1
|
Long Q, Zhou W, Zhou H, Tang Y, Chen W, Liu Q, Bian X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Nat Prod Rep 2024; 41:525-564. [PMID: 37873660 DOI: 10.1039/d2np00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covering: 2005 to August, 2023Polyamine-containing natural products (NPs) have been isolated from a wide range of terrestrial and marine organisms and most of them exhibit remarkable and diverse activities, including antimicrobial, antiprotozoal, antiangiogenic, antitumor, antiviral, iron-chelating, anti-depressive, anti-inflammatory, insecticidal, antiobesity, and antioxidant properties. Their extraordinary activities and potential applications in human health and agriculture attract increasing numbers of studies on polyamine-containing NPs. In this review, we summarized the source, structure, classification, bioactivities and biosynthesis of polyamine-containing NPs, focusing on the biosynthetic mechanism of polyamine itself and representative polyamine alkaloids, polyamine-containing siderophores with catechol/hydroxamate/hydroxycarboxylate groups, nonribosomal peptide-(polyketide)-polyamine (NRP-(PK)-PA), and NRP-PK-long chain poly-fatty amine (lcPFAN) hybrid molecules.
Collapse
Affiliation(s)
- Qingshan Long
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ying Tang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
2
|
Vergoz D, Le H, Bernay B, Schaumann A, Barreau M, Nilly F, Desriac F, Tahrioui A, Giard JC, Lesouhaitier O, Chevalier S, Brunel JM, Muller C, Dé E. Antibiofilm and Antivirulence Properties of 6-Polyaminosteroid Derivatives against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2023; 13:8. [PMID: 38275318 PMCID: PMC10812528 DOI: 10.3390/antibiotics13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The emergence of multi-drug resistant pathogens is a major public health problem, leading us to rethink and innovate our bacterial control strategies. Here, we explore the antibiofilm and antivirulence activities of nineteen 6-polyaminosterol derivatives (squalamine-based), presenting a modulation of their polyamine side chain on four major pathogens, i.e., carbapenem-resistant A. baumannii (CRAB) and P. aeruginosa (CRPA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant E. faecium (VRE) strains. We screened the effect of these derivatives on biofilm formation and eradication. Derivatives 4e (for CRAB, VRE, and MRSA) and 4f (for all the strains) were the most potent ones and displayed activities as good as those of conventional antibiotics. We also identified 11 compounds able to decrease by more than 40% the production of pyocyanin, a major virulence factor of P. aeruginosa. We demonstrated that 4f treatment acts against bacterial infections in Galleria mellonella and significantly prolonged larvae survival (from 50% to 80%) after 24 h of CRAB, VRE, and MRSA infections. As shown by proteomic studies, 4f triggered distinct cellular responses depending on the bacterial species but essentially linked to cell envelope. Its interesting antibiofilm and antivirulence properties make it a promising a candidate for use in therapeutics.
Collapse
Affiliation(s)
- Delphine Vergoz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Hung Le
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Benoit Bernay
- Univ Caen Normandie, Proteogen Platform, US EMERODE, F-14000 Caen, France;
| | - Annick Schaumann
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Magalie Barreau
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Flore Nilly
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Florie Desriac
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Ali Tahrioui
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | | | - Olivier Lesouhaitier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | | | - Cécile Muller
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Emmanuelle Dé
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| |
Collapse
|
3
|
Cadelis MM, Kim J, Rouvier F, Gill ES, Fraser K, Bourguet-Kondracki ML, Brunel JM, Copp BR. Exploration of Bis-Cinnamido-Polyamines as Intrinsic Antimicrobial Agents and Antibiotic Enhancers. Biomolecules 2023; 13:1087. [PMID: 37509123 PMCID: PMC10377643 DOI: 10.3390/biom13071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The marine natural product ianthelliformisamine C is a bis-cinnamido substituted spermine derivative that exhibits intrinsic antimicrobial properties and can enhance the action of doxycycline towards the Gram-negative bacterium Pseudomonas aeruginosa. As part of a study to explore the structure-activity requirements of these activities, we have synthesized a set of analogues that vary in the presence/absence of methoxyl group and bromine atoms and in the polyamine chain length. Intrinsic antimicrobial activity towards Staphylococcus aureus, methicillin-resistant S. aureus (MRSA) and the fungus Cryptococcus neoformans was observed for only the longest polyamine chain examples of non-brominated analogues while all examples bearing either one or two bromine atoms were active. Weak to no activity was typically observed towards Gram-negative bacteria, with exceptions being the longest polyamine chain examples 13f, 14f and 16f against Escherichia coli (MIC 1.56, 7.2 and 5.3 µM, respectively). Many of these longer polyamine-chain analogues also exhibited cytotoxic and/or red blood cell hemolytic properties, diminishing their potential as antimicrobial lead compounds. Two of the non-toxic, non-halogenated analogues, 13b and 13d, exhibited a strong ability to enhance the action of doxycycline against P. aeruginosa, with >64-fold and >32-fold enhancement, respectively. These results suggest that any future efforts to optimize the antibiotic-enhancing properties of cinnamido-polyamines should explore a wider range of aromatic ring substituents that do not include bromine or methoxyl groups.
Collapse
Affiliation(s)
- Melissa M Cadelis
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jisoo Kim
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Florent Rouvier
- Membranes et Cibles Therapeutiques (MCT), SSA, INSERM, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Evangelene S Gill
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kyle Fraser
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 Rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- Membranes et Cibles Therapeutiques (MCT), SSA, INSERM, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
4
|
Cadelis MM, Liu T, Sue K, Rouvier F, Bourguet-Kondracki ML, Brunel JM, Copp BR. Structure-Activity Relationship Studies of Indolglyoxyl-Polyamine Conjugates as Antimicrobials and Antibiotic Potentiators. Pharmaceuticals (Basel) 2023; 16:823. [PMID: 37375770 DOI: 10.3390/ph16060823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic resistance is a growing global health threat, requiring urgent attention. One approach to overcome antibiotic resistance is to discover and develop new antibiotic enhancers, molecules that work with legacy antibiotics to enhance their efficacy against resistant bacteria. Our previous screening of a library of purified marine natural products and their synthetic analogues led to the discovery of an indolglyoxyl-spermine derivative that exhibited intrinsic antimicrobial properties and was also able to potentiate the action of doxycycline towards the difficult to treat, Gram-negative bacterium Pseudomonas aeruginosa. A set of analogues have now been prepared, exploring the influence of indole substitution at the 5- and 7- positions and length of the polyamine chain on biological activity. While limiting cytotoxicity and/or hemolytic activities were observed for many analogues, two 7-methyl substituted analogues (23b and 23c) were found to exhibit strong activity towards Gram-positive bacteria with no detectable cytotoxicity or hemolytic properties. Different molecular attributes were required for antibiotic enhancing properties, with one example identified, a 5-methoxy-substitiuted analogue (19a), as being a non-toxic, non-hemolytic enhancer of the action of two tetracycline antibiotics, doxycycline and minocycline, towards P. aeruginosa. These results provide further stimulation for the search for novel antimicrobials and antibiotic enhancers amongst marine natural products and related synthetic analogues.
Collapse
Affiliation(s)
- Melissa M Cadelis
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Tim Liu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kenneth Sue
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Florent Rouvier
- UMR MD1 "Membranes et Cibles Thérapeutiques", U1261 INSERM, Faculté de Pharmacie, Aix-Marseille Université, 27 bd Jean Moulin, 13385 Marseille, France
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 Rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- UMR MD1 "Membranes et Cibles Thérapeutiques", U1261 INSERM, Faculté de Pharmacie, Aix-Marseille Université, 27 bd Jean Moulin, 13385 Marseille, France
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
5
|
Vergoz D, Nilly F, Desriac F, Barreau M, Géry A, Lepetit C, Sichel F, Jeannot K, Giard JC, Garon D, Chevalier S, Muller C, Dé E, Brunel JM. 6-Polyaminosteroid Squalamine Analogues Display Antibacterial Activity against Resistant Pathogens. Int J Mol Sci 2023; 24:ijms24108568. [PMID: 37239913 DOI: 10.3390/ijms24108568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
A series of 6-polyaminosteroid analogues of squalamine were synthesized with moderate to good yields and evaluated for their in vitro antimicrobial properties against both susceptible and resistant Gram-positive (vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus) and Gram-negative (carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa) bacterial strains. Minimum inhibitory concentrations against Gram-positive bacteria ranged from 4 to 16 µg/mL for the most effective compounds, 4k and 4n, and showed an additive or synergistic effect with vancomycin or oxacillin. On the other hand, the derivative 4f, which carries a spermine moiety like that of the natural trodusquemine molecule, was found to be the most active derivative against all the resistant Gram-negative bacteria tested, with an MIC value of 16 µg/mL. Our results suggest that 6-polyaminosteroid analogues of squalamine are interesting candidates for Gram-positive bacterial infection treatments, as well as potent adjuvants to fight Gram-negative bacterial resistance.
Collapse
Affiliation(s)
- Delphine Vergoz
- Polymers, Biopolymers, Surfaces Laboratory, University of Rouen Normandie, INSA Rouen, CNRS, UMR 6270, 76000 Rouen, France
| | - Flore Nilly
- Communication Bactérienne et Stratégies Anti-Infectieuses, University of Rouen Normandie, CBSA, 27000 Evreux, France
| | - Florie Desriac
- Communication Bactérienne et Stratégies Anti-Infectieuses, UNICAEN, Normandie University, UR4312, CBSA, 14032 Caen, France
| | - Magalie Barreau
- Communication Bactérienne et Stratégies Anti-Infectieuses, University of Rouen Normandie, CBSA, 27000 Evreux, France
| | - Antoine Géry
- UNICAEN, Normandie University, ABTE UR4651 and Centre François Baclesse, 14032 Caen, France
| | - Charlie Lepetit
- UNICAEN, Normandie University, ABTE UR4651 and Centre François Baclesse, 14032 Caen, France
| | - François Sichel
- UNICAEN, Normandie University, ABTE UR4651 and Centre François Baclesse, 14032 Caen, France
| | - Katy Jeannot
- UMR 6249 Chrono-Environnement, CNRS-Université de Bourgogne/Franche-Comté, 25000 Besançon, France
| | - Jean-Christophe Giard
- UNICAEN, University of Rouen Normandie, INSERM, DYNAMICURE UMR 1311 F, 14000 Caen, France
| | - David Garon
- UNICAEN, Normandie University, ABTE UR4651 and Centre François Baclesse, 14032 Caen, France
| | - Sylvie Chevalier
- Communication Bactérienne et Stratégies Anti-Infectieuses, University of Rouen Normandie, CBSA, 27000 Evreux, France
| | - Cécile Muller
- Communication Bactérienne et Stratégies Anti-Infectieuses, UNICAEN, Normandie University, UR4312, CBSA, 14032 Caen, France
| | - Emmanuelle Dé
- Polymers, Biopolymers, Surfaces Laboratory, University of Rouen Normandie, INSA Rouen, CNRS, UMR 6270, 76000 Rouen, France
| | | |
Collapse
|
6
|
El-Kirat-Chatel S, Varbanov M, Retourney C, Salles E, Risler A, Brunel JM, Beaussart A. AFM reveals the interaction and nanoscale effects imposed by squalamine on Staphylococcus epidermidis. Colloids Surf B Biointerfaces 2023; 226:113324. [PMID: 37146477 DOI: 10.1016/j.colsurfb.2023.113324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The Gram-positive bacterium Staphylococcus epidermidis is responsible for important nosocomial infections. With the continuous emergence of antibiotic-resistant strains, the search for new treatments has been amplified in the last decades. A potential candidate against multidrug-resistant bacteria is squalamine, a natural aminosterol discovered in dogfish sharks. Despite its broad-spectrum efficiency, little is known about squalamine mode of action. Here, we used atomic force microscopy (AFM) imaging to decipher the effect of squalamine on S. epidermidis morphology, revealing the peptidoglycan structure at the bacterial surface after the drug action. Single-molecule force spectroscopy with squalamine-decorated tips shows that squalamine binds to the cell surface via the spermidine motif, most likely through electrostatic interactions between the amine groups of the molecule and the negatively-charged bacterial cell wall. We demonstrated that - although spermidine is sufficient for the initial attachment of squalamine to S. epidermidis - the integrity of the molecule needs to be conserved for its antimicrobial action. A deeper analysis of the AFM force-distance signatures suggests the implication of the accumulation-associated protein (Aap), one of the main adhesins of S. epidermidis, in the initial binding of squalamine to the bacterial cell wall. This work highlights that AFM -combined with microbiological assays at the bacterial suspension scale- is a valuable approach to better understand the molecular mechanisms behind the efficiency of squalamine antibacterial activity.
Collapse
Affiliation(s)
| | - Mihayl Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandœuvre-lès-Nancy, France
| | | | - Elsa Salles
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Jean-Michel Brunel
- UMR_MD1, U-1261, Aix Marseille Université, INSERM, SSA, MCT, Marseille, France
| | | |
Collapse
|
7
|
Investigation of α,ω-Disubstituted Polyamine-Cholic Acid Conjugates Identifies Hyodeoxycholic and Chenodeoxycholic Scaffolds as Non-Toxic, Potent Antimicrobials. Antibiotics (Basel) 2023; 12:antibiotics12020404. [PMID: 36830315 PMCID: PMC9951859 DOI: 10.3390/antibiotics12020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
With the increased incidence of antibiotic resistance, the discovery and development of new antibacterials is of increasing importance and urgency. The report of the natural product antibiotic squalamine in 1993 has stimulated a lot of interest in the study of structurally simplified cholic acid-polyamine derivatives. We report the synthesis of a focused set of deoxycholic acid-polyamine conjugates and the identification of hyodeoxycholic acid derivatives as being potently active towards S. aureus MRSA and some fungal strains, but with no attendant cytotoxicity or hemolytic properties. Analogue 7e exhibited bactericidal activity towards a range of Gram-positive bacteria, while preliminary investigation of its mechanism of action ruled out the bacterial membrane as being a primary cellular target as determined using an ATP-release bioluminescence assay.
Collapse
|
8
|
Wesseling CJ, Martin NI. Synergy by Perturbing the Gram-Negative Outer Membrane: Opening the Door for Gram-Positive Specific Antibiotics. ACS Infect Dis 2022; 8:1731-1757. [PMID: 35946799 PMCID: PMC9469101 DOI: 10.1021/acsinfecdis.2c00193] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
New approaches to target antibacterial agents toward Gram-negative bacteria are key, given the rise of antibiotic resistance. Since the discovery of polymyxin B nonapeptide as a potent Gram-negative outer membrane (OM)-permeabilizing synergist in the early 1980s, a vast amount of literature on such synergists has been published. This Review addresses a range of peptide-based and small organic compounds that disrupt the OM to elicit a synergistic effect with antibiotics that are otherwise inactive toward Gram-negative bacteria, with synergy defined as a fractional inhibitory concentration index (FICI) of <0.5. Another requirement for the inclusion of the synergists here covered is their potentiation of a specific set of clinically used antibiotics: erythromycin, rifampicin, novobiocin, or vancomycin. In addition, we have focused on those synergists with reported activity against Gram-negative members of the ESKAPE family of pathogens namely, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and/or Acinetobacter baumannii. In cases where the FICI values were not directly reported in the primary literature but could be calculated from the published data, we have done so, allowing for more direct comparison of potency with other synergists. We also address the hemolytic activity of the various OM-disrupting synergists reported in the literature, an effect that is often downplayed but is of key importance in assessing the selectivity of such compounds for Gram-negative bacteria.
Collapse
|
9
|
Mammari N, Salles E, Beaussart A, El-Kirat-Chatel S, Varbanov M. Squalamine and Its Aminosterol Derivatives: Overview of Biological Effects and Mechanisms of Action of Compounds with Multiple Therapeutic Applications. Microorganisms 2022; 10:microorganisms10061205. [PMID: 35744723 PMCID: PMC9229800 DOI: 10.3390/microorganisms10061205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Squalamine is a natural aminosterol that has been discovered in the tissues of the dogfish shark (Squalus acanthias). Studies have previously demonstrated that this promoter compound and its derivatives exhibit potent bactericidal activity against Gram-negative, Gram-positive bacteria, and multidrug-resistant bacteria. The antibacterial activity of squalamine was found to correlate with that of other antibiotics, such as colistin and polymyxins. Still, in the field of microbiology, evidence has shown that squalamine and its derivatives have antifungal activity, antiprotozoa effect against a limited list of protozoa, and could exhibit antiviral activity against both RNA- and DNA-enveloped viruses. Furthermore, squalamine and its derivatives have been identified as being antiangiogenic compounds in the case of several types of cancers and induce a potential positive effect in the case of other diseases such as experimental retinopathy and Parkinson's disease. Given the diverse effects of the squalamine and its derivatives, in this review we provide the different advances in our understanding of the various effects of these promising molecules and try to draw up a non-exhaustive list of the different mechanisms of actions of squalamine and its derivatives on the human organism and on different pathogens.
Collapse
Affiliation(s)
- Nour Mammari
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (N.M.); (E.S.)
| | - Elsa Salles
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (N.M.); (E.S.)
| | | | | | - Mihayl Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (N.M.); (E.S.)
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandœuvre-lès-Nancy, France
- Correspondence:
| |
Collapse
|
10
|
Kazakova O, Giniyatullina G, Babkov D, Wimmer Z. From Marine Metabolites to the Drugs of the Future: Squalamine, Trodusquemine, Their Steroid and Triterpene Analogues. Int J Mol Sci 2022; 23:ijms23031075. [PMID: 35162998 PMCID: PMC8834734 DOI: 10.3390/ijms23031075] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
This review comprehensively describes the recent advances in the synthesis and pharmacological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the first representative of a previously unknown class of natural antibiotics of animal origin stimulated extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During the last decade, this new class of biologically active semisynthetic natural product derivatives demonstrated the possibility to form supramolecular networks, which opens up many possibilities for the use of such structures for drug delivery systems in serum or other body fluids.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
- Correspondence:
| | - Gulnara Giniyatullina
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Denis Babkov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia;
| | - Zdenek Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technicka’ 5, Prague 6, 16628 Prague, Czech Republic;
| |
Collapse
|
11
|
Alabresm A, Chandler SL, Benicewicz BC, Decho AW. Nanotargeting of Resistant Infections with a Special Emphasis on the Biofilm Landscape. Bioconjug Chem 2021; 32:1411-1430. [PMID: 34319073 PMCID: PMC8527872 DOI: 10.1021/acs.bioconjchem.1c00116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacterial resistance to antimicrobial compounds is a growing concern in medical and public health circles. Overcoming the adaptable and duplicative resistance mechanisms of bacteria requires chemistry-based approaches. Engineered nanoparticles (NPs) now offer unique advantages toward this effort. However, most in situ infections (in humans) occur as attached biofilms enveloped in a protective surrounding matrix of extracellular polymers, where survival of microbial cells is enhanced. This presents special considerations in the design and deployment of antimicrobials. Here, we review recent efforts to combat resistant bacterial strains using NPs and, then, explore how NP surfaces may be specifically engineered to enhance the potency and delivery of antimicrobial compounds. Special NP-engineering challenges in the design of NPs must be overcome to penetrate the inherent protective barriers of the biofilm and to successfully deliver antimicrobials to bacterial cells. Future challenges are discussed in the development of new antibiotics and their mechanisms of action and targeted delivery via NPs.
Collapse
Affiliation(s)
- Amjed Alabresm
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Biological Development of Shatt Al-Arab & N. Arabian Gulf, Marine Science Centre, University of Basrah, Basrah, Iraq
| | - Savannah L Chandler
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- USC NanoCenter, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
12
|
Strategic approach of multifaceted antibacterial mechanism of limonene traced in Escherichia coli. Sci Rep 2021; 11:13816. [PMID: 34226573 PMCID: PMC8257740 DOI: 10.1038/s41598-021-92843-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/11/2021] [Indexed: 02/01/2023] Open
Abstract
Antibacterial potential of Limonene against Multi Drug Resistant (MDR) pathogens was studied and mechanism explored. Microscopic techniques viz. Fluorescent Microscopy (FM), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) indicated membrane disruption, cellular leakage and cell death of Escherichia coli (E. coli) cells when treated with limonene. Leakage of intracellular proteins, lipids and nucleic acid confirmed membrane damage and disruption of cell permeability barrier. Further, release of intracellular ATP, also suggested disruption of membrane barrier. Interaction of limonene with DNA revealed its capability in unwinding of plasmid, which could eventually inhibit DNA transcription and translation. Differential expression of various proteins and enzymes involved in transport, respiration, metabolism, chemotaxis, protein synthesis confirmed the mechanistic role of limonene on their functions. Limonene thus can be a potential candidate in drug development.
Collapse
|
13
|
Négrel S, Brunel JM. Synthesis and Biological Activities of Naturally Functionalized Polyamines: An Overview. Curr Med Chem 2021; 28:3406-3448. [PMID: 33138746 DOI: 10.2174/0929867327666201102114544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022]
Abstract
Recently, extensive researches have emphasized the fact that polyamine conjugates are becoming important in all biological and medicinal fields. In this review, we will focus our attention on natural polyamines and highlight recent progress in both fundamental mechanism studies and interests in the development and application for the therapeutic use of polyamine derivatives.
Collapse
Affiliation(s)
- Sophie Négrel
- Aix Marseille University, Faculty of Pharmacy, UMR-MD1, 27 bd Jean Moulin, 13385 Marseille, France
| | - Jean Michel Brunel
- Aix Marseille University, Faculty of Pharmacy, UMR-MD1, 27 bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
14
|
Dhara L, Tripathi A. The use of eugenol in combination with cefotaxime and ciprofloxacin to combat ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae. J Appl Microbiol 2020; 129:1566-1576. [PMID: 32502298 DOI: 10.1111/jam.14737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/05/2020] [Accepted: 05/19/2020] [Indexed: 11/29/2022]
Abstract
AIM Emergence of extended-spectrum beta-lactamase (ESBL) producing with quinolone-resistant (QR) pathogenic Enterobacteriaceae augmented the need to establish therapeutic options against them. Present study aimed towards determination of synergistic combination of eugenol (EG) with cefotaxime (CTX) and ciprofloxacin (CIP) to combat against this resistance and potentiation of antibacterial drugs by EG against these bacteria. METHODS AND RESULTS Synergistic interaction between EG and CTX/CIP (FICI: 0·08-0·5) were observed among ESBL-QR bacteria using checkerboard assay. Approximately, 2- to 1024-fold minimum inhibitory concentration value reduction and 17- to 165 030-fold dose reduction index strongly suggested synergistic interaction between EG and antibiotics. Cell viability assay showed reduction in log10 CFU per ml from 16·6 to 3·1 at synergistic concentration. Scanning electron microscopy further proved disruptive effect of EG on cell architecture. Eugenol and/or its combination also altered genes' expressions that imparted antibiotic resistance by ~1·6 to ~1226 folds. CONCLUSIONS Reduced doses of antibiotics, bacterial morphological alterations, efflux pump down regulation, porin over expression and beta-lactamase gene inhibition of ESBL-QR bacteria by EG alone or in combination with CTX/CIP might have reversed antibiotic resistance profile of ESBL-QR bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY This study provided a molecular insight into action of EG and/with CTX and CIP, which might have potentiated antibiotic's activity against ESBL-QR bacteria.
Collapse
Affiliation(s)
- L Dhara
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, India
| | - A Tripathi
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, India
| |
Collapse
|
15
|
The Biological Activity of Natural Alkaloids against Herbivores, Cancerous Cells and Pathogens. Toxins (Basel) 2019; 11:toxins11110656. [PMID: 31717922 PMCID: PMC6891610 DOI: 10.3390/toxins11110656] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023] Open
Abstract
The growing incidence of microorganisms that resist antimicrobials is a constant concern for the scientific community, while the development of new antimicrobials from new chemical entities has become more and more expensive, time-consuming, and exacerbated by emerging drug-resistant strains. In this regard, many scientists are conducting research on plants aiming to discover possible antimicrobial compounds. The secondary metabolites contained in plants are a source of chemical entities having pharmacological activities and intended to be used for the treatment of different diseases. These chemical entities have the potential to be used as an effective antioxidant, antimutagenic, anticarcinogenic and antimicrobial agents. Among these pharmacologically active entities are the alkaloids which are classified into a number of classes, including pyrrolizidines, pyrrolidines, quinolizidines, indoles, tropanes, piperidines, purines, imidazoles, and isoquinolines. Alkaloids that have antioxidant properties are capable of preventing a variety of degenerative diseases through capturing free radicals, or through binding to catalysts involved indifferent oxidation processes occurring within the human body. Furthermore, these entities are capable of inhibiting the activity of bacteria, fungi, protozoan and etc. The unique properties of these secondary metabolites are the main reason for their utilization by the pharmaceutical companies for the treatment of different diseases. Generally, these alkaloids are extracted from plants, animals and fungi. Penicillin is the most famous natural drug discovery deriving from fungus. Similarly, marines have been used as a source for thousands of bioactive marine natural products. In this review, we cover the medical use of natural alkaloids isolated from a variety of plants and utilized by humans as antibacterial, antiviral, antifungal and anticancer agents. An example for such alkaloids is berberine, an isoquinoline alkaloid, found in roots and stem-bark of Berberis asculin P. Renault plant and used to kill a variety of microorganisms.
Collapse
|
16
|
Dhara L, Tripathi A. Cinnamaldehyde: a compound with antimicrobial and synergistic activity against ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae. Eur J Clin Microbiol Infect Dis 2019; 39:65-73. [PMID: 31624984 DOI: 10.1007/s10096-019-03692-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 10/25/2022]
Abstract
Usage of cephalosporin and quinolone antibiotics has aggravated the development of extended-spectrum beta-lactamase (ESBL)-producing quinolone-resistant (QR) pathogenic Enterobacteriaceae. The present study aims to determine antimicrobial activity of cinnamaldehyde alone or in combination with cefotaxime/ciprofloxacin to reverse the drug resistance and evaluations of efficacy, and possible molecular mechanism of action of the combination was also evaluated using in vitro assays. Broth microdilution assay was used to determine minimum inhibitory concentrations (MICs) of cinnamaldehyde and antibiotics against ESBL-QR Enterobacteriaceae. Synergistic effect and dynamic interaction with antibiotics were further examined by checkerboard assay, isobologram analysis, and time-kill assay, respectively. Cellular morphology of bacteria was viewed with scanning electron microscopy (SEM). Effects of cinnamaldehyde and its combination on the expression of gene encoding-porins (ompC, ompF, ompK35, and ompK36), efflux pump genes (acrB-E. coli, acrB-K. pneumoniae), and antibiotic-resistant genes (blaTEM, blaSHV, blaCTXM, and QnrB) were evaluated using real-time quantitative PCR (RT-qPCR). Majority of the E. coli (32.1%) and K. pneumoniae (24.2%) isolates demonstrated MIC of cinnamaldehyde at 7.34 μg/mL and 0.91 g/mL, respectively. Synergism between cinnamaldehyde and cefotaxime was noted among 75% E. coli and 60.6% K. pneumoniae. Similarly, synergism with ciprofloxacin was observed among 39.6% and 42.4% of the bacteria, respectively. Thus, cinnamaldehyde reduced MIC of cefotaxime and ciprofloxacin 2-1024-fold with bactericidal and/synergistic effect after 24 h. Cinnamaldehyde and its combination altered gene expression by ~ 1.6 to ~ 400-fold. Distorted bacterial cell structures were visible after treatment with cinnamaldehyde and/or with cefotaxime/ciprofloxacin. The results indicated the potential efficacy and mode of action of cinnamaldehyde alone and in combination with antibiotics against pathogenic ESBL-QR bacteria.
Collapse
Affiliation(s)
- Lena Dhara
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India
| | - Anusri Tripathi
- Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India.
| |
Collapse
|
17
|
Lahiri D, Dash S, Dutta R, Nag M. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. J Biosci 2019; 44:52. [PMID: 31180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | | | | | | |
Collapse
|
18
|
Douafer H, Andrieu V, Phanstiel O, Brunel JM. Antibiotic Adjuvants: Make Antibiotics Great Again! J Med Chem 2019; 62:8665-8681. [PMID: 31063379 DOI: 10.1021/acs.jmedchem.8b01781] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multiple approaches have been developed to combat bacterial resistance. However, the combination of antibiotic resistance mechanisms by bacteria and the limited number of effective antibiotics available decreases the effective interventions for the treatment of current bacterial infections. This review covers the many ways that bacteria resist antibiotics including antibiotic target modification, the use of efflux pumps, and antibiotic inactivation. As a pertinent example, the use of beta lactamase inhibitors in combination with β-lactam containing antibiotics is discussed in detail. The solution to emerging antibiotic resistance may involve combination therapies of existing antibiotics and potentiating adjuvants, which re-empower the antibiotic agent to become efficacious against the resistant strain of interest. We report herein that a reasoned adjuvant design permits one to perform polypharmacy on bacteria by not only providing greater internal access to the codosed antibiotics but also by de-energizing the efflux pumps used by the bacteria to escape antibiotic action.
Collapse
Affiliation(s)
- Hana Douafer
- Aix Marseille University , INSERM, SSA, MCT , 13385 Marseille , France
| | - Véronique Andrieu
- Aix Marseille University , IRD, APHM, MEPHI, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , 13385 Marseille , France
| | - Otto Phanstiel
- 12722 Research Parkway, College of Medicine , University of Central Florida , Orlando , Florida 32826 , United States
| | | |
Collapse
|
19
|
Li SA, Cadelis MM, Sue K, Blanchet M, Vidal N, Brunel JM, Bourguet-Kondracki ML, Copp BR. 6-Bromoindolglyoxylamido derivatives as antimicrobial agents and antibiotic enhancers. Bioorg Med Chem 2019; 27:2090-2099. [DOI: 10.1016/j.bmc.2019.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/03/2019] [Indexed: 01/28/2023]
|
20
|
|
21
|
Anti-persister activity of squalamine against Acinetobacter baumannii. Int J Antimicrob Agents 2018; 53:337-342. [PMID: 30423343 DOI: 10.1016/j.ijantimicag.2018.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 01/21/2023]
Abstract
Squalamine is a natural polycationic aminosterol extracted from the shark Squalus acanthias. Squalamine displays remarkable efficacy against antimicrobial-resistant Gram-negative and Gram-positive bacteria. Its membranolytic activity and low cytotoxicity make squalamine one of the most promising agents to fight nosocomial pathogens such as Acinetobacter baumannii. In the context of chronic diseases and therapeutic failures associated with this pathogen, the presence of dormant cells, i.e. persisters and viable but non-culturable cells (VBNCs), highly tolerant to antimicrobial compounds is problematic. The aim of this study was to investigate the antibacterial activity of squalamine against this bacterial population of A. baumannii. Bacterial dormancy was induced by cold shock and nutrient starvation in the presence of high doses of either colistin, ciprofloxacin or squalamine. Persisters and VBNCs induced by these treatments were then challenged with 100 mg/L squalamine. The efficacy of each treatment was determined by evaluating culturability on agar medium, membrane integrity (LIVE/DEAD®BacLightTM staining) and respiratory activity (BacLightTM RedoxSensorTM CTC staining) of bacteria. A. baumannii ATCC 17978 generated persisters as well as VBNCs in the presence of high doses of ciprofloxacin but not colistin or squalamine. Squalamine at 100 mg/L (below its haemolytic concentration) was able to kill dormant cells. Squalamine did not induce persister cell or VBNC formation in A. baumannii ATCC 17978. Interestingly, squalamine was significantly active against this type of dormant population generated by ciprofloxacin, making it a very promising anti-persister agent.
Collapse
|
22
|
Blanchet M, Borselli D, Rodallec A, Peiretti F, Vidal N, Bolla JM, Digiorgio C, Morrison KR, Wuest WM, Brunel JM. Claramines: A New Class Of Broad-Spectrum Antimicrobial Agents With Bimodal Activity. ChemMedChem 2018; 13:1018-1027. [DOI: 10.1002/cmdc.201800073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Marine Blanchet
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR 7258, Institut Paoli Calmette; Aix-Marseille Université UM 105, Inserm, U1068, Faculté de Pharmacie; 13385 Marseille France
| | - Diane Borselli
- Faculté de Médecine; Aix-Marseille Université, IRBA, TMCD2 UMR-MD1; 13385 Marseille France
| | - Anne Rodallec
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR 7258, Institut Paoli Calmette; Aix-Marseille Université UM 105, Inserm, U1068, Faculté de Pharmacie; 13385 Marseille France
| | - Franck Peiretti
- Aix-Marseille Université, INSERM 1263, INRA1260, C2VN; 13385 Marseille France
| | - Nicolas Vidal
- YELEN, 10 Bd. Tempête; 13820 Ensues la Redonne France
| | - Jean-Michel Bolla
- Faculté de Médecine; Aix-Marseille Université, IRBA, TMCD2 UMR-MD1; 13385 Marseille France
| | - Carole Digiorgio
- Laboratoire de Mutagénèse Environnementale; Aix-Marseille Université, CNRS, IRD, IMBE UMR 7263; 13385 Marseille France
| | - Kelly R. Morrison
- Department of Chemistry; Emory University; 1515 Dickey Drive Atlanta GA 30322 USA
| | - William M. Wuest
- Department of Chemistry; Emory University; 1515 Dickey Drive Atlanta GA 30322 USA
| | - Jean Michel Brunel
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR 7258, Institut Paoli Calmette; Aix-Marseille Université UM 105, Inserm, U1068, Faculté de Pharmacie; 13385 Marseille France
| |
Collapse
|
23
|
Polyamine derivatives: a revival of an old neglected scaffold to fight resistant Gram-negative bacteria? Future Med Chem 2016; 8:963-73. [DOI: 10.4155/fmc-2016-0011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Emergence of multidrug-resistant pathogens was responsible for microbial infections and inefficacy of numerous antimicrobial therapies has induced a need for the research of new classes of antibiotics. In this review, we will focus our interest toward the biological properties of polyamino antimicrobial agents.
Collapse
|
24
|
Asmar S, Drancourt M. Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis. BMC Microbiol 2015; 15:155. [PMID: 26238865 PMCID: PMC4524104 DOI: 10.1186/s12866-015-0479-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/07/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Culture of Mycobacterium tuberculosis is the gold standard method for the laboratory diagnosis of pulmonary tuberculosis, after effective decontamination. RESULTS We evaluated squalamine and chlorhexidine to decontaminate sputum specimens for the culture of mycobacteria. Eight sputum specimens were artificially infected with 10(5) colony-forming units (cfu)/mL Mycobacterium tuberculosis and Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans as contaminants. In the second step, we tested chlorhexidine-based decontamination on 191 clinical specimens, (Chlorhexidine, 0.1, 0.5 and 0.7 %). In a last step, growth of contaminants and mycobacteria was measured in 75 consecutive sputum specimens using the routine NALC-NaOH decontamination protocol or with 0.7 % chlorhexidine decontamination and an inoculation on Coletsos medium. In the artificially model, contaminants grew in 100 % of the artificially infected sputum specimens decontaminated using 100 mg/mL squalamine, in 62.5 % of specimens decontaminated using N-Acetyl-L-Cysteine-Sodium Hydroxide (NALC-NaOH), and in 0 % of specimens decontaminated using 0.1 %, 0.35 %, or 1 % chlorhexidine (P < 0.05). These specimens yielded <10(2) cfu M. tuberculosis using NALC-NaOH and > 1.4.10(2) cfu M. tuberculosis when any concentration of chlorhexidine was used (P < 0.05). In the second step we found that 0.7 %-chlorhexidine yielded 0 % contamination rate, 3.2 % for 0.5 %-chlorhexidine and 28.3 % for 0.1 %-chlorhexidine. As for the 75 specimens treated in parallel by both methods we found that when using the standard NALC-NaOH decontamination method, 8/75 (10.7 %) specimens yielded M. tuberculosis colonies with a time to detection of 17.5 ± 3 days and an 8 % contamination rate. Additionally, 14 specimens yielded mycobacteria colonies (12 M. tuberculosis, and 2 Mycobacterium bolletii) (18.7 %) (P = 0.25), which has yielded a 100 % sensitivity for the chlorhexidine protocol. Time to detection was of 15.86 ± 4.7 days (P = 0.39) and a 0 % contamination rate (P < 0.05) using the 0.7 %-chlorhexidine protocol. CONCLUSION In our work we showed for the first time that chlorhexidine based decontamination is superior to the standard NALC-NaOH method in the isolation of M. tuberculosis from sputum specimens. We currently use 0.7 %-chlorhexidine for the routine decontamination of sputum specimens for the isolation of M. tuberculosis and non-tuberculosis mycobacteria on egg-lecithin containing media.
Collapse
Affiliation(s)
- Shady Asmar
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire «Méditerranée Infection», AP-HM, 13005, Marseille, France.
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire «Méditerranée Infection», AP-HM, 13005, Marseille, France. .,Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Faculté de Médecine, 27, Boulevard Jean Moulin, 13385, Marseille, Cedex 5, France.
| |
Collapse
|
25
|
Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 2014; 44:377-86. [PMID: 25130096 DOI: 10.1016/j.ijantimicag.2014.06.001] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/20/2014] [Indexed: 11/22/2022]
Abstract
With reports of pandrug-resistant bacteria causing untreatable infections, the need for new antibacterial therapies is more pressing than ever. Alkaloids are a large and structurally diverse group of compounds that have served as scaffolds for important antibacterial drugs such as metronidazole and the quinolones. In this review, we highlight other alkaloids with development potential. Natural, semisynthetic and synthetic alkaloids of all classes are considered, looking first at those with direct antibacterial activity and those with antibiotic-enhancing activity. Potent examples include CJ-13,136, a novel actinomycete-derived quinolone alkaloid with a minimum inhibitory concentration of 0.1 ng/mL against Helicobacter pylori, and squalamine, a polyamine alkaloid from the dogfish shark that renders Gram-negative pathogens 16- to >32-fold more susceptible to ciprofloxacin. Where available, information on toxicity, structure-activity relationships, mechanisms of action and in vivo activity is presented. The effects of alkaloids on virulence gene regulatory systems such as quorum sensing and virulence factors such as sortases, adhesins and secretion systems are also described. The synthetic isoquinoline alkaloid virstatin, for example, inhibits the transcriptional regulator ToxT in Vibrio cholerae, preventing expression of cholera toxin and fimbriae and conferring in vivo protection against intestinal colonisation. The review concludes with implications and limitations of the described research and directions for future research.
Collapse
|
26
|
Vidal N, Cavaille J, Graziani F, Robin M, Ouari O, Pietri S, Stocker P. High throughput assay for evaluation of reactive carbonyl scavenging capacity. Redox Biol 2014; 2:590-8. [PMID: 24688895 PMCID: PMC3969608 DOI: 10.1016/j.redox.2014.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
Many carbonyl species from either lipid peroxidation or glycoxidation are extremely reactive and can disrupt the function of proteins and enzymes. 4-hydroxynonenal and methylglyoxal are the most abundant and toxic lipid-derived reactive carbonyl species. The presence of these toxics leads to carbonyl stress and cause a significant amount of macromolecular damages in several diseases. Much evidence indicates trapping of reactive carbonyl intermediates may be a useful strategy for inhibiting or decreasing carbonyl stress-associated pathologies. There is no rapid and convenient analytical method available for the assessment of direct carbonyl scavenging capacity, and a very limited number of carbonyl scavengers have been identified to date, their therapeutic potential being highlighted only recently. In this context, we have developed a new and rapid sensitive fluorimetric method for the assessment of reactive carbonyl scavengers without involvement glycoxidation systems. Efficacy of various thiol- and non-thiol-carbonyl scavenger pharmacophores was tested both using this screening assay adapted to 96-well microplates and in cultured cells. The scavenging effects on the formation of Advanced Glycation End-product of Bovine Serum Albumin formed with methylglyoxal, 4-hydroxynonenal and glucose-glycated as molecular models were also examined. Low molecular mass thiols with an α-amino-β-mercaptoethane structure showed the highest degree of inhibitory activity toward both α,β-unsaturated aldehydes and dicarbonyls. Cysteine and cysteamine have the best scavenging ability toward methylglyoxal. WR-1065 which is currently approved for clinical use as a protective agent against radiation and renal toxicity was identified as the best inhibitor of 4-hydroxynonenal. We describe a rapid method for assessment of reactive carbonyl scavengers. We evaluated the carbonyl scavenger activity of various pharmacophores. α-amino-β-mercaptoethane structure showed the highest degree of activity.
Collapse
Affiliation(s)
- N. Vidal
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - J.P. Cavaille
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - F. Graziani
- Aix Marseille Université, CNRS, ISM2 UMR 7313, 13397, Marseille, France
| | - M. Robin
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - O. Ouari
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - S. Pietri
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
| | - P. Stocker
- Aix Marseille Université, CNRS, ICR UMR 7273, 13397, Marseille, France
- Corresponding author. Tel.: +33 4 91 28 87 92; fax: +33 4 91 28 87 58.
| |
Collapse
|
27
|
Kim HS, Jadhav JR, Jung SJ, Kwak JH. Synthesis and antimicrobial activity of imidazole and pyridine appended cholestane-based conjugates. Bioorg Med Chem Lett 2013; 23:4315-8. [DOI: 10.1016/j.bmcl.2013.05.098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/17/2013] [Accepted: 05/31/2013] [Indexed: 01/29/2023]
|
28
|
Ghodbane R, Ameen SM, Drancourt M, Brunel JM. In vitro antimicrobial activity of squalamine derivatives against mycobacteria. Tuberculosis (Edinb) 2013; 93:565-6. [PMID: 23735598 DOI: 10.1016/j.tube.2013.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/25/2022]
|
29
|
Khelaifia S, Michel JB, Drancourt M. In-vitro archaeacidal activity of biocides against human-associated archaea. PLoS One 2013; 8:e62738. [PMID: 23658767 PMCID: PMC3643942 DOI: 10.1371/journal.pone.0062738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/25/2013] [Indexed: 11/18/2022] Open
Abstract
Background Several methanogenic archaea have been detected in the human intestinal microbiota. These intestinal archaea may contaminate medical devices such as colonoscopes. However, no biocide activity has been reported among these human-associated archaea. Methodology The minimal archaeacidal concentration (MAC) of peracetic acid, chlorhexidine, squalamine and twelve parent synthetic derivatives reported in this study was determined against five human-associated methanogenic archaea including Methanobrevibacter smithii, Methanobrevibacter oralis, Methanobrevibacter arboriphilicus, Methanosphaera stadtmanae, Methanomassiliicoccus luminyensis and two environmental methanogens Methanobacterium beijingense and Methanosaeta concilii by using a serial dilution technique in Hungates tubes. Principal Findings MAC of squalamine derivative S1 was 0.05 mg/L against M. smithii strains, M. oralis, M. arboriphilicus, M.concilii and M. beijingense whereas MAC of squalamine and derivatives S2–S12 varied from 0.5 to 5 mg/L. For M. stadtmanae and M. luminyensis, MAC of derivative S1 was 0.1 mg/L and varied from 1 to ≥10 mg/L for squalamine and its parent derivatives S2–S12. Under the same experimental conditions, chlorhexidine and peracetic acid lead to a MAC of 0.2 and 1.5 mg/L, respectively against all tested archaea. Conclusions/Significance Squalamine derivative S1 exhibited a 10–200 higher archaeacidal activity than other tested squalamine derivatives, on the majority of human-associated archaea. As previously reported and due to their week corrosivity and their wide spectrum of antibacterial and antifungal properties, squalamine and more precisely derivative S1 appear as promising compounds to be further tested for the decontamination of medical devices contaminated by human-associated archaea.
Collapse
Affiliation(s)
- Saber Khelaifia
- Aix Marseille Université, URMITE, UMR63 CNRS 7278, IRD 198, Inserm 1095, Marseille, France
| | - Jean Brunel Michel
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, UMR7258; Institut Paoli Calmettes; Aix-Marseille Université, UM 105; Inserm, U1068, Marseille, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR63 CNRS 7278, IRD 198, Inserm 1095, Marseille, France
- * E-mail:
| |
Collapse
|
30
|
Parakh P, Gokulakrishnan S, Prakash H. Visible light water disinfection using [Ru(bpy)2(phendione)](PF6)2·2H2O and [Ru(phendione)3]Cl2·2H2O complexes and their effective adsorption onto activated carbon. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Martins A, Hunyadi A, Amaral L. Mechanisms of resistance in bacteria: an evolutionary approach. Open Microbiol J 2013; 7:53-8. [PMID: 23560029 PMCID: PMC3613773 DOI: 10.2174/1874285801307010053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 02/02/2023] Open
Abstract
Acquisition of resistance is one of the major causes of failure in therapy of bacterial infections. According to the World Health Organization (WHO), thousands of deaths caused by Salmonella sp., Escherichia coli, Staphylococcus aureus or Mycobacteria tuberculosis are due to failure in therapy caused by resistance to the chemotherapeutic agents. Understanding the mechanisms of resistance acquisition by the bacterial strains is therefore essential to prevent and overcome resistance. However, it is very difficult to extrapolate from in vitro studies, where the variables are far less and under constant control, as compared to what happens in vivo where the chosen chemotherapeutic, its effective dose, and the patient's immune system are variables that differ substantially case-by-case. The aim of this review is to provide a new perspective on the possible ways by which resistance is acquired by the bacterial strains within the patient, with a special emphasis on the adaptive response of the infecting bacteria to the administered antibiotic.
Collapse
Affiliation(s)
- Ana Martins
- Unidade de Parasitologia e Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal ; Institute of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm Tér 10, 6720 Szeged, Hungary
| | | | | |
Collapse
|
32
|
Hraiech S, Brégeon F, Brunel JM, Rolain JM, Lepidi H, Andrieu V, Raoult D, Papazian L, Roch A. Antibacterial efficacy of inhaled squalamine in a rat model of chronic Pseudomonas aeruginosa pneumonia. J Antimicrob Chemother 2012; 67:2452-8. [PMID: 22744759 DOI: 10.1093/jac/dks230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES Squalamine is a steroid extracted from sharks with proven in vitro antibacterial activity. We assessed its efficacy in reducing the lung bacterial load and histological lesions when given via inhalation in a rat model of chronic Pseudomonas aeruginosa pneumonia. METHODS Sprague-Dawley rats were inoculated by tracheal intubation with 150 μL of a solution containing 10(8) cfu/mL of agar bead-embedded P. aeruginosa strain PAO1. MICs of squalamine and colistin for this strain were 2-8 and 0.5-1 mg/L, respectively. Starting the day after infection, the animals were treated twice daily with aerosolized squalamine (3 mg), colistin (160 mg) or 0.9% saline for 6 days. The bacterial load and lung histological lesions were evaluated on the seventh day. RESULTS Aerosols of squalamine and colistin resulted in a significant reduction in median (IQR) pulmonary bacterial count compared with saline [10(3) (6 × 10(2)-2 × 10(3)), 10(3) (9 × 10(2)-6 × 10(3)) and 10(5) (9 × 10(4)-2 × 10(5)) cfu/lung, respectively; P < 0.001 for both treated groups versus saline]. The lung weight and the lung histological severity score were significantly lower in both treated groups. CONCLUSIONS In a model of chronic P. aeruginosa pneumonia, treatment twice daily with a squalamine aerosol for 6 days leads to a significant reduction in the pulmonary bacterial count and pneumonia lesions with an efficacy comparable to that of colistin.
Collapse
Affiliation(s)
- Sami Hraiech
- Aix-Marseille Univ, URMITE CNRS-UMR 6236, 13005 Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Gogavekar SS, Rokade SA, Ranveer RC, Ghosh JS, Kalyani DC, Sahoo AK. Important nutritional constituents, flavour components, antioxidant and antibacterial properties of Pleurotus sajor-caju. Journal of Food Science and Technology 2012; 51:1483-91. [PMID: 25114338 DOI: 10.1007/s13197-012-0656-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/16/2012] [Accepted: 02/07/2012] [Indexed: 11/25/2022]
Abstract
Oyster mushroom (Pleurotus sajor-caju) cultivated in the laboratory was studied for nutritional constituents, flavor components, antioxidant and antibacterial properties. Nutritional constituents estimated per 100 g dry weight (d.w.) include protein (29.3 g), carbohydrate (62.97 g), crude fat (0.91 g), ash (6.82 g) and crude fiber (12.3 g). Energy value of this mushroom was about 297.5 kcal/100 g d.w. Major mineral components estimated include Ca, Fe, and Mg with highest level of 505.0, 109.5 and 108.7 mg/100 g respectively. Methanolic extract containing significant amounts of phenols and flavonoids showed free radical scavenging potential and antibacterial activities against various spp. of Gram positive and Gram negative bacteria. Compounds responsible for antibacterial activities analyzed by GC-MS include β- Sistosterol, Cholestanol, 1,5-Dibenzoylnaphthalene and 1,2-Benzenedicarboxylic acid. Flavor components extracted by hot extraction method were found to be higher in number and concentration than the cold extraction method. The characteristic flavor component of mushroom i.e. 1-Octen-3-ol was better extracted by hot than the cold.
Collapse
Affiliation(s)
- Shweta S Gogavekar
- Department of Food Science and Technology, Shivaji University, Kolhapur, 416 004 MS India
| | - Shilpa A Rokade
- Department of Food Science and Technology, Shivaji University, Kolhapur, 416 004 MS India
| | - Rahul C Ranveer
- Department of Food Science and Technology, Shivaji University, Kolhapur, 416 004 MS India
| | - Jai S Ghosh
- Department of Microbiology, Shivaji University, Kolhapur, 416 004 MS India
| | - Dayanand C Kalyani
- Department of Biochemistry, Shivaji University, Kolhapur, 416 004 MS India
| | - Akshaya K Sahoo
- Department of Food Science and Technology, Shivaji University, Kolhapur, 416 004 MS India
| |
Collapse
|
35
|
Razafimanjato H, Benzaria A, Taïeb N, Guo XJ, Vidal N, Di Scala C, Varini K, Maresca M. The ribotoxin deoxynivalenol affects the viability and functions of glial cells. Glia 2011; 59:1672-83. [PMID: 21748807 DOI: 10.1002/glia.21214] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/16/2011] [Indexed: 11/08/2022]
Abstract
Glial cells are responsible for maintaining brain homeostasis. Modification of the viability and functions of glial cells, including astrocytes and microglia, are associated with neuronal death and neurological diseases. Many toxins (heavy metals, pesticides, bacterial or viral toxins) are known to impact on brain cell viability and functions. Although recent publications suggest a potential link between environmental exposure of humans to mycotoxins and neurological diseases, data regarding the effects of fungal toxins on brain cells are scarce. In the present study, we looked at the impact of deoxynivalenol (DON), a fungal ribotoxin, on glial cells from animal and human origin. We found that DON decreased the viability of glial cells with a higher toxicity against microglial cells compared with astrocytes. In addition to cellular toxicity, DON affected key functions of glial cells. Thus, DON caused a biphasic effect on the neuroinflammatory response of microglia to lipopolysaccharide (LPS), while sublethal doses of DON increased the LPS-induced secretion of TNF-α and nitric oxide, toxic doses inhibited it. In addition to affecting microglial functions, sublethal doses of DON also suppressed the uptake of L-glutamate by astrocytes. This inhibition was associated with a modification of the expression of the glutamate transporters at the plasma membrane. Our results suggest that environmental ribotoxins such as DON could, at low doses, cause modifications of brain homeostasis and possibly participate in the etiology of neurological diseases in which alterations of the glia are involved.
Collapse
Affiliation(s)
- Helisoa Razafimanjato
- CRN2M, CNRS UMR 6231, INRA USC 2027, University of Aix-Marseille 2 and Aix-Marseille 3, Faculté des Sciences de St-Jérôme, 13397 Marseille Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wenzel M, Bandow JE. Proteomic signatures in antibiotic research. Proteomics 2011; 11:3256-68. [DOI: 10.1002/pmic.201100046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/13/2011] [Accepted: 03/22/2011] [Indexed: 11/06/2022]
|
37
|
Bolla JM, Alibert-Franco S, Handzlik J, Chevalier J, Mahamoud A, Boyer G, Kieć-Kononowicz K, Pagès JM. Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS Lett 2011; 585:1682-90. [DOI: 10.1016/j.febslet.2011.04.054] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
|
38
|
Alhanout K, Djouhri L, Vidal N, Brunel JM, Piarroux R, Ranque S. In vitro activity of aminosterols against yeasts involved in blood stream infections. Med Mycol 2010; 49:121-5. [PMID: 20662632 DOI: 10.3109/13693786.2010.502189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Squalamine and other aminosterols have demonstrated interesting antimicrobial activities against clinical bacterial isolates and a limited number of reference yeast strains. We aimed to test whether squalamine and a synthetic aminosterol derivative (ASD) display any in vitro activity comparable to currently available systemic antifungals, an acceptable safety index, as well as to provide insights into their mechanism of action. The minimum inhibitory concentrations (MICs) of squalamine, ASD and available antifungals were determined against 21 yeast isolates that were recovered from cases of fungemia. Remarkably, homogeneous MICs ranging from 8-16 mg/L and from 1-2 mg/L were noted for squalamine and ASD, respectively, as opposes the heterogeneous in vitro activity of available systemic antifungals. Aminosterols induced haemolysis, a surrogate for toxic effects to mammalian cells, at concentrations high above their MICs. In time-kill studies, killing was as fast with ASD as with amphotericin B. Both aminosterols induced a time-dependent disruption of yeast membrane, as evidenced by gradual increase of ATP efflux. In conclusion, our preliminary data indicate that aminosterols have the potential to be further developed as antifungals. Additional work is warranted to assess their toxicity and activity in experimental models.
Collapse
Affiliation(s)
- Kamel Alhanout
- URMITE UMR 6236, CNRS-IRD, Faculté de Médecine et de Pharmacie, Marseille, France
| | | | | | | | | | | |
Collapse
|
39
|
Alhanout K, Malesinki S, Vidal N, Peyrot V, Rolain JM, Brunel JM. New insights into the antibacterial mechanism of action of squalamine. J Antimicrob Chemother 2010; 65:1688-93. [DOI: 10.1093/jac/dkq213] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Lavigne JP, Brunel JM, Chevalier J, Pages JM. Squalamine, an original chemosensitizer to combat antibiotic-resistant Gram-negative bacteria. J Antimicrob Chemother 2010; 65:799-801. [DOI: 10.1093/jac/dkq031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Biophysical studies of the interaction of squalamine and other cationic amphiphilic molecules with bacterial and eukaryotic membranes: importance of the distribution coefficient in membrane selectivity. Chem Phys Lipids 2010; 163:131-40. [DOI: 10.1016/j.chemphyslip.2009.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/05/2009] [Accepted: 10/21/2009] [Indexed: 11/21/2022]
|
42
|
Alhanout K, Brunel JM, Raoult D, Rolain JM. In vitro antibacterial activity of aminosterols against multidrug-resistant bacteria from patients with cystic fibrosis. J Antimicrob Chemother 2009; 64:810-4. [DOI: 10.1093/jac/dkp281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
43
|
Mamelli L, Petit S, Chevalier J, Giglione C, Lieutaud A, Meinnel T, Artaud I, Pagès JM. New antibiotic molecules: bypassing the membrane barrier of gram negative bacteria increases the activity of peptide deformylase inhibitors. PLoS One 2009; 4:e6443. [PMID: 19649280 PMCID: PMC2713832 DOI: 10.1371/journal.pone.0006443] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/14/2009] [Indexed: 02/04/2023] Open
Abstract
Background Multi-drug resistant (MDR) bacteria have become a major concern in hospitals worldwide and urgently require the development of new antibacterial molecules. Peptide deformylase is an intracellular target now well-recognized for the design of new antibiotics. The bacterial susceptibility to such a cytoplasmic target primarily depends on the capacity of the compound to reach and accumulate in the cytosol. Methodology/Principal Findings To determine the respective involvement of penetration (influx) and pumping out (efflux) mechanisms to peptide deformylase inhibitors (PDF-I) activity, the potency of various series was determined using various genetic contexts (efflux overproducers or efflux-deleted strains) and membrane permeabilizers. Depending on the structure of the tested molecules, two behaviors could be observed: (i) for actinonin the first PDF-I characterized, the AcrAB efflux system was the main parameter involved in the bacterial susceptibility, and (ii), for the lastest PDF-Is such as the derivatives of 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide, the penetration through the membrane was a important limiting step. Conclusions/Significance Our results clearly show that the bacterial membrane plays a key role in modulating the antibacterial activity of PDF-Is. The bacterial susceptibility for these new antibacterial molecules can be improved by two unrelated ways in MDR strains: by collapsing the Acr efflux activity or by increasing the uptake rate through the bacterial membrane. The efficiency of the second method is associated with the nature of the compound.
Collapse
Affiliation(s)
- Laurent Mamelli
- UMR-MD1, Transporteurs Membranaires, Chimiorésistance et Drug-Design, Facultés de Médecine et de Pharmacie, IFR 88, Université de la Méditerranée, Marseille, France
| | - Sylvain Petit
- UMR8601-CNRS, Université Paris Descartes, Laboratoire de Chimie et Biochimie, Pharmacologiques et Toxicologiques, Paris, France
- UPR2355-CNRS, Institut des Sciences du Végétal, Centre National de Recherche Scientifique, Gif sur Yvette, France
| | - Jacqueline Chevalier
- UMR-MD1, Transporteurs Membranaires, Chimiorésistance et Drug-Design, Facultés de Médecine et de Pharmacie, IFR 88, Université de la Méditerranée, Marseille, France
| | - Carmela Giglione
- UPR2355-CNRS, Institut des Sciences du Végétal, Centre National de Recherche Scientifique, Gif sur Yvette, France
| | - Aurélie Lieutaud
- UMR-MD1, Transporteurs Membranaires, Chimiorésistance et Drug-Design, Facultés de Médecine et de Pharmacie, IFR 88, Université de la Méditerranée, Marseille, France
| | - Thierry Meinnel
- UPR2355-CNRS, Institut des Sciences du Végétal, Centre National de Recherche Scientifique, Gif sur Yvette, France
| | - Isabelle Artaud
- UMR8601-CNRS, Université Paris Descartes, Laboratoire de Chimie et Biochimie, Pharmacologiques et Toxicologiques, Paris, France
| | - Jean-Marie Pagès
- UMR-MD1, Transporteurs Membranaires, Chimiorésistance et Drug-Design, Facultés de Médecine et de Pharmacie, IFR 88, Université de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
44
|
Posters. Clin Microbiol Infect 2009. [PMCID: PMC7162295 DOI: 10.1111/j.1469-0691.2009.02858.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Sun Q, Cai S, Peterson BR. Practical synthesis of 3beta-amino-5-cholestene and related 3beta-halides involving i-steroid and retro-i-steroid rearrangements. Org Lett 2009; 11:567-70. [PMID: 19115840 DOI: 10.1021/ol802343z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Derivatives of 3beta-amino-5-cholestene (3beta-cholesterylamine) are of substantial interest as cellular probes and have potential medicinal applications. However, existing syntheses of 3beta-amino-5-cholestene are of limited preparative utility. We report here a practical method for the stereoselective preparation of 3beta-amino-5-cholestene, 3beta-chloro-5-cholestene, 3beta-bromo-5-cholestene, and 3beta-iodo-5-cholestene from inexpensive cholesterol. A sequential i-steroid/retro-i-steroid rearrangement promoted by boron trifluoride etherate and trimethylsilyl azide converted cholest-5-en-3beta-ol methanesulfonate to 3beta-azido-cholest-5-ene with retention of configuration in 93% yield.
Collapse
Affiliation(s)
- Qi Sun
- Integrative Biosciences Graduate Program, The Pennsylvania State University, University Park, USA
| | | | | |
Collapse
|