, and parameters of inflammation, glucose, and lipid metabolism and characterized adipose tissue morphology, function, and mRNA expression in abdominal subcutaneous (sc) and omental fat. IS compared with IR obese individuals have significantly lower visceral fat area (138 +/- 27 vs. 316 +/- 91 cm(2)), number of macrophages in omental adipose tissue (4.9 +/- 0.8 vs. 13.2 +/- 1.4%), mean omental adipocyte size (528 +/- 76 vs. 715 +/- 81 pl), circulating C-reactive protein, progranulin, chemerin, and retinol-binding protein-4 (all P values <0.05), and higher serum adiponectin (6.9 +/- 3.4 vs. 3.4 +/- 1.7 ng/ml) and omental adipocyte insulin sensitivity (all P values <0.01). The strongest predictors of insulin sensitivity by far were macrophage infiltration together with circulating adiponectin (r(2) = 0.98, P < 0.0001). In conclusion, independently of total body fat mass, increased visceral fat accumulation and adipose tissue dysfunction are associated with IR obesity. This suggests that mechanisms beyond a positive caloric balance such as inflammation and adipokine release determine the pathological metabolic consequences in patients with obesity.
Collapse
Affiliation(s)
- Nora Klöting
- Department of Medicine, Interdisciplinary Centre for Clinical Research, University of Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zenger S, Ek-Rylander B, Andersson G. Biogenesis of tartrate-resistant acid phosphatase isoforms 5a and 5b in stably transfected MDA-MB-231 breast cancer epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:598-607. [DOI: 10.1016/j.bbamcr.2010.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 01/29/2010] [Accepted: 01/29/2010] [Indexed: 01/13/2023]
|
24
|
Shih KC, Janckila AJ, Kwok CF, Ho LT, Chou YC, Chao TY. Effects of exercise on insulin sensitivity, inflammatory cytokines, and serum tartrate-resistant acid phosphatase 5a in obese Chinese male adolescents. Metabolism 2010; 59:144-51. [PMID: 19765782 DOI: 10.1016/j.metabol.2009.06.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
The benefits of exercise on glucose metabolism, inflammation, and serum tartrate-resistant acid phosphatase 5a (TRACP 5a) protein levels in Chinese male adolescents have not been extensively analyzed. Therefore, we examined the effects of a 12-week exercise program on weight, adiposity, insulin sensitivity (IS), and inflammatory marker expression, including the novel macrophage marker TRACP 5a, in obese Chinese male adolescents. A total of 106 male adolescents were recruited from the Army Academy in Taiwan and classified as lean (body mass index [BMI], 20.9 +/- 0.2 kg/m(2)) or obese (BMI, 27.7 +/- 0.2 kg/m(2)). Body composition, IS, and inflammatory markers were measured in both groups at baseline and in the obese group after completion of a 12-week exercise program. Body weight, BMI, waist circumference, body fat mass and percentage, homeostasis model assessment for insulin resistance, fasting plasma glucose, fasting serum insulin, 2-hour postchallenge plasma glucose concentration, interleukin-6, C-reactive protein, and serum TRACP 5a were significantly higher in the obese group as compared with the lean group. In addition, serum TRACP 5a was positively correlated with body mass and fat indices. After completion of the exercise program, significant reductions in all anthropometric, metabolic, and inflammatory indicators, with the exception of serum TRACP 5a were observed. Although the obese participants remained obese, exercise training significantly improved IS and reduced interleukin-6 and C-reactive protein. Tartrate-resistant acid phosphatase 5a remained unaffected by exercise training, consistent with our hypothesis that it is associated with increased adipose tissue in obese individuals.
Collapse
Affiliation(s)
- Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Janckila AJ, Yam LT. Biology and clinical significance of tartrate-resistant acid phosphatases: new perspectives on an old enzyme. Calcif Tissue Int 2009; 85:465-83. [PMID: 19915788 DOI: 10.1007/s00223-009-9309-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 10/12/2009] [Indexed: 12/20/2022]
Abstract
Type 5 tartrate-resistant acid phosphatase (TRAP) has been a clinically relevant biomarker for about 50 years. It has always been a reliable and specific cytochemical marker for hairy cell leukemia and for differentiated cells of monocytic lineage. Only recently has the test for serum TRAP activity been accepted as sensitive and specific enough for clinical use as a marker of osteoclasts and bone resorption. This has come about through steady advances in knowledge about TRAP enzymology, structure, function, and molecular regulation and a consequent appreciation that TRAP isoforms 5a and 5b have very different clinical significance. As a measure of osteoclast number and bone resorption, TRAP 5b has diagnostic and prognostic applications in osteoporosis, cancers with bone metastasis, chronic renal failure, and perhaps other metabolic and pathologic bone diseases. Serum TRAP 5a, on the other hand, has no relationship to bone metabolism but seems instead to be a measure of activated macrophages and chronic inflammation. Exploration of the real clinical usefulness of serum TRAP 5a for diagnosis and disease management in a wide variety of chronic inflammatory diseases is only now beginning. This perspective traces the important basic scientific developments that have led up to the refinement of serum TRAP isoform immunoassays and their validation as biomarkers of disease. Many unanswered questions remain, providing a wealth of opportunity for continued research of this multifaceted enzyme.
Collapse
Affiliation(s)
- Anthony J Janckila
- Special Hematology Laboratory, U.S. Department of Veterans Affairs Medical Center, 800 Zorn Ave., Louisville, KY 40206, USA.
| | | |
Collapse
|
26
|
Capel F, Klimčáková E, Viguerie N, Roussel B, Vítková M, Kováčiková M, Polák J, Kováčová Z, Galitzky J, Maoret JJ, Hanáček J, Pers TH, Bouloumié A, Štich V, Langin D. Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes 2009; 58:1558-67. [PMID: 19401422 PMCID: PMC2699855 DOI: 10.2337/db09-0033] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We investigated the regulation of adipose tissue gene expression during different phases of a dietary weight loss program and its relation with insulin sensitivity. RESEARCH DESIGN AND METHODS Twenty-two obese women followed a dietary intervention program composed of an energy restriction phase with a 4-week very-low-calorie diet and a weight stabilization period composed of a 2-month low-calorie diet followed by 3-4 months of a weight maintenance diet. At each time point, a euglycemic-hyperinsulinemic clamp and subcutaneous adipose tissue biopsies were performed. Adipose tissue gene expression profiling was performed using a DNA microarray in a subgroup of eight women. RT-quantitative PCR was used for determination of mRNA levels of 31 adipose tissue macrophage markers (n = 22). RESULTS Body weight, fat mass, and C-reactive protein level decreased and glucose disposal rate increased during the dietary intervention program. Transcriptome profiling revealed two main patterns of variations. The first involved 464 mostly adipocyte genes involved in metabolism that were downregulated during energy restriction, upregulated during weight stabilization, and unchanged during the dietary intervention. The second comprised 511 mainly macrophage genes involved in inflammatory pathways that were not changed or upregulated during energy restriction and downregulated during weight stabilization and dietary intervention. Accordingly, macrophage markers were upregulated during energy restriction and downregulated during weight stabilization and dietary intervention. The increase in glucose disposal rates in each dietary phase was associated with variation in expression of sets of 80-110 genes that differed among energy restriction, weight stabilization, and dietary intervention. CONCLUSIONS Adipose tissue macrophages and adipocytes show distinct patterns of gene regulation and association with insulin sensitivity during the various phases of a dietary weight loss program.
Collapse
Affiliation(s)
- Frédéric Capel
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic and Institut National de la Santé et de la Recherche Médicale, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale, U858, Obesity Research Laboratory, Rangueil Institute of Molecular Medicine, Toulouse, France
- Paul Sabatier University, Louis Bugnard Institute, IFR31, Toulouse, France
| | - Eva Klimčáková
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic and Institut National de la Santé et de la Recherche Médicale, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale, U858, Obesity Research Laboratory, Rangueil Institute of Molecular Medicine, Toulouse, France
- Paul Sabatier University, Louis Bugnard Institute, IFR31, Toulouse, France
- Department of Sports Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nathalie Viguerie
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic and Institut National de la Santé et de la Recherche Médicale, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale, U858, Obesity Research Laboratory, Rangueil Institute of Molecular Medicine, Toulouse, France
- Paul Sabatier University, Louis Bugnard Institute, IFR31, Toulouse, France
| | - Balbine Roussel
- Institut National de la Santé et de la Recherche Médicale, U858, Obesity Research Laboratory, Rangueil Institute of Molecular Medicine, Toulouse, France
- Paul Sabatier University, Louis Bugnard Institute, IFR31, Toulouse, France
| | - Michaela Vítková
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic and Institut National de la Santé et de la Recherche Médicale, Toulouse, France
- Department of Sports Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Kováčiková
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic and Institut National de la Santé et de la Recherche Médicale, Toulouse, France
- Department of Sports Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Polák
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic and Institut National de la Santé et de la Recherche Médicale, Toulouse, France
- Department of Sports Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Kováčová
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic and Institut National de la Santé et de la Recherche Médicale, Toulouse, France
- Department of Sports Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jean Galitzky
- Paul Sabatier University, Louis Bugnard Institute, IFR31, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale, U858, AVENIR team “Vascular Network, Progenitor Cells and Immune Cells from Adipose Tissue,” Rangueil Institute of Molecular Medicine, Toulouse, France
| | - Jean-José Maoret
- Institut National de la Santé et de la Recherche Médicale, U858, Obesity Research Laboratory, Rangueil Institute of Molecular Medicine, Toulouse, France
- Paul Sabatier University, Louis Bugnard Institute, IFR31, Toulouse, France
| | - Jiří Hanáček
- Institute for Mother and Child Care, Prague, Czech Republic
| | - Tune H. Pers
- Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
- Institute of Preventive Medicine, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Bouloumié
- Paul Sabatier University, Louis Bugnard Institute, IFR31, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale, U858, AVENIR team “Vascular Network, Progenitor Cells and Immune Cells from Adipose Tissue,” Rangueil Institute of Molecular Medicine, Toulouse, France
| | - Vladimir Štich
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic and Institut National de la Santé et de la Recherche Médicale, Toulouse, France
- Department of Sports Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dominique Langin
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, Czech Republic and Institut National de la Santé et de la Recherche Médicale, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale, U858, Obesity Research Laboratory, Rangueil Institute of Molecular Medicine, Toulouse, France
- Paul Sabatier University, Louis Bugnard Institute, IFR31, Toulouse, France
- Centre Hospitalier Universitaire de Toulouse, Biochemistry Laboratory, Biology Institute of Purpan, Toulouse, France
- Corresponding author: Dominique Langin,
| |
Collapse
|
27
|
Revisiting histidine-dependent acid phosphatases: a distinct group of tyrosine phosphatases. Trends Biochem Sci 2009; 34:273-8. [PMID: 19467874 DOI: 10.1016/j.tibs.2009.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 03/05/2009] [Accepted: 03/06/2009] [Indexed: 11/22/2022]
Abstract
Although classical protein tyrosine phosphatase (PTP) superfamily members are cysteine-dependent, emerging evidence shows that many acid phosphatases (AcPs) function as histidine-dependent PTPs in vivo. These AcPs dephosphorylate phospho-tyrosine substrates intracellularly and could have roles in development and disease. In contrast to cysteine-dependent PTPs, they utilize histidine, rather than cysteine, for substrate dephosphorylation. Structural analyses reveal that active site histidine, but not cysteine, faces towards the substrate and functions as the phosphate acceptor. Nonetheless, during dephosphorylation, both histidine-dependent and cysteine-dependent PTPs use their active site arginine and aspartate for substrate binding and proton donation, respectively. Thus, we propose that they should be referred to as a distinct group of 'histidine-dependent PTPs' within the PTP superfamily.
Collapse
|
28
|
Abstract
Specialized phagocytes are found in the most primitive multicellular organisms. Their roles in homeostasis and in distinguishing self from non-self have evolved with the complexity of organisms and their immune systems. Equally important, but often overlooked, are the roles of macrophages in tissue development. As discussed in this Review, these include functions in branching morphogenesis, neuronal patterning, angiogenesis, bone morphogenesis and the generation of adipose tissue. In each case, macrophage depletion impairs the formation of the tissue and compromises its function. I argue that in several diseases, the unrestrained acquisition of these developmental macrophage functions exacerbates pathology. For example, macrophages enhance tumour progression and metastasis by affecting tumour-cell migration and invasion, as well as angiogenesis.
Collapse
|
29
|
Sultan A, Strodthoff D, Robertson AK, Paulsson-Berne G, Fauconnier J, Parini P, Rydén M, Thierry-Mieg N, Johansson ME, Chibalin AV, Zierath JR, Arner P, Hansson GK. T cell-mediated inflammation in adipose tissue does not cause insulin resistance in hyperlipidemic mice. Circ Res 2009; 104:961-8. [PMID: 19299644 DOI: 10.1161/circresaha.108.190280] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obesity is associated with chronic inflammation in adipose tissue. Proinflammatory cytokines including tumor necrosis factor-alpha and interleukin-6 secreted by adipose tissue during the metabolic syndrome are proposed to cause local and general insulin resistance and promote development of type 2 diabetes. We have used a compound mutant mouse, Apoe(-/-)xCD4dnTGFbR, with dysregulation of T-cell activation, excessive production of proinflammatory cytokines, hyperlipidemia, and atherosclerosis, to dissect the role of inflammation in adipose tissue metabolism. These mice are lean, which avoids confounding effects of concomitant obesity. Expression and secretion of a set of proinflammatory factors including tumor necrosis factor-alpha, interferon-gamma, and monocyte chemoattractant protein-1 was increased in adipose tissue of Apoe(-/-)xCD4dnTGFbR mice, as was the enzyme 11beta-hydroxysteroid dehydrogenase type 1, which converts cortisone to bioactive cortisol. Interleukin-6, which has an inhibitory glucocorticoid response element in its promoter, was not upregulated. In spite of intense local inflammation, insulin sensitivity was not impaired in adipose tissue of Apoe(-/-)xCD4dnTGFbR mice unless exogenous interleukin-6 was administered. In conclusion, T-cell activation causes inflammation in adipose tissue but does not lead to insulin resistance in this tissue in the absence of interleukin-6.
Collapse
Affiliation(s)
- Ariane Sultan
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One 2009; 4:e4699. [PMID: 19259271 PMCID: PMC2649537 DOI: 10.1371/journal.pone.0004699] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/14/2009] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, that play important regulatory roles in a variety of biological processes, including development, differentiation, apoptosis, and metabolism. In mammals, miRNAs have been shown to modulate adipocyte differentiation. Therefore, we performed a global miRNA gene expression assay in different fat depots of overweight and obese individuals to investigate whether miRNA expression in human adipose tissue is fat-depot specific and associated with parameters of obesity and glucose metabolism. Paired samples of abdominal subcutaneous (SC) and intraabdominal omental adipose tissue were obtained from fifteen individuals with either normal glucose tolerance (NGT, n = 9) or newly diagnosed type 2 diabetes (T2D, n = 6). Expression of 155 miRNAs was carried out using the TaqMan(R)MicroRNA Assays Human Panel Early Access Kit (Applied Biosystems, Darmstadt, Germany). We identified expression of 106 (68%) miRNAs in human omental and SC adipose tissue. There was no miRNA exclusively expressed in either fat depot, suggesting common developmental origin of both fat depots. Sixteen miRNAs (4 in NGT, 12 in T2D group) showed a significant fat depot specific expression pattern. We identified significant correlations between the expression of miRNA-17-5p, -132, -99a, -134, 181a, -145, -197 and both adipose tissue morphology and key metabolic parameters, including visceral fat area, HbA(1c), fasting plasma glucose, and circulating leptin, adiponectin, interleukin-6. In conclusion, microRNA expression differences may contribute to intrinsic differences between omental and subcutaneous adipose tissue. In addition, human adipose tissue miRNA expression correlates with adipocyte phenotype, parameters of obesity and glucose metabolism.
Collapse
|