1
|
Costa V, Terrando S, Bellavia D, Salvatore C, Alessandro R, Giavaresi G. MiR203a-3p as a potential biomarker for synovial pathology associated with osteoarthritis: a pilot study. J Orthop Surg Res 2024; 19:746. [PMID: 39533317 PMCID: PMC11558974 DOI: 10.1186/s13018-024-05237-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative musculoskeletal disease that significantly impacts the quality of life. Currently, no validated biomarkers for early detection of OA are defined. The possibility of discovering OA biomarkers is the focus of this study. METHODS Human primary OA synovial cells (SVs), isolated from discarded joint tissue of patients with Kellgren & Lawrence score (KL) < 3, (mild/moderate) and KL ≥ 3 (severe), were characterized by FACS analysis. Through qRT-PCR and ELISA assays the inflammation, fibrosis status and the different miRNAs expression has been investigated. The role of miR-203a-3p and its precursors were evaluated through gain and loss of function study, IL-1β synoviocytes treatments and methylation analysis of miR203a promoter. The qRT-PCR analysis of miR203a-3p and pre-miR203a on plasma (isolated 24 h before surgery, 3 days and 1 month after surgery) and synovial fluid (recovered during the surgery) were done to support our in vitro data. RESULTS MiR203a-3p expression is inversely correlated with the aggressiveness of OA, modulating the expression of epithelial to mesenchymal transition (EMT) and pro-inflammatory factors, as well as regulating the expression of secreted protein acidic and rich in cysteine (SPARC) mRNA. Methylation analysis of the miR203a promoter and SVs IL-1β treatment's highlighted the impact of inflammation on miR203a-3p and pre-miR203a expression; as confirmed by both miRNAs detection in biological fluids derived from patients with severe OA. CONCLUSION Our preliminary results suggest that miR-203a-3p might be a potential candidate for staging OA progression and a new protective/predictive biomarker for synovial OA degeneration. Further studies are needed to validate its potential impact on OA.
Collapse
Affiliation(s)
- Viviana Costa
- Scienze E Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Silvio Terrando
- Ortopedia Generale, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| | - Daniele Bellavia
- Scienze E Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy.
| | - Caruccio Salvatore
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, University of Palermo, 90133, Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133, Palermo, Italy
- Istituto Per La Ricerca E L'Innovazione Biomedica (IRIB-CNR), 90133, Palermo, Italy
| | - Gianluca Giavaresi
- Scienze E Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
2
|
Liu J, Zhou H, Chen J, Zuo Q, Liu F. Baicalin Ameliorates Cartilage Injury in Rats With Osteoarthritis via Modulating miR-766-3p/AIFM1 Axis. Physiol Res 2024; 73:633-642. [PMID: 39264083 PMCID: PMC11414588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/05/2024] [Indexed: 09/13/2024] Open
Abstract
The study aims to elucidate the therapeutic mechanism of Baicalin (BAI) in alleviating cartilage injury in osteoarthritic (OA) rat models, concentrating on its regulation of the miR-766-3p/AIFM1 axis. An OA rat model was developed with unilateral anterior cruciate ligament transection (ACLT). Interventions comprised of BAI treatment and intra-articular administration of miR-766-3p inhibitor. For evaluation, histopathological staining was conducted to investigate the pathological severity of knee cartilage injury. The levels of oxidative stress (OS) indicators including MDA, SOD, and GSH-Px, were quantified using colorimetric assays. Inflammatory factors (IFs; TNF-?, IL-1?, and IL-6) in knee joint lavage fluids were assessed using ELISA, while RT-PCR was employed to quantify miR-766-3p expression. TUNEL apoptosis staining was utilized to detect chondrocyte apoptosis, and western blotting examined autophagy-related markers (LC3, Beclin, p62), extracellular matrix (ECM) synthesis-associated indices (COL2A, ACAN, MMP13), and apoptosis-inducing factor mitochondrion-associated 1 (AIFM1). Histological examination revealed a marked amelioration of cartilage injury in the BAI-treated OA rat models compared to controls. BAI treatment significantly reduced inflammation and OS of knee joint fluid, activated autophagy, and decreased chondrocyte apoptosis and ECM degradation. Interestingly, the inhibitory effects of BAI on these pathological markers were significantly decreased by the miR-766-3p inhibitor. Further assessment revealed that BAI efficiently promoted miR-766-3p expression while inhibiting AIFM1 protein expression. BAI potentially mitigates articular cartilage injury in OA rats, likely through modulation of miR-766-3p/AIFM1 axis. Keywords: Baicalin, microRNA, AIFM1, Osteoarthritisv, Rat.
Collapse
Affiliation(s)
- J Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China.
| | | | | | | | | |
Collapse
|
3
|
Otis C, Cristofanilli KA, Frezier M, Delsart A, Martel-Pelletier J, Pelletier JP, Beaudry F, Lussier B, Boyer A, Troncy E. Predictive and concurrent validity of pain sensitivity phenotype, neuropeptidomics and neuroepigenetics in the MI-RAT osteoarthritic surgical model in rats. Front Cell Dev Biol 2024; 12:1400650. [PMID: 39175874 PMCID: PMC11338919 DOI: 10.3389/fcell.2024.1400650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Background Micro-RNAs could provide great insights about the neuropathological mechanisms associated with osteoarthritis (OA) pain processing. Using the validated Montreal Induction of Rat Arthritis Testing (MI-RAT) model, this study aimed to characterize neuroepigenetic markers susceptible to correlate with innovative pain functional phenotype and targeted neuropeptide alterations. Methods Functional biomechanical, somatosensory sensitization (peripheral-via tactile paw withdrawal threshold; central-via response to mechanical temporal summation), and diffuse noxious inhibitory control (via conditioned pain modulation) alterations were assessed sequentially in OA (n = 12) and Naïve (n = 12) rats. Joint structural, targeted spinal neuropeptides and differential expression of spinal cord micro-RNAs analyses were conducted at the sacrifice (day (D) 56). Results The MI-RAT model caused important structural damages (reaching 35.77% of cartilage surface) compared to the Naïve group (P < 0.001). This was concomitantly associated with nociceptive sensitization: ipsilateral weight shift to the contralateral hind limb (asymmetry index) from -55.61% ± 8.50% (D7) to -26.29% ± 8.50% (D35) (P < 0.0001); mechanical pain hypersensitivity was present as soon as D7 and persisting until D56 (P < 0.008); central sensitization was evident at D21 (P = 0.038); pain endogenous inhibitory control was distinguished with higher conditioned pain modulation rate (P < 0.05) at D7, D21, and D35 as a reflect of filtrated pain perception. Somatosensory profile alterations of OA rats were translated in a persistent elevation of pro-nociceptive neuropeptides substance P and bradykinin, along with an increased expression of spinal miR-181b (P = 0.029) at D56. Conclusion The MI-RAT OA model is associated, not only with structural lesions and static weight-bearing alterations, but also with a somatosensory profile that encompasses pain centralized sensitization, associated to active endogenous inhibitory/facilitatory controls, and corresponding neuropeptidomic and neuroepigenetic alterations. This preliminary neuroepigenetic research confirms the crucial role of pain endogenous inhibitory control in the development of OA chronic pain (not only hypersensitivity) and validates the MI-RAT model for its study.
Collapse
Affiliation(s)
- Colombe Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Katrine-Ann Cristofanilli
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Marilyn Frezier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Aliénor Delsart
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Johanne Martel-Pelletier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Jean-Pierre Pelletier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Francis Beaudry
- Département de Biomédecine Vétérinaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et L’apprentissage (CIRCA), Université de Montréal, Montreal, QC, Canada
| | - Bertrand Lussier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| | - Alexandre Boyer
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Département de Biomédecine Vétérinaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Eric Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Saint-Hyacinthe, QC, Canada
| |
Collapse
|
4
|
Pfeifer JPH, Stievani FDC, Fernandes CJDC, Rosa GDS, Apolonio EVP, Rossi MC, Zambuzzi WF, Alves ALG. Influence of inflammation on the expression of microRNA-140 in extracellular vesicles from 2D and 3D culture models of synovial-membrane-derived stem cells. Front Bioeng Biotechnol 2024; 12:1416694. [PMID: 39170063 PMCID: PMC11335645 DOI: 10.3389/fbioe.2024.1416694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
Background In osteoarthritis (OA), articular homeostasis is regulated by microRNA-140 that inhibits ADAMTS-5, an enzyme that cleaves aggrecan and stimulates the synthesis of other inflammatory mediators. This study aims to evaluate the expression of microRNA-140 in extracellular vesicles (EVs) derived from equine synovial-membrane-derived mesenchymal stem cells (eqSMMSCs) cultured in monolayer (2D) and three-dimensional (3D) culture models under an in vitro inflammatory environment. Methods Four experimental groups of eqSMMSC cultures were defined for isolation of the EVs. The 2D and 3D control groups were cultured in a conventional cell culture medium, while the 2D-OA and 3D-OA treatment groups were exposed to an OA-like medium containing IL-1β and TNFα. The culture media samples were collected at 24 h, 72 h, and 120 h time points for EV isolation and characterization using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Reverse transcription quantitative polymerase chain reaction was employed to assess the expressions of microRNA-140 in both the cells and EVs. All statistical analyses were conducted at the 5% significance level. Results Encapsulation of the eqSMMSCs protected the cells from the inflammatory media compared to the monolayer cultures. EVs were found in higher concentrations in the 3D-OA cultures. Additionally, higher expressions of microRNA-140 were observed in the cells of the 3D-OA group at 24 and 72 h, whereas microRNA-140 expressions in the EVs were higher in the 3D group at 72 h and in the 2D-OA group at 120 h (p < 0.001). However, the 3D-OA culture showed higher expression of the mRNA Adamts5 in the EVs at 120 h. Conclusion The responses of the eqSMMSCs to inflammatory stimuli involve intracellular expression of microRNA-140 and its subsequent transportation via the EVs, with quicker responses observed in the 3D than 2D cultures. This study sheds light on the behaviors of stem cells in restoring homeostasis in osteoarthritic joints.
Collapse
Affiliation(s)
- João Pedro Hübbe Pfeifer
- Regenerative Medicine Lab, Veterinary Surgery and Animal Reproduction Department, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, Brazil
| | - Fernanda de Castro Stievani
- Regenerative Medicine Lab, Veterinary Surgery and Animal Reproduction Department, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, Brazil
| | - Célio J. da Costa Fernandes
- Biophysics and Pharmacology Department, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Brazil
| | - Gustavo dos Santos Rosa
- Regenerative Medicine Lab, Veterinary Surgery and Animal Reproduction Department, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, Brazil
| | - Emanuel Vitor Pereira Apolonio
- Regenerative Medicine Lab, Veterinary Surgery and Animal Reproduction Department, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, Brazil
| | - Mariana Correa Rossi
- Regenerative Medicine Lab, Veterinary Surgery and Animal Reproduction Department, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, Brazil
| | - Willian Fernando Zambuzzi
- Laboratory of Bioassays and Cellular Dynamics, Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, Brazil
| | - Ana Liz Garcia Alves
- Regenerative Medicine Lab, Veterinary Surgery and Animal Reproduction Department, School of Veterinary Medicine and Animal Science, São Paulo State University - UNESP, Botucatu, Brazil
| |
Collapse
|
5
|
Ramos YFM, Rice SJ, Ali SA, Pastrello C, Jurisica I, Rai MF, Collins KH, Lang A, Maerz T, Geurts J, Ruiz-Romero C, June RK, Thomas Appleton C, Rockel JS, Kapoor M. Evolution and advancements in genomics and epigenomics in OA research: How far we have come. Osteoarthritis Cartilage 2024; 32:858-868. [PMID: 38428513 DOI: 10.1016/j.joca.2024.02.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most prevalent musculoskeletal disease affecting articulating joint tissues, resulting in local and systemic changes that contribute to increased pain and reduced function. Diverse technological advancements have culminated in the advent of high throughput "omic" technologies, enabling identification of comprehensive changes in molecular mediators associated with the disease. Amongst these technologies, genomics and epigenomics - including methylomics and miRNomics, have emerged as important tools to aid our biological understanding of disease. DESIGN In this narrative review, we selected articles discussing advancements and applications of these technologies to OA biology and pathology. We discuss how genomics, deoxyribonucleic acid (DNA) methylomics, and miRNomics have uncovered disease-related molecular markers in the local and systemic tissues or fluids of OA patients. RESULTS Genomics investigations into the genetic links of OA, including using genome-wide association studies, have evolved to identify 100+ genetic susceptibility markers of OA. Epigenomic investigations of gene methylation status have identified the importance of methylation to OA-related catabolic gene expression. Furthermore, miRNomic studies have identified key microRNA signatures in various tissues and fluids related to OA disease. CONCLUSIONS Sharing of standardized, well-annotated omic datasets in curated repositories will be key to enhancing statistical power to detect smaller and targetable changes in the biological signatures underlying OA pathogenesis. Additionally, continued technological developments and analysis methods, including using computational molecular and regulatory networks, are likely to facilitate improved detection of disease-relevant targets, in-turn, supporting precision medicine approaches and new treatment strategies for OA.
Collapse
Affiliation(s)
- Yolande F M Ramos
- Dept. Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarah J Rice
- Biosciences Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shabana Amanda Ali
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Muhammad Farooq Rai
- Department of Biological Sciences, Center for Biotechnology, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annemarie Lang
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC -Hospital Universitario A Coruña, SERGAS, A Coruña, Spain
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - C Thomas Appleton
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jason S Rockel
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Szala D, Kopańska M, Trojniak J, Jabłoński J, Hanf-Osetek D, Snela S, Zawlik I. The Role of MicroRNAs in the Pathophysiology of Osteoarthritis. Int J Mol Sci 2024; 25:6352. [PMID: 38928059 PMCID: PMC11204066 DOI: 10.3390/ijms25126352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Worldwide, osteoarthritis (OA) is the most common cause of joint pain in older people. Many factors contribute to osteoarthritis' development and progression, including secondary osteoarthritis' underlying causes. It is important to note that osteoarthritis affects all four tissues: cartilage, bone, joint capsule, and articular apparatus. An increasingly prominent area of research in osteoarthritis regulation is microRNAs (miRNAs), a small, single-stranded RNA molecule that controls gene expression in eukaryotes. We aimed to assess and summarize current knowledge about the mechanisms of the action of miRNAs and their clinical significance. Osteoarthritis (OA) is affected by the interaction between miRNAs and inflammatory processes, as well as cartilage metabolism. MiRNAs also influence cartilage cell apoptosis, contributing to the degradation of the cartilage in OA. Studies have shown that miRNAs may have both an inhibitory and promoting effect on osteoporosis progression through their influence on molecular mechanisms. By identifying these regulators, targeted treatments for osteoarthritis may be developed. In addition, microRNA may also serve as a biomarker for osteoarthritis. By using these biomarkers, the disease could be detected faster, and early intervention can be instituted to prevent mobility loss and slow deterioration.
Collapse
Affiliation(s)
| | - Marta Kopańska
- Department of Pathophysiology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Julia Trojniak
- Student Research Club “Reh-Tech”, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| | - Jarosław Jabłoński
- Faculty of Orthopaedic and Reumatology, Institute of Medical Sciences, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (J.J.); (D.H.-O.); (S.S.)
- Orthopaedics and Traumatology Clinic, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Dorota Hanf-Osetek
- Faculty of Orthopaedic and Reumatology, Institute of Medical Sciences, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (J.J.); (D.H.-O.); (S.S.)
- Orthopaedics and Traumatology Clinic, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Sławomir Snela
- Faculty of Orthopaedic and Reumatology, Institute of Medical Sciences, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (J.J.); (D.H.-O.); (S.S.)
- Orthopaedics and Traumatology Clinic, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| | - Izabela Zawlik
- Department of General Genetics, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
| |
Collapse
|
7
|
Tan D, Huang Z, Zhao Z, Chen X, Liu J, Wang D, Deng Z, Li W. Single‑cell sequencing, genetics, and epigenetics reveal mesenchymal stem cell senescence in osteoarthritis (Review). Int J Mol Med 2024; 53:2. [PMID: 37937669 PMCID: PMC10688769 DOI: 10.3892/ijmm.2023.5326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/04/2023] [Indexed: 11/09/2023] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by articular cartilage degeneration, secondary bone hyperplasia, inadequate extracellular matrix synthesis and degeneration of articular cartilage. Mesenchymal stem cells (MSCs) can self‑renew and undergo multidirectional differentiation; they can differentiate into chondrocytes. Aging MSCs have a weakened ability to differentiate, and release various pro‑inflammatory cytokines, which may contribute to OA progression; the other mechanism contributing to OA is epigenetic regulation (for instance, DNA methylation, histone modification and regulation of non‑coding RNA). Owing to the self‑renewal and differentiation ability of MSCs, various MSC‑based exogenous cell therapies have been developed to treat OA. The efficacy of MSC‑based therapy is mainly attributed to cytokines, growth factors and the paracrine effect of exosomes. Recently, extensive studies have been conducted on MSC‑derived exosomes. Exosomes from MSCs can deliver a variety of DNA, RNA, proteins and lipids, thereby facilitating MSC migration and cartilage repair. Therefore, MSC‑derived exosomes are considered a promising therapy for OA. The present review summarized the association between MSC aging and OA in terms of genetics and epigenetics, and characteristics of MSC‑derived exosomes, and the mechanism to alleviate OA cartilage damage.
Collapse
Affiliation(s)
- Dunyong Tan
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Zeqi Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Xiaoqiang Chen
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Daping Wang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
8
|
Ji Y, Xiong L, Zhang G, Xu M, Qiu W, Xiu C, Kuang G, Rui Y. Synovial fluid exosome-derived miR-182-5p alleviates osteoarthritis by downregulating TNFAIP8 and promoting autophagy through LC3 signaling. Int Immunopharmacol 2023; 125:111177. [PMID: 37948986 DOI: 10.1016/j.intimp.2023.111177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To investigate the role of exosomal miRNAs from synovial fluid (SF) in osteoarthritis (OA) patients and investigate the underlying molecular mechanism. METHODS Degenerated knee tissues were collected from male and female OA patients. Enzyme-linked immunosorbent assay (ELISA) was used to detect the differences in the expression of inflammatory indicators, including TNF-α, IL-6, and IL-10, between the degenerative and injury groups. Exosomes were isolated from SF using the Exoquick kit, and a microarray was used to identify differentially expressed miRNAs (DEmiRNAs), which were analyzed using bioinformatics. The predicted relationship between DEmiRNAs and target genes was verified using a luciferase reporter gene assay. CCK-8 and transwell assays were used to assess cell viability and migration. Immunofluorescence and TUNEL assay were used to detect cell autophagy and apoptosis. The interaction between proteins was detected by immunoprecipitation and verified by Mab rescue assay. RESULTS The relative expression of TNF-α/IL6 was significantly higher in the degeneration group than in the injury group. The OA degeneration group released significantly more and smaller exosomes than the injury group. The expression of miR-182-5p was markedly reduced in OA patients and had a higher correlation with inflammatory indicators. Tumor necrosis factor α-induced protein 8 (TNFAIP8) was a target of miR-182-5p, and its overexpression promoted chondrocyte proliferation, migration, and invasion and enhanced the wound healing efficiency. We also found a direct interaction of TNFAIP8 with autophagy-related gene 3 (ATG3). TNFAIP8 triggered ATG3 LC3-mediated autophagy. CONCLUSION The downregulation of exosomal miR-182-5p inhibits OA degeneration by targeting TNFAIP8 via the ATG/LC3 pathway.
Collapse
Affiliation(s)
- Yunhan Ji
- Suzhou Medical College of Soochow University, Jiangsu, Suzhou 215000, China; Department of Orthopedic, Wuxi 9th Affiliated Hospital of Soochow University, Jiangsu, Wuxi 214062, China; Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Li Xiong
- Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Gonghao Zhang
- Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Mingze Xu
- Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Wenjun Qiu
- Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Chaoyang Xiu
- Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Gaixia Kuang
- Department of Orthopedic Surgery, Tongren Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200336, China
| | - Yongjun Rui
- Department of Orthopedic, Wuxi 9th Affiliated Hospital of Soochow University, Jiangsu, Wuxi 214062, China.
| |
Collapse
|
9
|
Zhang Z, Zhao S, Sun Z, Zhai C, Xia J, Wen C, Zhang Y, Zhang Y. Enhancement of the therapeutic efficacy of mesenchymal stem cell-derived exosomes in osteoarthritis. Cell Mol Biol Lett 2023; 28:75. [PMID: 37770821 PMCID: PMC10540339 DOI: 10.1186/s11658-023-00485-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Osteoarthritis (OA), a common joint disorder with articular cartilage degradation as the main pathological change, is the major source of pain and disability worldwide. Despite current treatments, the overall treatment outcome is unsatisfactory. Thus, patients with severe OA often require joint replacement surgery. In recent years, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option for preclinical and clinical palliation of OA. MSC-derived exosomes (MSC-Exos) carrying bioactive molecules of the parental cells, including non-coding RNAs (ncRNAs) and proteins, have demonstrated a significant impact on the modulation of various physiological behaviors of cells in the joint cavity, making them promising candidates for cell-free therapy for OA. This review provides a comprehensive overview of the biosynthesis and composition of MSC-Exos and their mechanisms of action in OA. We also discussed the potential of MSC-Exos as a therapeutic tool for modulating intercellular communication in OA. Additionally, we explored bioengineering approaches to enhance MSC-Exos' therapeutic potential, which may help to overcome challenges and achieve clinically meaningful OA therapies.
Collapse
Affiliation(s)
- Zehao Zhang
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Sheng Zhao
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhaofeng Sun
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Chuanxing Zhai
- School of Clinical Medicine, Jining Medical University, Jining, 272067, Shandong, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| | - Yuge Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272029, Shandong, China.
| |
Collapse
|
10
|
Felekkis K, Pieri M, Papaneophytou C. Exploring the Feasibility of Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Osteoarthritis: Challenges and Opportunities. Int J Mol Sci 2023; 24:13144. [PMID: 37685951 PMCID: PMC10487837 DOI: 10.3390/ijms241713144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by progressive cartilage degradation and joint inflammation. As the most common aging-related joint disease, OA is marked by inadequate extracellular matrix synthesis and the breakdown of articular cartilage. However, traditional diagnostic methods for OA, relying on clinical assessments and radiographic imaging, often need to catch up in detecting early-stage disease or i accurately predicting its progression. Consequently, there is a growing interest in identifying reliable biomarkers that can facilitate early diagnosis and prognosis of OA. MicroRNAs (miRNAs) have emerged as potential candidates due to their involvement in various cellular processes, including cartilage homeostasis and inflammation. This review explores the feasibility of circulating miRNAs as diagnostic and prognostic biomarkers in OA, focusing on knee OA while shedding light on the challenges and opportunities associated with their implementation in clinical practice.
Collapse
Affiliation(s)
| | | | - Christos Papaneophytou
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, 46 Makedonitissas Avenue, Nicosia 2417, Cyprus; (K.F.); (M.P.)
| |
Collapse
|
11
|
Mao J, Zhang L. MiR-320a upregulation improves IL-1β-induced osteoarthritis via targeting the DAZAP1 and MAPK pathways. J Orthop Surg Res 2023; 18:541. [PMID: 37507717 PMCID: PMC10386766 DOI: 10.1186/s13018-023-03984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
PURPOSE Osteoarthritis (OA), a constant illness described by articular cartilage degeneration, usually manifested by joint pain and helpless development. Numerous literatures suggest that microRNAs play an important regulatory role in OA, yet the role of miR-320a in OA remains largely obscure. MATERIALS AND METHODS To evaluate the expression of miR-320a mRNA, quantitative real-time polymerase chain reaction was used. Cell counting kit-8 assay, Edu staining, Annexin V-FITC/PI apoptosis detection assay, Caspases 3 staining, and trypan staining were conducted to monitor cell proliferation and apoptosis. Western blot was applied to examine DAZAP1 and ERK/JNK/MAPK associated protein expression. Luciferase reporter gene experiments were performed to confirm the relationships between miR-320a and DAZAP1. ELISA assay was adopted to analyze the secretion of inflammation cytokines IL-6, IL-8, and TNF-α. RESULTS In an in vitro osteoarthritis model caused by IL-1β, miR-320a expression was markedly reduced. Overexpression of miR-320a restored IL-1β-inhibited chondrocyte proliferation, induced apoptosis and inflammatory response. Mechanistically, miR-320a affected HC-A cell proliferation, apoptosis and inflammatory response by regulating DAZAPI. Meanwhile, the ERK/JNK/MAPK pathway is also involved in the regulatory role of miR-320a on OA. CONCLUSION Our results show an important role for miR-320a and provide new therapeutic targets for avoiding and treating osteoarthritis.
Collapse
Affiliation(s)
- Jing Mao
- Department of Rheumatology and Immunology, Jingzhou First People's Hospital, Yangtze University, Jingzhou, Hubei, China.
| | - Lei Zhang
- Department of Dermatology, Jingzhou First People's Hospital, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
12
|
Warmink K, Rios JL, van Valkengoed DR, Vinod P, Korthagen NM, Weinans H. Effects of different obesogenic diets on joint integrity, inflammation and intermediate monocyte levels in a rat groove model of osteoarthritis. Front Physiol 2023; 14:1211972. [PMID: 37520829 PMCID: PMC10372350 DOI: 10.3389/fphys.2023.1211972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: Obesogenic diets aggravate osteoarthritis (OA) by inducing low-grade systemic inflammation, and diet composition may affect OA severity. Here, we investigated the effect of diet on joint damage and inflammation in an OA rat model. Methods: Wistar-Han rats (n = 24) were fed a chow, a high-fat (HF) diet, or a high-fat/high-sucrose (HFS) for 24 weeks. OA was induced unilaterally 12 weeks after the diet onset by groove surgery, and compared to sham surgery or no surgical intervention (contralateral limb). Knee OA severity was determined by OARSI histopathology scoring system. At several timepoints monocyte populations were measured using flow cytometry, and joint macrophage response was determined via CD68 immunohistochemistry staining. Results: Groove surgery combined with HF or HFS diet resulted in higher OARSI scores, and both HF and HFS diet showed increased circulating intermediate monocytes compared to chow fed rats. Additionally, in the HFS group, minimal damage by sham surgery resulted in an increased OARSI score. HFS diet resulted in the largest metabolic dysregulation, synovial inflammation and increased CD68 staining in tibia epiphysis bone marrow. Conclusion: Obesogenic diets resulted in aggravated OA development, even with very minimal joint damage when combined with the sucrose/fat-rich diet. We hypothesize that diet-induced low-grade inflammation primes monocytes and macrophages in the blood, bone marrow, and synovium, resulting in joint damage when triggered by groove OA inducing surgery. When the metabolic dysregulation is larger, as observed here for the HFS diet, the surgical trigger required to induce joint damage may be smaller, or even redundant.
Collapse
Affiliation(s)
- K. Warmink
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - J. L. Rios
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - D. R. van Valkengoed
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - P. Vinod
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
| | - N. M. Korthagen
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Equine Sciences, Utrecht University, Utrecht, Netherlands
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht (UMCU), Utrecht, Netherlands
- Department of Biomechanical Engineering, TU Delft, Delft, Netherlands
| |
Collapse
|
13
|
Sundrani D, Karkhanis A, Randhir K, Panchanadikar T, Joshi S. MicroRNAs targeting peroxisome proliferator-activated receptor (PPAR) gene are differentially expressed in low birth weight placentae. Placenta 2023; 139:51-60. [PMID: 37311266 DOI: 10.1016/j.placenta.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Peroxisome proliferator-activated receptors (PPARs) are activated by natural ligands like fatty acids and influence placental angiogenesis and pregnancy outcome. However, the underlying molecular mechanisms are not clear. This study aims to investigate the association of maternal and placental fatty acid levels with DNA methylation and microRNA regulation of PPARs in the placentae of women delivering low birth weight (LBW) babies. METHODS This study includes 100 women delivering normal birth weight (NBW) baby and 70 women delivering LBW baby. Maternal and placental fatty acids levels were estimated by gas chromatograph. Gene promoter methylation and mRNA expression of PPARs was analyzed using Epitect Methyl-II PCR assay kit and RT-PCR respectively. Expression of miRNAs targeting PPAR mRNA were analyzed using a Qiagen miRCURY LNA PCR Array on RT-PCR. RESULTS Placental docosahexaenoic acid (DHA) levels and placental mRNA expression of PPARα and PPARγ were lower (p < 0.05 for all) in the LBW group. Differential expression of miRNAs (upregulated miR-33a-5p and miR-22-5p; downregulated miR-301a-5p, miR-518d-5p, miR-27b-5p, miR-106a-5p, miR-21-5p, miR-548d-5p, miR-17-5p and miR-20a-5p) (p < 0.05 for all) was observed in the LBW group. Maternal and placental polyunsaturated fatty acids and total omega-3 fatty acids were positively associated while saturated fatty acids were negatively associated with expression of miRNAs (p < 0.05 for all). Placental expression of miRNAs were positively associated with birth weight (p < 0.05 for all). DISCUSSION Our data suggests that maternal fatty acid status is associated with changes in the placental expression of miRNAs targeting PPAR gene in women delivering LBW babies.
Collapse
Affiliation(s)
- Deepali Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India.
| | - Aishwarya Karkhanis
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India
| | - Karuna Randhir
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India
| | - Tushar Panchanadikar
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India
| |
Collapse
|
14
|
Gao F, Mao X, Wu X. Mesenchymal stem cells in osteoarthritis: The need for translation into clinical therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:199-225. [PMID: 37678972 DOI: 10.1016/bs.pmbts.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Widely used for cell-based therapy in various medical fields, mesenchymal stem cells (MSCs) show capacity for anti-inflammatory effects, anti-apoptotic activity, immunomodulation, and tissue repair and regeneration. As such, they can potentially be used to treat osteoarthritis (OA). However, MSCs from different sources have distinct advantages and disadvantages, and various animal models and clinical trials using different sources of MSCs are being conducted in OA regenerative medicine. It is now widely believed that the primary tissue regeneration impact of MSCs is via paracrine effects, rather than direct differentiation and replacement. Cytokines and molecules produced by MSCs, including extracellular vesicles with mRNAs, microRNAs, and bioactive substances, play a significant role in OA repair. This chapter outlines the properties of MSCs and recent animal models and clinical trials involving MSCs-based OA therapy, as well as how the paracrine effect of MSCs acts in OA cartilage repair. Additionally, it discusses challenges and controversies in MSCs-based OA therapy. Despite its limits and unanticipated hazards, MSCs have the potential to be translated into therapeutic therapy for future OA treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xinzhan Mao
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoxin Wu
- Department of Orthopaedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China; Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
15
|
Timing Expression of miR203a-3p during OA Disease: Preliminary In Vitro Evidence. Int J Mol Sci 2023; 24:ijms24054316. [PMID: 36901745 PMCID: PMC10002134 DOI: 10.3390/ijms24054316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative bone disease that involves the microenvironment and macroenvironment of joints. Progressive joint tissue degradation and loss of extracellular matrix elements, together with different grades of inflammation, are important hallmarks of OA disease. Therefore, the identification of specific biomarkers to distinguish the stages of disease becomes a primary necessity in clinical practice. To this aim, we investigated the role of miR203a-3p in OA progression starting from the evidence obtained by osteoblasts isolated from joint tissues of OA patients classified according to different Kellgren and Lawrence (KL) grading (KL ≤ 3 and KL > 3) and hMSCs treated with IL-1β. Through qRT-PCR analysis, it was found that osteoblasts (OBs) derived from the KL ≤ 3 group expressed high levels of miR203a-3p and low levels of ILs compared with those of OBs derived from the KL > 3 group. The stimulation with IL-1β improved the expression of miR203a-3p and the methylation of the IL-6 promoter gene, favoring an increase in relative protein expression. The gain and loss of function studies showed that the transfection with miR203a-3p inhibitor alone or in co-treatments with IL-1β was able to induce the expression of CX-43 and SP-1 and to modulate the expression of TAZ, in OBs derived from OA patients with KL ≤ 3 compared with KL > 3. These events, confirmed also by qRT-PCR analysis, Western blot, and ELISA assay performed on hMSCs stimulated with IL-1β, supported our hypothesis about the role of miR203a-3p in OA progression. The results suggested that during the early stage, miR203a-3p displayed a protective role reducing the inflammatory effects on CX-43, SP-1, and TAZ. During the OA progression the downregulation of miR203a-3p and consequently the upregulation of CX-43/SP-1 and TAZ expression improved the inflammatory response and the reorganization of the cytoskeleton. This role led to the subsequent stage of the disease, where the aberrant inflammatory and fibrotic responses determined the destruction of the joint.
Collapse
|
16
|
SOXC Transcription Factors as Diagnostic Biomarkers and Therapeutic Targets for Arthritis. Int J Mol Sci 2023; 24:ijms24044215. [PMID: 36835620 PMCID: PMC9967432 DOI: 10.3390/ijms24044215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are two common disorders that disrupt the quality of life of millions of people. These two chronic diseases cause damage to the joint cartilage and surrounding tissues of more than 220 million people worldwide. Sex-determining region Y-related (SRY) high-mobility group (HMG) box C, SOXC, is a superfamily of transcription factors that have been recently shown to be involved in various physiological and pathological processes. These include embryonic development, cell differentiation, fate determination, and autoimmune diseases, as well as carcinogenesis and tumor progression. The SOXC superfamily includes SOX4, SOX11, and SOX12, all have a similar DNA-binding domain, i.e., HMG. Herein, we summarize the current knowledge about the role of SOXC transcription factors during arthritis progression and their potential utilization as diagnostic biomarkers and therapeutic targets. The involved mechanistic processes and signaling molecules are discussed. SOX12 appears to have no role in arthritis, however SOX11 is dysregulated and promotes arthritic progression according to some studies but supports joint maintenance and protects cartilage and bone cells according to others. On the other hand, SOX4 upregulation during OA and RA was documented in almost all studies including preclinical and clinical models. Molecular details have indicated that SOX4 can autoregulate its own expression besides regulating the expression of SOX11, a characteristic associated with the transcription factors that protects their abundance and activity. From analyzing the currently available data, SOX4 seems to be a potential diagnostic biomarker and therapeutic target of arthritis.
Collapse
|
17
|
Núñez-Carro C, Blanco-Blanco M, Villagrán-Andrade KM, Blanco FJ, de Andrés MC. Epigenetics as a Therapeutic Target in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:156. [PMID: 37259307 PMCID: PMC9964205 DOI: 10.3390/ph16020156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 08/15/2023] Open
Abstract
Osteoarthritis (OA) is a heterogenous, complex disease affecting the integrity of diarthrodial joints that, despite its high prevalence worldwide, lacks effective treatment. In recent years it has been discovered that epigenetics may play an important role in OA. Our objective is to review the current knowledge of the three classical epigenetic mechanisms-DNA methylation, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) modifications, including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs)-in relation to the pathogenesis of OA and focusing on articular cartilage. The search for updated literature was carried out in the PubMed database. Evidence shows that dysregulation of numerous essential cartilage molecules is caused by aberrant epigenetic regulatory mechanisms, and it contributes to the development and progression of OA. This offers the opportunity to consider new candidates as therapeutic targets with the potential to attenuate OA or to be used as novel biomarkers of the disease.
Collapse
Affiliation(s)
- Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Margarita Blanco-Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C. de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
18
|
Crossland RE, Albiero A, Sanjurjo‐Rodríguez C, Reis M, Resteu A, Anderson AE, Dickinson AM, Pratt AG, Birch M, McCaskie AW, Jones E, Wang X. MicroRNA profiling of low concentration extracellular vesicle RNA utilizing NanoString nCounter technology. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e72. [PMID: 38938446 PMCID: PMC11080777 DOI: 10.1002/jex2.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EV) and the microRNAs that they contain are increasingly recognised as a rich source of informative biomarkers, reflecting pathological processes and fundamental biological pathways and responses. Their presence in biofluids makes them particularly attractive for biomarker identification. However, a frequent caveat in relation to clinical studies is low abundance of EV RNA content. In this study, we used NanoString nCounter technology to assess the microRNA profiles of n = 64 EV low concentration RNA samples (180-49125 pg), isolated from serum and cell culture media using precipitation reagent or sequential ultracentrifugation. Data was subjected to robust quality control parameters based on three levels of limit of detection stringency, and differential microRNA expression analysis was performed between biological subgroups. We report that RNA concentrations > 100 times lower than the current NanoString recommendations can be successfully profiled using nCounter microRNA assays, demonstrating acceptable output ranges for imaging parameters, binding density, positive/negative controls, ligation controls and normalisation quality control. Furthermore, despite low levels of input RNA, high-level differential expression analysis between biological subgroups identified microRNAs of biological relevance. Our results demonstrate that NanoString nCounter technology offers a sensitive approach for the detection and profiling of low abundance EV-derived microRNA, and may provide a solution for research studies that focus on limited sample material.
Collapse
Affiliation(s)
- Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Anna Albiero
- Division of Trauma and Orthopaedic Surgery, Department of SurgeryUniversity of Cambridge Addenbrooke's HospitalCambridgeUK
| | - Clara Sanjurjo‐Rodríguez
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Physiotherapy, Medicine and Biomedical Sciences department, University of A Coruña; University Hospital Complex from A Coruña (Sergas, CHUACInstitute of Biomedical Research of A Coruña (INIBIC)‐Centre of Advanced Scientific Researches (CICA)A CoruñaSpain
| | - Monica Reis
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Centre for Regenerative Medicine, Institute for Regeneration and RepairThe University of Edinburgh, Edinburgh BioQuarterEdinburghUK
| | - Anastasia Resteu
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Amy E. Anderson
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Arthur G. Pratt
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Musculoskeletal Services DirectorateNewcastle upon Tyne Hospitals NHS Foundation TrustUK
| | - Mark Birch
- Division of Trauma and Orthopaedic Surgery, Department of SurgeryUniversity of Cambridge Addenbrooke's HospitalCambridgeUK
| | - Andrew W. McCaskie
- Division of Trauma and Orthopaedic Surgery, Department of SurgeryUniversity of Cambridge Addenbrooke's HospitalCambridgeUK
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal MedicineUniversity of LeedsLeedsUK
| | - Xiao‐nong Wang
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
19
|
Cai Z, Long T, Zhao Y, Lin R, Wang Y. Epigenetic Regulation in Knee Osteoarthritis. Front Genet 2022; 13:942982. [PMID: 35873487 PMCID: PMC9304589 DOI: 10.3389/fgene.2022.942982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a complicated disease with both hereditary and environmental causes. Despite an increase in reports of possible OA risk loci, it has become clear that genetics is not the sole cause of osteoarthritis. Epigenetics, which can be triggered by environmental influences and result in transcriptional alterations, may have a role in OA pathogenesis. The majority of recent research on the epigenetics of OA has been focused on DNA methylation, histone modification, and non-coding RNAs. However, this study will explore epigenetic regulation in OA at the present stage. How genetics, environmental variables, and epigenetics interact will be researched, shedding light for future studies. Their possible interaction and control processes open up new avenues for the development of innovative osteoarthritis treatment and diagnostic techniques.
Collapse
Affiliation(s)
| | - Teng Long
- *Correspondence: Teng Long, ; You Wang,
| | | | | | - You Wang
- *Correspondence: Teng Long, ; You Wang,
| |
Collapse
|
20
|
Fujii Y, Liu L, Yagasaki L, Inotsume M, Chiba T, Asahara H. Cartilage Homeostasis and Osteoarthritis. Int J Mol Sci 2022; 23:6316. [PMID: 35682994 PMCID: PMC9181530 DOI: 10.3390/ijms23116316] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
Healthy limb joints are important for maintaining health and attaining longevity. Endochondral ossification (the replacement of cartilage with bone, occurring during skeletal development) is essential for bone formation, especially in long-axis bones. In contrast to endochondral ossification, chondrocyte populations in articular cartilage persist and maintain joint tissue into adulthood. Articular cartilage, a connective tissue consisting of chondrocytes and their surrounding extracellular matrices, plays an essential role in the mechanical cushioning of joints in postnatal locomotion. Osteoarthritis (OA) pathology relates to disruptions in the balance between anabolic and catabolic signals, that is, the loss of chondrocyte homeostasis due to aging or overuse of cartilages. The onset of OA increases with age, shortening a person's healthy life expectancy. Although many people with OA experience pain, the mainstay of treatment is symptomatic therapy, and no fundamental treatment has yet been established. To establish regenerative or preventative therapies for cartilage diseases, further understanding of the mechanisms of cartilage development, morphosis, and homeostasis is required. In this review, we describe the general development of cartilage and OA pathology, followed by a discussion on anabolic and catabolic signals in cartilage homeostasis, mainly microRNAs.
Collapse
Affiliation(s)
- Yuta Fujii
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Lin Liu
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Lisa Yagasaki
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-851, Japan
| | - Maiko Inotsume
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Tomoki Chiba
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Wu X, Yin S, Yan L, Liu Y, Shang L, Liu J. lncRNA DLEU1 Modulates Proliferation, Inflammation, and Extracellular Matrix Degradation of Chondrocytes through Regulating miR-671-5p. J Immunol Res 2022; 2022:1816217. [PMID: 35647200 PMCID: PMC9132666 DOI: 10.1155/2022/1816217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to be involved in the development of osteoarthritis. However, the expression, function, and mechanism of DLEU1 in OA development remain largely unclear. The present reference demonstrates that DLEU1 is overexpressed in OA specimens compared to control cartilages. Inflammatory cytokines IL-1β, TNF-α, and IL-6 induce DLEU1 expression in chondrocytes. Ectopic expression of DLEU1 induces chondrocyte proliferation, degradation of ECM, and inflammation mediators such as IL-6, IL-8, and TNF-α secretion. Moreover, we demonstrated that DLEU1 targets miR-671-5p expression in chondrocytes. Overexpression of DLEU1 suppresses miR-671-5p expression in chondrocytes. The expression of miR-671-5p is decreased in OA specimens compared to control cartilages. There is a negative correlation between the expression of miR-671-5p and DLEU1 in OA specimens. Inflammatory mediators IL-1β, TNF-α, and IL-6 suppress miR-671-5p expression in OA specimens. Elevated expression of miR-671-5p suppresses chondrocyte proliferation, degradation of ECM, and secretion of inflammation mediators. DLEU1 overexpression promotes chondrocytes proliferation, degradation of ECM, and secretion of inflammation mediators via regulating miR-671-5p. These results suggested that DLEU1 acts as one destructive role in OA development via regulating miR-671-5p.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China 473000
| | - Shuai Yin
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Lihua Yan
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang, Henan, China 473000
| | - Yongxi Liu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China 473000
| | - Lilin Shang
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China 473000
| | - Jun Liu
- Department of Joint Surgery, Tianjin Hospital, Tianjin 300211, China
| |
Collapse
|
22
|
Epigenetic therapy targeting bone marrow mesenchymal stem cells for age-related bone diseases. Stem Cell Res Ther 2022; 13:201. [PMID: 35578312 PMCID: PMC9109405 DOI: 10.1186/s13287-022-02852-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 02/08/2023] Open
Abstract
As global aging accelerates, the prevention and treatment of age-related bone diseases are becoming a critical issue. In the process of senescence, bone marrow mesenchymal stem cells (BMSCs) gradually lose the capability of self-renewal and functional differentiation, resulting in impairment of bone tissue regeneration and disorder of bone tissue homeostasis. Alteration in epigenetic modification is an essential factor of BMSC dysfunction during aging. Its transferability and reversibility provide the possibility to combat BMSC aging by reversing age-related modifications. Emerging evidence demonstrates that epigenetic therapy based on aberrant epigenetic modifications could alleviate the senescence and dysfunction of stem cells. This review summarizes potential therapeutic targets for BMSC aging, introduces some potential approaches to alleviating BMSC aging, and analyzes its prospect in the clinical application of age-related bone diseases.
Collapse
|
23
|
Hu WS, Zhang Q, Li SH, Ai SC, Wu QF. Ten Hotspot MicroRNAs and Their Potential Targets of Chondrocytes Were Revealed in Osteoarthritis Based on Bibliometric Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8229148. [PMID: 35437466 PMCID: PMC9013302 DOI: 10.1155/2022/8229148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/02/2022] [Indexed: 12/29/2022]
Abstract
Background Osteoarthritis (OA) is one of the most common joint disorders and debilitating diseases. Current evidence suggests that microRNAs (miRNAs) play a critical role in the pathogenesis of OA and have great potential as new biomarkers and therapeutic targets. We aimed to analyze the trends and research status on miRNAs in OA and further demonstrate the hotspot miRNAs in OA via CiteSpace and VOSviewer. Methods Publications regarding miRNAs and OA were extracted from the Web of Science (WOS) database on October 30, 2021. We assessed the number of publications, institutions, countries, authors, journals, cited references, and keywords with the help of the software tools CiteSpace and VOSviewer. Results A total of 1109 articles were included. Research related to miRNAs and OA began to appear in 2008, and the overall trend is increasing. Chinese institutions have a leading advantage in the number of publications but lack high-quality and high-cited research and are laggard in co-cited literature. Ten miRNAs including miR-140, miR-146, miR-34, miR-181, miR-27, miR-9, miR-29, miR-21, miR-26, and miR-155 and chondrocytes were revealed as the most obvious miRNAs and a potential target for OA based on bibliometric analysis. More focus will be placed on a comprehensive study on chondrocytes regulated by miRNAs, which may accelerate possible diagnostic biomarkers and diagnostic biomarkers of OA in the future.
Collapse
Affiliation(s)
- Wei-Shang Hu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qi Zhang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Si-Hui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuang-Chun Ai
- Mianyang Hospital of Traditional Chinese Medicine, Mianyang, Sichuan, China
| | - Qiao-Feng Wu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Institute of Acupuncture and Homeostasis Regulation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture & Chronobiology Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
24
|
Izda V, Martin J, Sturdy C, Jeffries MA. DNA methylation and noncoding RNA in OA: Recent findings and methodological advances. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 3. [PMID: 35360044 PMCID: PMC8966627 DOI: 10.1016/j.ocarto.2021.100208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction: Osteoarthritis (OA) is a chronic musculoskeletal disease characterized by progressive loss of joint function. Historically, it has been characterized as a disease caused by mechanical trauma, so-called ‘wear and tear’. Over the past two decades, it has come to be understood as a complex systemic disorder involving gene-environmental interactions. Epigenetic changes have been increasingly implicated. Recent improvements in microarray and next-generation sequencing (NGS) technologies have allowed for ever more complex evaluations of epigenetic aberrations associated with the development and progression of OA. Methods: A systematic review was conducted in the Pubmed database. We curated studies that presented the results of DNA methylation and noncoding RNA research in human OA and OA animal models since 1985. Results: Herein, we discuss recent findings and methodological advancements in OA epigenetics, including a discussion of DNA methylation, including microarray and NGS studies, and noncoding RNAs. Beyond cartilage, we also highlight studies in subchondral bone and peripheral blood mononuclear cells, which highlight widespread and potentially clinically important alterations in epigenetic patterns seen in OA patients. Finally, we discuss epigenetic editing approaches in the context of OA. Conclusions: Although a substantial body of literature has already been published in OA, much is still unknown. Future OA epigenetics studies will no doubt continue to broaden our understanding of underlying pathophysiology and perhaps offer novel diagnostics and/or treatments for human OA.
Collapse
Affiliation(s)
- Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Jake Martin
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Cassandra Sturdy
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
| | - Matlock A. Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, USA
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, And Allergy, Oklahoma City, OK, USA
- Corresponding author. Oklahoma Medical Research Foundation, 825 NE 13th Street, Laboratory MC400, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
25
|
The lncRNA MIAT/miR-181a-5p axis regulates osteopontin (OPN)-mediated proliferation and apoptosis of human chondrocytes in osteoarthritis. J Mol Histol 2022; 53:285-296. [PMID: 35286539 DOI: 10.1007/s10735-022-10067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 02/13/2022] [Indexed: 10/18/2022]
Abstract
Osteoarthritis (OA) is a slow-progressing degenerative joint disease mainly characterized by progressive cartilage loss and subchondral bone remodeling. Osteopontin (OPN) is a matrix extracellular glyco-phosphoprotein capable of regulating the expression levels of multiple factors linked with OA pathogenesis. This study explores the upstream regulatory molecular mechanism of OPN on proliferation and apoptosis of human chondrocytes in OA. Chondrocytes were isolated from OA cartilage and identified by toluidine blue staining and immunofluorescent staining of type II collagen. An MTT assay was used for cell viability, and a BrdU assay was applied for DNA synthesis. Cell apoptosis was detected by a flow cytometry assay. A lncRNA MIAT/miR-181a-5p/OPN axis regulating OA chondrocyte proliferation and apoptosis were identified. miR-181a-5p directly targeted OPN and inhibited OPN expression in OA chondrocytes. miR-181a-5p overexpression inhibited OA chondrocyte viability, suppressed DNA synthesis, and promoted apoptosis. OPN overexpression exerted opposite effects on OA chondrocytes and significantly attenuated the roles of miR-181a-5p overexpression in OA chondrocytes. A total of six long non-coding RNAs (lncRNAs) were predicted to target miR-181a-5p, and MIAT was the most up-regulated in OA cartilage tissues among the six lncRNAs. Through direct targeting, MIAT inhibited miR-181a-5p expression. MIAT silencing inhibited cell viability, suppressed DNA synthesis, and promoted cell apoptosis. Moreover, miR-181a-5p inhibition partially reversed the effects of MIAT silencing on OA chondrocytes. The lncRNA MIAT/miR-181a-5p/OPN axis could modulate OA chondrocyte proliferation and apoptosis. The comprehensive function of this axis on OA requires further in vivo and clinical investigations.
Collapse
|
26
|
Zhao Z, Wang Z, Pei L, Zhou X, Liu Y. Long non-coding ribonucleic acid AFAP1-AS1 promotes chondrocyte proliferation via the miR-512-3p/matrix metallopeptidase 13 (MMP-13) axis. Bioengineered 2022; 13:5386-5395. [PMID: 35188875 PMCID: PMC8973689 DOI: 10.1080/21655979.2022.2031390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-chain non-coding RNAs are reported to be involved in cartilage damage. However, less research on the role of actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) in osteoarthritis. To investigate AFAP1-AS1 function in osteoarthritis development, AFAP1-AS1 and miR-512-3p expression levels in osteoarthritis cartilage and cells were evaluated using RT-qPCR. The downstream target genes of AFAP1-AS1 and miR-512-3p were predicted and validated using luciferase reporter assays. Moreover, a knee osteoarthritis model was established by injecting monoiodoacetate into the knee joints of mice. The effects of AFAP1-AS1 and miR-512-3p on osteoarthritis chondrocyte proliferation and MMP-13, collagen II, and collagen IV expressions were detected in vivo using CCK-8 assay and Western blotting and RT-qPCR, respectively. AFAP1-AS1 expression was upregulated in osteoarthritis cartilage and cells. MiR-512-3p expression was downregulated in osteoarthritis cartilage. AFAP1-AS1 overexpression inhibited miR-512-3p expression in chondrocytes. Furthermore, AFAP1-AS1 over-expression promoted chondrocyte proliferation, and miR-512-3p mimic inhibited chondrocyte proliferation in vivo. AFAP1-AS1 overexpression reduced type II and type IV collagen expression, while miR-512-3p overexpression promoted type II and type IV collagen in vivo. AFAP1-AS1 overexpression enhanced MMP-13 expression in vivo. AFAP1-AS1 overexpression regulated chondrocyte proliferation by inhibiting miR-512-3p expression in vivo. AFAP1-AS1 could be a potential target to treat osteoarthritis by inhibiting miR-512-3p and subsequently inducing chondrocyte proliferation and regulating matrix synthesis.
Collapse
Affiliation(s)
- Zhi Zhao
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Zhiyan Wang
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Lijia Pei
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Xinshe Zhou
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui Province, P. R. China
| |
Collapse
|
27
|
Kwon DG, Kim MK, Jeon YS, Nam YC, Park JS, Ryu DJ. State of the Art: The Immunomodulatory Role of MSCs for Osteoarthritis. Int J Mol Sci 2022; 23:1618. [PMID: 35163541 PMCID: PMC8835711 DOI: 10.3390/ijms23031618] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) has generally been introduced as a degenerative disease; however, it has recently been understood as a low-grade chronic inflammatory process that could promote symptoms and accelerate the progression of OA. Current treatment strategies, including corticosteroid injections, have no impact on the OA disease progression. Mesenchymal stem cells (MSCs) based therapy seem to be in the spotlight as a disease-modifying treatment because this strategy provides enlarged anti-inflammatory and chondroprotective effects. Currently, bone marrow, adipose derived, synovium-derived, and Wharton's jelly-derived MSCs are the most widely used types of MSCs in the cartilage engineering. MSCs exert immunomodulatory, immunosuppressive, antiapoptotic, and chondrogenic effects mainly by paracrine effect. Because MSCs disappear from the tissue quickly after administration, recently, MSCs-derived exosomes received the focus for the next-generation treatment strategy for OA. MSCs-derived exosomes contain a variety of miRNAs. Exosomal miRNAs have a critical role in cartilage regeneration by immunomodulatory function such as promoting chondrocyte proliferation, matrix secretion, and subsiding inflammation. In the future, a personalized exosome can be packaged with ideal miRNA and proteins for chondrogenesis by enriching techniques. In addition, the target specific exosomes could be a gamechanger for OA. However, we should consider the off-target side effects due to multiple gene targets of miRNA.
Collapse
Affiliation(s)
| | | | | | | | | | - Dong Jin Ryu
- Orthopedic Surgery, Inha University Hospital, 22332 Inhang-ro 27, Jung-gu, Incheon 22332, Korea; (D.G.K.); (M.K.K.); (Y.S.J.); (Y.C.N.); (J.S.P.)
| |
Collapse
|
28
|
Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol 2021; 18:67-84. [PMID: 34934171 DOI: 10.1038/s41584-021-00724-w] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Mechanical stimuli have fundamental roles in articular cartilage during health and disease. Chondrocytes respond to the physical properties of the cartilage extracellular matrix (ECM) and the mechanical forces exerted on them during joint loading. In osteoarthritis (OA), catabolic processes degrade the functional ECM and the composition and viscoelastic properties of the ECM produced by chondrocytes are altered. The abnormal loading environment created by these alterations propagates cell dysfunction and inflammation. Chondrocytes sense their physical environment via an array of mechanosensitive receptors and channels that activate a complex network of downstream signalling pathways to regulate several cell processes central to OA pathology. Advances in understanding the complex roles of specific mechanosignalling mechanisms in healthy and OA cartilage have highlighted molecular processes that can be therapeutically targeted to interrupt pathological feedback loops. The potential for combining these mechanosignalling targets with the rapidly expanding field of smart mechanoresponsive biomaterials and delivery systems is an emerging paradigm in OA treatment. The continued advances in this field have the potential to enable restoration of healthy mechanical microenvironments and signalling through the development of precision therapeutics, mechanoregulated biomaterials and drug systems in the near future.
Collapse
|
29
|
Qin Y, Li J, Zhou Y, Yin C, Li Y, Chen M, Du Y, Li T, Yan J. Apolipoprotein D as a Potential Biomarker and Construction of a Transcriptional Regulatory-Immune Network Associated with Osteoarthritis by Weighted Gene Coexpression Network Analysis. Cartilage 2021; 13:1702S-1717S. [PMID: 34719950 PMCID: PMC8808834 DOI: 10.1177/19476035211053824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Synovial inflammation influences the progression of osteoarthritis (OA). Herein, we aimed to identify potential biomarkers and analyze transcriptional regulatory-immune mechanism of synovitis in OA using weighted gene coexpression network analysis (WGCNA). DESIGN A data set of OA synovium samples (GSE55235) was analyzed based on WGCNA. The most significant module with OA was identified and function annotation of the module was performed, following which the hub genes of the module were identified using Pearson correlation and a protein-protein interaction network was constructed. A transcriptional regulatory network of hub genes was constructed using the TRRUST database. The immune cell infiltration of OA samples was evaluated using the single-sample Gene Set Enrichment Analysis (ssGSEA) method. The hub genes coexpressed in multiple tissues were then screened out using data sets of synovium, cartilage, chondrocyte, subchondral bone, and synovial fluid samples. Finally, transcriptional factors and coexpressed hub genes were validated via experiments. RESULTS The turquoise module of GSE55235 was identified via WGCNA. Functional annotation analysis showed that "mineral absorption" and "FoxO signaling pathway" were mostly enriched in the module. JUN, EGR1, FOSB, and KLF4 acted as central nodes in protein-protein interaction network and transcription factors to connect several target genes. "Activated B cell," "activated CD4T cell," "eosinophil," "neutrophil," and "type 17 T helper cell" showed high immune infiltration, while FOSB, KLF6, and MYBL2 showed significant negative correlation with type 17 T helper cell. CONCLUSIONS Our results suggest that the expression level of apolipoprotein D (APOD) was correlated with OA. Furthermore, transcriptional regulatory-immune network was constructed, which may contribute to OA therapy.
Collapse
Affiliation(s)
- Yong Qin
- Department of Orthopedics Surgery, The
Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Li
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yonggang Zhou
- Department of Orthopedics Surgery, The
Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chengliang Yin
- Medical Big Data Research Center,
Medical Innovation Research Division of Chinese PLA General Hospital, Beijing,
China,National Engineering Laboratory for
Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing,
China,Faculty of Medicine, Macau University
of Science and Technology, Macau, China
| | - Yi Li
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ming Chen
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yinqiao Du
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tiejian Li
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jinglong Yan
- Department of Orthopedics Surgery, The
Second Affiliated Hospital of Harbin Medical University, Harbin, China,Jinglong Yan, Department of Orthopedics
Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246
Xuefu Road, Harbin 150086, China.
| |
Collapse
|
30
|
Lara-Barba E, Araya MJ, Hill CN, Bustamante-Barrientos FA, Ortloff A, García C, Galvez-Jiron F, Pradenas C, Luque-Campos N, Maita G, Elizondo-Vega R, Djouad F, Vega-Letter AM, Luz-Crawford P. Role of microRNA Shuttled in Small Extracellular Vesicles Derived From Mesenchymal Stem/Stromal Cells for Osteoarticular Disease Treatment. Front Immunol 2021; 12:768771. [PMID: 34790203 PMCID: PMC8591173 DOI: 10.3389/fimmu.2021.768771] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarticular diseases (OD), such as rheumatoid arthritis (RA) and osteoarthritis (OA) are chronic autoimmune/inflammatory and age-related diseases that affect the joints and other organs for which the current therapies are not effective. Cell therapy using mesenchymal stem/stromal cells (MSCs) is an alternative treatment due to their immunomodulatory and tissue differentiation capacity. Several experimental studies in numerous diseases have demonstrated the MSCs’ therapeutic effects. However, MSCs have shown heterogeneity, instability of stemness and differentiation capacities, limited homing ability, and various adverse responses such as abnormal differentiation and tumor formation. Recently, acellular therapy based on MSC secreted factors has raised the attention of several studies. It has been shown that molecules embedded in extracellular vesicles (EVs) derived from MSCs, particularly those from the small fraction enriched in exosomes (sEVs), effectively mimic their impact in target cells. The biological effects of sEVs critically depend on their cargo, where sEVs-embedded microRNAs (miRNAs) are particularly relevant due to their crucial role in gene expression regulation. Therefore, in this review, we will focus on the effect of sEVs derived from MSCs and their miRNA cargo on target cells associated with the pathology of RA and OA and their potential therapeutic impact.
Collapse
Affiliation(s)
- Eliana Lara-Barba
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Charlotte Nicole Hill
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias Biológicas, Millennium Institute for Immunology and Immunotherapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Cynthia García
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Felipe Galvez-Jiron
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Gabriela Maita
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Farida Djouad
- Institute for Regenerative Medicine and Biotherapy (IRMB), Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
| | - Ana María Vega-Letter
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
31
|
Papathanasiou I, Anastasopoulou L, Tsezou A. Cholesterol metabolism related genes in osteoarthritis. Bone 2021; 152:116076. [PMID: 34174501 DOI: 10.1016/j.bone.2021.116076] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis plays a significant role in skeletal development and the dysregulation of cholesterol-related mechanism has been shown to be involved in the development of cartilage diseases including osteoarthritis (OA). Epidemiological studies have shown an association between elevated serum cholesterol levels and OA. Furthermore, abnormal lipid accumulation in chondrocytes as a result of abnormal regulation of cholesterol homeostasis has been demonstrated to be involved in the development of OA. Although, many in vivo and in vitro studies support the connection between cholesterol and cartilage degradation, the mechanisms underlying the complex interactions between lipid metabolism, especially HDL cholesterol metabolism, and OA remain unclear. The current review aims to address this problem and focuses on key molecular players of the HDL metabolism pathway and their role in ΟΑ pathogenesis. Understanding the complexity of biological processes implicated in OA pathogenesis, such as cholesterol metabolism, may lead to new targets for drug therapy of OA patients.
Collapse
Affiliation(s)
- Ioanna Papathanasiou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larisa, Greece; Department of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Larisa, Greece
| | - Lydia Anastasopoulou
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen, 35392 Giessen, Germany
| | - Aspasia Tsezou
- Department of Biology, University of Thessaly, Faculty of Medicine, Larisa, Greece; Department of Cytogenetics and Molecular Genetics, University of Thessaly, Faculty of Medicine, Larisa, Greece.
| |
Collapse
|
32
|
Foo JB, Looi QH, How CW, Lee SH, Al-Masawa ME, Chong PP, Law JX. Mesenchymal Stem Cell-Derived Exosomes and MicroRNAs in Cartilage Regeneration: Biogenesis, Efficacy, miRNA Enrichment and Delivery. Pharmaceuticals (Basel) 2021; 14:1093. [PMID: 34832875 PMCID: PMC8618513 DOI: 10.3390/ph14111093] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are the small extracellular vesicles secreted by cells for intercellular communication. Exosomes are rich in therapeutic cargos such as microRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids. Recently, many studies have focused on miRNAs as a promising therapeutic factor to support cartilage regeneration. Exosomes are known to contain a substantial amount of a variety of miRNAs. miRNAs regulate the post-transcriptional gene expression by base-pairing with the target messenger RNA (mRNA), leading to gene silencing. Several exosomal miRNAs have been found to play a role in cartilage regeneration by promoting chondrocyte proliferation and matrix secretion, reducing scar tissue formation, and subsiding inflammation. The exosomal miRNA cargo can be modulated using techniques such as cell transfection and priming as well as post-secretion modifications to upregulate specific miRNAs to enhance the therapeutic effect. Exosomes are delivered to the joints through direct injection or via encapsulation within a scaffold for sustained release. To date, exosome therapy for cartilage injuries has yet to be optimized as the ideal cell source for exosomes, and the dose and method of delivery have yet to be identified. More importantly, a deeper understanding of the role of exosomal miRNAs in cartilage repair is paramount for the development of more effective exosome therapy.
Collapse
Affiliation(s)
- Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Qi Hao Looi
- My Cytohealth Sdn. Bhd., D353a, Menara Suezcap 1, KL Gateway, no. 2, Jalan Kerinchi, Gerbang Kerinchi Lestari, Kuala Lumpur 59200, Malaysia;
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Sau Har Lee
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Pei Pei Chong
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
33
|
Housman G, Quillen EE, Stone AC. An evolutionary perspective of DNA methylation patterns in skeletal tissues using a baboon model of osteoarthritis. J Orthop Res 2021; 39:2260-2269. [PMID: 33325553 PMCID: PMC8206284 DOI: 10.1002/jor.24957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/24/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Epigenetic factors, such as DNA methylation, play an influential role in the development of the degenerative joint disease osteoarthritis (OA). These molecular mechanisms have been heavily studied in humans, and although OA affects several other animals in addition to humans, few efforts have taken an evolutionary perspective. This study explores the evolution of OA epigenetics by assessing the relationship between DNA methylation variation and knee OA development in baboons (Papio spp.) and by comparing these findings to human OA epigenetic associations. Genome-wide DNA methylation patterns were identified in bone and cartilage of the right distal femora from 56 pedigreed, adult baboons (28 with and 28 without knee OA) using the Illumina Infinium MethylationEPIC BeadChip. Several significantly differentially methylated positions (DMPs) and regions were found between tissue types. Substantial OA-related differential methylation was also identified in cartilage, but not in bone, suggesting that cartilage epigenetics may be more influential in OA than bone epigenetics. Additionally, some genes containing OA-related DMPs overlap with and display methylation patterns similar to those previously identified in human OA, revealing a mixture of evolutionarily conserved and divergent OA-related methylation patterns in primates. Overall, these findings reinforce the current etiological perspectives of OA and enhance our evolutionary understanding of epigenetic mechanisms associated with OA. This study further establishes baboons as a valuable nonhuman primate model of OA, and continued investigations in baboons will help to disentangle the molecular mechanisms contributing to OA and their evolutionary histories.
Collapse
Affiliation(s)
- Genevieve Housman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,Corresponding author: Genevieve Housman, Section of Genetic Medicine, University of Chicago, 920 East 58th Street, CLSC 317, Chicago, IL 60637, USA. Phone: 574-206-6564. Fax: 773-834-8470.
| | - Ellen E. Quillen
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Anne C. Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
34
|
Chen B, Deng YN, Wang X, Xia Z, He Y, Zhang P, Syed SE, Li Q, Liang S. miR-26a enhances colorectal cancer cell growth by targeting RREB1 deacetylation to activate AKT-mediated glycolysis. Cancer Lett 2021; 521:1-13. [PMID: 34419497 DOI: 10.1016/j.canlet.2021.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
We previously reported the inhibitory effects of microRNA-26a (miR-26a) on the conversion of pyruvate to acetyl coenzyme A in glucose metabolism by directly targeting pyruvate dehydrogenase protein X component in colorectal cancer (CRC) cells (Chen B et al., BMC Cancer 2014). Here, using microRNA in situ hybridization, we confirmed that miR-26a levels were elevated in 77 human CRC tissue samples and further investigated the key miR-26a-mediated metabolic regulation elements and signaling pathways in CRC cells through quantitative proteomic dissection combined with cancer cell biology and biochemical loss-of-function analysis. We found that AKT transcription signaling was a target pathway via miR-26a-mediated deacetylation modification of Ras-responsive element-binding protein 1 (RREB1) at the Lys-60 residue. miR-26a improved the deacetylation level of RREB1, thus contributing to RREB1 binding to the AKT1 promoter to activate AKT transcription and its related signaling pathway in glycolysis. Moreover, miR-26a promoted CRC tumorigenesis in CRC cells and subcutaneous xenograft mice. Thus, miR-26a is a key regulator of CRC tumorigenesis that mediates the deacetylation modification of RREB1 to enhance AKT1 transcription and downstream target gene expression in glycolysis for CRC growth.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| | - Ya-Nan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| | - Zijing Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China; Department of Rheumatology and Immunology, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China.
| | - Yu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, PR China.
| | - Samina Ejaz Syed
- Department of Biochemistry and Biotechnology, Baghdad Campus, The Islamia University of Bahawalpur, Pakistan.
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, PR China.
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, And Collaborative Innovation Center for Biotherapy, Chengdu, PR China.
| |
Collapse
|
35
|
Qiao K, Chen Q, Cao Y, Li J, Xu G, Liu J, Cui X, Tian K, Zhang W. Diagnostic and Therapeutic Role of Extracellular Vesicles in Articular Cartilage Lesions and Degenerative Joint Diseases. Front Bioeng Biotechnol 2021; 9:698614. [PMID: 34422779 PMCID: PMC8371972 DOI: 10.3389/fbioe.2021.698614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Two leading contributors to the global disability are cartilage lesions and degenerative joint diseases, which are characterized by the progressive cartilage destruction. Current clinical treatments often fail due to variable outcomes and an unsatisfactory long-term repair. Cell-based therapies were once considered as an effective solution because of their anti-inflammatory and immunosuppression characteristics as well as their differentiation capacity to regenerate the damaged tissue. However, stem cell-based therapies have inherent limitations, such as a high tumorigenicity risk, a low retention, and an engraftment rate, as well as strict regulatory requirements, which result in an underwhelming therapeutic effect. Therefore, the non-stem cell-based therapy has gained its popularity in recent years. Extracellular vesicles (EVs), in particular, like the paracrine factors secreted by stem cells, have been proven to play a role in mediating the biological functions of target cells, and can achieve the therapeutic effect similar to stem cells in cartilage tissue engineering. Therefore, a comprehensive review of the therapeutic role of EVs in cartilage lesions and degenerative joint diseases can be discussed both in terms of time and favorability. In this review, we summarized the physiological environment of a joint and its pathological alteration after trauma and consequent changes in EVs, which are lacking in the current literature studies. In addition, we covered the potential working mechanism of EVs in the repair of the cartilage and the joint and also discussed the potential therapeutic applications of EVs in future clinical use.
Collapse
Affiliation(s)
- Kai Qiao
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Chen
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yiguo Cao
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jie Li
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Gang Xu
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiaqing Liu
- Qingdao University of Science and Technology, Qingdao, China
| | - Xiaolin Cui
- First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Kang Tian
- First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Weiguo Zhang
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
Inflammation: a putative link between phosphate metabolism and cardiovascular disease. Clin Sci (Lond) 2021; 135:201-227. [PMID: 33416083 PMCID: PMC7796315 DOI: 10.1042/cs20190895] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Dietary habits in the western world lead to increasing phosphate intake. Under physiological conditions, extraosseous precipitation of phosphate with calcium is prevented by a mineral buffering system composed of calcification inhibitors and tight control of serum phosphate levels. The coordinated hormonal regulation of serum phosphate involves fibroblast growth factor 23 (FGF23), αKlotho, parathyroid hormone (PTH) and calcitriol. A severe derangement of phosphate homeostasis is observed in patients with chronic kidney disease (CKD), a patient collective with extremely high risk of cardiovascular morbidity and mortality. Higher phosphate levels in serum have been associated with increased risk for cardiovascular disease (CVD) in CKD patients, but also in the general population. The causal connections between phosphate and CVD are currently incompletely understood. An assumed link between phosphate and cardiovascular risk is the development of medial vascular calcification, a process actively promoted and regulated by a complex mechanistic interplay involving activation of pro-inflammatory signalling. Emerging evidence indicates a link between disturbances in phosphate homeostasis and inflammation. The present review focuses on critical interactions of phosphate homeostasis, inflammation, vascular calcification and CVD. Especially, pro-inflammatory responses mediating hyperphosphatemia-related development of vascular calcification as well as FGF23 as a critical factor in the interplay between inflammation and cardiovascular alterations, beyond its phosphaturic effects, are addressed.
Collapse
|
37
|
Human Umbilical Cord Mesenchymal Stem Cells in Combination with Hyaluronic Acid Ameliorate the Progression of Knee Osteoarthritis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The aim of this study is to evaluate the feasibility and usefulness of the human umbilical cord mesenchymal stem cells (hUC-MSCs) and hyaluronan acid (HA) combination to attenuate osteoarthritis progression in the knee while simultaneously providing some insights on the mitigation mechanism. In vitro, the effect of hUC-MSCs with HA treatment on chondrocyte cell viability and the cytokine profile were analyzed. Additionally, the antioxidation capability of hUC-MSCs-CM (conditioned medium) with HA towards H2O2-induced chondrocyte cell damage was evaluated. The HA addition increased the hUC-MSC antioxidation capability and cytokine secretion, such as Dickkopf-related protein 1 (DKK-1) and hepatocyte growth factor (HGF), while no adverse effect on the cell viability was observed. In vivo, the intra-articular injection of hUC-MSCs with HA to a mono-iodoacetate (MIA)-induced knee osteoarthritis (KOA) rat model was performed and investigated. Attenuation of the KOA progression in the MIA-damaged rat model was seen best in hUC-MSCs with a HA combination compared to the vehicle control or each individual element. Combining hUC-MSCs and HA resulted in a synergistic effect, such as increasing the cell therapeutic capability while incurring no observable adverse effects. Therefore, this combinatorial therapy is feasible and has promising potential to ameliorate KOA progression.
Collapse
|
38
|
Association between miRNA Target Sites and Incidence of Primary Osteoarthritis in Women from Volga-Ural Region of Russia: A Case-Control Study. Diagnostics (Basel) 2021; 11:diagnostics11071222. [PMID: 34359306 PMCID: PMC8306068 DOI: 10.3390/diagnostics11071222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Over the past decades, numerous studies on the genetic markers of osteoarthritis (OA) have been conducted. MiRNA targets sites are a promising new area of research. In this study, we analyzed the polymorphic variants in 3′ UTR regions of COL1A1, COL11A1, ADAMTS5, MMP1, MMP13, SOX9, GDF5, FGF2, FGFR1, and FGFRL1 genes to examine the association between miRNA target site alteration and the incidence of OA in women from the Volga-Ural region of Russia using competitive allele-specific PCR. The T allele of the rs9659030 was associated with generalized OA (OR = 2.0), whereas the C allele of the rs229069 was associated with total OA (OR = 1.43). The T allele of the rs13317 was associated with the total OA (OR = 1.67). After Benjamini-Hochberg correction, only rs13317 remained statistically significant. According to ethnic heterogeneity, associations between the T allele (rs1061237) with OA in women of Russian descent (OR = 1.77), the G allele (rs6854081) in women of Tatar descent (OR = 4.78), the C allele (rs229069) and the T allele (rs73611720) in women of mixed descent and other ethnic groups (OR = 2.25 and OR = 3.02, respectively) were identified. All associations remained statistically significant after Benjamini-Hochberg correction. Together, this study identified miRNA target sites as a genetic marker for the development of OA in various ethnic groups.
Collapse
|
39
|
Both microRNA-455-5p and -3p repress hypoxia-inducible factor-2α expression and coordinately regulate cartilage homeostasis. Nat Commun 2021; 12:4148. [PMID: 34230481 PMCID: PMC8260725 DOI: 10.1038/s41467-021-24460-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA), the most common aging-related joint disease, is caused by an imbalance between extracellular matrix synthesis and degradation. Here, we discover that both strands of microRNA-455 (miR-455), -5p and -3p, are up-regulated by Sox9, an essential transcription factor for cartilage differentiation and function. Both miR-455-5p and -3p are highly expressed in human chondrocytes from normal articular cartilage and in mouse primary chondrocytes. We generate miR-455 knockout mice, and find that cartilage degeneration mimicking OA and elevated expression of cartilage degeneration-related genes are observed at 6-months-old. Using a cell-based miRNA target screening system, we identify hypoxia-inducible factor-2α (HIF-2α), a catabolic factor for cartilage homeostasis, as a direct target of both miR-455-5p and -3p. In addition, overexpression of both miR-455-5p and -3p protect cartilage degeneration in a mouse OA model, demonstrating their potential therapeutic value. Furthermore, knockdown of HIF-2α in 6-month-old miR-455 knockout cartilage rescues the elevated expression of cartilage degeneration-related genes. These data demonstrate that both strands of a miRNA target the same gene to regulate articular cartilage homeostasis.
Collapse
|
40
|
Pan W, Wang H, Ruan J, Zheng W, Chen F, Kong J, Wang Y. lncRNA myocardial infarction-associated transcript (MIAT) knockdown alleviates LPS-induced chondrocytes inflammatory injury via regulating miR-488-3p/sex determining region Y-related HMG-box 11 (SOX11) axis. Open Life Sci 2021; 16:511-522. [PMID: 34124371 PMCID: PMC8168443 DOI: 10.1515/biol-2021-0023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 10/18/2020] [Accepted: 11/15/2020] [Indexed: 01/06/2023] Open
Abstract
Long noncoding RNA (lncRNA) has been shown to be involved in the development of osteoarthritis (OA), an age-related bone and joint disease. However, the function and possible molecular mechanism of lncRNA myocardial infarction-associated transcript (MIAT) in lipopolysaccharide (LPS)-induced chondrocytes injury model remain unexplored. Cell viability and apoptosis were detected by methyl thiazolyl tetrazolium (MTT) and flow cytometry, respectively. Western blot was used to detect protein expression. The concentrations of inflammatory factors were estimated by enzyme-linked immunosorbent assay (ELISA). Abundances of MIAT, microRNA-488-3p (miR-488-3p), and sex determining region Y-related HMG-box 11 (SOX11) were examined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to analyze the interaction between miR-488-3p and MIAT or SOX11. LPS caused chondrocytes injury by reducing cell activity and increasing apoptosis rate and inflammatory factor secretions. Higher levels of MIAT and SOX11 and lower miR-488-3p were observed in LPS-treated C28/I2 cells. Importantly, knockdown of MIAT attenuated the LPS-induced cell injury by targeting miR-488-3p, and miR-488-3p overexpression weakened the LPS-induced cell injury by targeting SOX11. Additionally, repression of MIAT inactivated the LPS-induced NF-κB signaling pathway by decreasing SOX11 and increasing miR-488-3p. Knockdown of MIAT alleviated the LPS-induced chondrocytes injury by inhibiting the NF-κB signaling pathway mediated by the miR-488-3p/SOX11 axis.
Collapse
Affiliation(s)
- Weiwei Pan
- Department of Orthopaedic, Taizhou Municipal Hospital, No. 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, Zhejiang, China
| | - Haibao Wang
- Department of Orthopaedic, Taizhou Municipal Hospital, No. 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, Zhejiang, China
| | - Jianwei Ruan
- Department of Orthopaedic, Taizhou Municipal Hospital, No. 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, Zhejiang, China
| | - Wenbiao Zheng
- Department of Orthopaedic, Taizhou Municipal Hospital, No. 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, Zhejiang, China
| | - Fanghu Chen
- Department of Orthopaedic, Taizhou Municipal Hospital, No. 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, Zhejiang, China
| | - Jinsong Kong
- Department of Orthopaedic, Taizhou Municipal Hospital, No. 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, Zhejiang, China
| | - Yong Wang
- Department of Orthopaedic, Taizhou Municipal Hospital, No. 381, Zhongshan East Road, Jiaojiang District, Taizhou 318000, Zhejiang, China
| |
Collapse
|
41
|
Adipose-Derived Mesenchymal Stromal Cells Treated with Interleukin 1 Beta Produced Chondro-Protective Vesicles Able to Fast Penetrate in Cartilage. Cells 2021; 10:cells10051180. [PMID: 34066077 PMCID: PMC8151616 DOI: 10.3390/cells10051180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 01/14/2023] Open
Abstract
The study of the miRNA cargo embedded in extracellular vesicles (EVs) released from adipose-derived mesenchymal stromal cells (ASC) preconditioned with IL-1β, an inflammatory stimulus driving osteoarthritis (OA), along with EVs-cartilage dynamic interaction represent poorly explored fields and are the purpose of the present research. ASCs were isolated from subcutaneous adipose tissue and EVs collected by ultracentrifugation. Shuttled miRNAs were scored by high-throughput screening and analyzed through bioinformatics approach that predicted the potentially modulated OA-related pathways. Fluorescently labeled EVs incorporation into OA cartilage explants was followed in vitro by time-lapse coherent anti-Stokes Raman scattering; second harmonic generation and two-photon excited fluorescence. After IL-1β preconditioning, 7 miRNA were up-regulated, 4 down-regulated, 37 activated and 17 silenced. Bioinformatics allowed to identify miRNAs and target genes mainly involved in Wnt, Notch, TGFβ and Indian hedgehog (IHH) pathways, cartilage homeostasis, immune/inflammatory responses, cell senescence and autophagy. As well, ASC-EVs steadily diffuse in cartilage cells and matrix, reaching a plateau 16 h after administration. Overall, ASCs preconditioned with IL-1β allows secretion of EVs embedded with a chondro-protective miRNA cargo, able to fast penetrate in collagen-rich areas of cartilage with tissue saturation in a day. Further functional studies exploring the EVs dose-effects are needed to achieve clinical relevance.
Collapse
|
42
|
Wang XJ, Wei L, Xue Y, Li RS. Experimental observation of the sequence of tibial plateau chondrocyte and matrix degeneration in spontaneous osteoarthritis in Guinea pigs. BMC Musculoskelet Disord 2021; 22:395. [PMID: 33910538 PMCID: PMC8080336 DOI: 10.1186/s12891-021-04281-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/20/2021] [Indexed: 12/05/2022] Open
Abstract
Background To observe the sequence of chondrocyte degeneration and matrix degradation in the superficial surface cartilage of the tibial plateau in guinea pigs with spontaneous knee osteoarthritis (OA). Methods Sixty guinea pigs were euthanized at the ages of 8 months (n = 20),10 months (n = 20) and 12 months (n = 20) respectively. The degree of degeneration of the tibial plateau cartilage was evaluated by Osteoarthritis Research Society International (OARSI) score. The levels of Aggrecan,CollagenX,MMP-13 and Caspase-3 in the chondrocytes were detected by immunohistochemistry (IHC). The serum concentration of CTX-II was measured and compared. Western blot analysis was used to detect the levels of Aggrecan,CollagenX,MMP-13 and Caspase-3 in the cartilage tissue. Results The OARSI scores both in 8-month-old group and 10-month-old group were lower than that in the 12-month-old group. The levels of Aggrecan in articular chondrocyte were higher both in 8-month-old group and 10-month-old group than that in 12-month-old group. The level of Collagen X increased with the age of guinea pigs. And the levels of MMP-13 and caspase-3 both in 10-month-old group and 12-month-old group were higher than those in 8-month-old group. The concentration of CTX-II in serum increased significantly in 12 months old group. Conclusion The superficial chondrocytes of the tibial plateau first appeared to be hypertrophic and then apoptotic, and the matrix was further degraded when spontaneous knee osteoarthritis occurred in guinea pigs. Changes in the physiological state of chondrocytes are the initiating factors in the pathogenesis of knee OA.
Collapse
Affiliation(s)
- Xiao-Jian Wang
- Department of Orthopaedic Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030012, China. .,Precision Medicine Center, Shanxi Provincial People's Hospital, Taiyuan, China.
| | - Lei Wei
- Warren Alpert Medical School of Brown University, Providence, USA
| | - Yan Xue
- Warren Alpert Medical School of Brown University, Providence, USA
| | - Rong-Shan Li
- Precision Medicine Center, Shanxi Provincial People's Hospital, Taiyuan, China
| |
Collapse
|
43
|
PDCD4-mediated downregulation of Listeria monocytogenes burden in macrophages. Cent Eur J Immunol 2021; 46:38-46. [PMID: 33897282 PMCID: PMC8056355 DOI: 10.5114/ceji.2021.105244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/03/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Macrophages are effector cells of the innate immune system and defend against invading pathogens. Previous reports have shown that infection with Listeria monocytogenes upregulates miR-21a expression in macrophages. Aim of the study We aimed to verify whether programmed cell death 4 (PDCD4) is involved in the high bacterial burden observed in macrophages during late-stage L. monocytogenes infections. Material and methods We examined the expression of miR-21a and its known target PDCD4 in macrophages after L. monocytogenes infection. The macrophages’ uptake ability of L. monocytogenes was measured using FluoSpheres Carboxylate-modified microspheres. We depleted PDCD4 by transfecting macrophages with siPDCD4. Results In macrophages, PDCD4 protein was downregulated 5 h, but not 2 h, after L. monocytogenes infection. Our results validated the hypothesis that PDCD4-depleted macrophages present a higher L. monocytogenes burden. Moreover, we found that the activation of c-Jun and STAT3 accompanied PDCD4 downregulation. Conclusions Our results showed that PDCD4 mediated the suppression of L. monocytogenes infection in macrophages via c-Jun/STAT3 signalling activation.
Collapse
|
44
|
Yang Y, Wei J, Li J, Cui Y, Zhou X, Xie J. Lipid metabolism in cartilage and its diseases: a concise review of the research progress. Acta Biochim Biophys Sin (Shanghai) 2021; 53:517-527. [PMID: 33638344 DOI: 10.1093/abbs/gmab021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
The homeostasis of the vertebrate body depends on anabolic and catabolic activities that are closely linked the inside and outside of the cell. Lipid metabolism plays an essential role in these metabolic activities. Although a large amount of evidence shows that normal lipid metabolism guarantees the conventional physiological activities of organs in the vertebrate body and that abnormal lipid metabolism plays an important role in the occurrence and deterioration of cardiovascular-related diseases, such as obesity, atherosclerosis, and type II diabetes, little is known about the role of lipid metabolism in cartilage and its diseases. This review aims to summarize the latest advances about the function of lipid metabolism in cartilage and its diseases including osteoarthritis, rheumatoid arthritis, and cartilage tumors. With the gradual in-depth understanding of lipid metabolism in cartilage, treatment methods could be explored to focus on this metabolic process in various cartilage diseases.
Collapse
Affiliation(s)
- Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jiachi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
45
|
miR-122/SIRT1 axis regulates chondrocyte extracellular matrix degradation in osteoarthritis. Biosci Rep 2021; 40:224116. [PMID: 32395770 PMCID: PMC7308613 DOI: 10.1042/bsr20191908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 04/11/2020] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Background/Aims: MicroRNAs (miRNAs) are involved in the pathogenesis of osteoarthritis (OA). The present study aimed to investigate the potential function of miR-122 in the development of OA and its potential molecular mechanisms. Methods: The expression of miR-122, silent information regulator 1 (SIRT1), collagen II, aggrecan, matrix metalloproteinase (MMP) 13 (MMP13) and ADAMTS4 in OA cartilage was detected by RT-qPCR. Target gene prediction and screening, luciferase reporter assay were used to verify downstream target genes of miR-122. Results: Compared with osteonecrosis, the expression of miR-122 was significantly increased in OA cartilage, while the expression of SIRT1 was significantly decreased. Overexpression of miR-122 increased the expression of extracellular matrix (ECM) catabolic factors, for example disintegrins, MMPs and metalloproteinases with platelet reaction protein motifs, and inhibited the expression of synthetic metabolic genes such as collagen II and aggregating proteoglycan. Inhibition of miR-122 expression had the opposite effect. Furthermore, SIRT1 was identified as a direct target of miR-122. SIRT1 was significantly inhibited by miR-122 overexpression. Knockdown of SIRT1 reversed the degradation of chondrocyte ECM by miR-122 inhibitors. Conclusion: The miR-122/SIRT1 axis can regulate the degradation of ECM in OA, thus providing new insights into the treatment of OA.
Collapse
|
46
|
Sundrani DP, Karkhanis AR, Joshi SR. Peroxisome Proliferator-Activated Receptors (PPAR), fatty acids and microRNAs: Implications in women delivering low birth weight babies. Syst Biol Reprod Med 2021; 67:24-41. [PMID: 33719831 DOI: 10.1080/19396368.2020.1858994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Low birth weight (LBW) babies are associated with neonatal morbidity and mortality and are at increased risk for noncommunicable diseases (NCDs) in later life. However, the molecular determinants of LBW are not well understood. Placental insufficiency/dysfunction is the most frequent etiology for fetal growth restriction resulting in LBW and placental epigenetic processes are suggested to be important regulators of pregnancy outcome. Early life exposures like altered maternal nutrition may have long-lasting effects on the health of the offspring via epigenetic mechanisms like DNA methylation and microRNA (miRNA) regulation. miRNAs have been recognized as major regulators of gene expression and are known to play an important role in placental development. Angiogenesis in the placenta is known to be regulated by transcription factor peroxisome proliferator-activated receptor (PPAR) which is activated by ligands such as long-chain-polyunsaturated fatty acids (LCPUFA). In vitro studies in different cell types indicate that fatty acids can influence epigenetic mechanisms like miRNA regulation. We hypothesize that maternal fatty acid status may influence the miRNA regulation of PPAR genes in the placenta in women delivering LBW babies. This review provides an overview of miRNAs and their regulation of PPAR gene in the placenta of women delivering LBW babies.Abbreviations: AA - Arachidonic Acid; Ago2 - Argonaute2; ALA - Alpha-Linolenic Acid; ANGPTL4 - Angiopoietin-Like Protein 4; C14MC - Chromosome 14 miRNA Cluster; C19MC - Chromosome 19 miRNA Cluster; CLA - Conjugated Linoleic Acid; CSE - Cystathionine γ-Lyase; DHA - Docosahexaenoic Acid; EFA - Essential Fatty Acids; E2F3 - E2F transcription factor 3; EPA - Eicosapentaenoic Acid; FGFR1 - Fibroblast Growth Factor Receptor 1; GDM - Gestational Diabetes Mellitus; hADMSCs - Human Adipose Tissue-Derived Mesenchymal Stem Cells; hBMSCs - Human Bone Marrow Mesenchymal Stem Cells; HBV - Hepatitis B Virus; HCC - Hepatocellular Carcinoma; HCPT - Hydroxycamptothecin; HFD - High-Fat Diet; Hmads - Human Multipotent Adipose-Derived Stem; HSCS - Human Hepatic Stellate Cells; IUGR - Intrauterine Growth Restriction; LA - Linoleic Acid; LBW - Low Birth Weight; LCPUFA - Long-Chain Polyunsaturated Fatty Acids; MEK1 - Mitogen-Activated Protein Kinase 1; MiRNA - MicroRNA; mTOR - Mammalian Target of Rapamycin; NCDs - NonCommunicable Diseases; OA - Oleic Acid; PASMC - Pulmonary Artery Smooth Muscle Cell; PLAG1 - Pleiomorphic Adenoma Gene 1; PPAR - Peroxisome Proliferator-Activated Receptor; PPARα - PPAR alpha; PPARγ - PPAR gamma; PPARδ - PPAR delta; pre-miRNA - precursor miRNA; RISC - RNA-Induced Silencing Complex; ROS - Reactive Oxygen Species; SAT - Subcutaneous Adipose Tissue; WHO - World Health Organization.
Collapse
Affiliation(s)
- Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Aishwarya R Karkhanis
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
47
|
Aili D, Wu T, Gu Y, Chen Z, Wang W. Knockdown of long non-coding RNA KCNQ1OT1 suppresses the progression of osteoarthritis by mediating the miR-211-5p/TCF4 axis in vitro. Exp Ther Med 2021; 21:455. [PMID: 33747189 DOI: 10.3892/etm.2021.9886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/17/2020] [Indexed: 01/02/2023] Open
Abstract
Numerous studies have reported the critical roles of long non-coding RNAs (lncRNAs) in the regulation of osteoarthritis (OA) development. The present study aimed to assess the function and regulatory mechanism of a lncRNA, KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1), in OA in vitro. C28/I2 cells were treated with lipopolysaccharide (LPS) to generate an in vitro OA model. The relative expression levels of KCNQ1OT1, microRNA (miR)-211-5p and transcription factor 4 (TCF4) were determined via reverse transcription-quantitative polymerase chain reaction. The associations between KCNQ1OT1, miR-211-5p and TCF4 were confirmed using a dual-luciferase reporter assay. Furthermore, cell viability was assessed using the MTT assay. Inflammatory cytokine levels were measured using ELISA. The protein expression levels of matrix metalloproteinase-3/13, collagen II/X and TCF4 were detected by western blotting. KCNQ1OT1 and TCF4 were highly expressed in the cartilage tissues of patients with OA and C28/I2 cells treated with LPS (OA cells), whereas miR-211-5p was downregulated concomitantly in OA tissues and cells. Knockdown of KCNQ1OT1 stimulated cell viability, and suppressed the inflammation and degradation of the extracellular matrix (ECM) in OA cells. In addition, overexpression of miR-211-5p stimulated cell viability, and inhibited inflammation and degradation of the ECM in OA cells. Notably, miR-211-5p was revealed to be the target of, and was negatively regulated by, KCNQ1OT1. TCF4 was targeted and negatively modulated by miR-211-5p. Transfection of cells with the miR-211-5p inhibitor or pcDNA-TCF4 reversed the suppressive effects of short hairpin RNA (sh)-KCNQ1OT1 on inflammation and ECM degradation, as well as the promotive effect of sh-KCNQ1OT1 on viability in OA in vitro. Therefore, KCNQ1OT1 may regulate the miR-211-5p/TCF4 axis to ameliorate OA in vitro.
Collapse
Affiliation(s)
- Dilihumaer Aili
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Tong Wu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yuan Gu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ziyuan Chen
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Wanchun Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
48
|
Miranda-Duarte A, Borgonio-Cuadra VM, González-Huerta NC, Rojas-Toledo EX, Ahumada-Pérez JF, Morales-Hernández E, Pérez-Hernández N, Rodríguez-Pérez JM, Vargas-Alarcón G. Are functional variants of the microRNA-146a gene associated with primary knee OA? Evidence in Mexican mestizo population. Mol Biol Rep 2021; 48:1549-1557. [PMID: 33590413 DOI: 10.1007/s11033-021-06207-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/29/2021] [Indexed: 01/10/2023]
Abstract
MicroRNA-146a (miR-146a) is an inflammatory response regulator whose expression is deregulated in osteoarthritis (OA); variations in the miR-146a gene could affect OA risk. This study aimed to analyze the association between two functional variants of the miR-146a gene and primary knee OA in Mexican mestizo population. Methods and Results. A case-control study was conducted with cases defined as individuals aged ≥ 40 years with primary knee OA grade ≥ 2, according to the Kellgren-Lawrence system. Controls were volunteers with no primary knee OA with radiographic grade < 2. TaqMan allelic discrimination assays genotyped the rs2910164 and rs57095329. Allelic and genotypic frequencies, as well as the Hardy-Weinberg equilibrium (HWE), were calculated. The genetic association was tested under codominant, dominant, and recessive models. Non-conditional logistic regressions were carried out to estimate the association magnitude. We included 310 cases and 379 controls. Despite rs2910164 being in HWE, there was no association under codominant, dominant, and recessive models. In women with OA grade 2, the codominant model found a trend between the CC genotype and increased risk [OR (95% CI) 1.6 (0.7-3.5)]; the same trend was found in OA grade 4 in the codominant and recessive models [1.8 (0.6-5.4) and 2.0 (0.7-5.9)]. Conversely, in men with OA grade 4, the CC genotype tended to be associated with a lower risk in the codominant and recessive models [0.6 (0.1-6.0) and 0.5 (0.1-5.1)]. Conclusion. Our results show that miR-146a gene variants are not significantly associated with primary knee OA in Mexican mestizos.
Collapse
Affiliation(s)
- Antonio Miranda-Duarte
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico.
| | - Verónica Marusa Borgonio-Cuadra
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Norma Celia González-Huerta
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Emma Xochitl Rojas-Toledo
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Juan Francisco Ahumada-Pérez
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Eugenio Morales-Hernández
- Servicio de Radiología, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", México Xochimilco 289, Arenal de Guadalupe, Del. Tlalpan, CP 14389, Mexico City, Mexico
| | - Nonanzit Pérez-Hernández
- Departamento de Biología Molecular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Col. Sección XVI, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - José Manuel Rodríguez-Pérez
- Departamento de Biología Molecular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Col. Sección XVI, Del. Tlalpan, CP 14080, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Departamento de Biología Molecular, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Col. Sección XVI, Del. Tlalpan, CP 14080, Mexico City, Mexico
| |
Collapse
|
49
|
Horita M, Farquharson C, Stephen LA. The role of miR-29 family in disease. J Cell Biochem 2021; 122:696-715. [PMID: 33529442 PMCID: PMC8603934 DOI: 10.1002/jcb.29896] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs are small noncoding RNAs that can bind to the target sites in the 3’‐untranslated region of messenger RNA to regulate posttranscriptional gene expression. Increasing evidence has identified the miR‐29 family, consisting of miR‐29a, miR‐29b‐1, miR‐29b‐2, and miR‐29c, as key regulators of a number of biological processes. Moreover, their abnormal expression contributes to the etiology of numerous diseases. In the current review, we aimed to summarize the differential expression patterns and functional roles of the miR‐29 family in the etiology of diseases including osteoarthritis, osteoporosis, cardiorenal, and immune disease. Furthermore, we highlight the therapeutic potential of targeting members of miR‐29 family in these diseases. We present miR‐29s as promoters of osteoblast differentiation and apoptosis but suppressors of chondrogenic and osteoclast differentiation, fibrosis, and T cell differentiation, with clear avenues for therapeutic manipulation. Further research will be crucial to identify the precise mechanism of miR‐29 family in these diseases and their full potential in therapeutics.
Collapse
Affiliation(s)
- Masahiro Horita
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| | - Louise A Stephen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, UK
| |
Collapse
|
50
|
Castanheira C, Balaskas P, Falls C, Ashraf-Kharaz Y, Clegg P, Burke K, Fang Y, Dyer P, Welting TJM, Peffers MJ. Equine synovial fluid small non-coding RNA signatures in early osteoarthritis. BMC Vet Res 2021; 17:26. [PMID: 33422071 PMCID: PMC7796526 DOI: 10.1186/s12917-020-02707-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Osteoarthritis remains one of the greatest causes of morbidity and mortality in the equine population. The inability to detect pre-clinical changes in osteoarthritis has been a significant impediment to the development of effective therapies against this disease. Synovial fluid represents a potential source of disease-specific small non-coding RNAs (sncRNAs) that could aid in the understanding of the pathogenesis of osteoarthritis. We hypothesised that early stages of osteoarthritis would alter the expression of sncRNAs, facilitating the understanding of the underlying pathogenesis and potentially provide early biomarkers. METHODS Small RNA sequencing was performed using synovial fluid from the metacarpophalangeal joints of both control and early osteoarthritic horses. A group of differentially expressed sncRNAs was selected for further validation through qRT-PCR using an independent cohort of synovial fluid samples from control and early osteoarthritic horses. Bioinformatic analysis was performed in order to identify putative targets of the differentially expressed microRNAs and to explore potential associations with specific biological processes. RESULTS Results revealed 22 differentially expressed sncRNAs including 13 microRNAs; miR-10a, miR-223, let7a, miR-99a, miR-23b, miR-378, miR-143 (and six novel microRNAs), four small nuclear RNAs; U2, U5, U11, U12, three small nucleolar RNAs; U13, snoR38, snord96, and one small cajal body-specific RNA; scarna3. Five sncRNAs were validated; miR-223 was significantly reduced in early osteoarthritis and miR-23b, let-7a-2, snord96A and snord13 were significantly upregulated. Significant cellular actions deduced by the differentially expressed microRNAs included apoptosis (P < 0.0003), necrosis (P < 0.0009), autophagy (P < 0.0007) and inflammation (P < 0.00001). A conservatively filtered list of 57 messenger RNA targets was obtained; the top biological processes associated were regulation of cell population proliferation (P < 0.000001), cellular response to chemical stimulus (P < 0.000001) and cell surface receptor signalling pathway (P < 0.000001). CONCLUSIONS Synovial fluid sncRNAs may be used as molecular biomarkers for early disease in equine osteoarthritic joints. The biological processes they regulate may play an important role in understanding early osteoarthritis pathogenesis. Characterising these dynamic molecular changes could provide novel insights on the process and mechanism of early osteoarthritis development and is critical for the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Catarina Castanheira
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX UK
| | - Panagiotis Balaskas
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX UK
| | - Charlotte Falls
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX UK
| | - Yalda Ashraf-Kharaz
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX UK
| | - Peter Clegg
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX UK
| | - Kim Burke
- Institute of Veterinary Science, University of Liverpool, Chester High Road, Neston, CH64 7TE UK
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB UK
| | - Philip Dyer
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool, L7 3EA UK
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, AZ 6202 The Netherlands
| | - Mandy J. Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX UK
| |
Collapse
|