1
|
Mezzacappa C, Komiya Y, Habas R. Reversion induced LIM domain protein (RIL) is a Daam1-interacting protein and regulator of the actin cytoskeleton during non-canonical Wnt signaling. Dev Biol 2024; 515:46-58. [PMID: 38968989 PMCID: PMC11321505 DOI: 10.1016/j.ydbio.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
The Daam1 protein regulates Wnt-induced cytoskeletal changes during vertebrate gastrulation though its full mode of action and binding partners remain unresolved. Here we identify Reversion Induced LIM domain protein (RIL) as a new interacting protein of Daam1. Interaction studies uncover binding of RIL to the C-terminal actin-nucleating portion of Daam1 in a Wnt-responsive manner. Immunofluorescence studies showed subcellular localization of RIL to actin fibers and co-localization with Daam1 at the plasma membrane. RIL gain- and loss-of-function approaches in Xenopus produced severe gastrulation defects in injected embryos. Additionally, a simultaneous loss of Daam1 and RIL synergized to produce severe gastrulation defects indicating RIL and Daam1 may function in the same signaling pathway. RIL further synergizes with another novel Daam1-interacting protein, Formin Binding Protein 1 (FNBP1), to regulate gastrulation. Our studies altogether show RIL mediates Daam1-regulated non-canonical Wnt signaling that is required for vertebrate gastrulation.
Collapse
Affiliation(s)
| | - Yuko Komiya
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA
| | - Raymond Habas
- Department of Biology, Temple University, Philadelphia, PA, 19122, USA.
| |
Collapse
|
2
|
Jiang H, Liu M, Qin Y, Zhang H. miR-9 promotes canine endothelial-like cell migration by targeting COL15A1. Vet Med Sci 2024; 10:e1339. [PMID: 38109263 PMCID: PMC10766037 DOI: 10.1002/vms3.1339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Endothelial cell migration is the initial stage of angiogenesis. In previous studies, miR-9 has been found to regulate angiogenesis and cell migration in human medicine. OBJECTIVES This study aimed to reveal the regulatory effect of miR-9 on canine endothelial cell migration. METHODS Embryonic canine ventricle myocardium tissues were collected and induced to differentiate into endothelial-like cells (ELCs). A transwell and invasion assay were used to evaluate the impact of miR-9 on the migration capacity of ELCs, after which a luciferase reporter assay, western blotting, RNA sequencing and reverse transcription-polymerase chain reaction were conducted to explore the regulatory mechanism. RESULTS Our results showed that we successfully induced the primary cells derived from canine cardiac embryo tissues into ELCs. MiR-9 also promoted the migration and invasion of canine ELCs, and inhibited the expression of collagen XV, an angiogenic inhibitor, at the translational level by targeting the 3' untranslated region of COL15A1 gene. Furthermore, RNA sequencing showed that overexpression of miR-9 impacted several signalling pathways and eight genes involved in angiogenesis and cell migration in canine ELCs. CONCLUSIONS These findings suggest that miR-9 enhances the migration of canine ELCs and may serve as a potential diagnostic and therapeutic target for canine diseases involved in endothelial cells migration and angiogenesis, but more further studies are needed.
Collapse
Affiliation(s)
- Heng Jiang
- Institute of Tropical Agriculture and ForestryHainan UniversityHainanPR China
| | - Mengmeng Liu
- Institute of Tropical Agriculture and ForestryHainan UniversityHainanPR China
- One Health InstituteHainan UniversityHainanPR China
| | - Yao Qin
- Institute of Tropical Agriculture and ForestryHainan UniversityHainanPR China
| | - Hong Zhang
- Institute of Tropical Agriculture and ForestryHainan UniversityHainanPR China
| |
Collapse
|
3
|
Chiereghin C, Robusto M, Massa V, Castorina P, Ambrosetti U, Asselta R, Soldà G. Role of Cytoskeletal Diaphanous-Related Formins in Hearing Loss. Cells 2022; 11:cells11111726. [PMID: 35681420 PMCID: PMC9179844 DOI: 10.3390/cells11111726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Hearing relies on the proper functioning of auditory hair cells and on actin-based cytoskeletal structures. Diaphanous-related formins (DRFs) are evolutionarily conserved cytoskeletal proteins that regulate the nucleation of linear unbranched actin filaments. They play key roles during metazoan development, and they seem particularly pivotal for the correct physiology of the reproductive and auditory systems. Indeed, in Drosophila melanogaster, a single diaphanous (dia) gene is present, and mutants show sterility and impaired response to sound. Vertebrates, instead, have three orthologs of the diaphanous gene: DIAPH1, DIAPH2, and DIAPH3. In humans, defects in DIAPH1 and DIAPH3 have been associated with different types of hearing loss. In particular, heterozygous mutations in DIAPH1 are responsible for autosomal dominant deafness with or without thrombocytopenia (DFNA1, MIM #124900), whereas regulatory mutations inducing the overexpression of DIAPH3 cause autosomal dominant auditory neuropathy 1 (AUNA1, MIM #609129). Here, we provide an overview of the expression and function of DRFs in normal hearing and deafness.
Collapse
Affiliation(s)
- Chiara Chiereghin
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
| | - Michela Robusto
- Experimental Therapeutics Program, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy;
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Via Di Rudinì 8, 20146 Milan, Italy;
| | | | - Umberto Ambrosetti
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano and Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, UO Audiologia, Via F. Sforza 35, 20122 Milan, Italy;
| | - Rosanna Asselta
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy
| | - Giulia Soldà
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy; (C.C.); (R.A.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy
- Correspondence:
| |
Collapse
|
4
|
The Formin Fmn2b Is Required for the Development of an Excitatory Interneuron Module in the Zebrafish Acoustic Startle Circuit. eNeuro 2021; 8:ENEURO.0329-20.2021. [PMID: 34193512 PMCID: PMC8272403 DOI: 10.1523/eneuro.0329-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/22/2023] Open
Abstract
The formin family member Fmn2 is a neuronally enriched cytoskeletal remodeling protein conserved across vertebrates. Recent studies have implicated Fmn2 in neurodevelopmental disorders, including sensory processing dysfunction and intellectual disability in humans. Cellular characterization of Fmn2 in primary neuronal cultures has identified its function in the regulation of cell-substrate adhesion and consequently growth cone translocation. However, the role of Fmn2 in the development of neural circuits in vivo, and its impact on associated behaviors have not been tested. Using automated analysis of behavior and systematic investigation of the associated circuitry, we uncover the role of Fmn2b in zebrafish neural circuit development. As reported in other vertebrates, the zebrafish ortholog of Fmn2 is also enriched in the developing zebrafish nervous system. We find that Fmn2b is required for the development of an excitatory interneuron pathway, the spiral fiber neuron, which is an essential circuit component in the regulation of the Mauthner cell (M-cell)-mediated acoustic startle response. Consistent with the loss of the spiral fiber neurons tracts, high-speed video recording revealed a reduction in the short latency escape events while responsiveness to the stimuli was unaffected. Taken together, this study provides evidence for a circuit-specific requirement of Fmn2b in eliciting an essential behavior in zebrafish. Our findings underscore the importance of Fmn2 in neural development across vertebrate lineages and highlight zebrafish models in understanding neurodevelopmental disorders.
Collapse
|
5
|
Abstract
Actin is a conserved cytoskeletal protein with essential functions. Here, we review the state-of-the-art reagents, tools and methods used to probe actin biology and functions in zebrafish embryo and larvae. We also discuss specific cell types and tissues where the study of actin in zebrafish has provided new insights into its functions.
Collapse
|
6
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
7
|
Gau D, Vignaud L, Allen A, Guo Z, Sahel J, Boone D, Koes D, Guillonneau X, Roy P. Disruption of profilin1 function suppresses developmental and pathological retinal neovascularization. J Biol Chem 2020; 295:9618-9629. [PMID: 32444495 PMCID: PMC7363146 DOI: 10.1074/jbc.ra120.012613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/20/2020] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis-mediated neovascularization in the eye is usually associated with visual complications. Pathological angiogenesis is particularly prominent in the retina in the settings of proliferative diabetic retinopathy, in which it can lead to permanent loss of vision. In this study, by bioinformatics analyses, we provide evidence for elevated expression of actin-binding protein PFN1 (profilin1) in the retinal vascular endothelial cells (VECs) of individuals with proliferative diabetic retinopathy, findings further supported by gene expression analyses for PFN1 in experimentally induced abnormal retinal neovascularization in an oxygen-induced retinopathy murine model. We observed that in a conditional knockout mouse model, postnatal deletion of the Pfn1 gene in VECs leads to defects in tip cell activity (marked by impaired filopodial protrusions) and reduced vascular sprouting, resulting in hypovascularization during developmental angiogenesis in the retina. Consistent with these findings, an investigative small molecule compound targeting the PFN1-actin interaction reduced random motility, proliferation, and cord morphogenesis of retinal VECs in vitro and experimentally induced abnormal retinal neovascularization in vivo In summary, these findings provide the first direct in vivo evidence that PFN1 is required for formation of actin-based protrusive structures and developmental angiogenesis in the retina. The proof of concept of susceptibility of abnormal angiogenesis to small molecule intervention of PFN1-actin interaction reported here lays a conceptual foundation for targeting PFN1 as a possible strategy in angiogenesis-dependent retinal diseases.
Collapse
Affiliation(s)
- David Gau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lucile Vignaud
- Institut de la Vision, Sorbonne Université, INSERM, Paris, France
| | - Abigail Allen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zhijian Guo
- Department of Nephrology, Southern Medical University, Guangzhou, China
| | - Jose Sahel
- Institut de la Vision, Sorbonne Université, INSERM, Paris, France
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - David Boone
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Koes
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Hung IC, Chen TM, Lin JP, Tai YL, Shen TL, Lee SJ. Wnt5b integrates Fak1a to mediate gastrulation cell movements via Rac1 and Cdc42. Open Biol 2020; 10:190273. [PMID: 32097584 PMCID: PMC7058935 DOI: 10.1098/rsob.190273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Focal adhesion kinase (FAK) mediates vital cellular pathways during development. Despite its necessity, how FAK regulates and integrates with other signals during early embryogenesis remains poorly understood. We found that the loss of Fak1a impaired epiboly, convergent extension and hypoblast cell migration in zebrafish embryos. We also observed a clear disturbance in cortical actin at the blastoderm margin and distribution of yolk syncytial nuclei. In addition, we investigated a possible link between Fak1a and a well-known gastrulation regulator, Wnt5b, and revealed that the overexpression of fak1a or wnt5b could cross-rescue convergence defects induced by a wnt5b or fak1a antisense morpholino (MO), respectively. Wnt5b and Fak1a were shown to converge in regulating Rac1 and Cdc42, which could synergistically rescue wnt5b and fak1a morphant phenotypes. Furthermore, we generated several alleles of fak1a mutants using CRISPR/Cas9, but those mutants only revealed mild gastrulation defects. However, injection of a subthreshold level of the wnt5b MO induced severe gastrulation defects in fak1a mutants, which suggested that the upregulated expression of wnt5b might complement the loss of Fak1a. Collectively, we demonstrated that a functional interaction between Wnt and FAK signalling mediates gastrulation cell movements via the possible regulation of Rac1 and Cdc42 and subsequent actin dynamics.
Collapse
Affiliation(s)
- I-Chen Hung
- Department of Life Science, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Tsung-Ming Chen
- Department of Life Science, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan.,Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan.,Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Jing-Ping Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Yu-Ling Tai
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, No. 1, Roosevelt Road, Section 4, Taipei 10617, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Williams ML, Solnica-Krezel L. Cellular and molecular mechanisms of convergence and extension in zebrafish. Curr Top Dev Biol 2020; 136:377-407. [DOI: 10.1016/bs.ctdb.2019.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Richards EJ, Poelstra JW, Martin CH. Don't throw out the sympatric speciation with the crater lake water: fine-scale investigation of introgression provides equivocal support for causal role of secondary gene flow in one of the clearest examples of sympatric speciation. Evol Lett 2018; 2:524-540. [PMID: 30283699 PMCID: PMC6145409 DOI: 10.1002/evl3.78] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022] Open
Abstract
Genomic data has revealed complex histories of colonization and repeated gene flow previously unrecognized in some of the most celebrated examples of sympatric speciation and radiation. However, much of the evidence for secondary gene flow into these radiations comes from summary statistics calculated from sparse genomic sampling without knowledge of which specific genomic regions introgressed. This tells us little about how gene flow potentially influenced sympatric diversification. Here, we investigated whole genomes of Barombi Mbo crater lake cichlids for fine-scale patterns of introgression with neighboring riverine cichlid populations. We found evidence of secondary gene flow into the radiation scattered across <0.24% of the genome; however, from our analyses, it is not clear if the functional diversity in these regions contributed to the ecological, sexual, and morphological diversity found in the lake. Unlike similar studies, we found no obvious candidate genes for adaptive introgression and we cannot rule out that secondary gene flow was predominantly neutral with respect to the diversification process. We also found evidence for differential assortment of ancestral polymorphisms found in riverine populations between sympatric sister species, suggesting the presence of an ancestral hybrid swarm. Although the history of gene flow and colonization is more complicated than previously assumed, the lack of compelling evidence for secondary gene flow's role in species diversification suggests that we should not yet rule out one of the most celebrated examples of sympatric speciation in nature without a more thorough investigation of the timing and functional role of each introgressed region.
Collapse
Affiliation(s)
- Emilie J. Richards
- Biology DepartmentUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
| | - Jelmer W. Poelstra
- Biology DepartmentUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
- Biology DepartmentDuke UniversityDurhamNorth Carolina27710
| | - Christopher H. Martin
- Biology DepartmentUniversity of North Carolina at Chapel HillChapel HillNorth Carolina27599
| |
Collapse
|
11
|
Shindo A. Models of convergent extension during morphogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28906063 PMCID: PMC5763355 DOI: 10.1002/wdev.293] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/23/2017] [Accepted: 08/06/2017] [Indexed: 11/29/2022]
Abstract
Convergent extension (CE) is a fundamental and conserved collective cell movement that forms elongated tissues during embryonic development. Thus far, studies have demonstrated two different mechanistic models of collective cell movements during CE. The first, termed the crawling mode, was discovered in the process of notochord formation in Xenopus laevis embryos, and has been the established model of CE for decades. The second model, known as the contraction mode, was originally reported in studies of germband extension in Drosophila melanogaster embryos and was recently demonstrated to be a conserved mechanism of CE among tissues and stages of development across species. This review summarizes the two modes of CE by focusing on the differences in cytoskeletal behaviors and relative expression of cell adhesion molecules. The upstream molecules regulating these machineries are also discussed. There are abundant studies of notochord formation in X. laevis embryos, as this was one of the pioneering model systems in this field. Therefore, the present review discusses these findings as an approach to the fundamental biological question of collective cell regulation. WIREs Dev Biol 2018, 7:e293. doi: 10.1002/wdev.293 This article is categorized under:
Early Embryonic Development > Gastrulation and Neurulation Comparative Development and Evolution > Model Systems
Collapse
Affiliation(s)
- Asako Shindo
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Japan
| |
Collapse
|
12
|
Schwayer C, Sikora M, Slováková J, Kardos R, Heisenberg CP. Actin Rings of Power. Dev Cell 2016; 37:493-506. [DOI: 10.1016/j.devcel.2016.05.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
|
13
|
Tuncay H, Ebnet K. Cell adhesion molecule control of planar spindle orientation. Cell Mol Life Sci 2016; 73:1195-207. [PMID: 26698907 PMCID: PMC11108431 DOI: 10.1007/s00018-015-2116-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/26/2015] [Accepted: 12/10/2015] [Indexed: 12/22/2022]
Abstract
Polarized epithelial cells align the mitotic spindle in the plane of the sheet to maintain tissue integrity and to prevent malignant transformation. The orientation of the spindle apparatus is regulated by the immobilization of the astral microtubules at the lateral cortex and depends on the precise localization of the dynein-dynactin motor protein complex which captures microtubule plus ends and generates pulling forces towards the centrosomes. Recent developments indicate that signals derived from intercellular junctions are required for the stable interaction of the dynein-dynactin complex with the cortex. Here, we review the molecular mechanisms that regulate planar spindle orientation in polarized epithelial cells and we illustrate how different cell adhesion molecules through distinct and non-overlapping mechanisms instruct the cells to align the mitotic spindle in the plane of the sheet.
Collapse
Affiliation(s)
- Hüseyin Tuncay
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Muenster, Germany
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Muenster, Germany.
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, 48419, Muenster, Germany.
| |
Collapse
|
14
|
Sun H, Al-Romaih KI, MacRae CA, Pollak MR. Human Kidney Disease-causing INF2 Mutations Perturb Rho/Dia Signaling in the Glomerulus. EBioMedicine 2014; 1:107-15. [PMID: 26086034 PMCID: PMC4457406 DOI: 10.1016/j.ebiom.2014.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/08/2014] [Accepted: 11/11/2014] [Indexed: 01/10/2023] Open
Abstract
Mutations in Inverted Formin 2 (INF2), a diaphanous formin family protein that regulates actin cytoskeleton dynamics, cause focal segmental glomerulosclerosis (FSGS) and Charcot-Marie-Tooth Disease (CMT) in humans. In addition to directly remodeling actin filaments in vitro, we have shown that INF2 regulates intracellular actin dynamics and actin dependent cellular behavior by opposing Rhoa/Dia signaling. As a step towards a better understanding of the human kidney disease, we wanted to explore the relevance of these findings to the in vivo situation. We used dose dependent knockdown of INF2 to first define an in vivo model and establish an overt glomerular phenotype in zebrafish. This simple assay was validated by rescue with wild type INF2 confirming the specificity of the findings. The edema, podocyte dysfunction, and an altered glomerular filtration barrier observed in the zebrafish pronephros correlate with mistrafficking of glomerular slit diaphragm proteins, defective slit-diaphragm signaling, and disinhibited diaphanous formin (mDia) activity. In contrast to wild-type human INF2, INF2 mutants associated with kidney disease fail to rescue the zINF2 morphant phenotype. Of particular interest, this INF2 knockdown phenotype is also rescued by loss of either RhoA or Dia2. This simple assay allows the demonstration that INF2 functions, at least in part, to modulate Dia-mediated Rho signaling, and that disease causing mutations specifically impair this regulatory function. These data support a model in which disease-associated diaphanous inhibitory domain (DID) mutants in INF2 interfere with its binding to and inhibition of Dia, leading to uncontrolled Rho/Dia signaling and perturbed actin dynamics. Methods to fine tune Rho signaling in the glomerulus may lead to new approaches to therapy in humans.
Collapse
Affiliation(s)
- Hua Sun
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States ; Harvard Medical School, Boston, MA 02215, United States ; Iowa University Children's Hospital, Iowa City, IA 52242, United States
| | - Khaldoun I Al-Romaih
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States ; Harvard Medical School, Boston, MA 02215, United States
| | - Calum A MacRae
- Harvard Medical School, Boston, MA 02215, United States ; Cardiology Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, United States ; Broad Institute of Harvard and MIT, Cambridge, MA, United States
| | - Martin R Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States ; Harvard Medical School, Boston, MA 02215, United States ; Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
15
|
Nowotarski SH, McKeon N, Moser RJ, Peifer M. The actin regulators Enabled and Diaphanous direct distinct protrusive behaviors in different tissues during Drosophila development. Mol Biol Cell 2014; 25:3147-65. [PMID: 25143400 PMCID: PMC4196866 DOI: 10.1091/mbc.e14-05-0951] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Actin-based protrusions are important for signaling and migration during development and homeostasis. Gain- and loss-of-function and quantitative approaches are used to define differential roles for the actin elongation factors Diaphanous and Enabled in regulating distinct protrusive behaviors in different tissues during Drosophila morphogenesis. Actin-based protrusions are important for signaling and migration during development and homeostasis. Defining how different tissues in vivo craft diverse protrusive behaviors using the same genomic toolkit of actin regulators is a current challenge. The actin elongation factors Diaphanous and Enabled both promote barbed-end actin polymerization and can stimulate filopodia in cultured cells. However, redundancy in mammals and Diaphanous’ role in cytokinesis limited analysis of whether and how they regulate protrusions during development. We used two tissues driving Drosophila dorsal closure—migratory leading-edge (LE) and nonmigratory amnioserosal (AS) cells—as models to define how cells shape distinct protrusions during morphogenesis. We found that nonmigratory AS cells produce filopodia that are morphologically and dynamically distinct from those of LE cells. We hypothesized that differing Enabled and/or Diaphanous activity drives these differences. Combining gain- and loss-of-function with quantitative approaches revealed that Diaphanous and Enabled each regulate filopodial behavior in vivo and defined a quantitative “fingerprint”—the protrusive profile—which our data suggest is characteristic of each actin regulator. Our data suggest that LE protrusiveness is primarily Enabled driven, whereas Diaphanous plays the primary role in the AS, and reveal each has roles in dorsal closure, but its robustness ensures timely completion in their absence.
Collapse
Affiliation(s)
- Stephanie H Nowotarski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natalie McKeon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rachel J Moser
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
16
|
Lee SJ. Dynamic regulation of the microtubule and actin cytoskeleton in zebrafish epiboly. Biochem Biophys Res Commun 2014; 452:1-7. [PMID: 25117442 DOI: 10.1016/j.bbrc.2014.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/01/2014] [Indexed: 11/17/2022]
Abstract
Gastrulation is a key developmental stage with striking changes in morphology. Coordinated cell movements occur to bring cells to their correct positions in a timely manner. Cell movements and morphological changes are accomplished by precisely controlling dynamic changes in cytoskeletal proteins, microtubules, and actin filaments. Among those cellular movements, epiboly produces the first distinct morphological changes in teleosts. In this review, I describe epiboly and its mechanics, and the dynamic changes in microtubule networks and actin structures, mainly in zebrafish embryos. The factors regulating those cytoskeletal changes will also be discussed.
Collapse
Affiliation(s)
- Shyh-Jye Lee
- Department of Life Science, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for Biotechnology, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC; Center for System Biology, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
17
|
Abstract
Formin proteins were recognized as effectors of Rho GTPases some 15 years ago. They contribute to different cellular actin cytoskeleton structures by their ability to polymerize straight actin filaments at the barbed end. While not all formins necessarily interact with Rho GTPases, a subgroup of mammalian formins, termed Diaphanous-related formins or DRFs, were shown to be activated by small GTPases of the Rho superfamily. DRFs are autoinhibited in the resting state by an N- to C-terminal interaction that renders the central actin polymerization domain inactive. Upon the interaction with a GTP-bound Rho, Rac, or Cdc42 GTPase, the C-terminal autoregulation domain is displaced from its N-terminal recognition site and the formin becomes active to polymerize actin filaments. In this review we discuss the current knowledge on the structure, activation, and function of formin-GTPase interactions for the mammalian formin families Dia, Daam, FMNL, and FHOD. We describe both direct and indirect interactions of formins with GTPases, which lead to formin activation and cytoskeletal rearrangements. The multifaceted function of formins as effector proteins of Rho GTPases thus reflects the diversity of the actin cytoskeleton in cells.
Collapse
Affiliation(s)
- Sonja Kühn
- Center of Advanced European Studies and Research (caesar); Group Physical Biochemistry; Bonn, Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research (caesar); Group Physical Biochemistry; Bonn, Germany
| |
Collapse
|
18
|
Randall TS, Ehler E. A formin-g role during development and disease. Eur J Cell Biol 2014; 93:205-11. [PMID: 24342720 DOI: 10.1016/j.ejcb.2013.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/22/2022] Open
Abstract
Several different protein families were shown to be involved in the regulation of actin filament formation and have been studied extensively in processes such as cell migration. Among them are members of the formin family, which tend to promote the formation of linear actin filaments. Studies in recent years, often using loss of function animal models, have indicated that formin family members play roles beyond cell motility in vitro and are involved in processes ranging from tissue morphogenesis and cell differentiation to diseases such as cancer and cardiomyopathy. Therefore the aim of this review is to discuss these findings and to start putting them into a subcellular context.
Collapse
Affiliation(s)
- Thomas S Randall
- Randall Division of Cell and Molecular Biophysics, Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom
| | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics, Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
19
|
Bogdan S, Schultz J, Grosshans J. Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics. Commun Integr Biol 2014; 6:e27634. [PMID: 24719676 PMCID: PMC3977921 DOI: 10.4161/cib.27634] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation.
Collapse
Affiliation(s)
- Sven Bogdan
- Institut für Neurobiologie; Universität Münster; Münster, Germany
| | - Jörg Schultz
- Bioinformatik, Biozentrum; Universität Würzburg; Würzburg, Germany
| | - Jörg Grosshans
- Institut für Biochemie; Universitätsmedizin; Universität Göttingen; Göttingen, Germany
| |
Collapse
|
20
|
Affiliation(s)
- Dennis Breitsprecher
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | |
Collapse
|
21
|
Jayashankar V, Nguyen MJ, Carr BW, Zheng DC, Rosales JB, Rosales JB, Weiser DC. Protein phosphatase 1 β paralogs encode the zebrafish myosin phosphatase catalytic subunit. PLoS One 2013; 8:e75766. [PMID: 24040418 PMCID: PMC3770619 DOI: 10.1371/journal.pone.0075766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022] Open
Abstract
Background The myosin phosphatase is a highly conserved regulator of actomyosin contractility. Zebrafish has emerged as an ideal model system to study the invivo role of myosin phosphatase in controlling cell contractility, cell movement and epithelial biology. Most work in zebrafish has focused on the regulatory subunit of the myosin phosphatase called Mypt1. In this work, we examined the critical role of Protein Phosphatase 1, PP1, the catalytic subunit of the myosin phosphatase. Methodology/Principal Findings We observed that in zebrafish two paralogous genes encoding PP1β, called ppp1cba and ppp1cbb, are both broadly expressed during early development. Furthermore, we found that both gene products interact with Mypt1 and assemble an active myosin phosphatase complex. In addition, expression of this complex results in dephosphorylation of the myosin regulatory light chain and large scale rearrangements of the actin cytoskeleton. Morpholino knock-down of ppp1cba and ppp1cbb results in severe defects in morphogenetic cell movements during gastrulation through loss of myosin phosphatase function. Conclusions/Significance Our work demonstrates that zebrafish have two genes encoding PP1β, both of which can interact with Mypt1 and assemble an active myosin phosphatase. In addition, both genes are required for convergence and extension during gastrulation and correct dosage of the protein products is required.
Collapse
Affiliation(s)
- Vaishali Jayashankar
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Michael J. Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Brandon W. Carr
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Dale C. Zheng
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Joseph B. Rosales
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Joshua B. Rosales
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Abstract
Oriented mitosis is essential during tissue morphogenesis. The Wnt/planar cell polarity (Wnt/PCP) pathway orients mitosis in a number of developmental systems, including dorsal epiblast cell divisions along the animal-vegetal (A-V) axis during zebrafish gastrulation. How Wnt signalling orients the mitotic plane is, however, unknown. Here we show that, in dorsal epiblast cells, anthrax toxin receptor 2a (Antxr2a) accumulates in a polarized cortical cap, which is aligned with the embryonic A-V axis and forecasts the division plane. Filamentous actin (F-actin) also forms an A-V polarized cap, which depends on Wnt/PCP and its effectors RhoA and Rock2. Antxr2a is recruited to the cap by interacting with actin. Antxr2a also interacts with RhoA and together they activate the diaphanous-related formin zDia2. Mechanistically, Antxr2a functions as a Wnt-dependent polarized determinant, which, through the action of RhoA and zDia2, exerts torque on the spindle to align it with the A-V axis.
Collapse
|
23
|
Wyse MM, Lei J, Nestor-Kalinoski AL, Eisenmann KM. Dia-interacting protein (DIP) imposes migratory plasticity in mDia2-dependent tumor cells in three-dimensional matrices. PLoS One 2012; 7:e45085. [PMID: 23024796 PMCID: PMC3443221 DOI: 10.1371/journal.pone.0045085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 08/16/2012] [Indexed: 11/18/2022] Open
Abstract
Tumor cells rely upon membrane pliancy to escape primary lesions and invade secondary metastatic sites. This process relies upon localized assembly and disassembly cycles of F-actin that support and underlie the plasma membrane. Dynamic actin generates both spear-like and bleb structures respectively characterizing mesenchymal and amoeboid motility programs utilized by metastatic cells in three-dimensional matrices. The molecular mechanism and physiological trigger(s) driving membrane plasticity are poorly understood. mDia formins are F-actin assembly factors directing membrane pliancy in motile cells. mDia2 is functionally coupled with its binding partner DIP, regulating cortical actin and inducing membrane blebbing in amoeboid cells. Here we show that mDia2 and DIP co-tether to nascent blebs and this linkage is required for bleb formation. DIP controls mesenchymal/amoeboid cell interconvertability, while CXCL12 induces assembly of mDia2:DIP complexes to bleb cortices in 3D matrices. These results demonstrate how DIP-directed mDia2-dependent F-actin dynamics regulate morphological plasticity in motile cancer cells.
Collapse
Affiliation(s)
- Meghan M. Wyse
- Department of Biochemistry, University of Toledo, Health Science Campus, Toledo, Ohio, United States of America
| | - Jun Lei
- Department of Biochemistry, University of Toledo, Health Science Campus, Toledo, Ohio, United States of America
| | - Andrea L. Nestor-Kalinoski
- Department of Surgery, University of Toledo, Health Science Campus, Toledo, Ohio, United States of America
| | - Kathryn M. Eisenmann
- Department of Biochemistry, University of Toledo, Health Science Campus, Toledo, Ohio, United States of America
| |
Collapse
|
24
|
Brock AR, Wang Y, Berger S, Renkawitz-Pohl R, Han VC, Wu Y, Galko MJ. Transcriptional regulation of Profilin during wound closure in Drosophila larvae. J Cell Sci 2012; 125:5667-76. [PMID: 22976306 DOI: 10.1242/jcs.107490] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Injury is an inevitable part of life, making wound healing essential for survival. In postembryonic skin, wound closure requires that epidermal cells recognize the presence of a gap and change their behavior to migrate across it. In Drosophila larvae, wound closure requires two signaling pathways [the Jun N-terminal kinase (JNK) pathway and the Pvr receptor tyrosine kinase signaling pathway] and regulation of the actin cytoskeleton. In this and other systems, it remains unclear how the signaling pathways that initiate wound closure connect to the actin regulators that help execute wound-induced cell migrations. Here, we show that chickadee, which encodes the Drosophila Profilin, a protein important for actin filament recycling and cell migration during development, is required for the physiological process of larval epidermal wound closure. After injury, chickadee is transcriptionally upregulated in cells proximal to the wound. We found that JNK, but not Pvr, mediates the increase in chic transcription through the Jun and Fos transcription factors. Finally, we show that chic-deficient larvae fail to form a robust actin cable along the wound edge and also fail to form normal filopodial and lamellipodial extensions into the wound gap. Our results thus connect a factor that regulates actin monomer recycling to the JNK signaling pathway during wound closure. They also reveal a physiological function for an important developmental regulator of actin and begin to tease out the logic of how the wound repair response is organized.
Collapse
Affiliation(s)
- Amanda R Brock
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Ding Z, Bae YH, Roy P. Molecular insights on context-specific role of profilin-1 in cell migration. Cell Adh Migr 2012; 6:442-9. [PMID: 23076048 DOI: 10.4161/cam.21832] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Profilin-1 (Pfn1) is a ubiquitously expressed actin-monomer binding protein that has been linked to many cellular activities ranging from control of actin polymerization to gene transcription. Traditionally, Pfn1 has been considered to be an essential control element for actin polymerization and cell migration. Seemingly contrasting this view, a few recent studies have shown evidence of an inhibitory action of Pfn1 on motility of certain types of carcinoma cells. In this review, we summarize biochemistry and functional aspects of Pfn1 in normal cells and bring in newly emerged action of Pfn1 in cancer cells that may explain its context-specific role in cell migration.
Collapse
Affiliation(s)
- Zhijie Ding
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
26
|
Analysis of the expression of microtubule plus-end tracking proteins (+TIPs) during Xenopus laevis embryogenesis. Gene Expr Patterns 2012; 12:204-12. [DOI: 10.1016/j.gep.2012.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 12/25/2022]
|
27
|
Popgeorgiev N, Bonneau B, Ferri KF, Prudent J, Thibaut J, Gillet G. The apoptotic regulator Nrz controls cytoskeletal dynamics via the regulation of Ca2+ trafficking in the zebrafish blastula. Dev Cell 2011; 20:663-76. [PMID: 21571223 DOI: 10.1016/j.devcel.2011.03.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/02/2011] [Accepted: 03/21/2011] [Indexed: 11/26/2022]
Abstract
Bcl-2 family members are key regulators of apoptosis. Their involvement in other cellular processes has been so far overlooked. We have studied the role of the Bcl-2 homolog Nrz in the developing zebrafish. Nrz was found to be localized to the yolk syncytial layer, a region containing numerous mitochondria and ER membranes. Nrz knockdown resulted in developmental arrest before gastrulation, due to free Ca(2+) increase in the yolk cell, activating myosin light chain kinase, which led to premature contraction of actin-myosin cables in the margin and separation of the blastomeres from the yolk cell. In the yolk syncytial layer, Nrz appears to prevent the release of Ca(2+) from the endoplasmic reticulum by directly interacting with the IP3R1 Ca(2+) channel. Thus, the Bcl-2 family may participate in early development, not only by controlling apoptosis but also by acting on cytoskeletal dynamics and cell movements via Ca(2+) fluxes inside the embryo.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- CRCL U1052 INSERM, UMS 3443 CNRS, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | | | | | | | | | | |
Collapse
|
28
|
Loss of cofilin 1 disturbs actin dynamics, adhesion between enveloping and deep cell layers and cell movements during gastrulation in zebrafish. PLoS One 2010; 5:e15331. [PMID: 21203473 PMCID: PMC3008747 DOI: 10.1371/journal.pone.0015331] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 11/06/2010] [Indexed: 12/25/2022] Open
Abstract
During gastrulation, cohesive migration drives associated cell layers to the completion of epiboly in zebrafish. The association of different layers relies on E-cadherin based cellular junctions, whose stability can be affected by actin turnover. Here, we examined the effect of malfunctioning actin turnover on the epibolic movement by knocking down an actin depolymerizing factor, cofilin 1, using antisense morpholino oligos (MO). Knockdown of cfl1 interfered with epibolic movement of deep cell layer (DEL) but not in the enveloping layer (EVL) and the defect could be specifically rescued by overexpression of cfl1. It appeared that the uncoordinated movements of DEL and EVL were regulated by the differential expression of cfl1 in the DEL, but not EVL as shown by in situ hybridization. The dissociation of DEL and EVL was further evident by the loss of adhesion between layers by using transmission electronic and confocal microscopy analyses. cfl1 morphants also exhibited abnormal convergent extension, cellular migration and actin filaments, but not involution of hypoblast. The cfl1 MO-induced cell migration defect was found to be cell-autonomous in cell transplantation assays. These results suggest that proper actin turnover mediated by Cfl1 is essential for adhesion between DEL and EVL and cell movements during gastrulation in zebrafish.
Collapse
|
29
|
Increased activity of Diaphanous homolog 3 (DIAPH3)/diaphanous causes hearing defects in humans with auditory neuropathy and in Drosophila. Proc Natl Acad Sci U S A 2010; 107:13396-401. [PMID: 20624953 DOI: 10.1073/pnas.1003027107] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Auditory neuropathy is a rare form of deafness characterized by an absent or abnormal auditory brainstem response with preservation of outer hair cell function. We have identified Diaphanous homolog 3 (DIAPH3) as the gene responsible for autosomal dominant nonsyndromic auditory neuropathy (AUNA1), which we previously mapped to chromosome 13q21-q24. Genotyping of additional family members narrowed the interval to an 11-Mb, 3.28-cM gene-poor region containing only four genes, including DIAPH3. DNA sequencing of DIAPH3 revealed a c.-172G>A, g. 48G>A mutation in a highly conserved region of the 5' UTR. The c.-172G>A mutation occurs within a GC box sequence element and was not found in 379 controls. Using genome-wide expression arrays and quantitative RT-PCR, we demonstrate a 2- to 3-fold overexpression of DIAPH3 mRNA in lymphoblastoid cell lines from affected individuals. Likewise, a significant increase (approximately 1.5-fold) in DIAPH3 protein was found by quantitative immunoblotting of lysates from lymphoblastoid cell lines derived from affected individuals in comparison with controls. In addition, the c.-172G>A mutation is sufficient to drive overexpression of a luciferase reporter. Finally, the expression of a constitutively active form of diaphanous protein in the auditory organ of Drosophila melanogaster recapitulates the phenotype of impaired response to sound. To date, only two genes, the otoferlin gene OTOF and the pejvakin gene PJVK, are known to underlie nonsyndromic auditory neuropathy. Genetic testing for DIAPH3 may be useful for individuals with recessive as well as dominant inheritance of nonsyndromic auditory neuropathy.
Collapse
|
30
|
Roh-Johnson M, Goldstein B. In vivo roles for Arp2/3 in cortical actin organization during C. elegans gastrulation. J Cell Sci 2010; 122:3983-93. [PMID: 19889970 DOI: 10.1242/jcs.057562] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Arp2/3 complex is important for morphogenesis in various developmental systems, but specific in vivo roles for this complex in cells that move during morphogenesis are not well understood. We have examined cellular roles for Arp2/3 in the Caenorhabditis elegans embryo. In C. elegans, the first morphogenetic movement, gastrulation, is initiated by the internalization of two endodermal precursor cells. These cells undergo a myosin-dependent apical constriction, pulling a ring of six neighboring cells into a gap left behind on the ventral surface of the embryo. In agreement with a previous report, we found that in Arp2/3-depleted C. elegans embryos, membrane blebs form and the endodermal precursor cells fail to fully internalize. We show that these cells are normal with respect to several key requirements for gastrulation: cell cycle timing, cell fate, apicobasal cell polarity and apical accumulation and activation of myosin-II. To further understand the function of Arp2/3 in gastrulation, we examined F-actin dynamics in wild-type embryos. We found that three of the six neighboring cells extend short, dynamic F-actin-rich processes at their apical borders with the internalizing cells. These processes failed to form in embryos that were depleted of Arp2/3 or the apical protein PAR-3. Our results identify an in vivo role for Arp2/3 in the formation of subcellular structures during morphogenesis. The results also suggest a new layer to the model of C. elegans gastrulation: in addition to apical constriction, internalization of the endoderm might involve dynamic Arp2/3-dependent F-actin-rich extensions on one side of a ring of cells.
Collapse
Affiliation(s)
- Minna Roh-Johnson
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
31
|
DeWard AD, Eisenmann KM, Matheson SF, Alberts AS. The role of formins in human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:226-33. [PMID: 19941910 DOI: 10.1016/j.bbamcr.2009.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 02/02/2023]
Abstract
Formins are a conserved family of proteins that play key roles in cytoskeletal remodeling. They nucleate and processively elongate non-branched actin filaments and also modulate microtubule dynamics. Despite their significant contributions to cell biology and development, few studies have directly implicated formins in disease pathogenesis. This review highlights the roles of formins in cell division, migration, immunity, and microvesicle formation in the context of human disease. In addition, we discuss the importance of controlling formin activity and protein expression to maintain cell homeostasis.
Collapse
Affiliation(s)
- Aaron D DeWard
- Laboratory of Cell Structure and Signal Integration, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | | |
Collapse
|
32
|
Abstract
The best-known attribute of the prion protein (PrP) is its tendency to misfold into a rogue isoform. Much less understood is how this misfolded isoform causes deadly brain illnesses. Neurodegeneration in prion disease is often seen as a consequence of abnormal PrP function yet, amazingly little is known about the normal, physiological role of PrP. In particular, the absence of obvious phenotypes in PrP knockout mice has prevented scientists from answering this important question. Using knockdown approaches, we previously produced clear PrP loss-of-function phenotypes in zebrafish embryos. Analysis of these phenotypes revealed that PrP can modulate E-cadherin-based cell-cell adhesion, thereby controlling essential morphogenetic cell movements in the early gastrula. Our data also showed that PrP itself can elicit homophilic cell-cell adhesion and trigger intracellular signaling via Src-related kinases. Importantly, these molecular functions of PrP are conserved from fish to mammals. Here we discuss the use of the zebrafish in prion biology and how it may advance our understanding of the roles of PrP in health and disease.
Collapse
|
33
|
Non-redundant roles for Profilin2 and Profilin1 during vertebrate gastrulation. Dev Biol 2009; 332:396-406. [PMID: 19523939 DOI: 10.1016/j.ydbio.2009.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 01/24/2023]
Abstract
Gastrulation is a critical morphogenetic event during vertebrate embryogenesis, and it is comprised of directional cell movement resulting from the polarization and reorganization of the actin cytoskeleton. The non-canonical Wnt signaling pathway has emerged as a key regulator of gastrulation. However, the molecular mechanisms by which the Wnt pathway mediates changes to the cellular actin cytoskeleton remains poorly defined. We had previously identified the Formin protein Daam1 and an effector molecule XProfilin1 as links for Wnt-mediated cytoskeletal changes during gastrulation. We report here the identification of XProfilin2 as a non-redundant and distinct effector of Daam1 for gastrulation. XProfilin2 interacts with FH1 domain of Daam1 and temporally interacts with Daam1 during gastrulation. In the Xenopus embryo, XProfilin2 is temporally expressed throughout embryogenesis and it is spatially expressed in cells undergoing morphogenetic movement during gastrulation. While we have previously shown XProfilin1 regulates blastopore closure, overexpression or depletion of XProfilin2 specifically affects convergent extension movement independent of mesodermal specification. Specifically, we show that XProfilin2 modulates cell polarization and axial alignment of mesodermal cells undergoing gastrulation independent of XProfilin1. Together, our studies demonstrate that XProfilin2 and XProfilin1 are non-redundant effectors for Daam1 for non-canonical Wnt signaling and that they regulate distinct functions during vertebrate gastrulation.
Collapse
|