1
|
Mahanta PJ, Lhouvum K. Plasmodium falciparum proteases as new drug targets with special focus on metalloproteases. Mol Biochem Parasitol 2024; 258:111617. [PMID: 38554736 DOI: 10.1016/j.molbiopara.2024.111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Malaria poses a significant global health threat particularly due to the prevalence of Plasmodium falciparum infection. With the emergence of parasite resistance to existing drugs including the recently discovered artemisinin, ongoing research seeks novel therapeutic avenues within the malaria parasite. Proteases are promising drug targets due to their essential roles in parasite biology, including hemoglobin digestion, merozoite invasion, and egress. While exploring the genomic landscape of Plasmodium falciparum, it has been revealed that there are 92 predicted proteases, with only approximately 14 of them having been characterized. These proteases are further distributed among 26 families grouped into five clans: aspartic proteases, cysteine proteases, metalloproteases, serine proteases, and threonine proteases. Focus on metalloprotease class shows further role in organelle processing for mitochondria and apicoplasts suggesting the potential of metalloproteases as viable drug targets. Holistic understanding of the parasite intricate life cycle and identification of potential drug targets are essential for developing effective therapeutic strategies against malaria and mitigating its devastating global impact.
Collapse
Affiliation(s)
| | - Kimjolly Lhouvum
- Department of Biotechnology, National Institute of Technology, Arunachal Pradesh, India.
| |
Collapse
|
2
|
Gnondjui AA, Toure OA, Ako BA, Koui TS, Assohoun SE, Gbessi EA, N'Guessan LT, Tuo K, Beourou S, Assi SB, Yapo FA, Sanogo I, Jambou R. In vitro delayed response to dihydroartemisinin of malaria parasites infecting sickle cell erythocytes. Malar J 2024; 23:9. [PMID: 38178227 PMCID: PMC10768257 DOI: 10.1186/s12936-023-04819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Decreased efficacy of artemisinin-based combination therapy (ACT) for Plasmodium falciparum malaria has been previously reported in patients with sickle cell disease (SCD). The main purpose of this study was to investigate the in vitro susceptibility of isolates to dihydro-artemisinin (DHA) to provide a hypothesis to explain this treatment failure. METHODS Isolates were collected from patients attending health centres in Abidjan with uncomplicated P. falciparum malaria. The haemoglobin type has been identified and in vitro drug sensitivity tests were conducted with the ring stage assay and maturation inhibition assay. RESULTS 134 isolates were obtained. Parasitaemia and haemoglobin levels at inclusion were lower in patients with haemoglobin HbSS and HbSC than in patients with normal HbAA. After ex vivo RSA and drug inhibition assays, the lowest rate of parasitic growth was found with isolates from HbAS red cells. Conversely, a significantly higher survival rate of parasites ranging from 15 to 34% were observed in isolates from HbSS. Isolates with in vitro reduced DHA sensitivity correlate with lower RBC count and haematocrit and higher parasitaemia at inclusion compared to those with isolates with normal DHA sensitivity. However, this decrease of in vitro sensitivity to DHA was not associated with Kelch 13-Propeller gene polymorphism. CONCLUSION This study highlights an in vitro decreased sensitivity to DHA, for isolates collected from HbSS patients, not related to the Pfkelch13 gene mutations. These results are in line with recent studies pointing out the role of the redox context in the efficacy of the drug. Indeed, SCD red cells harbour a highly different ionic and redox context in comparison with normal red cells. This study offers new insights into the understanding of artemisinin selective pressure on the malaria parasite in the context of haemoglobinopathies in Africa.
Collapse
Affiliation(s)
- Albert A Gnondjui
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
- Laboratoire Biologie et Santé, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Offianan A Toure
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Berenger A Ako
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Tossea S Koui
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
- Laboratoire Biologie et Santé, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Stanislas E Assohoun
- Laboratoire de Mécanique et Informatique, Université Felix Houphouët BoignyCôte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Eric A Gbessi
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
- Laboratoire Biologie et Santé, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Landry T N'Guessan
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Karim Tuo
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Sylvain Beourou
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Serge-Brice Assi
- Institut Pierre Richet/Programme National de Lutte contre le Paludisme, Bouaké, Côte d'Ivoire
| | - Francis A Yapo
- Laboratoire Biologie et Santé, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | | | - Ronan Jambou
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire.
- Global Health Department, Institut Pasteur Paris, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
3
|
Jonsdottir TK, Elsworth B, Cobbold S, Gabriela M, Ploeger E, Parkyn Schneider M, Charnaud SC, Dans MG, McConville M, Bullen HE, Crabb BS, Gilson PR. PTEX helps efficiently traffic haemoglobinases to the food vacuole in Plasmodium falciparum. PLoS Pathog 2023; 19:e1011006. [PMID: 37523385 PMCID: PMC10414648 DOI: 10.1371/journal.ppat.1011006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/10/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
A key element of Plasmodium biology and pathogenesis is the trafficking of ~10% of the parasite proteome into the host red blood cell (RBC) it infects. To cross the parasite-encasing parasitophorous vacuole membrane, exported proteins utilise a channel-forming protein complex termed the Plasmodium translocon of exported proteins (PTEX). PTEX is obligatory for parasite survival, both in vitro and in vivo, suggesting that at least some exported proteins have essential metabolic functions. However, to date only one essential PTEX-dependent process, the new permeability pathways, has been described. To identify other essential PTEX-dependant proteins/processes, we conditionally knocked down the expression of one of its core components, PTEX150, and examined which pathways were affected. Surprisingly, the food vacuole mediated process of haemoglobin (Hb) digestion was substantially perturbed by PTEX150 knockdown. Using a range of transgenic parasite lines and approaches, we show that two major Hb proteases; falcipain 2a and plasmepsin II, interact with PTEX core components, implicating the translocon in the trafficking of Hb proteases. We propose a model where these proteases are translocated into the PV via PTEX in order to reach the cytostome, located at the parasite periphery, prior to food vacuole entry. This work offers a second mechanistic explanation for why PTEX function is essential for growth of the parasite within its host RBC.
Collapse
Affiliation(s)
- Thorey K. Jonsdottir
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Brendan Elsworth
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Simon Cobbold
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Mikha Gabriela
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Ellen Ploeger
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | | | - Sarah C. Charnaud
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Madeline G. Dans
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Malcolm McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Hayley E. Bullen
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Brendan S. Crabb
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Paul R. Gilson
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Kehrer J, Pietsch E, Heinze J, Spielmann T, Frischknecht F. Clearing of hemozoin crystals in malaria parasites enables whole-cell STED microscopy. J Cell Sci 2023; 136:286288. [PMID: 36511329 DOI: 10.1242/jcs.260399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Malaria is a devastating mosquito-borne parasitic disease that manifests when Plasmodium parasites replicate within red blood cells. During the development within the red blood cell, the parasite digests hemoglobin and crystalizes the otherwise toxic heme. The resulting hemozoin crystals limit imaging by STED nanoscopy owing to their high light-absorbing capacity, which leads to immediate cell destruction upon contact with the laser. Here, we establish CUBIC-P-based clearing of hemozoin crystals, enabling whole-cell STED nanoscopy of parasites within red blood cells. Hemozoin-cleared infected red blood cells could reliably be stained with antibodies, and hence proteins in the hemozoin-containing digestive vacuole membrane, as well as in secretory vesicles of gametocytes, could be imaged at high resolution. Thus, this process is a valuable tool to study and understand parasite biology and the potential molecular mechanisms mediating drug resistance. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jessica Kehrer
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.,German Center for Infection Research, DZIF, partner site Heidelberg, 69120 Heidelberg, Germany.,Infectious Diseases Imaging Platform, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Emma Pietsch
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Julia Heinze
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Integrative Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany.,German Center for Infection Research, DZIF, partner site Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Giacometti M, Pravettoni T, Barsotti J, Milesi F, Figares CDO, Maspero F, Coppadoro LP, Benevento G, Ciardo M, Alano P, Fiore GB, Bertacco R, Ferrari G. Impedance-Based Rapid Diagnostic Tool for Single Malaria Parasite Detection. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1325-1336. [PMID: 36260568 DOI: 10.1109/tbcas.2022.3215586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper presents a custom, low-cost electronic system specifically designed for rapid and quantitative detection of the malaria parasite in a blood sample. The system exploits the paramagnetic properties of malaria-infected red blood cells (iRBCs) for their magnetophoretic capture on the surface of a silicon chip. A lattice of nickel magnetic micro-concentrators embedded in a silicon substrate concentrates the iRBCs above coplanar gold microelectrodes separated by 3 μm for their detection through an impedance measurement. The sensor is designed for a differential operation to remove the large contribution given by the blood sample. The electronic readout automatically balances the sensor before each experiment and reaches a resolution of 15 ppm in the impedance measurement at 1 MHz allowing a limit of detection of 40 parasite/μl with a capture time of 10 minutes. For better reliability of the results, four sensors are acquired during the same experiment. We demonstrate that the realized platform can also detect a single infected cell in real experimental conditions, measuring human blood infected by Plasmodium falciparum malaria specie.
Collapse
|
6
|
Musyoka WD, Kalambuka AH, Alix DM, Amiga KK. Rapid diagnosis of malaria by chemometric peak-free LIBS of trace biometals in blood. Sci Rep 2022; 12:20196. [PMID: 36424398 PMCID: PMC9691717 DOI: 10.1038/s41598-022-22990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022] Open
Abstract
Laser Induced Breakdown Spectroscopy (LIBS) trace atomic species of diseased biofluids are subtle (peak-free) in complex spectra. Trace analysis requires a considerable push in analytical strategy. Enabling LIBS with chemometrics can help identify, extract, analyze and interpret the trace species' spectral signatures to give an insight on the biophysiological status of the bodies from which the biofluids originate. We report on the trace quantitative performance of peak-free LIBS enabled by chemometrics modelling using principal components analysis (PCA) for direct artificial neural network (ANN)-based analysis of Cu, Zn, Fe and Mg in Plasmodium falciparum-infected blood in the context of rapid spectral diagnosis of malaria utilizing the biometals as the disease biomarkers. Only one standard is required in this method-to delineate the analyte spectral regions (feature selection) and to test for accuracy. Based on the alteration of the biometal levels and their multivariate and correlational patterns in cultured blood, peripheral finger blood drops dried directly on Nucleopore membrane filters was accurately discriminated as either malaria-infected or healthy. Further the morphological evolution of Plasmodium was accurately predicted using spectral features of the biometals wherein high negative correlations between Fe (- 0.775) and Zn (- 0.881) and high positive correlations between Cu (0.892) and Mg (0.805) with parasitemia were observed. During the first 96 h of malaria infection Cu increases profoundly (from 328 to 1999 ppb) while Fe, Zn and Mg decrease (from 1206 to 674 ppb), (from 1523 to 499 ppb) and (from 23,880 to 19,573 ppb) respectively. Compared with healthy, Plasmodium falciparum-infected blood has high Cu but low levels of Fe, Zn and Mg. Cu and Zn are highly (≥ 0.9) positively correlated while Fe and Cu as well as Zn and Cu are highly (≥ 0.9) negatively correlated. Chemometric peak-free LIBS showed the potential for direct rapid malaria diagnostics in blood based on the levels, alterations and multivariate associations of the trace biometals which are used as biomarkers of the disease.
Collapse
Affiliation(s)
- Wayua Deborah Musyoka
- Department of Physics, Faculty of Science and Technology, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
| | - Angeyo Hudson Kalambuka
- Department of Physics, Faculty of Science and Technology, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya.
| | - Dehayem-Massop Alix
- Department of Physics, Faculty of Science and Technology, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
| | - Kaduki Kenneth Amiga
- Department of Physics, Faculty of Science and Technology, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
7
|
Musyoka Wayua D, Kalambuka Angeyo H, Dehayem-Kamadjeu A, Amiga Kaduki K. Direct Analysis of Blood for Diagnostic Metals for Malaria by Peak-Free Laser-Induced Breakdown Spectroscopy (LIBS) with Artificial Neural Networks (ANN) and Partial Least Squares (PLS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2067862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
8
|
Matz JM. Plasmodium’s bottomless pit: properties and functions of the malaria parasite's digestive vacuole. Trends Parasitol 2022; 38:525-543. [DOI: 10.1016/j.pt.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
|
9
|
Shrirao AB, Schloss RS, Fritz Z, Shrirao MV, Rosen R, Yarmush ML. Autofluorescence of blood and its application in biomedical and clinical research. Biotechnol Bioeng 2021; 118:4550-4576. [PMID: 34487351 DOI: 10.1002/bit.27933] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/05/2022]
Abstract
Autofluorescence of blood has been explored as a label free approach for detection of cell types, as well as for diagnosis and detection of infection, cancer, and other diseases. Although blood autofluorescence is used to indicate the presence of several physiological abnormalities with high sensitivity, it often lacks disease specificity due to use of a limited number of fluorophores in the detection of several abnormal conditions. In addition, the measurement of autofluorescence is sensitive to the type of sample, sample preparation, and spectroscopy method used for the measurement. Therefore, while current blood autofluorescence detection approaches may not be suitable for primary clinical diagnosis, it certainly has tremendous potential in developing methods for large scale screening that can identify high risk groups for further diagnosis using highly specific diagnostic tests. This review discusses the source of blood autofluorescence, the role of spectroscopy methods, and various applications that have used autofluorescence of blood, to explore the potential of blood autofluorescence in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Anil B Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Zachary Fritz
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Mayur V Shrirao
- Department of pathology, Government Medical College, Nagpur, India
| | - Robert Rosen
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
10
|
Blum L, Ulshöfer T, Henke M, Krieg R, Berneburg I, Geisslinger G, Becker K, Parnham MJ, Schiffmann S. The immunomodulatory potential of the arylmethylaminosteroid sc1o. J Mol Med (Berl) 2020; 99:261-272. [PMID: 33330947 PMCID: PMC7819914 DOI: 10.1007/s00109-020-02024-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 11/03/2022]
Abstract
Developing resistance mechanisms of pathogens against established and frequently used drugs are a growing global health problem. Besides the development of novel drug candidates per se, new approaches to counteract resistance mechanisms are needed. Drug candidates that not only target the pathogens directly but also modify the host immune system might boost anti-parasitic defence and facilitate clearance of pathogens. In this study, we investigated whether the novel anti-parasitic steroid compound 1o (sc1o), effective against the parasites Plasmodium falciparum and Schistosoma mansoni, might exhibit immunomodulatory properties. Our results reveal that 50 μM sc1o amplified the inflammatory potential of M1 macrophages and shifted M2 macrophages in a pro-inflammatory direction. Since M1 macrophages used predominantly glycolysis as an energy source, it is noteworthy that sc1o increased glycolysis and decreased oxidative phosphorylation in M2 macrophages. The effect of sc1o on the differentiation and activation of dendritic cells was ambiguous, since both pro- and anti-inflammatory markers were regulated. In conclusion, sc1o has several immunomodulatory effects that could possibly assist the immune system by counteracting the anti-inflammatory immune escape strategy of the parasite P. falciparum or by increasing pro-inflammatory mechanisms against pathogens, albeit at a higher concentration than that required for the anti-parasitic effect. KEY MESSAGES: • The anti-parasitic steroid compound 1o (sc1o) can modulate human immune cells. • Sc1o amplified the potential of M1 macrophages. • Sc1o shifts M2 macrophages to a M1 phenotype. • Dendritic cell differentiation and activation was ambiguously modulated. • Administration of sc1o could possibly assist the anti-parasitic defence.
Collapse
Affiliation(s)
- Leonard Blum
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.,pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Thomas Ulshöfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Marina Henke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Reimar Krieg
- Department of Anatomy II, University Hospital Jena, Teichgraben 7, 07743, Jena, Germany
| | - Isabell Berneburg
- Department of Anatomy II, University Hospital Jena, Teichgraben 7, 07743, Jena, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.,pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus-Liebig-University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Live-Cell FRET Reveals that Malaria Nutrient Channel Proteins CLAG3 and RhopH2 Remain Associated throughout Their Tortuous Trafficking. mBio 2020; 11:mBio.01354-20. [PMID: 32900800 PMCID: PMC7482060 DOI: 10.1128/mbio.01354-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Malaria parasites increase their host erythrocyte's permeability to various nutrients, fueling intracellular pathogen development and replication. The plasmodial surface anion channel (PSAC) mediates this uptake and is linked to the parasite-encoded RhopH complex, consisting of CLAG3, RhopH2, and RhopH3. While interactions between these subunits are well established, it is not clear whether they remain associated from their synthesis in developing merozoites through erythrocyte invasion and trafficking to the host membrane. Here, we explored protein-protein interactions between RhopH subunits using live-cell imaging and Förster resonance energy transfer (FRET) experiments. Using the green fluorescent protein (GFP) derivatives mCerulean and mVenus, we generated single- and double-tagged parasite lines for fluorescence measurements. While CLAG3-mCerulean served as an efficient FRET donor for RhopH2-mVenus within rhoptry organelles, mCerulean targeted to this organelle via a short signal sequence produced negligible FRET. Upon merozoite egress and reinvasion, these tagged RhopH subunits were deposited into the new host cell's parasitophorous vacuole; these proteins were then exported and trafficked to the erythrocyte membrane, where CLAG3 and RhopH2 remained fully associated. Fluorescence intensity measurements identified stoichiometric increases in exported RhopH protein when erythrocytes are infected with two parasites; whole-cell patch-clamp revealed a concomitant increase in PSAC functional copy number and a dose effect for RhopH contribution to ion and nutrient permeability. These studies establish live-cell FRET imaging in human malaria parasites, reveal that RhopH subunits traffic to their host membrane destination without dissociation, and suggest quantitative contribution to PSAC formation.IMPORTANCE Malaria parasites grow within circulating red blood cells and uptake nutrients through a pore on their host membrane. Here, we used gene editing to tag CLAG3 and RhopH2, two proteins linked to the nutrient pore, with fluorescent markers and tracked these proteins in living infected cells. After their synthesis in mature parasites, imaging showed that both proteins are packaged into membrane-bound rhoptries. When parasites ruptured their host cells and invaded new red blood cells, these proteins were detected within a vacuole around the parasite before they migrated and inserted in the surface membrane of the host cell. Using simultaneous labeling of CLAG3 and RhopH2, we determined that these proteins interact tightly during migration and after surface membrane insertion. Red blood cells infected with two parasites had twice the protein at their surface and a parallel increase in the number of nutrient pores. Our work suggests that these proteins directly facilitate parasite nutrient uptake from human plasma.
Collapse
|
12
|
On-Chip Selective Capture and Detection of Magnetic Fingerprints of Malaria. SENSORS 2020; 20:s20174972. [PMID: 32887406 PMCID: PMC7506695 DOI: 10.3390/s20174972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/03/2022]
Abstract
The development of innovative diagnostic tests is fundamental in the route towards malaria eradication. Here, we discuss the sorting capabilities of an innovative test for malaria which allows the quantitative and rapid detection of all malaria species. The physical concept of the test exploits the paramagnetic property of infected erythrocytes and hemozoin crystals, the magnetic fingerprints of malaria common to all species, which allows them to undergo a selective magnetophoretic separation driven by a magnetic field gradient in competition with gravity. Upon separation, corpuscles concentrate at the surface of a silicon microchip where interdigitated electrodes are placed in close proximity to magnetic concentrators. The impedance variation proportional to the amount of attracted particles is then measured. The capability of our test to perform the selective detection of infected erythrocytes and hemozoin crystals has been tested by means of capture experiments on treated bovine red blood cells, mimicking the behavior of malaria-infected ones, and suspensions of synthetic hemozoin crystals. Different configuration angles of the chip with respect to gravity force and different thicknesses of the microfluidic chamber containing the blood sample have been investigated experimentally and by multiphysics simulations. In the paper, we describe the optimum conditions leading to maximum sensitivity and specificity of the test.
Collapse
|
13
|
Thillainayagam M, Ramaiah S, Anbarasu A. Molecular docking and dynamics studies on novel benzene sulfonamide substituted pyrazole-pyrazoline analogues as potent inhibitors of Plasmodium falciparum Histo aspartic protease. J Biomol Struct Dyn 2019; 38:3235-3245. [PMID: 31411122 DOI: 10.1080/07391102.2019.1654923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malaria is the major health issue in African, Asian and Mediterranean regions of the world. Due to the emerging resistance by the parasites and mosquitoes for the current medications and insecticides, respectively, the malaria free human world can be attained only by the novel design and development of new anti-malarial drugs. Hence, we attempted to carry out in silico screening of benzene sulfonamide substituted pyrazole-pyrazoline series against Histo aspartic protease. Our results reveal that the 65% of the data set with the free binding energy in the range of -11.58 to -11.21 kcal/mol, which is categorized as 'high scoring'. Ligands are docked with the catalytic residues Asp 215, Ser 75, Thr 33 and Ala 217, respectively. Molecular dynamic simulation study of free enzyme and the enzyme complex with 4-(5-(4-methoxyphenyl)-1'phenyl-3'-(p-tolyl)-3,4-1'H,2H-[3,4'-bipyrazol]-2-yl)benezenesulfonamide indicated structural stability. The trajectory analysis of complex reveals that the HAP-ligand complex is more stable than the free HAP. We are of the opinion that our results will be useful for designing potential anti-malarial compounds. AbbreviationsADTauto dock toolsBSPPbenzene sulfonamide substituted pyrazole-pyrazolineCQchloroquineHAPhisto aspartic proteaseKKelvinMDmolecular dockingMM/PBSAmolecular mechanics/Poisson Boltzmann surface areaNVTnormal volume and temperatureNPTnormal pressure and temperatureNsnanosecondsPDBprotein data bank.pdbprogram data base formatP. falciparumPlasmodium falciparumPspicosecondsPMsplasmepsinsP. vivaxPlasmodium vivaxRgradius of gyrationRMSDroot mean square deviationRMSFroot mean square fluctuationWHOWorld Health OrganizationCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mahalakshmi Thillainayagam
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
14
|
Samant P, Burt TA, Zhao ZJ, Xiang L. Nanoscale photoacoustic tomography for label-free super-resolution imaging: simulation study. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 30411552 DOI: 10.1117/1.jbo.23.11.116501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Resolutions higher than the optical diffraction limit are often desired in the context of cellular imaging and the study of disease progression at the cellular level. However, three-dimensional super-resolution imaging without reliance on exogenous contrast agents has so far not been achieved. We present nanoscale photoacoustic tomography (nPAT), an imaging modality based on the photoacoustic effect. nPAT can achieve a dramatic improvement in the axial resolution of the photoacoustic imaging. We derive the theoretical resolution and sensitivity of nPAT and demonstrate that nPAT can achieve a maximum axial resolution of 9.2 nm. We also demonstrate that nPAT can theoretically detect smaller numbers of molecules (∼273) than conventional photoacoustic microscopy due to its ability to detect acoustic signals very close to the photoacoustic source. We simulate nPAT imaging of malaria-infected red blood cells (RBCs) using digital phantoms generated from real biological samples, showing nPAT imaging of the RBC at different stages of infection. These simulations show the potential of nPAT to nondestructively image RBCs at the nanometer resolutions for in vivo samples without the use of exogenous contrast agents. Simulations of nPAT-enabled functional imaging show that nPAT can yield insight into malarial metabolism and biocrystallization processes. We believe that the experimental realization of nPAT has important applications in biomedicine.
Collapse
Affiliation(s)
- Pratik Samant
- University of Oklahoma, Stephenson School of Biomedical Engineering, Norman, Oklahoma, United States
| | - Timothy A Burt
- University of Oklahoma, Homer L. Dodge Department of Physics and Astronomy, Norman, Oklahoma, United States
| | - Zhizhuang Joe Zhao
- University of Oklahoma Health Sciences Center, Department of Pathology, Oklahoma City, Oklahoma, United States
| | - Liangzhong Xiang
- University of Oklahoma, School of Electric and Computer Engineering, Norman, Oklahoma, United States
| |
Collapse
|
15
|
Chan LY, Teo JDW, Tan KSW, Sou K, Kwan WL, Lee CLK. Near Infrared Fluorophore-Tagged Chloroquine in Plasmodium falciparum Diagnostic Imaging. Molecules 2018; 23:molecules23102635. [PMID: 30322183 PMCID: PMC6222297 DOI: 10.3390/molecules23102635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
Chloroquine was among the first of several effective drug treatments against malaria until the onset of chloroquine resistance. In light of diminished clinical efficacy of chloroquine as an antimalarial therapeutic, there is potential in efforts to adapt chloroquine for other clinical applications, such as in combination therapies and in diagnostics. In this context, we designed and synthesized a novel asymmetrical squaraine dye coupled with chloroquine (SQR1-CQ). In this study, SQR1-CQ was used to label live Plasmodium falciparum (P. falciparum) parasite cultures of varying sensitivities towards chloroquine. SQR1-CQ positively stained ring, mature trophozoite and schizont stages of both chloroquine⁻sensitive and chloroquine⁻resistant P. falciparum strains. In addition, SQR1-CQ exhibited significantly higher fluorescence, when compared to the commercial chloroquine-BODIPY (borondipyrromethene) conjugate CQ-BODIPY. We also achieved successful SQR1-CQ labelling of P. falciparum directly on thin blood smear preparations. Drug efficacy experiments measuring half-maximal inhibitory concentration (IC50) showed lower concentration of effective inhibition against resistant strain K1 by SQR1-CQ compared to conventional chloroquine. Taken together, the versatile and highly fluorescent labelling capability of SQR1-CQ and promising preliminary IC50 findings makes it a great candidate for further development as diagnostic tool with drug efficacy against chloroquine-resistant P. falciparum.
Collapse
Affiliation(s)
- Li Yan Chan
- Department of Technology, Innovation and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore.
| | - Joshua Ding Wei Teo
- Department of Technology, Innovation and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore.
| | - Kevin Shyong-Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Block MD4, Level 3, Singapore 117545, Singapore.
| | - Keitaro Sou
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Wei Lek Kwan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Chi-Lik Ken Lee
- Department of Technology, Innovation and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore.
| |
Collapse
|
16
|
High-Content Screening of the Medicines for Malaria Venture Pathogen Box for Plasmodium falciparum Digestive Vacuole-Disrupting Molecules Reveals Valuable Starting Points for Drug Discovery. Antimicrob Agents Chemother 2018; 62:AAC.02031-17. [PMID: 29311064 DOI: 10.1128/aac.02031-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Plasmodium falciparum infections leading to malaria have severe clinical manifestations and high mortality rates. Chloroquine (CQ), a former mainstay of malaria chemotherapy, has been rendered ineffective due to the emergence of widespread resistance. Recent studies, however, have unveiled a novel mode of action in which low-micromolar levels of CQ permeabilized the parasite's digestive vacuole (DV) membrane, leading to calcium efflux, mitochondrial depolarization, and DNA degradation. These phenotypes implicate the DV as an alternative target of CQ and suggest that DV disruption is an attractive target for exploitation by DV-disruptive antimalarials. In the current study, high-content screening of the Medicines for Malaria Venture (MMV) Pathogen Box (2015) was performed to select compounds which disrupt the DV membrane, as measured by the leakage of intravacuolar Ca2+ using the calcium probe Fluo-4 AM. The hits were further characterized by hemozoin biocrystallization inhibition assays and dose-response half-maximal (50%) inhibitory concentration (IC50) assays across resistant and sensitive strains. Three hits, MMV676380, MMV085071, and MMV687812, were shown to demonstrate a lack of CQ cross-resistance in parasite strains and field isolates. Through systematic analyses, MMV085071 emerged as the top hit due to its rapid parasiticidal effect, low-nanomolar IC50, and good efficacy in triggering DV disruption, mitochondrial degradation, and DNA fragmentation in P. falciparum These programmed cell death (PCD)-like phenotypes following permeabilization of the DV suggests that these compounds kill the parasite by a PCD-like mechanism. From the drug development perspective, MMV085071, which was identified to be a potent DV disruptor, offers a promising starting point for subsequent hit-to-lead generation and optimization through structure-activity relationships.
Collapse
|
17
|
Loop-mediated isothermal DNA amplification for asymptomatic malaria detection in challenging field settings: Technical performance and pilot implementation in the Peruvian Amazon. PLoS One 2017; 12:e0185742. [PMID: 28982155 PMCID: PMC5628891 DOI: 10.1371/journal.pone.0185742] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/27/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Loop-mediated isothermal DNA amplification (LAMP) methodology offers an opportunity for point-of-care (POC) molecular detection of asymptomatic malaria infections. However, there is still little evidence on the feasibility of implementing this technique for population screenings in isolated field settings. METHODS Overall, we recruited 1167 individuals from terrestrial ('road') and hydric ('riverine') communities of the Peruvian Amazon for a cross-sectional survey to detect asymptomatic malaria infections. The technical performance of LAMP was evaluated in a subgroup of 503 samples, using real-time Polymerase Chain Reaction (qPCR) as reference standard. The operational feasibility of introducing LAMP testing in the mobile screening campaigns was assessed based on field-suitability parameters, along with a pilot POC-LAMP assay in a riverine community without laboratory infrastructure. RESULTS LAMP had a sensitivity of 91.8% (87.7-94.9) and specificity of 91.9% (87.8-95.0), and the overall accuracy was significantly better among samples collected during road screenings than riverine communities (p≤0.004). LAMP-based diagnostic strategy was successfully implemented within the field-team logistics and the POC-LAMP pilot in the riverine community allowed for a reduction in the turnaround time for case management, from 12-24 hours to less than 5 hours. Specimens with haemolytic appearance were regularly observed in riverine screenings and could help explaining the hindered performance/interpretation of the LAMP reaction in these communities. CONCLUSIONS LAMP-based molecular malaria diagnosis can be deployed outside of reference laboratories, providing similar performance as qPCR. However, scale-up in remote field settings such as riverine communities needs to consider a number of logistical challenges (e.g. environmental conditions, labour-intensiveness in large population screenings) that can influence its optimal implementation.
Collapse
|
18
|
Quantification of labile heme in live malaria parasites using a genetically encoded biosensor. Proc Natl Acad Sci U S A 2017; 114:E2068-E2076. [PMID: 28242687 PMCID: PMC5358388 DOI: 10.1073/pnas.1615195114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Malaria parasites degrade substantial quantities of hemoglobin to release heme within a specialized digestive vacuole. Most of this heme is sequestered in an inert crystal. However, the concentration of bioavailable, labile heme in the parasite’s cytosol was unknown. We developed a biosensor to provide the first quantitative insights into labile heme concentrations in malaria parasites. We find that ∼1.6 µM labile cytosolic heme is maintained, including during a period coincident with intense hemoglobin degradation. The heme-binding antimalarial drug, chloroquine, which interferes with heme crystallization, specifically induces an increase in labile heme. The ability to quantify labile heme in malaria parasites opens opportunities for better understanding heme homeostasis, signaling, and metabolism, and its association with antimalarial potency. Heme is ubiquitous, yet relatively little is known about the maintenance of labile pools of this cofactor, which likely ensures its timely bioavailability for proper cellular function. Quantitative analysis of labile heme is of fundamental importance to understanding how nature preserves access to the diverse chemistry heme enables, while minimizing cellular damage caused by its redox activity. Here, we have developed and characterized a protein-based sensor that undergoes fluorescence quenching upon heme binding. By genetically encoding this sensor in the human malarial parasite, Plasmodium falciparum, we have quantified cytosolic labile heme levels in intact, blood-stage parasites. Our findings indicate that a labile heme pool (∼1.6 µM) is stably maintained throughout parasite development within red blood cells, even during a period coincident with extensive hemoglobin degradation by the parasite. We also find that the heme-binding antimalarial drug chloroquine specifically increases labile cytosolic heme, indicative of dysregulation of this homeostatic pool that may be a relevant component of the antimalarial activity of this compound class. We propose that use of this technology under various environmental perturbations in P. falciparum can yield quantitative insights into fundamental heme biology.
Collapse
|
19
|
Kim B, Park B, Lee S, Won Y. GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method. BIOMEDICAL OPTICS EXPRESS 2016; 7:5055-5065. [PMID: 28018724 PMCID: PMC5175551 DOI: 10.1364/boe.7.005055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 05/19/2023]
Abstract
We demonstrated GPU accelerated real-time confocal fluorescence lifetime imaging microscopy (FLIM) based on the analog mean-delay (AMD) method. Our algorithm was verified for various fluorescence lifetimes and photon numbers. The GPU processing time was faster than the physical scanning time for images up to 800 × 800, and more than 149 times faster than a single core CPU. The frame rate of our system was demonstrated to be 13 fps for a 200 × 200 pixel image when observing maize vascular tissue. This system can be utilized for observing dynamic biological reactions, medical diagnosis, and real-time industrial inspection.
Collapse
Affiliation(s)
- Byungyeon Kim
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk 361-951, South Korea
| | - Byungjun Park
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk 361-951, South Korea
| | - Seungrag Lee
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk 361-951, South Korea; These authors contributed equally
| | - Youngjae Won
- Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk 361-951, South Korea; These authors contributed equally
| |
Collapse
|
20
|
Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients. Biochem Soc Trans 2015; 43:1157-63. [PMID: 26614654 DOI: 10.1042/bst20150145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker.
Collapse
|
21
|
Jin BJ, Esteva-Font C, Verkman AS. Droplet-based microfluidic platform for measurement of rapid erythrocyte water transport. LAB ON A CHIP 2015; 15:3380-3390. [PMID: 26159099 PMCID: PMC4706553 DOI: 10.1039/c5lc00688k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell membrane water permeability is an important determinant of epithelial fluid secretion, tissue swelling, angiogenesis, tumor spread and other biological processes. Cellular water channels, aquaporins, are important drug targets. Water permeability is generally measured from the kinetics of cell volume change in response to an osmotic gradient. Here, we developed a microfluidic platform in which cells expressing a cytoplasmic, volume-sensing fluorescent dye are rapidly subjected to an osmotic gradient by solution mixing inside a ~0.1 nL droplet surrounded by oil. The solution mixing time was <10 ms. Osmotic water permeability was deduced from a single, time-integrated fluorescence image of an observation area in which the time after mixing was determined through spatial position. Water permeability was accurately measured in aquaporin-expressing erythrocytes with half-times for osmotic equilibration down to <50 ms. Compared with conventional water permeability measurements using costly stopped-flow instrumentation, the microfluidic platform here utilizes sub-microliter blood sample volume, does not suffer from mixing artifacts, and replaces challenging kinetic measurements by single image capture using a standard laboratory fluorescence microscope.
Collapse
Affiliation(s)
- Byung-Ju Jin
- Departments of Medicine and Physiology, University of California, 1246 Health Sciences East Tower, San Francisco, CA 94143-0521, USA.
| | | | | |
Collapse
|
22
|
Profiling individual human red blood cells using common-path diffraction optical tomography. Sci Rep 2014; 4:6659. [PMID: 25322756 PMCID: PMC4200412 DOI: 10.1038/srep06659] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/29/2014] [Indexed: 11/25/2022] Open
Abstract
Due to its strong correlation with the pathophysiology of many diseases, information about human red blood cells (RBCs) has a crucial function in hematology. Therefore, measuring and understanding the morphological, chemical, and mechanical properties of individual RBCs is a key to understanding the pathophysiology of a number of diseases in hematology, as well as to opening up new possibilities for diagnosing diseases in their early stages. In this study, we present the simultaneous and quantitative measurement of the morphological, chemical, and mechanical parameters of individual RBCs employing optical holographic microtomography. In addition, it is demonstrated that the correlation analyses of these RBC parameters provide unique information for distinguishing and understanding diseases.
Collapse
|
23
|
Implementation of transportation distance for analyzing FLIM and FRET experiments. Bull Math Biol 2014; 76:2596-626. [PMID: 25253276 DOI: 10.1007/s11538-014-0025-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
Abstract
Analysis of fluorescence lifetime imaging microscopy (FLIM) and Förster resonance energy transfer (FRET) experiments in living cells is usually based on mean lifetimes computations. However, these mean lifetimes can induce misinterpretations. We propose in this work the implementation of the transportation distance for FLIM and FRET experiments in vivo. This non-fitting indicator, which is easy to compute, reflects the similarity between two distributions and can be used for pixels clustering to improve the estimation of the FRET parameters. We study the robustness and the discriminating power of this transportation distance, both theoretically and numerically. In addition, a comparison study with the largely used mean lifetime differences is performed. We finally demonstrate practically the benefits of the transportation distance over the usual mean lifetime differences for both FLIM and FRET experiments in living cells.
Collapse
|
24
|
Manevich Y, Hutchens S, Halushka PV, Tew KD, Townsend DM, Jauch EC, Borg K. Peroxiredoxin VI oxidation in cerebrospinal fluid correlates with traumatic brain injury outcome. Free Radic Biol Med 2014; 72:210-21. [PMID: 24726861 PMCID: PMC4088265 DOI: 10.1016/j.freeradbiomed.2014.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) patients would benefit from the identification of reliable biomarkers to predict outcomes and treatment strategies. In our study, cerebrospinal fluid (CSF) from patients with severe TBI was evaluated for oxidant stress-mediated damage progression after hospital admission and subsequent ventriculostomy placement. Interestingly, substantial levels of peroxiredoxin VI (Prdx6), a major antioxidant enzyme normally found in astrocytes, were detected in CSF from control and TBI patients and were not associated with blood contamination. Functionally, Prdx6 and its associated binding partner glutathione S-transferase Pi (GSTP1-1, also detected in CSF) act in tandem to detoxify lipid peroxidation damage to membranes. We found Prdx6 was fully active in CSF of control patients but becomes significantly inactivated (oxidized) in TBI. Furthermore, significant and progressive oxidation of "buried" protein thiols in CSF of TBI patients (compared to those of nontrauma controls) was detected over a 24-h period after hospital admission, with increased oxidation correlating with severity of trauma. Conversely, recovery of Prdx6 activity after 24h indicated more favorable patient outcome. Not only is this the first report of an extracellular form of Prdx6 but also the first report of its detection at a substantial level in CSF. Taken together, our data suggest a meaningful correlation between TBI-initiated oxidation of Prdx6, its specific phospholipid hydroperoxide peroxidase activity, and severity of trauma outcome. Consequently, we propose that Prdx6 redox status detection has the potential to be a biomarker for TBI outcome and a future indicator of therapeutic efficacy.
Collapse
Affiliation(s)
- Y Manevich
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - S Hutchens
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - P V Halushka
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - K D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - D M Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - E C Jauch
- Division of Emergency Medicine, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - K Borg
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
25
|
In vivo splenic clearance correlates with in vitro deformability of red blood cells from Plasmodium yoelii-infected mice. Infect Immun 2014; 82:2532-41. [PMID: 24686065 DOI: 10.1128/iai.01525-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent experimental and clinical studies suggest a crucial role of mechanical splenic filtration in the host's defense against malaria parasites. Subtle changes in red blood cell (RBC) deformability, caused by infection or drug treatment, could influence the pathophysiological outcome. However, in vitro deformability measurements have not been directly linked in vivo with the splenic clearance of RBCs. In this study, mice infected with malaria-inducing Plasmodium yoelii revealed that chloroquine treatment could lead to significant alterations to RBC deformability and increase clearance of both infected and uninfected RBCs in vivo. These results have clear implications for the mechanism of human malarial anemia, a severe pathological condition affecting malaria patients.
Collapse
|
26
|
Coronado LM, Nadovich CT, Spadafora C. Malarial hemozoin: from target to tool. Biochim Biophys Acta Gen Subj 2014; 1840:2032-41. [PMID: 24556123 DOI: 10.1016/j.bbagen.2014.02.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 01/26/2014] [Accepted: 02/10/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Malaria is an extremely devastating disease that continues to affect millions of people each year. A distinctive attribute of malaria infected red blood cells is the presence of malarial pigment or the so-called hemozoin. Hemozoin is a biocrystal synthesized by Plasmodium and other blood-feeding parasites to avoid the toxicity of free heme derived from the digestion of hemoglobin during invasion of the erythrocytes. SCOPE OF REVIEW Hemozoin is involved in several aspects of the pathology of the disease as well as in important processes such as the immunogenicity elicited. It is known that the once best antimalarial drug, chloroquine, exerted its effect through interference with the process of hemozoin formation. In the present review we explore what is known about hemozoin, from hemoglobin digestion, to its final structural analysis, to its physicochemical properties, its role in the disease and notions of the possible mechanisms that could kill the parasite by disrupting the synthesis or integrity of this remarkable crystal. MAJOR CONCLUSIONS The importance and peculiarities of this biocrystal have given researchers a cause to consider it as a target for new antimalarials and to use it through unconventional approaches for diagnostics and therapeutics against the disease. GENERAL SIGNIFICANCE Hemozoin plays an essential role in the biology of malarial disease. Innovative ideas could use all the existing data on the unique chemical and biophysical properties of this macromolecule to come up with new ways of combating malaria.
Collapse
Affiliation(s)
- Lorena M Coronado
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Panama; Department of Biotechnology, Acharya Nagarjuna University, Guntur 522 510, A.P., India
| | | | - Carmenza Spadafora
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Panama.
| |
Collapse
|
27
|
Minetti G, Egée S, Mörsdorf D, Steffen P, Makhro A, Achilli C, Ciana A, Wang J, Bouyer G, Bernhardt I, Wagner C, Thomas S, Bogdanova A, Kaestner L. Red cell investigations: Art and artefacts. Blood Rev 2013; 27:91-101. [DOI: 10.1016/j.blre.2013.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Wu T, Feng JJ. Simulation of malaria-infected red blood cells in microfluidic channels: Passage and blockage. BIOMICROFLUIDICS 2013; 7:44115. [PMID: 24404048 PMCID: PMC3751956 DOI: 10.1063/1.4817959] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/26/2013] [Indexed: 05/12/2023]
Abstract
Malaria-infected red blood cells (iRBCs) become less deformable with the progression of infection and tend to occlude microcapillaries. This process has been investigated in vitro using microfluidic channels. The objective of this paper is to provide a quantitative basis for interpreting the experimental observations of iRBC occlusion of microfluidic channels. Using a particle-based model for the iRBC, we simulate the traverse of iRBCs through a converging microfluidic channel and explore the progressive loss of cell deformability due to three factors: the stiffening of the membrane, the reduction of the cell's surface-volume ratio, and the growing solid parasites inside the cell. When examined individually, each factor tends to hinder the passage of the iRBC and lengthen the transit time. Moreover, at sufficient magnitude, each may lead to obstruction of narrow microfluidic channels. We then integrate the three factors into a series of simulations that mimic the development of malaria infection through the ring, trophozoite, and schizont stages. These simulations successfully reproduce the experimental observation that with progression of infection, the iRBC transitions from passage to blockage in larger and larger channels. The numerical results suggest a scheme for quantifying iRBC rigidification through microfluidic measurements of the critical pressure required for passage.
Collapse
Affiliation(s)
- Tenghu Wu
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada ; Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| |
Collapse
|
29
|
Abstract
The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis.
Collapse
|
30
|
Hanssen E, Knoechel C, Dearnley M, Dixon MW, Le Gros M, Larabell C, Tilley L. Soft X-ray microscopy analysis of cell volume and hemoglobin content in erythrocytes infected with asexual and sexual stages of Plasmodium falciparum. J Struct Biol 2012; 177:224-32. [DOI: 10.1016/j.jsb.2011.09.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 12/13/2022]
|
31
|
Bhaumik P, Gustchina A, Wlodawer A. Structural studies of vacuolar plasmepsins. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1824:207-23. [PMID: 21540129 PMCID: PMC3154504 DOI: 10.1016/j.bbapap.2011.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
Plasmepsins (PMs) are pepsin-like aspartic proteases present in different species of parasite Plasmodium. Four Plasmodium spp. (P. vivax, P. ovale, P. malariae, and the most lethal P. falciparum) are mainly responsible for causing human malaria that affects millions worldwide. Due to the complexity and rate of parasite mutation coupled with regional variations, and the emergence of P. falciparum strains which are resistant to antimalarial agents such as chloroquine and sulfadoxine/pyrimethamine, there is constant pressure to find new and lasting chemotherapeutic drug therapies. Since many proteases represent therapeutic targets and PMs have been shown to play an important role in the survival of parasite, these enzymes have recently been identified as promising targets for the development of novel antimalarial drugs. The genome of P. falciparum encodes 10 PMs (PMI, PMII, PMIV-X and histo-aspartic protease (HAP)), 4 of which (PMI, PMII, PMIV and HAP) reside within the food vacuole, are directly involved in degradation of human hemoglobin, and share 50-79% amino acid sequence identity. This review focuses on structural studies of only these four enzymes, including their orthologs in other Plasmodium spp.. Almost all original crystallographic studies were performed with PMII, but more recent work on PMIV, PMI, and HAP resulted in a more complete picture of the structure-function relationship of vacuolar PMs. Many structures of inhibitor complexes of vacuolar plasmepsins, as well as their zymogens, have been reported in the last 15 years. Information gained by such studies will be helpful for the development of better inhibitors that could become a new class of potent antimalarial drugs. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
32
|
Mir M, Tangella K, Popescu G. Blood testing at the single cell level using quantitative phase and amplitude microscopy. BIOMEDICAL OPTICS EXPRESS 2011; 2:3259-66. [PMID: 22162816 PMCID: PMC3233245 DOI: 10.1364/boe.2.003259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/21/2011] [Accepted: 11/06/2011] [Indexed: 05/09/2023]
Abstract
It has recently been shown that quantitative phase imaging methods can provide clinically relevant parameters for red blood cell analysis with unprecedented detail and sensitivity. Since the quantitative phase information is dependent on both the thickness and refractive index, a major limitation to clinical translation has been a simple and practical approach to measure both simultaneously. Here we demonstrate both theoretically and experimentally that, by combining quantitative phase with a single absorption measurement, it is possible to measure both quantities at the single cell level. We validate this approach by comparing our results to those acquired using a clinical blood analyzer. This approach to decouple the thickness and refractive index for red blood cells may be used with any quantitative phase imaging method that can operate in tandem with bright field microscopy at the Soret-band wavelength.
Collapse
Affiliation(s)
- Mustafa Mir
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering,, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Ave., Urbana, IL 61801, USA
| | - Krishnarao Tangella
- Department of Pathology, Christie Clinic and University of Illinois at Urbana-Champaign, 1400 W. Park St., Urbana, IL 61801, USA
| | - Gabriel Popescu
- Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering,, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Matthews Ave., Urbana, IL 61801, USA
| |
Collapse
|
33
|
Bhaumik P, Xiao H, Hidaka K, Gustchina A, Kiso Y, Yada RY, Wlodawer A. Structural insights into the activation and inhibition of histo-aspartic protease from Plasmodium falciparum. Biochemistry 2011; 50:8862-79. [PMID: 21928835 PMCID: PMC3501826 DOI: 10.1021/bi201118z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 Å resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.
Collapse
Affiliation(s)
- Prasenjit Bhaumik
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Huogen Xiao
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Koushi Hidaka
- Department of Medicinal Chemistry and Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607–8412, Japan
- Laboratory of Medicinal Chemistry, Kobe Gakuin University, 1-1–3 Minatojima, Chuo-ku, Kobe 650–8586, Japan
| | - Alla Gustchina
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yoshiaki Kiso
- Department of Medicinal Chemistry and Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607–8412, Japan
- Laboratory of Medicinal Chemistry, Kobe Gakuin University, 1-1–3 Minatojima, Chuo-ku, Kobe 650–8586, Japan
- Laboratory of Peptide Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526–0829, Japan
| | - Rickey Y. Yada
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
34
|
ZOUEU J, ZAN S. Trophozoite stage infected erythrocyte contents analysis by use of spectral imaging LED microscope. J Microsc 2011; 245:90-9. [DOI: 10.1111/j.1365-2818.2011.03548.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Cho S, Kim S, Kim Y, Park Y. Optical imaging techniques for the study of malaria. Trends Biotechnol 2011; 30:71-9. [PMID: 21930322 DOI: 10.1016/j.tibtech.2011.08.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 02/07/2023]
Abstract
Malarial infection needs to be imaged to reveal the mechanisms behind malaria pathophysiology and to provide insights to aid in the diagnosis of the disease. Recent advances in optical imaging methods are now being transferred from physics laboratories to the biological field, revolutionizing how we study malaria. To provide insight into how these imaging techniques can improve the study and treatment of malaria, we summarize recent progress on optical imaging techniques, ranging from in vitro visualization of the disease progression of malaria infected red blood cells (iRBCs) to in vivo imaging of malaria parasites in the liver.
Collapse
Affiliation(s)
- Sangyeon Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | | | | | | |
Collapse
|
36
|
Abstract
Malaria parasites (Plasmodium spp.) have plagued humans for millennia. Less well known are related parasites (Haemosporida), with diverse life cycles and dipteran vectors that infect other vertebrates. Understanding the evolution of parasite life histories, including switches between hosts and vectors, depends on knowledge of evolutionary relationships among parasite lineages. In particular, inferences concerning time of origin and trait evolution require correct placement of the root of the evolutionary tree. Phylogenetic reconstructions of the diversification of malaria parasites from DNA sequences have suffered from uncertainty concerning outgroup taxa, limited taxon sampling, and selection on genes used to assess relationships. As a result, inferred relationships among the Haemosporida have been unstable, and questions concerning evolutionary diversification and host switching remain unanswered. A recent phylogeny placed mammalian malaria parasites, as well as avian/reptilian Plasmodium, in a derived position relative to the avian parasite genera Leucocytozoon and Haemoproteus, implying that the ancestral forms lacked merogony in the blood and that their vectors were non-mosquito dipterans. Bayesian, outgroup-free phylogenetic reconstruction using relaxed molecular clocks with uncorrelated rates instead suggested that mammalian and avian/reptilian Plasmodium parasites, spread by mosquito vectors, are ancestral sister taxa, from which a variety of specialized parasite lineages with modified life histories have evolved.
Collapse
Affiliation(s)
- Diana C. Outlaw
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762; and
| | | |
Collapse
|
37
|
Chen YC, Clegg RM. Spectral resolution in conjunction with polar plots improves the accuracy and reliability of FLIM measurements and estimates of FRET efficiency. J Microsc 2011; 244:21-37. [PMID: 21801176 DOI: 10.1111/j.1365-2818.2011.03488.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A spectrograph with continuous wavelength resolution has been integrated into a frequency-domain fluorescence lifetime-resolved imaging microscope (FLIM). The spectral information assists in the separation of multiple lifetime components, and helps resolve signal cross-talking that can interfere with an accurate analysis of multiple lifetime processes. This extends the number of different dyes that can be measured simultaneously in a FLIM measurement. Spectrally resolved FLIM (spectral-FLIM) also provides a means to measure more accurately the lifetime of a dim fluorescence component (as low as 2% of the total intensity) in the presence of another fluorescence component with a much higher intensity. A more reliable separation of the donor and acceptor fluorescence signals are possible for Förster resonance energy transfer (FRET) measurements; this allows more accurate determinations of both donor and acceptor lifetimes. By combining the polar plot analysis with spectral-FLIM data, the spectral dispersion of the acceptor signal can be used to derive the donor lifetime - and thereby the FRET efficiency - without iterative fitting. The lifetime relation between the donor and acceptor, in conjunction with spectral dispersion, is also used to separate the FRET pair signals from the donor alone signal. This method can be applied further to quantify the signals from separate FRET pairs, and provide information on the dynamics of the FRET pair between different states.
Collapse
Affiliation(s)
- Y-C Chen
- Bioengineering Department, University of Illinois at Urbana-Champaign, U.S.A
| | | |
Collapse
|
38
|
Mauritz J, Seear R, Esposito A, Kaminski C, Skepper J, Warley A, Lew V, Tiffert T. X-ray microanalysis investigation of the changes in Na, K, and hemoglobin concentration in plasmodium falciparum-infected red blood cells. Biophys J 2011; 100:1438-45. [PMID: 21402025 PMCID: PMC3059598 DOI: 10.1016/j.bpj.2011.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/21/2011] [Accepted: 02/01/2011] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum is responsible for severe malaria. During the ∼48 h duration of its asexual reproduction cycle in human red blood cells, the parasite causes profound alterations in the homeostasis of the host red cell, with reversal of the normal Na and K gradients across the host cell membrane, and a drastic fall in hemoglobin content. A question critical to our understanding of how the host cell retains its integrity for the duration of the cycle had been previously addressed by modeling the homeostasis of infected cells. The model predicted a critical contribution of excess hemoglobin consumption to cell integrity (the colloidosmotic hypothesis). Here we tested this prediction with the use of electron-probe x-ray microanalysis to measure the stage-related changes in Na, K, and Fe contents in single infected red cells and in uninfected controls. The results document a decrease in Fe signal with increased Na/K ratio. Interpreted in terms of concentrations, the results point to a sustained fall in host cell hemoglobin concentration with parasite maturation, supporting a colloidosmotic role of excess hemoglobin digestion. The results also provide, for the first time to our knowledge, comprehensive maps of the elemental distributions of Na, K, and Fe in falciparum-infected red blood cells.
Collapse
Affiliation(s)
- Jakob M.A. Mauritz
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Seear
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alessandro Esposito
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- School for Advanced Optical Technologies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jeremy N. Skepper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alice Warley
- Centre for Ultrastructural Imaging, King's College London, London, United Kingdom
| | - Virgilio L. Lew
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Teresa Tiffert
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Kaminski Schierle GS, Bertoncini CW, Chan FTS, van der Goot AT, Schwedler S, Skepper J, Schlachter S, van Ham T, Esposito A, Kumita JR, Nollen EAA, Dobson CM, Kaminski CF. A FRET sensor for non-invasive imaging of amyloid formation in vivo. Chemphyschem 2011; 12:673-680. [PMID: 21308945 PMCID: PMC5402868 DOI: 10.1002/cphc.201000996] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Indexed: 11/10/2022]
Abstract
Misfolding and aggregation of amyloidogenic polypeptides lie at the root of many neurodegenerative diseases. Whilst protein aggregation can be readily studied in vitro by established biophysical techniques, direct observation of the nature and kinetics of aggregation processes taking place in vivo is much more challenging. We describe here, however, a Förster resonance energy transfer sensor that permits the aggregation kinetics of amyloidogenic proteins to be quantified in living systems by exploiting our observation that amyloid assemblies can act as energy acceptors for variants of fluorescent proteins. The observed lifetime reduction can be attributed to fluorescence energy transfer to intrinsic energy states associated with the growing amyloid species. Indeed, for a-synuclein, a protein whose aggregation is linked to Parkinson's disease, we have used this sensor to follow the kinetics of the self-association reactions taking place in vitro and in vivo and to reveal the nature of the ensuing aggregated species. Experiments were conducted in vitro, in cells in culture and in living Caenorhabditis elegans. For the latter the readout correlates directly with the appearance of a toxic phenotype. The ability to measure the appearance and development of pathogenic amyloid species in a living animal and the ability to relate such data to similar processes observed in vitro provides a powerful new tool in the study of the pathology of the family of misfolding disorders. Our study confirms the importance of the molecular environment in which aggregation reactions take place, highlighting similarities as well as differences between the processes occurring in vitro and in vivo, and their significance for defining the molecular physiology of the diseases with which they are associated.
Collapse
Affiliation(s)
- Gabriele S. Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (U.K.)
| | - Carlos W. Bertoncini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (U.K.)
- Laboratory of Molecular Biophysics, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028, Barcelona (Spain)
| | - Fiona T. S. Chan
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (U.K.)
| | - Annemieke T. van der Goot
- Department of Genetics, University Medical Centre Groningen and University of Groningen 9700 RB Groningen (The Netherlands)
| | - Stefanie Schwedler
- Physikalische Chemie I, Fakultät für Chemie Universität Bielefeld, Universitätsstr. 25, 33615, Bielefeld (Germany)
| | - Jeremy Skepper
- Department of Physiology, Development and Neuroscience University of Cambridge, Downing Street, Cambridge CB2 3DY (U.K.)
| | - Simon Schlachter
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (U.K.)
| | - Tjakko van Ham
- Department of Genetics, University Medical Centre Groningen and University of Groningen 9700 RB Groningen (The Netherlands)
| | - Alessandro Esposito
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (U.K.)
| | - Janet R. Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (U.K.)
| | - Ellen A. A. Nollen
- Department of Genetics, University Medical Centre Groningen and University of Groningen 9700 RB Groningen (The Netherlands)
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (U.K.)
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (U.K.)
- Friedrich-Alexander University of Erlangen Nürnberg 91052 Erlangen (Germany)
| |
Collapse
|
40
|
Won Y, Moon S, Yang W, Kim D, Han WT, Kim DY. High-speed confocal fluorescence lifetime imaging microscopy (FLIM) with the analog mean delay (AMD) method. OPTICS EXPRESS 2011; 19:3396-405. [PMID: 21369162 DOI: 10.1364/oe.19.003396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We demonstrate a high-speed confocal fluorescence lifetime imaging microscopy (FLIM) whose accuracy and photon economy are as good as that of a time-correlated single photon counting (TCSPC). It is based on a new lifetime determination scheme, the analog mean delay (AMD) method. Due to the technical advantages of multiple fluorescence photon detection capability, accurate lifetime determination scheme and high photon detection efficiency, the AMD method can be the most effective method for high-speed confocal FLIM. The feasibility of real-time confocal FLIM with the AMD method has been demonstrated by observing the dynamic reaction of calcium channels in a RBL-2H3 cell with respect to 4αPDD stimulus. We have achieved the photon detection rate of 125 times faster than a conventional TCSPC based system in this experiment.
Collapse
Affiliation(s)
- Youngjae Won
- Department of Information and Communications, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, South Korea
| | | | | | | | | | | |
Collapse
|
41
|
Esposito A, Bader AN, Schlachter SC, van den Heuvel DJ, Schierle GSK, Venkitaraman AR, Kaminski CF, Gerritsen HC. Design and application of a confocal microscope for spectrally resolved anisotropy imaging. OPTICS EXPRESS 2011; 19:2546-2555. [PMID: 21369074 DOI: 10.1364/oe.19.002546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Biophysical imaging tools exploit several properties of fluorescence to map cellular biochemistry. However, the engineering of a cost-effective and user-friendly detection system for sensing the diverse properties of fluorescence is a difficult challenge. Here, we present a novel architecture for a spectrograph that permits integrated characterization of excitation, emission and fluorescence anisotropy spectra in a quantitative and efficient manner. This sensing platform achieves excellent versatility of use at comparatively low costs. We demonstrate the novel optical design with example images of plant cells and of mammalian cells expressing fluorescent proteins undergoing energy transfer.
Collapse
Affiliation(s)
- Alessandro Esposito
- The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Esposito A, Choimet JB, Skepper JN, Mauritz JMA, Lew VL, Kaminski CF, Tiffert T. Quantitative imaging of human red blood cells infected with Plasmodium falciparum. Biophys J 2010; 99:953-60. [PMID: 20682274 DOI: 10.1016/j.bpj.2010.04.065] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 04/14/2010] [Accepted: 04/20/2010] [Indexed: 11/24/2022] Open
Abstract
During its 48 h asexual reproduction cycle, the malaria parasite Plasmodium falciparum ingests and digests hemoglobin in excess of its metabolic requirements and causes major changes in the homeostasis of the host red blood cell (RBC). A numerical model suggested that this puzzling excess consumption of hemoglobin is necessary for the parasite to reduce the colloidosmotic pressure within the host RBC, thus preventing lysis before completion of its reproduction cycle. However, the validity of the colloidosmotic hypothesis appeared to be compromised by initial conflicts between model volume predictions and experimental observations. Here, we investigated volume and membrane area changes in infected RBCs (IRBCs) using fluorescence confocal microscopy on calcein-loaded RBCs. Substantial effort was devoted to developing and testing a new threshold-independent algorithm for the precise estimation of cell volumes and surface areas to overcome the shortfalls of traditional methods. We confirm that the volume of IRBCs remains almost constant during parasite maturation, suggesting that the reported increase in IRBCs' osmotic fragility results from a reduction in surface area and increased lytic propensity on volume expansion. These results support the general validity of the colloidosmotic hypothesis, settle the IRBC volume debate, and help to constrain the range of parameter values in the numerical model.
Collapse
Affiliation(s)
- Alessandro Esposito
- Department of Chemical Engineering, and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
43
|
Experimental analysis of Hb oxy–deoxy transition in single optically stretched red blood cells. Phys Med 2010; 26:233-9. [DOI: 10.1016/j.ejmp.2010.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 01/16/2010] [Accepted: 02/01/2010] [Indexed: 11/20/2022] Open
|
44
|
Mauritz JMA, Esposito A, Tiffert T, Skepper JN, Warley A, Yoon YZ, Cicuta P, Lew VL, Guck JR, Kaminski CF. Biophotonic techniques for the study of malaria-infected red blood cells. Med Biol Eng Comput 2010; 48:1055-63. [PMID: 20661776 DOI: 10.1007/s11517-010-0668-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/11/2010] [Indexed: 12/23/2022]
Abstract
Investigation of the homeostasis of red blood cells upon infection by Plasmodium falciparum poses complex experimental challenges. Changes in red cell shape, volume, protein, and ion balance are difficult to quantify. In this article, we review a wide range of optical techniques for quantitative measurements of critical homeostatic parameters in malaria-infected red blood cells. Fluorescence lifetime imaging and tomographic phase microscopy, quantitative deconvolution microscopy, and X-ray microanalysis, are used to measure haemoglobin concentration, cell volume, and ion contents. Atomic force microscopy is briefly reviewed in the context of these optical methodologies. We also describe how optical tweezers and optical stretchers can be usefully applied to empower basic malaria research to yield diagnostic information on cell compliance changes upon malaria infection. The combined application of these techniques sheds new light on the detailed mechanisms of malaria infection providing potential for new diagnostic or therapeutic approaches.
Collapse
Affiliation(s)
- Jakob M A Mauritz
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
This chapter summarizes recent developments in the design, synthesis, and structure–activity relationship studies of organometallic antimalarials. It begins with a general introduction to malaria and the biology of the parasite Plasmodium falciparum, with a focus on the heme detoxification system. Then, a number of metal complexes from the literature are reported for their antiplasmodial activity. The second half of the chapter deals with the serendipitous discovery of ferroquine, its mechanism(s) of action, and the failure to induce a resistance. Last, but not least, we suggest that the bioorganometallic approach offers the potential for the design of novel therapeutic agents.
Collapse
|
46
|
|
47
|
Elder AD, Kaminski CF, Frank JH. phi2FLIM: a technique for alias-free frequency domain fluorescence lifetime imaging. OPTICS EXPRESS 2009; 17:23181-23203. [PMID: 20052246 DOI: 10.1364/oe.17.023181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new approach to alias-free wide-field fluorescence lifetime imaging in the frequency domain is demonstrated using a supercontinuum source for fluorescence excitation and a phase-modulated image intensifier for detection. This technique is referred to as phi-squared fluorescence lifetime imaging (phi(2)FLIM). The phase modulation and square-wave gating of the image intensifier eliminate aliasing by the effective suppression of higher harmonics. The ability to use picosecond excitation pulses without aliasing expands the range of excitation sources available for frequency-domain fluorescence lifetime imaging (fd-FLIM) and improves the modulation depth of conventional homodyne fd-FLIM measurements, which use sinusoidal intensity modulation of the excitation source. The phi(2)FLIM results are analyzed using AB-plots, which facilitate the identification of mono-exponential and multi-exponential fluorescence decays and provide measurements of the fluorophore fractions in two component mixtures. The rapid acquisition speed of the technique enables lifetime measurements in dynamic systems, such as temporally evolving samples and samples that are sensitive to photo-bleaching. Rapid phi(2)FLIM measurements are demonstrated by imaging the dynamic mixing of two different dye solutions at 5.5 Hz. The tunability of supercontinuum radiation enables excitation wavelength resolved FLIM measurements, which facilitates analysis of samples containing multiple fluorophores with different absorption spectra.
Collapse
Affiliation(s)
- Alan D Elder
- Department of Chemical Engineering, University of Cambridge, Cambridge, CB2 3RA, UK
| | | | | |
Collapse
|
48
|
Schlachter S, Schwedler S, Esposito A, Kaminski Schierle GS, Moggridge GD, Kaminski CF. A method to unmix multiple fluorophores in microscopy images with minimal a priori information. OPTICS EXPRESS 2009; 17:22747-22760. [PMID: 20052200 DOI: 10.1364/oe.17.022747] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ability to quantify the fluorescence signals from multiply labeled biological samples is highly desirable in the life sciences but often difficult, because of spectral overlap between fluorescent species and the presence of autofluorescence. Several so called unmixing algorithms have been developed to address this problem. Here, we present a novel algorithm that combines measurements of lifetime and spectrum to achieve unmixing without a priori information on the spectral properties of the fluorophore labels. The only assumption made is that the lifetimes of the fluorophores differ. Our method combines global analysis for a measurement of lifetime distributions with singular value decomposition to recover individual fluorescence spectra. We demonstrate the technique on simulated datasets and subsequently by an experiment on a biological sample. The method is computationally efficient and straightforward to implement. Applications range from histopathology of complex and multiply labelled samples to functional imaging in live cells.
Collapse
Affiliation(s)
- S Schlachter
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke St, Cambridge, CB2 1RA, U.K
| | | | | | | | | | | |
Collapse
|
49
|
Effects of elevated intracellular calcium on the osmotic fragility of human red blood cells. Cell Calcium 2009; 47:29-36. [PMID: 19954845 DOI: 10.1016/j.ceca.2009.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/03/2009] [Indexed: 11/20/2022]
Abstract
High throughput methodologies that measure the distribution of osmotic fragilities in red blood cell populations have enabled the investigation of dynamic changes in red cell homeostasis and membrane permeability in health and disease. The common assumption in the interpretation of dynamic changes in osmotic fragility curves is that left or right shifts reflect a decreased or increased hydration state of the cells, respectively, allowing direct inferences on membrane transport from osmotic fragility measurements. However, the assumed correlation between shifts in osmotic fragility and hydration state has never been directly explored, and may prove invalid in certain conditions. We investigated here whether this correlation holds for red cells exposed to elevated intracellular calcium. The results showed that elevated cell calcium causes a progressive increase in osmotic fragility with minimal contribution from cell hydration (<8%). Loss of membrane area by the release of 160+/-40nm diameter (mean+/-SD) vesicles is shown to be a major contributor, but may not account for the full non-hydration component. The rest must reflect a specific calcium-induced lytic vulnerability of the membrane causing rupture before the cells attain their maximal spherical volumes. The implications of these findings are discussed.
Collapse
|
50
|
Mauritz JMA, Esposito A, Ginsburg H, Kaminski CF, Tiffert T, Lew VL. The homeostasis of Plasmodium falciparum-infected red blood cells. PLoS Comput Biol 2009; 5:e1000339. [PMID: 19343220 PMCID: PMC2659444 DOI: 10.1371/journal.pcbi.1000339] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/24/2009] [Indexed: 11/21/2022] Open
Abstract
The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15–32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before ∼48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis). However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis. The parasite Plasmodium falciparum is responsible for severe malaria in humans. The 48 hour asexual reproduction cycle of the parasite within red blood cells is responsible for the symptoms in this disease. Within this period, the parasite causes massive changes in the host red cell, increasing some metabolic activities hundredfold, making it leaky to many nutrients and waste products, and consuming most of the cell's hemoglobin, far more than it needs for its own metabolism. The challenge that we faced was to explain how the infected cell maintained its integrity throughout such a violent cycle. Seeking clues, we developed a mathematical model of an infected cell in which we encoded our current knowledge and understanding of the complex processes that control cell homeostasis. We present here for the first time a detailed description of the model and a critical analysis of its predictions in relation to the available experimental evidence. The results support the view that host-cell integrity is maintained by the progressive reduction in the hemoglobin concentration within the host cell, resulting in a reduced rate and extent of swelling.
Collapse
Affiliation(s)
- Jakob M. A. Mauritz
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alessandro Esposito
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Hagai Ginsburg
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
- School of Advanced Optical Technologies, Max-Planck-Research Group, Division III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Teresa Tiffert
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Virgilio L. Lew
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|