1
|
Kamizaki K, Minami Y, Nishita M. Role of the Ror family receptors in Wnt5a signaling. In Vitro Cell Dev Biol Anim 2024; 60:489-501. [PMID: 38587578 DOI: 10.1007/s11626-024-00885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 04/09/2024]
Abstract
Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the β-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions. In contrast, Ror1 and Ror2 are expressed in many types of cancers, and their high expression often contributes to the progression of the disease. Therefore, Ror1 and Ror2 have been proposed as potential targets for the treatment of the malignancies. In this review, we provide an overview of the regulatory mechanisms of Ror1/Ror2 expression and discuss how Wnt5a-Ror1/Ror2 signaling is mediated and regulated by their interacting proteins.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-Oka, Fukushima, 960-1295, Japan.
| |
Collapse
|
2
|
Riquelme R, Li L, Gambrill A, Barria A. ROR2 homodimerization is sufficient to activate a neuronal Wnt/calcium signaling pathway. J Biol Chem 2023; 299:105350. [PMID: 37832874 PMCID: PMC10654037 DOI: 10.1016/j.jbc.2023.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Wnt signaling plays a key role in the mature CNS by regulating trafficking of NMDA-type glutamate receptors and intrinsic properties of neurons. The Wnt receptor ROR2 has been identified as a necessary component of the neuronal Wnt5a/Ca2+ signaling pathway that regulates synaptic and neuronal function. Since ROR2 is considered a pseudokinase, its mechanism for downstream signaling upon ligand binding has been controversial. It has been suggested that its role is to function as a coreceptor of a G-protein-coupled Wnt receptor of the Frizzled family. We show that chemically induced homodimerization of ROR2 is sufficient to recapitulate key signaling events downstream of receptor activation in neurons, including PKC and JNK kinases activation, elevation of somatic and dendritic Ca2+ levels, and increased trafficking of NMDARs to synapses. In addition, we show that homodimerization of ROR2 induces phosphorylation of the receptor on Tyr residues. Point mutations in the conserved but presumed nonfunctional ATP-binding site of the receptor prevent its phosphorylation, as well as downstream signaling. This suggests an active kinase domain. Our results indicate that ROR2 can signal independently of Frizzled receptors to regulate the trafficking of a key synaptic component. Additionally, they suggest that homodimerization can overcome structural conformations that render the tyrosine kinase inactive. A better understanding of ROR2 signaling is crucial for comprehending the regulation of synaptic and neuronal function in normal brain processes in mature animals.
Collapse
Affiliation(s)
- Raul Riquelme
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Laura Li
- Neuroscience Undergraduate Program, University of Washington, Seattle, Washington, USA
| | - Abigail Gambrill
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Andres Barria
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
3
|
Quezada MJ, Lopez-Bergami P. The signaling pathways activated by ROR1 in cancer. Cell Signal 2023; 104:110588. [PMID: 36621728 DOI: 10.1016/j.cellsig.2023.110588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The receptor tyrosine kinase orphan receptor 1 (ROR1) is a receptor for WNT5A and related Wnt proteins, that play an important role during embryonic development by regulating cell migration, cell polarity, neural patterning, and organogenesis. ROR1 exerts these functions by transducing signals from the Wnt secreted glycoproteins to the intracellular Wnt/PCP and Wnt/Ca++ pathways. Investigations in adult human cells, particularly cancer cells, have demonstrated that besides these two pathways, the WNT5A/ROR1 axis can activate a number of signaling pathways, including the PI3K/AKT, MAPK, NF-κB, STAT3, and Hippo pathways. Moreover, ROR1 is aberrantly expressed in cancer and was associated with tumor progression and poor survival by promoting cell proliferation, survival, invasion, epithelial to mesenchymal transition, and metastasis. Consequently, numerous therapeutic tools to target ROR1 are currently being evaluated in cancer patients. In this review, we will provide a detailed description of the signaling pathways regulated by ROR1 in cancer and their impact in tumor progression.
Collapse
Affiliation(s)
- María Josefina Quezada
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| |
Collapse
|
4
|
Shao J, Liu Y, Zhao S, Sun W, Zhan J, Cao L. A novel variant in the ROR2 gene underlying brachydactyly type B: a case report. BMC Pediatr 2022; 22:528. [PMID: 36064339 PMCID: PMC9446770 DOI: 10.1186/s12887-022-03564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background Brachydactyly type B is an autosomal dominant disorder that is characterized by hypoplasia of the distal phalanges and nails and can be divided into brachydactyly type B1 (BDB1) and brachydactyly type B2 (BDB2). BDB1 is the most severe form of brachydactyly and is caused by truncating variants in the receptor tyrosine kinase–like orphan receptor 2 (ROR2) gene. Case presentation Here, we report a five-generation Chinese family with brachydactyly with or without syndactyly. The proband and her mother underwent digital separation in syndactyly, and the genetic analyses of the proband and her parents were provided. The novel heterozygous frameshift variant c.1320dupG, p.(Arg441Alafs*18) in the ROR2 gene was identified in the affected individuals by whole-exome sequencing and Sanger sequencing. The c.1320dupG variant in ROR2 is predicted to produce a truncated protein that lacks tyrosine kinase and serine/threonine- and proline-rich structures and remarkably alters the tertiary structures of the mutant ROR2 protein. Conclusion The c.1320dupG, p.(Arg441Alafs*18) variant in the ROR2 gene has not been reported in any databases thus far and therefore is novel. Our study extends the gene variant spectrum of brachydactyly and may provide information for the genetic counselling of family members. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-022-03564-z.
Collapse
Affiliation(s)
- Jiaqi Shao
- College of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, 110102, China
| | - Yue Liu
- Hand SurgeryCentral Hospital Affiliated to Shenyang Medical CollegeTiexi District, Dept.4No. 5 Nanqi West Road, Shenyang, 110024, China
| | - Shuyang Zhao
- College of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, 110102, China
| | - Weisheng Sun
- College of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, 110102, China
| | - Jie Zhan
- Hand SurgeryCentral Hospital Affiliated to Shenyang Medical CollegeTiexi District, Dept.4No. 5 Nanqi West Road, Shenyang, 110024, China.
| | - Lihua Cao
- College of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Sujiatun District, Shenyang, 110102, China.
| |
Collapse
|
5
|
Raivola J, Dini A, Salokas K, Karvonen H, Niininen W, Piki E, Varjosalo M, Ungureanu D. New insights into the molecular mechanisms of ROR1, ROR2, and PTK7 signaling from the proteomics and pharmacological modulation of ROR1 interactome. Cell Mol Life Sci 2022; 79:276. [PMID: 35504983 PMCID: PMC9064840 DOI: 10.1007/s00018-022-04301-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Abstract
ROR1, ROR2, and PTK7 are Wnt ligand-binding members of the receptor tyrosine kinase family. Despite their lack of catalytic activity, these receptors regulate skeletal, cardiorespiratory, and neurological development during embryonic and fetal stages. However, their overexpression in adult tissue is strongly connected to tumor development and metastasis, suggesting a strong pharmacological potential for these molecules. Wnt5a ligand can activate these receptors, but lead to divergent signaling and functional outcomes through mechanisms that remain largely unknown. Here, we developed a cellular model by stably expressing ROR1, ROR2, and PTK7 in BaF3 cells that allowed us to readily investigate side-by-side their signaling capability and functional outcome. We applied proteomic profiling to BaF3 clones and identified distinctive roles for ROR1, ROR2, and PTK7 pseudokinases in modulating the expression of proteins involved in cytoskeleton dynamics, apoptotic, and metabolic signaling. Functionally, we show that ROR1 expression enhances cell survival and Wnt-mediated cell proliferation, while ROR2 and PTK7 expression is linked to cell migration. We also demonstrate that the distal C-terminal regions of ROR1 and ROR2 are required for receptors stability and downstream signaling. To probe the pharmacological modulation of ROR1 oncogenic signaling, we used affinity purification coupled to mass spectrometry (AP-MS) and proximity-dependent biotin identification (BioID) to map its interactome before and after binding of GZD824, a small molecule inhibitor previously shown to bind to the ROR1 pseudokinase domain. Our findings bring new insight into the molecular mechanisms of ROR1, ROR2, and PTK7, and highlight the therapeutic potential of targeting ROR1 with small molecule inhibitors binding to its vestigial ATP-binding site.
Collapse
Affiliation(s)
- Juuli Raivola
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Alice Dini
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Kari Salokas
- Institute of Biotechnology, HiLife, University of Helsinki, 00014, Helsinki, Finland
| | - Hanna Karvonen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Wilhelmiina Niininen
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Emilia Piki
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, HiLife, University of Helsinki, 00014, Helsinki, Finland
| | - Daniela Ungureanu
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014, Oulu, Finland.
| |
Collapse
|
6
|
Endo M, Kamizaki K, Minami Y. The Ror-Family Receptors in Development, Tissue Regeneration and Age-Related Disease. Front Cell Dev Biol 2022; 10:891763. [PMID: 35493090 PMCID: PMC9043558 DOI: 10.3389/fcell.2022.891763] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
The Ror-family proteins, Ror1 and Ror2, act as receptors or co-receptors for Wnt5a and its related Wnt proteins to activate non-canonical Wnt signaling. Ror1 and/or Ror2-mediated signaling plays essential roles in regulating cell polarity, migration, proliferation and differentiation during developmental morphogenesis, tissue-/organo-genesis and regeneration of adult tissues following injury. Ror1 and Ror2 are expressed abundantly in developing tissues in an overlapping, yet distinct manner, and their expression in adult tissues is restricted to specific cell types such as tissue stem/progenitor cells. Expression levels of Ror1 and/or Ror2 in the adult tissues are increased following injury, thereby promoting regeneration or repair of these injured tissues. On the other hand, disruption of Wnt5a-Ror2 signaling is implicated in senescence of tissue stem/progenitor cells that is related to the impaired regeneration capacity of aged tissues. In fact, Ror1 and Ror2 are implicated in age-related diseases, including tissue fibrosis, atherosclerosis (or arteriosclerosis), neurodegenerative diseases, and cancers. In these diseases, enhanced and/or sustained (chronic) expression of Ror1 and/or Ror2 is observed, and they might contribute to the progression of these diseases through Wnt5a-dependent and -independent manners. In this article, we overview recent advances in our understanding of the roles of Ror1 and Ror2-mediated signaling in the development, tissue regeneration and age-related diseases, and discuss their potential to be therapeutic targets for chronic inflammatory diseases and cancers.
Collapse
|
7
|
Dave Z, Vondálová Blanářová O, Čada Š, Janovská P, Zezula N, Běhal M, Hanáková K, Ganji SR, Krejci P, Gömöryová K, Peschelová H, Šmída M, Zdráhal Z, Pavlová Š, Kotašková J, Pospíšilová Š, Bryja V. Lyn Phosphorylates and Controls ROR1 Surface Dynamics During Chemotaxis of CLL Cells. Front Cell Dev Biol 2022; 10:838871. [PMID: 35295854 PMCID: PMC8918536 DOI: 10.3389/fcell.2022.838871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) are malignancies characterized by the dependence on B-cell receptor (BCR) signaling and by the high expression of ROR1, the cell surface receptor for Wnt-5a. Both, BCR and ROR1 are therapeutic targets in these diseases and the understanding of their mutual cross talk is thus of direct therapeutic relevance. In this study we analyzed the role of Lyn, a kinase from the Src family participating in BCR signaling, as a mediator of the BCR-ROR1 crosstalk. We confirm the functional interaction between Lyn and ROR1 and demonstrate that Lyn kinase efficiently phosphorylates ROR1 in its kinase domain and aids the recruitment of the E3 ligase c-CBL. We show that ROR1 surface dynamics in migrating primary CLL cells as well as chemotactic properties of CLL cells were inhibited by Lyn inhibitor dasatinib. Our data establish Lyn-mediated phosphorylation of ROR1 as a point of crosstalk between BCR and ROR1 signaling pathways.
Collapse
Affiliation(s)
- Zankruti Dave
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Olga Vondálová Blanářová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavlína Janovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nikodém Zezula
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Běhal
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kateřina Hanáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Sri Ranjani Ganji
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czech Republic
| | - Kristína Gömöryová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Helena Peschelová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Michal Šmída
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Šárka Pavlová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Kotašková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Brno, Czech Republic
- *Correspondence: Vítězslav Bryja,
| |
Collapse
|
8
|
Castro MV, Lopez-Bergami P. Cellular and molecular mechanisms implicated in the dual role of ROR2 in cancer. Crit Rev Oncol Hematol 2022; 170:103595. [PMID: 35032666 DOI: 10.1016/j.critrevonc.2022.103595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
ROR1 and ROR2 are Wnt receptors that are critical for β-catenin-independent Wnt pathways and have been linked to processes driving tumor progression, such as cell proliferation, survival, invasion, and therapy resistance. Both receptors have garnered interest as potential therapeutic targets since they are largely absent in adult tissue, are overexpressed in several cancers, and, as members of the receptor tyrosine kinase family, are easier to target than all other components of the pathway. Unlike ROR1 which always promotes tumorigenesis, ROR2 has a very complex role in cancer acting either to promote or inhibit tumor progression in different tumor types. In the present article, we summarize the findings on ROR2 expression in cancer patients and its impact on clinical outcome. Further, we review the biological processes and signaling pathways regulated by ROR2 that explain its dual role in cancer. Finally, we describe the ongoing strategies to target ROR2 in cancer.
Collapse
Affiliation(s)
- María Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina.
| |
Collapse
|
9
|
Zhao Y, Zhang D, Guo Y, Lu B, Zhao ZJ, Xu X, Chen Y. Tyrosine Kinase ROR1 as a Target for Anti-Cancer Therapies. Front Oncol 2021; 11:680834. [PMID: 34123850 PMCID: PMC8193947 DOI: 10.3389/fonc.2021.680834] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Receptor tyrosine kinase ROR1 plays an essential role in embryogenesis and is overexpressed in many types of malignant tumors. Studies have demonstrated that it plays an important role in oncogenesis by activating cell survival signaling events, particularly the non-canonical WNT signaling pathway. Antibody-based immunotherapies targeting ROR1 have been developed and evaluated in preclinical and clinical studies with promising outcomes. However, small molecule inhibitors targeting ROR1 are underappreciated because of the initial characterization of ROR1 as a peusdokinase. The function of ROR1 as a tyrosine kinase remains poorly understood, although accumulating evidence have demonstrated its intrinsic tyrosine kinase activity. In this review, we analyzed the structural and functional features of ROR1 and discussed therapeutic strategies targeting this kinase.
Collapse
Affiliation(s)
- Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Bo Lu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
10
|
Menck K, Heinrichs S, Baden C, Bleckmann A. The WNT/ROR Pathway in Cancer: From Signaling to Therapeutic Intervention. Cells 2021; 10:cells10010142. [PMID: 33445713 PMCID: PMC7828172 DOI: 10.3390/cells10010142] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
The WNT pathway is one of the major signaling cascades frequently deregulated in human cancer. While research had initially focused on signal transduction centered on β-catenin as a key effector activating a pro-tumorigenic transcriptional response, nowadays it is known that WNT ligands can also induce a multitude of β-catenin-independent cellular pathways. Traditionally, these comprise WNT/planar cell polarity (PCP) and WNT/Ca2+ signaling. In addition, signaling via the receptor tyrosine kinase-like orphan receptors (RORs) has gained increasing attention in cancer research due to their overexpression in a multitude of tumor entities. Active WNT/ROR signaling has been linked to processes driving tumor development and progression, such as cell proliferation, survival, invasion, or therapy resistance. In adult tissue, the RORs are largely absent, which has spiked the interest in them for targeted cancer therapy. Promising results in preclinical and initial clinical studies are beginning to unravel the great potential of such treatment approaches. In this review, we summarize seminal findings on the structure and expression of the RORs in cancer, their downstream signaling, and its output in regard to tumor cell function. Furthermore, we present the current clinical anti-ROR treatment strategies and discuss the state-of-the-art, as well as the challenges of the different approaches.
Collapse
Affiliation(s)
- Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Saskia Heinrichs
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Cornelia Baden
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.H.); (C.B.)
- West German Cancer Center, University Hospital Münster, 48149 Münster, Germany
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37099 Göttingen, Germany
- Correspondence: ; Tel.: +49-0251-8352712
| |
Collapse
|
11
|
Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. Mol Cell 2020; 79:390-405.e7. [PMID: 32619402 DOI: 10.1016/j.molcel.2020.06.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/03/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.
Collapse
|
12
|
Villarroel A, Del Valle-Pérez B, Fuertes G, Curto J, Ontiveros N, Garcia de Herreros A, Duñach M. Src and Fyn define a new signaling cascade activated by canonical and non-canonical Wnt ligands and required for gene transcription and cell invasion. Cell Mol Life Sci 2020; 77:919-935. [PMID: 31312879 PMCID: PMC11104847 DOI: 10.1007/s00018-019-03221-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
Wnt ligands signal through canonical or non-canonical signaling pathways. Although both routes share common elements, such as the Fz2 receptor, they differ in the co-receptor and in many of the final responses; for instance, whereas canonical Wnts increase β-catenin stability, non-canonical ligands downregulate it. However, both types of ligands stimulate tumor cell invasion. We show here that both the canonical Wnt3a and the non-canonical Wnt5a stimulate Fz2 tyrosine phosphorylation, Fyn binding to Fz2, Fyn activation and Fyn-dependent Stat3 phosphorylation. Wnt3a and Wnt5a require Src for Fz2 tyrosine phosphorylation; Src binds to canonical and non-canonical co-receptors (LRP5/6 and Ror2, respectively) and is activated by Wnt3a and Wnt5a. This Fz2/Fyn/Stat3 branch is incompatible with the classical Fz2/Dvl2 pathway as shown by experiments of over-expression or depletion. Fyn is necessary for transcription of genes associated with invasiveness, such as Snail1, and for activation of cell invasion by both Wnt ligands. Our results extend the knowledge about canonical Wnt pathways, demonstrating additional roles for Fyn in this pathway and describing how this protein kinase is activated by both canonical and non-canonical Wnts.
Collapse
Affiliation(s)
- Aida Villarroel
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Beatriz Del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Guillem Fuertes
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Josué Curto
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Neus Ontiveros
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antonio Garcia de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Parc de Recerca Biomèdica de Barcelona, c/Doctor Aiguader 88, 08003, Barcelona, Spain.
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
13
|
García de Herreros A, Duñach M. Intracellular Signals Activated by Canonical Wnt Ligands Independent of GSK3 Inhibition and β-Catenin Stabilization. Cells 2019; 8:cells8101148. [PMID: 31557964 PMCID: PMC6829497 DOI: 10.3390/cells8101148] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/31/2022] Open
Abstract
In contrast to non-canonical ligands, canonical Wnts promote the stabilization of β-catenin, which is a prerequisite for formation of the TCF4/β-catenin transcriptional complex and activation of its target genes. This pathway is initiated by binding of Wnt ligands to the Frizzled/LRP5/6 receptor complex, and it increases the half-life of β-catenin by precluding the phosphorylation of β-catenin by GSK3 and its binding to the βTrCP1 ubiquitin ligase. Other intercellular signals are also activated by Wnt ligands that do not inhibit GSK3 and increase β-catenin protein but that either facilitate β-catenin transcriptional activity or stimulate other transcriptional factors that cooperate with it. In this review, we describe the layers of complexity of these signals and discuss their crosstalk with β-catenin in activation of transcriptional targets.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain.
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| |
Collapse
|
14
|
Frenquelli M, Caridi N, Antonini E, Storti F, Viganò V, Gaviraghi M, Occhionorelli M, Bianchessi S, Bongiovanni L, Spinelli A, Marcatti M, Belloni D, Ferrero E, Karki S, Brambilla P, Martinelli-Boneschi F, Colla S, Ponzoni M, DePinho RA, Tonon G. The WNT receptor ROR2 drives the interaction of multiple myeloma cells with the microenvironment through AKT activation. Leukemia 2019; 34:257-270. [DOI: 10.1038/s41375-019-0486-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/27/2022]
|
15
|
Zhou XL, Zhang CJ, Peng YN, Wang Y, Xu HJ, Liu CM. ROR2 modulates neuropathic pain via phosphorylation of NMDA receptor subunit GluN2B in rats. Br J Anaesth 2018; 123:e239-e248. [PMID: 30916039 DOI: 10.1016/j.bja.2018.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Neuropathic pain, a type of chronic pain as a result of direct central or peripheral nerve damage, is associated with significant quality of life and functional impairment. Its underlying mechanisms remain unclear. We investigated whether ROR2, a member of the receptor tyrosine kinase-like orphan receptor (ROR) family, participates in modulation of neuropathic pain. METHODS Thermal hyperalgesia and mechanical allodynia were measured using radiant heat and von Frey filament testing. Immunofluorescence staining was used to detect expression of ROR2 in neuronal nuclei. Fos expression was determined by immunocytochemistry. Phosphorylation status was detected by western blot and immunoprecipitation. Small interfering RNA was used to knock down ROR2 expression. RESULTS ROR2 was upregulated and activated in spinal neurones after chronic constriction injury (CCI) in mice [1.3 (0.1) to 2.1 (0.1)-fold of sham, P<0.01] from Day 1-21. CCI induced significant demethylation of the CpG island in the ROR2 gene promoter [0.37 (0.06) vs 0.12 (0.03)% CpG methylation, P<0.001]. Knockdown of ROR2 in the spinal cord prevented and reversed CCI-induced pain behaviours and spinal neuronal sensitisation [Fos expression: 130 (12) vs 81 (8) cells, P<0.05; 120 (11) vs 70 (7) cells, P<0.05]. In contrast, activation of spinal ROR2 by intrathecal injection of Wnt5a induced pain behaviours and spinal neuronal sensitisation [Fos expression: 11 (1) vs 100 (12) cells, P<0.001] in wild-type mice. Furthermore, ROR2-mediated pain modulation required phosphorylation of N-methyl-D-aspartate receptor 2B subunit (GluN2B) at Ser 1303 and Tyr1472 by pathways involving protein kinase C (PKC) and Src family kinases. Intrathecal injection of GluN2B, PKC, or Src family kinase-specific inhibitors significantly attenuated Wnt5a-induced pain behaviours. CONCLUSIONS ROR2 in the spinal cord regulates neuropathic pain via phosphorylation of GluN2B, suggesting a potential target for prevention and relief of neuropathic pain.
Collapse
Affiliation(s)
- X L Zhou
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - C J Zhang
- Department of Gastroenterology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang, China
| | - Y N Peng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Y Wang
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - H J Xu
- Department of Anesthesiology, First People's Hospital of Shanghai Transportation University, Shanghai, China
| | - C M Liu
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Karvonen H, Perttilä R, Niininen W, Barker H, Ungureanu D. Targeting Wnt signaling pseudokinases in hematological cancers. Eur J Haematol 2018; 101:457-465. [DOI: 10.1111/ejh.13137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Hanna Karvonen
- BioMediTech Institute; University of Tampere; Tampere Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Robert Perttilä
- BioMediTech Institute; University of Tampere; Tampere Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Wilhelmiina Niininen
- BioMediTech Institute; University of Tampere; Tampere Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Harlan Barker
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| | - Daniela Ungureanu
- BioMediTech Institute; University of Tampere; Tampere Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Tampere Finland
| |
Collapse
|
17
|
Saji T, Nishita M, Ogawa H, Doi T, Sakai Y, Maniwa Y, Minami Y. Critical role of the Ror-family of receptor tyrosine kinases in invasion and proliferation of malignant pleural mesothelioma cells. Genes Cells 2018; 23:606-613. [PMID: 29845703 DOI: 10.1111/gtc.12599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/28/2018] [Indexed: 01/16/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor with poor prognosis and closely related to exposure to asbestos. MPM is a heterogeneous tumor with three main histological subtypes, epithelioid, sarcomatoid, and biphasic types, among which sarcomatoid type shows the poorest prognosis. The Ror-family of receptor tyrosine kinases, Ror1 and Ror2, is expressed in various types of tumor cells at higher levels and affects their aggressiveness. However, it is currently unknown whether they are expressed in and involved in aggressiveness of MPM. Here, we show that Ror1 and Ror2 are expressed in clinical specimens and cell lines of MPM with different histological features. Studies using MPM cell lines indicate that expression of Ror2 is associated tightly with high invasiveness of MPM cells, whereas Ror1 can contribute to their invasion in the absence of Ror2. However, both Ror1 and Ror2 promote proliferation of MPM cells. We also show that promoted invasion and proliferation of MPM cells by Ror signaling can be mediated by the Rho-family of small GTPases, Rac1, and Cdc42. These findings elucidate the critical role of Ror signaling in promoting invasion and proliferation of MPM cells.
Collapse
Affiliation(s)
- Takeshi Saji
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Hiroyuki Ogawa
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Takefumi Doi
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Yasuhiro Sakai
- Department of Pathology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
18
|
Roy JP, Halford MM, Stacker SA. The biochemistry, signalling and disease relevance of RYK and other WNT-binding receptor tyrosine kinases. Growth Factors 2018; 36:15-40. [PMID: 29806777 DOI: 10.1080/08977194.2018.1472089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The receptor tyrosine kinases (RTKs) are a well-characterized family of growth factor receptors that have central roles in human disease and are frequently therapeutically targeted. The RYK, ROR, PTK7 and MuSK subfamilies make up an understudied subset of WNT-binding RTKs. Numerous developmental, stem cell and pathological roles of WNTs, in particular WNT5A, involve signalling via these WNT receptors. The WNT-binding RTKs have highly context-dependent signalling outputs and stimulate the β-catenin-dependent, planar cell polarity and/or WNT/Ca2+ pathways. RYK, ROR and PTK7 members have a pseudokinase domain in their intracellular regions. Alternative signalling mechanisms, including proteolytic cleavage and protein scaffolding functions, have been identified for these receptors. This review explores the structure, signalling, physiological and pathological roles of RYK, with particular attention paid to cancer and the possibility of therapeutically targeting RYK. The other WNT-binding RTKs are compared with RYK throughout to highlight the similarities and differences within this subset of WNT receptors.
Collapse
Affiliation(s)
- James P Roy
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| | - Michael M Halford
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
| | - Steven A Stacker
- a Tumour Angiogenesis and Microenvironment Program , Peter MacCallum Cancer Centre , Melbourne , Australia
- b Sir Peter MacCallum Department of Oncology , The University of Melbourne , Parkville , Australia
| |
Collapse
|
19
|
Hossein G, Arabzadeh S, Salehi-Dulabi Z, Dehghani-Ghobadi Z, Heidarian Y, Talebi-Juybari M. Wnt5A regulates the expression of ROR2 tyrosine kinase receptor in ovarian cancer cells. Biochem Cell Biol 2017; 95:609-615. [PMID: 28538104 DOI: 10.1139/bcb-2016-0216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Wnt5A and receptor tyrosine kinase-like orphan receptor 2 (ROR2) proteins both regulate developmental processes, cell movement, and cell polarity. The purpose of this study was to evaluate a possible regulatory role of Wnt5A on ROR2 expression in human ovarian cancer cell lines. Moreover, the expression of Wnt5A and ROR2 mRNA and protein levels were assessed in human epithelial serous ovarian cancer (HSOC) specimens. ROR2 was strongly decreased in cells treated with siRNA against Wnt5A compared with scramble-treated or lipofectamine-treated cells (P < 0.001). There was 34% decreased cell invasion (P < 0.01) in Wnt5A knock-down cells compared with lipofectamine-treated and scramble-treated cells; however, cell invasion remained unchanged upon addition of anti-ROR2 antibody to the culture media of these cells. In contrast, addition of anti-ROR2 antibody to the culture media for lipofectamine-treated and scramble-treated cells led to 32% decreased cell invasion (P < 0.01). Normal ovarian specimens were negative, and variable immunostaining was observed in HSOC for Wnt5A and ROR2 immunostaining. Furthermore, there was a positive correlation between Wnt5A and ROR2 expression in high-grade SOC samples at the mRNA level (P < 0.05; r = 0.38). This is the first report to show the regulatory role of Wnt5A on ROR2 expression in ovarian cancer.
Collapse
Affiliation(s)
- Ghamartaj Hossein
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Somayeh Arabzadeh
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Salehi-Dulabi
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zeinab Dehghani-Ghobadi
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Yassaman Heidarian
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Talebi-Juybari
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Animal Physiology, Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
20
|
Henry C, Hacker N, Ford C. Silencing ROR1 and ROR2 inhibits invasion and adhesion in an organotypic model of ovarian cancer metastasis. Oncotarget 2017; 8:112727-112738. [PMID: 29348860 PMCID: PMC5762545 DOI: 10.18632/oncotarget.22559] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/27/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Elevated expression of the ROR1 and ROR2 Wnt receptors has been noted in both the tumour and stromal compartments of ovarian cancer patient tissue samples. In vitro studies have suggested these receptors play a role in ovarian cancer metastasis. However, these previous studies have utilised simple 2D in vitro models to investigate cancer cell growth and migration, which does not allow investigation of stromal involvement in Wnt driven metastasis. AIM To investigate targeting ROR1 and ROR2 using a primary co-culture 3D model of epithelial ovarian cancer dissemination to the omentum. METHODS Primary fibroblasts (NOF) and mesothelial (HPMC) cells were isolated from fresh samples of omentum collected from women with benign or non-metastatic conditions and cultured with collagen to produce a organotypic 3D model. Stable shRNA knockdown of ROR1, ROR2 and double ROR1/ROR2 in OVCAR4 cells were plated onto the 3D model to measure adhesion, or using a transwell to measure invasion. Gene expression changes in primary cells upon OVCAR4 interaction was evaluated using indirect transwell co-culture. RESULTS Double knockdown of ROR1 and ROR2 strongly inhibited cell adhesion (p<0.05) and invasion (P<0.05) to the omentum model. ROR2 was up regulated in primary fibroblasts when cultured with OVCAR4 (P=0.05) and ectopic overexpression of ROR2 in NOFs inhibited cell proliferation (P<0.01) but increased cell migration. CONCLUSION The combination of ROR1 and ROR2 signalling influences ovarian cancer dissemination to the omentum, however ROR2 may also play a role in stromal activation during metastasis. Therefore, targeting both ROR1 and ROR2 may be a powerful approach to treating ovarian cancer.
Collapse
Affiliation(s)
- Claire Henry
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre and School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Neville Hacker
- Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, Australia
| | - Caroline Ford
- Gynaecological Cancer Research Group, Lowy Cancer Research Centre and School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
21
|
Endo M, Minami Y. Diverse roles for the ror-family receptor tyrosine kinases in neurons and glial cells during development and repair of the nervous system. Dev Dyn 2017; 247:24-32. [PMID: 28470690 DOI: 10.1002/dvdy.24515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/06/2022] Open
Abstract
The Ror-family of receptor tyrosine kinases (RTKs) are involved critically in tissue genesis and organogenesis during development. In mammals, Ror1 and Ror2, members of the Ror-family RTKs, have been shown to mediate cell polarity, migration, proliferation, and differentiation through the activation of noncanonical Wnt signaling by acting as receptors or co-receptors for Wnt5a. Nematodes bearing mutations within the cam-1 gene, encoding a Ror2 ortholog, exhibit defects in various developmental processes of the nervous system, including neuronal cell migration, polarization, axonal extension, and synaptic transmission. In mice, Ror2 and/or Ror1 are also shown to play roles in regulating neurite extension, synapse formation, and synaptic transmission of hippocampal neurons, indicating that the Ror-family RTKs have evolutionarily conserved functions at least in part in neurons during development. Furthermore, Ror2 and/or Ror1 are expressed in neural stem/progenitor cells of the developing brain and in astrocytes of the adult brain after injury, and they play important roles in regulating cell proliferation under these different contexts. In this article, we overview recent advances in our understanding of the roles of the Ror-family RTKs in the development and repair of the nervous system and discuss their potential for therapeutic targets to neurodegenerative diseases. Developmental Dynamics 247:24-32, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe, Japan
| |
Collapse
|
22
|
Nishita M, Park SY, Nishio T, Kamizaki K, Wang Z, Tamada K, Takumi T, Hashimoto R, Otani H, Pazour GJ, Hsu VW, Minami Y. Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness. Sci Rep 2017; 7:1. [PMID: 28127051 PMCID: PMC5428335 DOI: 10.1038/s41598-016-0028-x] [Citation(s) in RCA: 8363] [Impact Index Per Article: 1194.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023] Open
Abstract
Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.
Collapse
Affiliation(s)
- Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan.
| | - Seung-Yeol Park
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Tadashi Nishio
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan
| | - ZhiChao Wang
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Kota Tamada
- RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, 351-0198, Japan
| | - Ryuju Hashimoto
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, 690-8504, Japan
| | - Hiroki Otani
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, 690-8504, Japan
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University, Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
23
|
Yao Z, Darowski K, St-Denis N, Wong V, Offensperger F, Villedieu A, Amin S, Malty R, Aoki H, Guo H, Xu Y, Iorio C, Kotlyar M, Emili A, Jurisica I, Neel BG, Babu M, Gingras AC, Stagljar I. A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome. Mol Cell 2017; 65:347-360. [PMID: 28065597 DOI: 10.1016/j.molcel.2016.12.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/13/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Abstract
Receptor tyrosine kinases (RTKs) and protein phosphatases comprise protein families that play crucial roles in cell signaling. We used two protein-protein interaction (PPI) approaches, the membrane yeast two-hybrid (MYTH) and the mammalian membrane two-hybrid (MaMTH), to map the PPIs between human RTKs and phosphatases. The resulting RTK-phosphatase interactome reveals a considerable number of previously unidentified interactions and suggests specific roles for different phosphatase families. Additionally, the differential PPIs of some protein tyrosine phosphatases (PTPs) and their mutants suggest diverse mechanisms of these PTPs in the regulation of RTK signaling. We further found that PTPRH and PTPRB directly dephosphorylate EGFR and repress its downstream signaling. By contrast, PTPRA plays a dual role in EGFR signaling: besides facilitating EGFR dephosphorylation, it enhances downstream ERK signaling by activating SRC. This comprehensive RTK-phosphatase interactome study provides a broad and deep view of RTK signaling.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Katelyn Darowski
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nicole St-Denis
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai, Toronto, ON M5G 1X5, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | - Shahreen Amin
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Ramy Malty
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Hongbo Guo
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yang Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Caterina Iorio
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Max Kotlyar
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andrew Emili
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovak Republic
| | - Benjamin G Neel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
24
|
Abstract
Wnt proteins are conserved signalling molecules that have an essential role in regulating diverse processes during embryogenesis and adult tissue homoeostasis. Wnts are post-translationally modified by palmitoylation, which is essential for Wnt secretion and function. Intriguingly, the crystal structure of XWnt8 in complex with the extracellular domain of the Frizzled 8 cysteine-rich domain (Fzd8-CRD) revealed that Wnts use the fatty acid as a 'hotspot' residue to engage its receptor, which is a unique mode of receptor-ligand recognition. In addition, there are several lines of evidence suggesting that Wnts engage several signalling modulators and alternative receptors by means of fatty acids as a critical contact residue. In the present article, we review our current understanding of Wnt acylation and its functional role in Wnt signalling regulation.
Collapse
|
25
|
Hammarén HM, Virtanen AT, Silvennoinen O. Nucleotide-binding mechanisms in pseudokinases. Biosci Rep 2015; 36:e00282. [PMID: 26589967 PMCID: PMC4718504 DOI: 10.1042/bsr20150226] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
Pseudokinases are classified by the lack of one or several of the highly conserved motifs involved in nucleotide (nt) binding or catalytic activity of protein kinases (PKs). Pseudokinases represent ∼10% of the human kinome and they are found in all evolutionary classes of kinases. It has become evident that pseudokinases, which were initially considered somewhat peculiar dead kinases, are important components in several signalling cascades. Furthermore, several pseudokinases have been linked to human diseases, particularly cancer, which is raising interest for therapeutic approaches towards these proteins. The ATP-binding pocket is a well-established drug target and elucidation of the mechanism and properties of nt binding in pseudokinases is of significant interest and importance. Recent studies have demonstrated that members of the pseudokinase family are very diverse in structure as well as in their ability and mechanism to bind nts or perform phosphoryl transfer reactions. This diversity also precludes prediction of pseudokinase function, or the importance of nt binding for said function, based on primary sequence alone. Currently available data indicate that ∼40% of pseudokinases are able to bind nts, whereas only few are able to catalyse occasional phosphoryl transfer. Pseudokinases employ diverse mechanisms to bind nts, which usually occurs at low, but physiological, affinity. ATP binding serves often a structural role but in most cases the functional roles are not precisely known. In the present review, we discuss the various mechanisms that pseudokinases employ for nt binding and how this often low-affinity binding can be accurately analysed.
Collapse
Affiliation(s)
- Henrik M Hammarén
- School of Medicine, University of Tampere, Biokatu 8, FI-33014 Tampere, Finland
| | - Anniina T Virtanen
- School of Medicine, University of Tampere, Biokatu 8, FI-33014 Tampere, Finland
| | - Olli Silvennoinen
- School of Medicine, University of Tampere, Biokatu 8, FI-33014 Tampere, Finland Clinical Hematology, Department of Internal Medicine, Tampere University Hospital, Medisiinarinkatu 3, FI-33520 Tampere, Finland
| |
Collapse
|
26
|
Abstract
Extensive molecular characterization of tumors has revealed that the activity of multiple signaling pathways is often simultaneously dampened or enhanced in cancer cells. Aberrant WNT signaling and tyrosine kinase signaling are two pathways that are frequently up- or downregulated in cancer. Although signaling pathways regulated by WNTs, tyrosine kinases, and other factors are often conceptualized as independent entities, the biological reality is likely much more complex. Understanding the mechanisms of crosstalk between multiple signal transduction networks is a key challenge for cancer researchers. The overall goals of this review are to describe mechanisms of crosstalk between WNT and tyrosine kinase pathways in cancer and to discuss how understanding intersections between WNT and tyrosine kinase signaling networks might be exploited to improve current therapies.
Collapse
Affiliation(s)
- Jaimie N Anastas
- Harvard Medical School Department of Cell Biology, Boston, MA; Boston Children's Hospital Division of Newborn Medicine, Boston, MA.
| |
Collapse
|
27
|
Alqahtani F, Mahdavi J, Wheldon LM, Vassey M, Pirinccioglu N, Royer PJ, Qarani SM, Morroll S, Stoof J, Holliday ND, Teo SY, Oldfield NJ, Wooldridge KG, Ala'Aldeen DAA. Deciphering the complex three-way interaction between the non-integrin laminin receptor, galectin-3 and Neisseria meningitidis. Open Biol 2015; 4:rsob.140053. [PMID: 25274119 PMCID: PMC4221890 DOI: 10.1098/rsob.140053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The non-integrin laminin receptor (LAMR1/RPSA) and galectin-3 (Gal-3) are multi-functional host molecules with roles in diverse pathological processes, particularly of infectious or oncogenic origins. Using bimolecular fluorescence complementation and confocal imaging, we demonstrate that the two proteins homo- and heterodimerize, and that each isotype forms a distinct cell surface population. We present evidence that the 37 kDa form of LAMR1 (37LRP) is the precursor of the previously described 67 kDa laminin receptor (67LR), whereas the heterodimer represents an entity that is distinct from this molecule. Site-directed mutagenesis confirmed that the single cysteine (C(173)) of Gal-3 or lysine (K(166)) of LAMR1 are critical for heterodimerization. Recombinant Gal-3, expressed in normally Gal-3-deficient N2a cells, dimerized with endogenous LAMR1 and led to a significantly increased number of internalized bacteria (Neisseria meningitidis), confirming the role of Gal-3 in bacterial invasion. Contact-dependent cross-linking determined that, in common with LAMR1, Gal-3 binds the meningococcal secretin PilQ, in addition to the major pilin PilE. This study adds significant new mechanistic insights into the bacterial-host cell interaction by clarifying the nature, role and bacterial ligands of LAMR1 and Gal-3 isotypes during colonization.
Collapse
Affiliation(s)
- Fulwah Alqahtani
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jafar Mahdavi
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Lee M Wheldon
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Matthew Vassey
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | - Pierre-Joseph Royer
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Suzan M Qarani
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Shaun Morroll
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jeroen Stoof
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Nicholas D Holliday
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Siew Y Teo
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Neil J Oldfield
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Karl G Wooldridge
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Dlawer A A Ala'Aldeen
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
28
|
The ROR2 tyrosine kinase receptor regulates dendritic spine morphogenesis in hippocampal neurons. Mol Cell Neurosci 2015; 67:22-30. [DOI: 10.1016/j.mcn.2015.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/03/2015] [Accepted: 05/19/2015] [Indexed: 11/19/2022] Open
|
29
|
Abstract
Ror2 is a signaling receptor for Wnt ligands that is known to play important roles in limb development, but having no essential roles known in adult tissues. Recent evidence has implicated Ror2 in mediating both canonical and non-canonical signaling pathways. Ror2 was initially found to be highly expressed in osteosarcoma and renal cell carcinomas, and has recently been found in an increasingly long list of cancers currently including melanoma, colon cancer, melanoma, squamous cell carcinoma of the head and neck, and breast cancer. In the majority of these cancer types, Ror2 expression is associated with more aggressive disease states, consistent with a role mediating Wnt signaling regardless of the canonical or noncanonical signal. Because of the pattern of tissue distribution, the association with high-risk diseases, and the cell surface localization of this receptor, Ror2 has been identified as a potential high value target for therapeutic development. However, the recent discovery that Ror2 may function through non-kinase activities challenges this strategy and opens up opportunities to target this important molecule through alternative means.
Collapse
Affiliation(s)
- Zufan Debebe
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Urology, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Genetics, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
30
|
Abdelhamed ZA, Natarajan S, Wheway G, Inglehearn CF, Toomes C, Johnson CA, Jagger DJ. The Meckel-Gruber syndrome protein TMEM67 controls basal body positioning and epithelial branching morphogenesis in mice via the non-canonical Wnt pathway. Dis Model Mech 2015; 8:527-41. [PMID: 26035863 PMCID: PMC4457033 DOI: 10.1242/dmm.019083] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/01/2015] [Indexed: 01/16/2023] Open
Abstract
Ciliopathies are a group of developmental disorders that manifest with multi-organ anomalies. Mutations in TMEM67 (MKS3) cause a range of human ciliopathies, including Meckel-Gruber and Joubert syndromes. In this study we describe multi-organ developmental abnormalities in the Tmem67tm1Dgen/H1 knockout mouse that closely resemble those seen in Wnt5a and Ror2 knockout mice. These include pulmonary hypoplasia, ventricular septal defects, shortening of the body longitudinal axis, limb abnormalities, and cochlear hair cell stereociliary bundle orientation and basal body/kinocilium positioning defects. The basal body/kinocilium complex was often uncoupled from the hair bundle, suggesting aberrant basal body migration, although planar cell polarity and apical planar asymmetry in the organ of Corti were normal. TMEM67 (meckelin) is essential for phosphorylation of the non-canonical Wnt receptor ROR2 (receptor-tyrosine-kinase-like orphan receptor 2) upon stimulation with Wnt5a-conditioned medium. ROR2 also colocalises and interacts with TMEM67 at the ciliary transition zone. Additionally, the extracellular N-terminal domain of TMEM67 preferentially binds to Wnt5a in an in vitro binding assay. Cultured lungs of Tmem67 mutant mice failed to respond to stimulation of epithelial branching morphogenesis by Wnt5a. Wnt5a also inhibited both the Shh and canonical Wnt/β-catenin signalling pathways in wild-type embryonic lung. Pulmonary hypoplasia phenotypes, including loss of correct epithelial branching morphogenesis and cell polarity, were rescued by stimulating the non-canonical Wnt pathway downstream of the Wnt5a-TMEM67-ROR2 axis by activating RhoA. We propose that TMEM67 is a receptor that has a main role in non-canonical Wnt signalling, mediated by Wnt5a and ROR2, and normally represses Shh signalling. Downstream therapeutic targeting of the Wnt5a-TMEM67-ROR2 axis might, therefore, reduce or prevent pulmonary hypoplasia in ciliopathies and other congenital conditions. Highlighted Article: TMEM67 is a receptor of non-canonical Wnt signalling, implicating the Wnt5a-TMEM67-ROR2 axis during developmental signalling and disruption in ciliopathy disease state.
Collapse
Affiliation(s)
- Zakia A Abdelhamed
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK Department of Anatomy and Embryology, Faculty of Medicine, Al-Azhar University, Cairo 11844, Egypt
| | - Subaashini Natarajan
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Gabrielle Wheway
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Christopher F Inglehearn
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Carmel Toomes
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Colin A Johnson
- Ciliopathy Research Group, Section of Ophthalmology and Neurosciences, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Daniel J Jagger
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1X 8EE, UK
| |
Collapse
|
31
|
RoR2 functions as a noncanonical Wnt receptor that regulates NMDAR-mediated synaptic transmission. Proc Natl Acad Sci U S A 2015; 112:4797-802. [PMID: 25825749 DOI: 10.1073/pnas.1417053112] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Wnt signaling has a well-established role as a regulator of nervous system development, but its role in the maintenance and regulation of established synapses in the mature brain remains poorly understood. At excitatory glutamatergic synapses, NMDA receptors (NMDARs) have a fundamental role in synaptogenesis, synaptic plasticity, and learning and memory; however, it is not known what controls their number and subunit composition. Here we show that the receptor tyrosine kinase-like orphan receptor 2 (RoR2) functions as a Wnt receptor required to maintain basal NMDAR-mediated synaptic transmission. In addition, RoR2 activation by a noncanonical Wnt ligand activates PKC and JNK and acutely enhances NMDAR synaptic responses. Regulation of a key component of glutamatergic synapses through RoR2 provides a mechanism for Wnt signaling to modulate synaptic transmission, synaptic plasticity, and brain function acutely beyond embryonic development.
Collapse
|
32
|
Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. Sci Rep 2015; 5:8042. [PMID: 25622531 PMCID: PMC4306915 DOI: 10.1038/srep08042] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/29/2014] [Indexed: 12/22/2022] Open
Abstract
Wnt5a activates the Wnt/β-catenin-independent pathway and its overexpression is associated with tumor aggressiveness enhancing invasive activity. For this action, Wnt5a-induced receptor endocytosis with clathrin is required. Wnt5a expression was previously believed to be associated with cancer cell motility but not proliferation. Recently, it was reported that Wnt5a is also implicated in cancer cell proliferation, but the mechanism was not clear. In this study, we generated a neutralizing anti-Wnt5a monoclonal antibody (mAb5A16) to investigate the mechanism by which Wnt5a regulates cancer cell proliferation. Wnt5a stimulated both invasion and proliferation of certain types of cancer cells, including HeLaS3 cervical cancer cells and A549 lung cancer cells although Wnt5a promoted invasion but not proliferation in other cancer cells such as KKLS gastric cancer cells. mAb5A16 did not affect the binding of Wnt5a to its receptor, but it suppressed Wnt5a-induced receptor-mediated endocytosis. mAb5A16 inhibited invasion but not proliferation of HeLaS3 and A549 cells. Wnt5a activated Src family kinases (SFKs) and Wnt5a-dependent cancer cell proliferation was dependent on SFKs, yet blockade of receptor-mediated endocytosis did not affect cancer cell proliferation and SFK activity. These results suggest that Wnt5a promotes invasion and proliferation of certain types of cancer cells through receptor-mediated endocytosis-dependent and -independent mechanisms, respectively.
Collapse
|
33
|
A new mutation in the gene ROR2 causes brachydactyly type B1. Gene 2014; 547:106-10. [DOI: 10.1016/j.gene.2014.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/28/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022]
|
34
|
Bainbridge TW, DeAlmeida VI, Izrael-Tomasevic A, Chalouni C, Pan B, Goldsmith J, Schoen AP, Quiñones GA, Kelly R, Lill JR, Sandoval W, Costa M, Polakis P, Arnott D, Rubinfeld B, Ernst JA. Evolutionary divergence in the catalytic activity of the CAM-1, ROR1 and ROR2 kinase domains. PLoS One 2014; 9:e102695. [PMID: 25029443 PMCID: PMC4100928 DOI: 10.1371/journal.pone.0102695] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/23/2014] [Indexed: 12/15/2022] Open
Abstract
Receptor tyrosine kinase-like orphan receptors (ROR) 1 and 2 are atypical members of the receptor tyrosine kinase (RTK) family and have been associated with several human diseases. The vertebrate RORs contain an ATP binding domain that deviates from the consensus amino acid sequence, although the impact of this deviation on catalytic activity is not known and the kinase function of these receptors remains controversial. Recently, ROR2 was shown to signal through a Wnt responsive, β-catenin independent pathway and suppress a canonical Wnt/β-catenin signal. In this work we demonstrate that both ROR1 and ROR2 kinase domains are catalytically deficient while CAM-1, the C. elegans homolog of ROR, has an active tyrosine kinase domain, suggesting a divergence in the signaling processes of the ROR family during evolution. In addition, we show that substitution of the non-consensus residues from ROR1 or ROR2 into CAM-1 and MuSK markedly reduce kinase activity, while restoration of the consensus residues in ROR does not restore robust kinase function. We further demonstrate that the membrane-bound extracellular domain alone of either ROR1 or ROR2 is sufficient for suppression of canonical Wnt3a signaling, and that this domain can also enhance Wnt5a suppression of Wnt3a signaling. Based on these data, we conclude that human ROR1 and ROR2 are RTK-like pseudokinases.
Collapse
Affiliation(s)
- Travis W. Bainbridge
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Venita I. DeAlmeida
- Department of Cancer Targets, Genentech, Inc., South San Francisco, California, United States of America
| | - Anita Izrael-Tomasevic
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Cécile Chalouni
- Center for Advanced Light Microscopy, Genentech, Inc., South San Francisco, California, United States of America
| | - Borlan Pan
- Department of Structural Biology, Genentech, Inc., South San Francisco, California, United States of America
| | - Joshua Goldsmith
- Department of Cancer Targets, Genentech, Inc., South San Francisco, California, United States of America
| | - Alia P. Schoen
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Gabriel A. Quiñones
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Ryan Kelly
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Jennie R. Lill
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Wendy Sandoval
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Mike Costa
- Department of Cancer Targets, Genentech, Inc., South San Francisco, California, United States of America
| | - Paul Polakis
- Department of Cancer Targets, Genentech, Inc., South San Francisco, California, United States of America
| | - David Arnott
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Bonnee Rubinfeld
- Department of Cancer Targets, Genentech, Inc., South San Francisco, California, United States of America
| | - James A. Ernst
- Department of Protein Chemistry, Genentech, Inc., South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Gentile A, Lazzari L, Benvenuti S, Trusolino L, Comoglio PM. The ROR1 pseudokinase diversifies signaling outputs in MET-addicted cancer cells. Int J Cancer 2014; 135:2305-16. [DOI: 10.1002/ijc.28879] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/21/2014] [Accepted: 03/20/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Alessandra Gentile
- ECMO, Experimental Clinical Molecular Oncology, Candiolo Cancer Institute-FPO, IRCCS; Candiolo (Torino) Italy
| | - Luca Lazzari
- ECMO, Experimental Clinical Molecular Oncology, Candiolo Cancer Institute-FPO, IRCCS; Candiolo (Torino) Italy
| | - Silvia Benvenuti
- ECMO, Experimental Clinical Molecular Oncology, Candiolo Cancer Institute-FPO, IRCCS; Candiolo (Torino) Italy
| | - Livio Trusolino
- ECMO, Experimental Clinical Molecular Oncology, Candiolo Cancer Institute-FPO, IRCCS; Candiolo (Torino) Italy
- Department of Oncology; University of Torino School of Medicine; Torino Italy
| | - Paolo Maria Comoglio
- ECMO, Experimental Clinical Molecular Oncology, Candiolo Cancer Institute-FPO, IRCCS; Candiolo (Torino) Italy
- Department of Oncology; University of Torino School of Medicine; Torino Italy
| |
Collapse
|
36
|
Liu X, Gao L, Zhao A, Zhang R, Ji B, Wang L, Zheng Y, Zeng B, Valenzuela RK, He L, Ma J. Identification of duplication downstream of BMP2 in a Chinese family with brachydactyly type A2 (BDA2). PLoS One 2014; 9:e94201. [PMID: 24710560 PMCID: PMC3978006 DOI: 10.1371/journal.pone.0094201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
Brachydactyly type A2 (BDA2, MIM 112600) is characterized by the deviation and shortening of the middle phalange of the index finger and the second toe. Using genome-wide linkage analysis in a Chinese BDA2 family, we mapped the maximum candidate interval of BDA2 to a ∼1.5 Mb region between D20S194 and D20S115 within chromosome 20p12.3 and found that the pairwise logarithm of the odds score was highest for marker D20S156 (Zmax = 6.09 at θ = 0). Based on functional and positional perspectives, the bone morphogenetic protein 2 (BMP2) gene was identified as the causal gene for BDA2 in this region, even though no point mutation was detected in BMP2. Through further investigation, we identified a 4,671 bp (Chr20: 6,809,218-6,813,888) genomic duplication downstream of BMP2. This duplication was located within the linked region, co-segregated with the BDA2 phenotype in this family, and was not found in the unaffected family members and the unrelated control individuals. Compared with the previously reported duplications, the duplication in this family has a different breakpoint flanked by the microhomologous sequence GATCA and a slightly different length. Some other microhomologous nucleotides were also found in the duplicated region. In summary, our findings support the conclusions that BMP2 is the causing gene for BDA2, that the genomic location corresponding to the duplication region is prone to structural changes associated with malformation of the digits, and that this tendency is probably caused by the abundance of microhomologous sequences in the region.
Collapse
Affiliation(s)
- Xudong Liu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Linghan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Aman Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Rui Zhang
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Xi'an Hong Hui Hospital, the Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Baohu Ji
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Lei Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yonglan Zheng
- Department of Medicine, the University of Chicago, Chicago, Illinois, United States of America
| | - Bingfang Zeng
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Robert K. Valenzuela
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Jie Ma
- Department of Genetics and Molecular Biology, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
37
|
Green J, Nusse R, van Amerongen R. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a009175. [PMID: 24370848 DOI: 10.1101/cshperspect.a009175] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Receptor tyrosine kinases of the Ryk and Ror families were initially classified as orphan receptors because their ligands were unknown. They are now known to contain functional extracellular Wnt-binding domains and are implicated in Wnt-signal transduction in multiple species. Although their signaling mechanisms still remain to be resolved in detail, both Ryk and Ror control important developmental processes in different tissues. However, whereas many other Wnt-signaling responses affect cell proliferation and differentiation, Ryk and Ror are mostly associated with controlling processes that rely on the polarized migration of cells. Here we discuss what is currently known about the involvement of this exciting class of receptors in development and disease.
Collapse
Affiliation(s)
- Jennifer Green
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | | | | |
Collapse
|
38
|
Abstract
As with other groups of protein kinases, approximately 10% of the RTKs (receptor tyrosine kinases) in the human proteome contain intracellular pseudokinases that lack one or more conserved catalytically important residues. These include ErbB3, a member of the EGFR (epidermal growth factor receptor) family, and a series of unconventional Wnt receptors. We showed previously that, despite its reputation as a pseudokinase, the ErbB3 TKD (tyrosine kinase domain) does retain significant, albeit weak, kinase activity. This led us to suggest that a subgroup of RTKs may be able to signal even with very inefficient kinases. Recent work suggests that this is not the case, however. Other pseudokinase RTKs have not revealed significant kinase activity, and mutations that impair ErbB3's weak kinase activity have not so far been found to exhibit signalling defects. These findings therefore point to models in which the TKDs of pseudokinase RTKs participate in receptor signalling by allosterically regulating associated kinases (such as ErbB3 regulation of ErbB2) and/or function as regulated 'scaffolds' for other intermolecular interactions central to signal propagation. Further structural and functional studies, particularly of the pseudokinase RTKs involved in Wnt signalling, are required to shed new light on these intriguing signalling mechanisms.
Collapse
|
39
|
Wnt signaling through the Ror receptor in the nervous system. Mol Neurobiol 2013; 49:303-15. [PMID: 23990374 DOI: 10.1007/s12035-013-8520-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/18/2013] [Indexed: 01/04/2023]
Abstract
The receptor tyrosine kinase-like orphan receptor (Ror) proteins are conserved tyrosine kinase receptors that play roles in a variety of cellular processes that pattern tissues and organs during vertebrate and invertebrate development. Ror signaling is required for skeleton and neuronal development and modulates cell migration, cell polarity, and convergent extension. Ror has also been implicated in two human skeletal disorders, brachydactyly type B and Robinow syndrome. Rors are widely expressed during metazoan development including domains in the nervous system. Here, we review recent progress in understanding the roles of the Ror receptors in neuronal migration, axonal pruning, axon guidance, and synaptic plasticity. The processes by which Ror signaling execute these diverse roles are still largely unknown, but they likely converge on cytoskeletal remodeling. In multiple species, Rors have been shown to act as Wnt receptors signaling via novel non-canonical Wnt pathways mediated in some tissues by the adapter protein disheveled and the non-receptor tyrosine kinase Src. Rors can either activate or repress Wnt target expression depending on the cellular context and can also modulate signal transduction by sequestering Wnt ligands away from their signaling receptors. Future challenges include the identification of signaling components of the Ror pathways and bettering our understanding of the roles of these pleiotropic receptors in patterning the nervous system.
Collapse
|
40
|
Lai SS, Xue B, Yang Y, Zhao L, Chu CS, Hao JY, Wen CJ. Ror2-Src signaling in metastasis of mouse melanoma cells is inhibited by NRAGE. Cancer Genet 2012; 205:552-62. [PMID: 23142633 DOI: 10.1016/j.cancergen.2012.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 09/05/2012] [Accepted: 09/20/2012] [Indexed: 11/29/2022]
Abstract
The receptor tyrosine kinase (RTK) Ror2 plays important roles in developmental morphogenesis and mediates the filopodia formation in Wnt5a-induced cell migration. However, the function of Ror2 in noncanonical Wnt signaling resulting in cancer metastasis is largely unknown. Here, we show that Ror2 expression is higher in the highly metastatic murine B16-BL6 melanoma cells than in the low metastatic variant B16 cells. Overexpression of Ror2 increases the metastasis ability of B16 cells, and knockdown of Ror2 reduces the migration ability of B16-BL6 cells. Furthermore, the inhibition of Src kinase activity is critical for the Ror2-mediated cell migration upon Wnt5a treatment. The C-terminus of Ror2, which is deleted in brachydactyly type B (BDB), is essential for the mutual interaction with the SH1 domain of Src. Intriguingly, the Neurotrophin receptor-interacting MAGE homologue (NRAGE), which, as we previously reported, can remodel the cellular skeleton and inhibit cell-cell adhesion and metastasis of melanoma and pancreatic cancer, sharply blocks the interaction between Src and Ror2 and inhibits Ror2-mediated B16 cell migration by decreasing the activity of Src and focal adhesion kinase (FAK). Our data show that Ror2 is a potential factor in the tumorigenesis and metastasis in a Src-dependent manner that is negatively regulated by NRAGE.
Collapse
Affiliation(s)
- Shan-Shan Lai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, and Medical School of Nanjing University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Bakker ERM, Raghoebir L, Franken PF, Helvensteijn W, van Gurp L, Meijlink F, van der Valk MA, Rottier RJ, Kuipers EJ, van Veelen W, Smits R. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice. Dev Biol 2012; 369:91-100. [PMID: 22691362 DOI: 10.1016/j.ydbio.2012.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 01/09/2023]
Abstract
Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages.
Collapse
Affiliation(s)
- Elvira R M Bakker
- Departments of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, 's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Clark CEJ, Nourse CC, Cooper HM. The tangled web of non-canonical Wnt signalling in neural migration. Neurosignals 2012; 20:202-20. [PMID: 22456117 DOI: 10.1159/000332153] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/23/2011] [Indexed: 12/19/2022] Open
Abstract
In all multicellular animals, successful embryogenesis is dependent on the ability of cells to detect the status of the local environment and respond appropriately. The nature of the extracellular environment is communicated to the intracellular compartment by ligand/receptor interactions at the cell surface. The Wnt canonical and non-canonical signalling pathways are found in the most primitive metazoans, and they play an essential role in the most fundamental developmental processes in all multicellular organisms. Vertebrates have expanded the number of Wnts and Frizzled receptors and have additionally evolved novel Wnt receptor families (Ryk, Ror). The multiplicity of potential interactions between Wnts, their receptors and downstream effectors has exponentially increased the complexity of the signal transduction network. Signalling through each of the Wnt pathways, as well as crosstalk between them, plays a critical role in the establishment of the complex architecture of the vertebrate central nervous system. In this review, we explore the signalling networks triggered by non-canonical Wnt/receptor interactions, focussing on the emerging roles of the non-conventional Wnt receptors Ryk and Ror. We describe the role of these pathways in neural tube formation and axon guidance where Wnt signalling controls tissue polarity, coordinated cell migration and axon guidance via remodelling of the cytoskeleton.
Collapse
Affiliation(s)
- Charlotte E J Clark
- Queensland Brain Institute, University of Queensland, Brisbane, Qld, Australia
| | | | | |
Collapse
|
43
|
Kaucká M, Krejčí P, Plevová K, Pavlová S, Procházková J, Janovská P, Valnohová J, Kozubík A, Pospíšilová S, Bryja V. Post-translational modifications regulate signalling by Ror1. Acta Physiol (Oxf) 2011; 203:351-62. [PMID: 21481194 DOI: 10.1111/j.1748-1716.2011.02306.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM In this study, we analysed the post-translational modification of receptor tyrosine kinase-like orphan receptor (Ror1). Ror1 is highly upregulated in B cells of patients with chronic lymphocytic leukaemia (CLL). Molecularly, Ror1 acts as the Wnt receptor in the non-canonical Wnt pathway. METHODS The level of Ror1 glycosylation in HEK293 cells and in primary human CLL cells was analysed by treatment of inhibitors interfering with different steps of glycosylation process and by direct treatment of cell lysates with N-glycosidase. Ror1 ubiquitination was determined by ubiquitination assay. Functional consequences of post-translational modifications were analysed by immunohistochemistry and by analysis of cell surface proteins. Differences in Ror1 glycosylation were confirmed by analysis of 14 samples of B cells from CLL patients. RESULTS We demonstrate that Ror1 is extensively modified by N-linked glycosylation. Glycosylation produces several variants of Ror1 with electrophoretic migration of approx. 100, 115 and 130 kDa. Inhibition of glycosylation interferes with cell surface localization of the 130-kDa variant of Ror1 and prevents Ror1-induced formation of filopodia. Moreover, we show that 130-kDa Ror1 is mono-ubiquitinated. Furthermore, individual CLL patients show striking differences in the electrophoretic migration of Ror1, which correspond to the level of glycosylation. CONCLUSION Our data show that Ror1 undergoes complex post-translational modifications by glycosylation and mono-ubiquitination. These modifications regulate Ror1 localization and signalling, and are highly variable among individual CLL patients. These may suggest that Ror1 signals only in a subset of CLL patients despite Ror1 levels are ubiquitously high in all CLL patients.
Collapse
Affiliation(s)
- M Kaucká
- Faculty of Science, Institute of Experimental Biology, Masaryk University, Kotlářská, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cheung R, Kelly J, Macleod RJ. Regulation of villin by wnt5a/ror2 signaling in human intestinal cells. Front Physiol 2011; 2:58. [PMID: 21949508 PMCID: PMC3171703 DOI: 10.3389/fphys.2011.00058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 08/19/2011] [Indexed: 11/13/2022] Open
Abstract
Regulation of expression of the intestinal epithelial actin-binding protein, villin, is poorly understood. The aim of this study was to determine whether Wnt5a stimulates Ror2 in intestinal epithelia caused transient increases in phospho-ERK1/2 (pERK1/2) and subsequently increased expression of villin transcript and protein. To demonstrate Wnt5a-Ror2 regulation of villin expression, we overexpressed wild-type, truncated, or mutant Ror2 constructs in HT29 adenocarcinoma cells and non-transformed fetally derived human intestinal epithelial cells, added conditioned media containing Wnt5a and measured changes in ERK1/2 phosphorylation, villin amplicons, and protein expression by RT-PCR and Western blot techniques. Wnt5a addition caused a transient increase in pERK1/2, which was maximal at 10 min but extinguished by 30 min. Transient transfection with a siRNA duplex against Ror2 diminished Ror2 amplicons and protein and reduced the extent of pERK1/2 activation. Structure-function analysis revealed that the deletion of the cysteine-rich, kringle, or tyrosine kinase domain or substitution mutations of tyrosine residues in the intracellular Ser/Thr-1 region of Ror2 prevented the Wnt5a stimulation of pERK1/2. Deletion of the intracellular proline and serine/threonine-rich regions of Ror2 had no effect on Wnt5a stimulation of pERK1/2. The increase in villin expression was blocked by pharmacological inhibition of MEK-1 and casein kinase 1, but not by PKC and p38 inhibitors. Neither Wnt3a nor epidermal growth factor addition caused increases in villin protein. Our findings suggest that Wnt5a/Ror2 signaling can regulate villin expression in the intestine.
Collapse
Affiliation(s)
- Rebecca Cheung
- Department of Physiology, Queen's University Kingston, ON, Canada
| | | | | |
Collapse
|
45
|
Stricker S, Mundlos S. FGF and ROR2 receptor tyrosine kinase signaling in human skeletal development. Curr Top Dev Biol 2011; 97:179-206. [PMID: 22074606 DOI: 10.1016/b978-0-12-385975-4.00013-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal malformations are among the most frequent developmental disturbances in humans. In the past years, progress has been made in unraveling the molecular mechanisms that govern skeletal development by the use of animal models as well as by the identification of numerous mutations that cause human skeletal syndromes. Receptor tyrosine kinases have critical roles in embryonic development. During formation of the skeletal system, the fibroblast growth factor receptor (FGFR) family plays major roles in the formation of cranial, axial, and appendicular bones. Another player of relevance to skeletal development is the unusual receptor tyrosine kinase ROR2, the function of which is as interesting as it is complex. In this chapter, we review the involvement of FGFR signaling in human skeletal disease and provide an update on the growing knowledge of ROR2.
Collapse
Affiliation(s)
- Sigmar Stricker
- Development and Disease Group, Max Planck-Institute for Molecular Genetics, Berlin, Germany
| | | |
Collapse
|
46
|
Wang B, Sinha T, Jiao K, Serra R, Wang J. Disruption of PCP signaling causes limb morphogenesis and skeletal defects and may underlie Robinow syndrome and brachydactyly type B. Hum Mol Genet 2010; 20:271-85. [PMID: 20962035 DOI: 10.1093/hmg/ddq462] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Brachydactyly type B (BDB1) and Robinow syndrome (RRS) are two skeletal disorders caused by mutations in ROR2, a co-receptor of Wnt5a. Wnt5a/Ror2 can activate multiple branches of non-canonical Wnt signaling, but it is unclear which branch(es) mediates Wnt5a/Ror2 function in limb skeletal development. Here, we provide evidence implicating the planar cell polarity (PCP) pathway as the downstream component of Wnt5a in the limb. We show that a mutation in the mouse PCP gene Vangl2 causes digit defects resembling the clinical phenotypes in BDB1, including loss of phalanges. Halving the dosage of Wnt5a in Vangl2 mutants enhances the severity and penetrance of the digit defects and causes long bone defects reminiscent of RRS, suggesting that Wnt5a and Vangl2 function in the same pathway and disruption of PCP signaling may underlie both BDB1 and RRS. Consistent with a role for PCP signaling in tissue morphogenesis, mutation of Vangl2 alters the shape and dimensions of early limb buds: the width and thickness are increased, whereas the length is decreased. The digit pre-chondrogenic condensates also become wider, thicker and shorter. Interestingly, altered limb bud dimensions in Vangl2 mutants also affect limb growth by perturbing the signaling network that regulates the balance between Fgf and Bmp signaling. Halving the dosage of Bmp4 partially suppresses the loss of phalanges in Vangl2 mutants, supporting the hypothesis that an aberrant increase in Bmp signaling is the cause of the brachydactyly defect. These findings provide novel insight into the signaling mechanisms of Wnt5a/Ror2 and the pathogenesis in BDB1 and RRS.
Collapse
Affiliation(s)
- Bing Wang
- Department of Cell Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
47
|
A model for signaling specificity of Wnt/Frizzled combinations through co-receptor recruitment. FEBS Lett 2010; 584:3850-4. [DOI: 10.1016/j.febslet.2010.08.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/07/2010] [Accepted: 08/18/2010] [Indexed: 01/09/2023]
|
48
|
Nishita M, Enomoto M, Yamagata K, Minami Y. Cell/tissue-tropic functions of Wnt5a signaling in normal and cancer cells. Trends Cell Biol 2010; 20:346-54. [DOI: 10.1016/j.tcb.2010.03.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/27/2010] [Accepted: 03/04/2010] [Indexed: 01/13/2023]
|
49
|
Ror2/Frizzled complex mediates Wnt5a-induced AP-1 activation by regulating Dishevelled polymerization. Mol Cell Biol 2010; 30:3610-9. [PMID: 20457807 DOI: 10.1128/mcb.00177-10] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The receptor tyrosine kinase Ror2 acts as a receptor or coreceptor for Wnt5a to mediate Wnt5a-induced activation of the Wnt/JNK pathway and inhibition of the beta-catenin-dependent canonical Wnt pathway. However, little is known about how Ror2 cooperates with another receptor component(s) to mediate Wnt5a signaling. We show here that Ror2 regulates Wnt5a-induced polymerization of Dishevelled (Dvl) and that this Ror2-mediated regulation of Dvl is independent of the cytoplasmic region of Ror2. Ror2 can associate with Frizzled7 (Fz7) via its extracellular cysteine-rich domain to form a receptor complex that is required for the regulation of Dvl and activation of the AP-1 promoter after Wnt5a stimulation. Suppressed expression of Fz7 indeed results in the inhibition of Wnt5a-induced polymerization of Dvl and AP-1 activation. Interestingly, both the DIX and the DEP domains of Dvl are indispensable for Dvl polymerization and subsequent AP-1 activation after Wnt5a stimulation. We further show that polymerized Dvl is colocalized with Rac1 and that suppressed expression of Rac1 inhibits Wnt5a-induced AP-1 activation. Collectively, our results indicate that Ror2/Fz receptor complex plays an important role in the Wnt5a/Rac1/AP-1 pathway by regulating the polymerization of Dvl.
Collapse
|
50
|
Minami Y, Oishi I, Endo M, Nishita M. Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev Dyn 2010; 239:1-15. [PMID: 19530173 DOI: 10.1002/dvdy.21991] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Ror-family receptor tyrosine kinases (RTKs) play crucial roles in the development of various organs and tissues. In mammals, Ror2, a member of the Ror-family RTKs, has been shown to act as a receptor or coreceptor for Wnt5a to mediate noncanonical Wnt signaling. Ror2- and Wnt5a-deficient mice exhibit similar abnormalities during developmental morphogenesis, reflecting their defects in convergent extension movements and planar cell polarity, characteristic features mediated by noncanonical Wnt signaling. Furthermore, mutations within the human Ror2 gene are responsible for the genetic skeletal disorders dominant brachydactyly type B and recessive Robinow syndrome. Accumulating evidence demonstrate that Ror2 mediates noncanonical Wnt5a signaling by inhibiting the beta-catenin-TCF pathway and activating the Wnt/JNK pathway that results in polarized cell migration. In this article, we review recent progress in understanding the roles of noncanonical Wnt5a/Ror2 signaling in developmental morphogenesis and in human diseases, including heritable skeletal disorders and tumor invasion.
Collapse
Affiliation(s)
- Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| | | | | | | |
Collapse
|