1
|
Yang D, Yuan L, Chen G, Chen S, Ma X, Xing Y, Song J. Expression and role of melatonin membrane receptors in the hypothalamic-pituitary-testicular axis of Tibetan sheep in a plateau pastoral area. PLoS One 2023; 18:e0290775. [PMID: 37878614 PMCID: PMC10599587 DOI: 10.1371/journal.pone.0290775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/16/2023] [Indexed: 10/27/2023] Open
Abstract
MTNR1A and MTNR1B, two high-affinity MT membrane receptors found in mammals, mediate the activity of MT on the HPGA to regulate animal reproduction. Nevertheless, the expression patterns and function of the MTNR1A and MTNR1B genes in the HPTA of seasonal estrus sheep and perennial estrus sheep have not been elucidated. We studied the expression of MTNR1A and MTNR1B in the hypothalamic-pituitary-testicular axis (HPTA) of Tibetan sheep at different reproductive stages using histochemistry, enzyme linked immunosorbent assay (ELSIA), scanning electron microscopy, transmission electron microscopy, quantitative Real-time PCR (qRT-PCR), and Western blot (WB), and analyzed the relationship between their expression and reproductive hormone receptors. We also compared relevant characteristics between seasonal Tibetan sheep and non-seasonal Small Tail Han sheep in the same pastoral area. The results showed that MTNR1A and MTNR1B were expressed in all tissues of the Tibetan sheep HPTA, and both were co-expressed in the cytoplasm of epididymis basal and halo cells located at common sites of the epididymis basement membrane, forming an immune barrier. The qRT-PCR analysis showed that not only MTNR1A but also N-acetyltransferase (AANAT), hydroxyindole-oxygen- methyltransferase (HIOMT), androgen receptor (AR), and estrogen receptor α (ERα) mRNA expression was significantly upregulated in the testis and epididymis of Tibetan sheep during the breeding season, whereas no clear upregulation of these genes was observed in the tissues of Small Tail Han sheep. MTNR1A and MTNR1B are important regulators of the HPTA in sheep. MTNR1A mediates seasonal estrus regulation in Tibetan sheep. Both MTNR1A and MTNR1B may play important roles in formation of the blood-epididymal barrier. The results of this study should help advance research on the mechanism of reproductive regulation of the HPTA in male animals and provide reference data for improving the reproductive rate of seasonal breeding animals.
Collapse
Affiliation(s)
- Dapeng Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Guojuan Chen
- Huangzhong District Animal Disease Control Center of Xining City, Xining City, Qinghai Province, China
| | - Shaoyu Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaojie Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yindi Xing
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Juanjuan Song
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Holland ND, Holland LZ. Cephalochordate Hemocytes: First Demonstration for Asymmetron lucayanum (Bahamas Lancelet) Plus Augmented Description for Branchiostoma floridae (Florida Amphioxus). THE BIOLOGICAL BULLETIN 2023; 244:71-81. [PMID: 37725696 DOI: 10.1086/726774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
AbstractWithin phylum Chordata, the subphylum Cephalochordata (amphioxus and lancelets) has figured large in considerations of the evolutionary origin of the vertebrates. To date, these discussions have been predominantly based on knowledge of a single cephalochordate genus (Branchiostoma), almost to the exclusion of the other two genera (Asymmetron and Epigonichthys). This uneven pattern is illustrated by cephalochordate hematology, until now known entirely from work done on Branchiostoma. The main part of the present study is to describe hemocytes in the dorsal aorta of a species of Asymmetron by serial block-face scanning electron microscopy. This technique, which demonstrates three-dimensional fine structure, showed that the hemocytes have a relatively uniform morphology characterized by an oval shape and scanty cytoplasm. Ancillary information is also included for Branchiostoma hemocytes, known from previous studies to have relatively abundant cytoplasm; our serial block-face scanning electron microscopy provides more comprehensive views of the highly variable shapes of these cells, which typically extend one or several pseudopodium-like protrusions. The marked difference in hemocyte morphology found between Asymmetron and Branchiostoma was unexpected and directs attention to investigating comparable cells in the genus Epigonichthys. A broader knowledge of the hemocytes in all three cephalochordate genera would provide more balanced insights into the evolution of vertebrate hematopoiesis.
Collapse
|
3
|
Kotlyarov S. Immune Function of Endothelial Cells: Evolutionary Aspects, Molecular Biology and Role in Atherogenesis. Int J Mol Sci 2022; 23:ijms23179770. [PMID: 36077168 PMCID: PMC9456046 DOI: 10.3390/ijms23179770] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is one of the key problems of modern medicine, which is due to the high prevalence of atherosclerotic cardiovascular diseases and their significant share in the structure of morbidity and mortality in many countries. Atherogenesis is a complex chain of events that proceeds over many years in the vascular wall with the participation of various cells. Endothelial cells are key participants in vascular function. They demonstrate involvement in the regulation of vascular hemodynamics, metabolism, and innate immunity, which act as leading links in the pathogenesis of atherosclerosis. These endothelial functions have close connections and deep evolutionary roots, a better understanding of which will improve the prospects of early diagnosis and effective treatment.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
4
|
Brassard-Jollive N, Monnot C, Muller L, Germain S. In vitro 3D Systems to Model Tumor Angiogenesis and Interactions With Stromal Cells. Front Cell Dev Biol 2020; 8:594903. [PMID: 33224956 PMCID: PMC7674638 DOI: 10.3389/fcell.2020.594903] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
In vitro 3D culture systems provide promising tools for screening novel therapies and understanding drug resistance mechanisms in cancer because they are adapted for high throughput analysis. One of the main current challenges is to reproducibly culture patient samples containing cancer and stromal cells to faithfully recapitulate tumor microenvironment and move toward efficient personalized medicine. Tumors are composed of heterogeneous cell populations and characterized by chaotic vascularization in a remodeled microenvironment. Indeed, tumor angiogenesis occurs in a complex stroma containing immune cells and cancer-associated fibroblasts that secrete important amounts of cytokines, growth factors, extracellular vesicles, and extracellular matrix (ECM). This process leads to the formation of inflated, tortuous, and permeable capillaries that display deficient basement membrane (BM) and perivascular coverage. These abnormal capillaries affect responses to anti-cancer therapies such as anti-angiogenic, radio-, and immunotherapies. Current pre-clinical models are limited for investigating interactions between tumor cells and vascularization during tumor progression as well as mechanisms that lead to drug resistance. In vitro approaches developed for vascularization are either the result of engineered cell lining or based on physiological processes including vasculogenesis and sprouting angiogenesis. They allow investigation of paracrine and direct interactions between endothelial and tumor and/or stromal cells, as well as impact of biochemical and biophysical cues of the microenvironment, using either natural matrix components or functionalized synthetic hydrogels. In addition, microfluidic devices provide access to modeling the impact of shear stress and interstitial flow and growth factor gradients. In this review, we will describe the state of the art co-culture models of vascularized micro-tumors in order to study tumor progression and metastatic dissemination including intravasation and/or extravasation processes.
Collapse
Affiliation(s)
- Noémie Brassard-Jollive
- Center for Interdisciplinary Research in Biology, College de France, CNRS UMR 7241, INSERM U1050, PSL Research University, Paris, France.,Sorbonne Université, Collège Doctoral, Paris, France
| | - Catherine Monnot
- Center for Interdisciplinary Research in Biology, College de France, CNRS UMR 7241, INSERM U1050, PSL Research University, Paris, France
| | - Laurent Muller
- Center for Interdisciplinary Research in Biology, College de France, CNRS UMR 7241, INSERM U1050, PSL Research University, Paris, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology, College de France, CNRS UMR 7241, INSERM U1050, PSL Research University, Paris, France
| |
Collapse
|
5
|
Morphological Characteristics and Clinical Significance of Different Types of Tumor Vessels in Patients with Stages I-IIA of Squamous Cervical Cancer. JOURNAL OF ONCOLOGY 2020; 2020:3818051. [PMID: 32849870 PMCID: PMC7441445 DOI: 10.1155/2020/3818051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/11/2020] [Indexed: 02/05/2023]
Abstract
The determination of factors associated with progression of cervical cancer is important, both for a recurrence risk assessment and for determining optimal treatment tactics. Previously, we showed the prognostic value of different types of tumor microvessels (MVs) in gastric and breast cancer. The object of this research was to study the morphology and clinical significance of different tumor microvessels in early cervical cancer. A total of 65 archived paraffin blocks of patients with I-IIA stages of squamous cervical cancer were investigated. Samples were stained with Mayer hematoxylin and immunohistochemically using antibodies to CD34, podoplanin, HIF-1a, and Snail. The eight types of tumor MVs differed in morphology were identified. It was established that only the dilated capillaries (DСs) with weak expression of CD34, the contact type DCs, the capillaries in tumor solid component, and the lymphatic vessels in the lymphoid and polymorphic cell infiltrates of tumor stroma are associated with clinical and pathological characteristics of early cervical cancer. Preliminary results also suggest that a combination of fragmentation in tumor solid component and the contact type DCs may predict a recurrence of early cervical cancer. Given the small number of cervical cancer recurrences, the predictive significance of the described markers requires a more thorough examination.
Collapse
|
6
|
Valdivia A, Mingo G, Aldana V, Pinto MP, Ramirez M, Retamal C, Gonzalez A, Nualart F, Corvalan AH, Owen GI. Fact or Fiction, It Is Time for a Verdict on Vasculogenic Mimicry? Front Oncol 2019; 9:680. [PMID: 31428573 PMCID: PMC6688045 DOI: 10.3389/fonc.2019.00680] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
The term vasculogenic mimicry (VM) refers to the capacity of certain cancer cells to form fluid-conducting structures within a tumor in an endothelial cell (EC)-free manner. Ever since its first report by Maniotis in 1999, the existence of VM has been an extremely contentious issue. The overwhelming consensus of the literature suggests that VM is frequently observed in highly aggressive tumors and correlates to lower patient survival. While the presence of VM in vivo in animal and patient tumors are claimed upon the strong positive staining for glycoproteins (Periodic Acid Schiff, PAS), it is by no means universally accepted. More controversial still is the existence of an in vitro model of VM that principally divides the scientific community. Original reports demonstrated that channels or tubes occur in cancer cell monolayers in vitro when cultured in matrigel and that these structures may support fluid movement. However, several years later many papers emerged stating that connections formed between cancer cells grown on matrigel represented VM. We speculate that this became accepted by the cancer research community and now the vast majority of the scientific literature reports both presence and mechanisms of VM based on intercellular connections, not the presence of fluid conducting tubes. In this opinion paper, we call upon evidence from an exhaustive review of the literature and original data to argue that the majority of in vitro studies presented as VM do not correspond to this phenomenon. Furthermore, we raise doubts on the validity of concluding the presence of VM in patient samples and animal models based solely on the presence of PAS+ staining. We outline the requirement for new biomarkers of VM and present criteria by which VM should be defined in vitro and in vivo.
Collapse
Affiliation(s)
- Andrés Valdivia
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gabriel Mingo
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Varina Aldana
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio P Pinto
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Ramirez
- Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Claudio Retamal
- Faculty of Medicine and Science, Center of Cellular Biology and Biomedicine (CEBICEM), Universidad San Sebastian, Santiago, Chile
| | - Alfonso Gonzalez
- Faculty of Medicine and Science, Center of Cellular Biology and Biomedicine (CEBICEM), Universidad San Sebastian, Santiago, Chile
| | - Francisco Nualart
- Faculty of Biological Sciences, Universidad de Concepcion, Concepción, Chile
| | - Alejandro H Corvalan
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
7
|
Dumortier JG, Le Verge-Serandour M, Tortorelli AF, Mielke A, de Plater L, Turlier H, Maître JL. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science 2019; 365:465-468. [DOI: 10.1126/science.aaw7709] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
During mouse pre-implantation development, the formation of the blastocoel, a fluid-filled lumen, breaks the radial symmetry of the blastocyst. The factors that control the formation and positioning of this basolateral lumen remain obscure. We found that accumulation of pressurized fluid fractures cell-cell contacts into hundreds of micrometer-size lumens. These microlumens eventually discharge their volumes into a single dominant lumen, which we model as a process akin to Ostwald ripening, underlying the coarsening of foams. Using chimeric mutant embryos, we tuned the hydraulic fracturing of cell-cell contacts and steered the coarsening of microlumens, allowing us to successfully manipulate the final position of the lumen. We conclude that hydraulic fracturing of cell-cell contacts followed by contractility-directed coarsening of microlumens sets the first axis of symmetry of the mouse embryo.
Collapse
|
8
|
Kragl M, Schubert R, Karsjens H, Otter S, Bartosinska B, Jeruschke K, Weiss J, Chen C, Alsteens D, Kuss O, Speier S, Eberhard D, Müller DJ, Lammert E. The biomechanical properties of an epithelial tissue determine the location of its vasculature. Nat Commun 2016; 7:13560. [PMID: 27995929 PMCID: PMC5187430 DOI: 10.1038/ncomms13560] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 10/14/2016] [Indexed: 01/06/2023] Open
Abstract
An important question is how growing tissues establish a blood vessel network. Here we study vascular network formation in pancreatic islets, endocrine tissues derived from pancreatic epithelium. We find that depletion of integrin-linked kinase (ILK) in the pancreatic epithelial cells of mice results in glucose intolerance due to a loss of the intra-islet vasculature. In turn, blood vessels accumulate at the islet periphery. Neither alterations in endothelial cell proliferation, apoptosis, morphology, Vegfa expression and VEGF-A secretion nor ‘empty sleeves' of vascular basement membrane are found. Instead, biophysical experiments reveal that the biomechanical properties of pancreatic islet cells, such as their actomyosin-mediated cortex tension and adhesive forces to endothelial cells, are significantly changed. These results suggest that a sorting event is driving the segregation of endothelial and epithelial cells and indicate that the epithelial biomechanical properties determine whether the blood vasculature invades or envelops a growing epithelial tissue. Vasculature is denser in soft than in stiff tissues. Kragl et al. suggest a mechanistic link between biomechanical tissue properties and vascularization by showing that integrin-linked kinase reduces the contractile forces of the cell cortex in endocrine pancreatic cells, facilitating their adhesion to blood vessels and enabling pancreatic islet vascularization.
Collapse
Affiliation(s)
- Martin Kragl
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Rajib Schubert
- Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland
| | - Haiko Karsjens
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Silke Otter
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Barbara Bartosinska
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Kay Jeruschke
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Jürgen Weiss
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Chunguang Chen
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - David Alsteens
- Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland
| | - Oliver Kuss
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Stephan Speier
- German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of Technische Universität Dresden, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,DFG-Center for Regenerative Therapies Dresden (CRTD), Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Daniel Eberhard
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Daniel J Müller
- Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Department of Biology, Heinrich Heine University, D-40225 Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), D-85764 München-Neuherberg, Germany.,Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Barnett FH, Rosenfeld M, Wood M, Kiosses WB, Usui Y, Marchetti V, Aguilar E, Friedlander M. Macrophages form functional vascular mimicry channels in vivo. Sci Rep 2016; 6:36659. [PMID: 27834402 PMCID: PMC5105153 DOI: 10.1038/srep36659] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/18/2016] [Indexed: 12/02/2022] Open
Abstract
Macrophages, key cells of the innate immune system, are known to support angiogenesis but are not believed to directly form vessel walls. Here we show that macrophages structurally form primitive, NON-ENDOTHELIAL “vessels” or vascular mimicry (VM) channels in both tumor and angiogenesis in vivo models. These channels are functionally connected to the systemic vasculature as they are perfused by intravenously injected dye. Since both models share hypoxic micro-environments, we hypothesized that hypoxia may be an important mediator of VM formation. Indeed, conditional genetic depletion of myeloid-specific HIF-1α results in decreased VM network formation, dye perfusion and tumor size. Although the macrophage VM network shares some features with an endothelial vasculature, it is ultrastructurally different. Cancer stem cells have been shown to form vascular mimicry channels. Our data demonstrates that tumor-associated macrophages also form them. The identification of this novel type of vascular mimicry may help in the development of targeted cancer therapeutics.
Collapse
Affiliation(s)
- Faith H Barnett
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Mauricio Rosenfeld
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Malcolm Wood
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - William B Kiosses
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Yoshihiko Usui
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Valentina Marchetti
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Edith Aguilar
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Martin Friedlander
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
10
|
Barry DM, Xu K, Meadows SM, Zheng Y, Norden PR, Davis GE, Cleaver O. Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice. Development 2015; 142:3058-70. [PMID: 26253403 DOI: 10.1242/dev.125260] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022]
Abstract
The Rho family of small GTPases has been shown to be required in endothelial cells (ECs) during blood vessel formation. However, the underlying cellular events controlled by different GTPases remain unclear. Here, we assess the cellular mechanisms by which Cdc42 regulates mammalian vascular morphogenesis and maintenance. In vivo deletion of Cdc42 in embryonic ECs (Cdc42(Tie2KO)) results in blocked lumen formation and endothelial tearing, leading to lethality of mutant embryos by E9-10 due to failed blood circulation. Similarly, inducible deletion of Cdc42 (Cdc42(Cad5KO)) at mid-gestation blocks angiogenic tubulogenesis. By contrast, deletion of Cdc42 in postnatal retinal vessels leads to aberrant vascular remodeling and sprouting, as well as markedly reduced filopodia formation. We find that Cdc42 is essential for organization of EC adhesion, as its loss results in disorganized cell-cell junctions and reduced focal adhesions. Endothelial polarity is also rapidly lost upon Cdc42 deletion, as seen by failed localization of apical podocalyxin (PODXL) and basal actin. We link observed failures to a defect in F-actin organization, both in vitro and in vivo, which secondarily impairs EC adhesion and polarity. We also identify Cdc42 effectors Pak2/4 and N-WASP, as well as the actomyosin machinery, to be crucial for EC actin organization. This work supports the notion of Cdc42 as a central regulator of the cellular machinery in ECs that drives blood vessel formation.
Collapse
Affiliation(s)
- David M Barry
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Ke Xu
- Department SCRB, Harvard University, Cambridge, MA 02138, USA
| | - Stryder M Meadows
- Department of Cell and Molecular Biology, Tulane University, 2000 Percival Stern Hall, New Orleans, LA 70118, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Pieter R Norden
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| |
Collapse
|
11
|
Charpentier MS, Tandon P, Trincot CE, Koutleva EK, Conlon FL. A distinct mechanism of vascular lumen formation in Xenopus requires EGFL7. PLoS One 2015; 10:e0116086. [PMID: 25705891 PMCID: PMC4338030 DOI: 10.1371/journal.pone.0116086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/04/2014] [Indexed: 01/03/2023] Open
Abstract
During vertebrate blood vessel development, lumen formation is the critical process by which cords of endothelial cells transition into functional tubular vessels. Here, we use Xenopus embryos to explore the cellular and molecular mechanisms underlying lumen formation of the dorsal aorta and the posterior cardinal veins, the primary major vessels that arise via vasculogenesis within the first 48 hours of life. We demonstrate that endothelial cells are initially found in close association with one another through the formation of tight junctions expressing ZO-1. The emergence of vascular lumens is characterized by elongation of endothelial cell shape, reorganization of junctions away from the cord center to the periphery of the vessel, and onset of Claudin-5 expression within tight junctions. Furthermore, unlike most vertebrate vessels that exhibit specialized apical and basal domains, we show that early Xenopus vessels are not polarized. Moreover, we demonstrate that in embryos depleted of the extracellular matrix factor Epidermal Growth Factor-Like Domain 7 (EGFL7), an evolutionarily conserved factor associated with vertebrate vessel development, vascular lumens fail to form. While Claudin-5 localizes to endothelial tight junctions of EGFL7-depleted embryos in a timely manner, endothelial cells of the aorta and veins fail to undergo appropriate cell shape changes or clear junctions from the cell-cell contact. Taken together, we demonstrate for the first time the mechanisms by which lumens are generated within the major vessels in Xenopus and implicate EGFL7 in modulating cell shape and cell-cell junctions to drive proper lumen morphogenesis.
Collapse
Affiliation(s)
- Marta S. Charpentier
- University of North Carolina McAllister Heart Institute, UNC-CH, Chapel Hill, North Carolina, United States of America
- Department of Genetics and Molecular Biology, UNC-CH, Chapel Hill, North Carolina, United States of America
| | - Panna Tandon
- University of North Carolina McAllister Heart Institute, UNC-CH, Chapel Hill, North Carolina, United States of America
- Department of Genetics and Molecular Biology, UNC-CH, Chapel Hill, North Carolina, United States of America
| | - Claire E. Trincot
- University of North Carolina McAllister Heart Institute, UNC-CH, Chapel Hill, North Carolina, United States of America
- Department of Genetics and Molecular Biology, UNC-CH, Chapel Hill, North Carolina, United States of America
| | - Elitza K. Koutleva
- University of North Carolina McAllister Heart Institute, UNC-CH, Chapel Hill, North Carolina, United States of America
- Department of Biology, UNC-CH, Chapel Hill, North Carolina, United States of America
| | - Frank L. Conlon
- University of North Carolina McAllister Heart Institute, UNC-CH, Chapel Hill, North Carolina, United States of America
- Department of Genetics and Molecular Biology, UNC-CH, Chapel Hill, North Carolina, United States of America
- Department of Biology, UNC-CH, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, UNC-CH, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
12
|
Charpentier MS, Conlon FL. Cellular and molecular mechanisms underlying blood vessel lumen formation. Bioessays 2013; 36:251-9. [PMID: 24323945 DOI: 10.1002/bies.201300133] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The establishment of a functional vascular system requires multiple complex steps throughout embryogenesis, from endothelial cell (EC) specification to vascular patterning into venous and arterial hierarchies. Following the initial assembly of ECs into a network of cord-like structures, vascular expansion and remodeling occur rapidly through morphogenetic events including vessel sprouting, fusion, and pruning. In addition, vascular morphogenesis encompasses the process of lumen formation, critical for the transformation of cords into perfusable vascular tubes. Studies in mouse, zebrafish, frog, and human endothelial cells have begun to outline the cellular and molecular requirements underlying lumen formation. Although the lumen can be generated through diverse mechanisms, the coordinated participation of multiple conserved molecules including transcription factors, small GTPases, and adhesion and polarity proteins remains a fundamental principle, leading us closer to a more thorough understanding of this complex event.
Collapse
Affiliation(s)
- Marta S Charpentier
- McAllister Heart Institute, Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
13
|
Monahan-Earley R, Dvorak AM, Aird WC. Evolutionary origins of the blood vascular system and endothelium. J Thromb Haemost 2013; 11 Suppl 1:46-66. [PMID: 23809110 PMCID: PMC5378490 DOI: 10.1111/jth.12253] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Every biological trait requires both a proximate and evolutionary explanation. The field of vascular biology is focused primarily on proximate mechanisms in health and disease. Comparatively little attention has been given to the evolutionary basis of the cardiovascular system. Here, we employ a comparative approach to review the phylogenetic history of the blood vascular system and endothelium. In addition to drawing on the published literature, we provide primary ultrastructural data related to the lobster, earthworm, amphioxus, and hagfish. Existing evidence suggests that the blood vascular system first appeared in an ancestor of the triploblasts over 600 million years ago, as a means to overcome the time-distance constraints of diffusion. The endothelium evolved in an ancestral vertebrate some 540-510 million years ago to optimize flow dynamics and barrier function, and/or to localize immune and coagulation functions. Finally, we emphasize that endothelial heterogeneity evolved as a core feature of the endothelium from the outset, reflecting its role in meeting the diverse needs of body tissues.
Collapse
Affiliation(s)
- Rita Monahan-Earley
- The Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Ann M. Dvorak
- The Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - William C. Aird
- The Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215
- Mount Desert Island Biological Laboratory, Salisbury Cover, ME 04672
| |
Collapse
|
14
|
Abstract
The vascular system developed early in evolution. It is required in large multicellular organisms for the transport of nutrients, oxygen, and waste products to and from tissues. The vascular system is composed of hollow tubes, which have a high level of complexity in vertebrates. Vasculogenesis describes the de novo formation of blood vessels, e.g., aorta formation in vertebrate embryogenesis. In contrast, angiogenesis is the formation of blood vessels from preexisting ones, e.g., sprouting of intersomitic blood vessels from the aorta. Importantly, the lumen of all blood vessels in vertebrates is lined and formed by endothelial cells. In both vasculogenesis and angiogenesis, lumen formation takes place in a cord of endothelial cells. It involves a complex molecular mechanism composed of endothelial cell repulsion at the cell-cell contacts within the endothelial cell cords, junctional rearrangement, and endothelial cell shape change. As the vascular system also participates in the course of many diseases, such as cancer, stroke, and myocardial infarction, it is important to understand and make use of the molecular mechanisms of blood vessel formation to better understand and manipulate the pathomechanisms involved.
Collapse
Affiliation(s)
- Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich-Heine-University of Düsseldorf, D-40225 Düsseldorf, Germany.
| | | |
Collapse
|
15
|
Abstract
The vertebrate circulatory system is the most complex vascular system among those of metazoans, with key innovations including a multi-chambered heart and highly specialized blood cells. Invertebrate vessels, on the other hand, consist of hemal spaces between the basal laminae of epithelia. How the evolutionary transition from an invertebrate-type system to the complex vertebrate one occurred is, however, poorly understood. We investigate here the development of the cardiovascular system of the cephalochordate amphioxus Branchiostoma lanceolatum in order to gain insight into the origin of the vertebrate cardiovascular system. The cardiac markers Hand, Csx (Nkx2-5) and Tbx4/5 reveal a broad cardiac-like domain in amphioxus; such a decentralized organization during development parallels that seen in the adult anatomy. Our data therefore support the hypothesis that amphioxus never possessed a proper heart, even transiently during development. We also define a putative hematopoietic domain, supported by the expression of the hematopoietic markers Scl and Pdvegfr. We show that this area is closed to the dorsal aorta anlages, partially linked to excretory tissues, and that its development is regulated by retinoic acid, thus recalling the aorta-gonads-mesonephros (AGM) area of vertebrates. This region probably produces Pdvegfr+ hemal cells, with an important role in amphioxus vessel formation, since treatments with an inhibitor of PDGFR/VEGFR lead to a decrease of Laminin in the basal laminae of developing vessels. Our results point to a chordate origin of hematopoiesis in an AGM-like area from where hemal Pdvegfr+ cells are produced. These Pdvegfr+ cells probably resemble the ancestral chordate blood cells from which the vertebrate endothelium later originated.
Collapse
|
16
|
|
17
|
Lysyl oxidase-like protein-2 regulates sprouting angiogenesis and type IV collagen assembly in the endothelial basement membrane. Blood 2011; 118:3979-89. [PMID: 21835952 DOI: 10.1182/blood-2010-10-313296] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sprouting angiogenesis is associated with extensive extracellular matrix (ECM) remodeling. The molecular mechanisms involved in building the vascular microenvironment and its impact on capillary formation remain elusive. We therefore performed a proteomic analysis of ECM from endothelial cells maintained in hypoxia, a major stimulator of angiogenesis. Here, we report the characterization of lysyl oxidase-like protein-2 (LOXL2) as a hypoxia-target expressed in neovessels and accumulated in the endothelial ECM. LOXL2 belongs to the lysyl oxidase family of secreted enzymes involved in ECM crosslinking. Knockdown experiments in Tg(fli1:egfp)y1 zebrafish embryos resulted in lack of intersegmental vessel circulation and demonstrated LOXL2 involvement in proper capillary formation. Further investigation in vitro by loss and gain of function experiments confirmed that LOXL2 was required for tubulogenesis in 3D fibrin gels and demonstrated that this enzyme was required for collagen IV assembly in the ECM. In addition, LOXL2 depletion down-regulated cell migration and proliferation. These data suggest a major role for LOXL2 in the organization of endothelial basal lamina and in the downstream mechanotransductive signaling. Altogether, our study provides the first evidence for the role of LOXL2 in regulating angiogenesis through collagen IV scaffolding.
Collapse
|
18
|
Abstract
The asymmetric polarization of cells allows specialized functions to be performed at discrete subcellular locales. Spatiotemporal coordination of polarization between groups of cells allowed the evolution of metazoa. For instance, coordinated apical-basal polarization of epithelial and endothelial cells allows transport of nutrients and metabolites across cell barriers and tissue microenvironments. The defining feature of such tissues is the presence of a central, interconnected luminal network. Although tubular networks are present in seemingly different organ systems, such as the kidney, lung, and blood vessels, common underlying principles govern their formation. Recent studies using in vivo and in vitro models of lumen formation have shed new light on the molecular networks regulating this fundamental process. We here discuss progress in understanding common design principles underpinning de novo lumen formation and expansion.
Collapse
|
19
|
|
20
|
Strilić B, Kucera T, Lammert E. Formation of cardiovascular tubes in invertebrates and vertebrates. Cell Mol Life Sci 2010; 67:3209-18. [PMID: 20490602 PMCID: PMC11115780 DOI: 10.1007/s00018-010-0400-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/17/2010] [Accepted: 05/03/2010] [Indexed: 12/13/2022]
Abstract
The cardiovascular system developed early in evolution and is pivotal for the transport of oxygen, nutrients, and waste products within the organism. It is composed of hollow tubular structures and has a high level of complexity in vertebrates. This complexity is, at least in part, due to the endothelial cell lining of vertebrate blood vessels. However, vascular lumen formation by endothelial cells is still controversially discussed. For example, it has been suggested that the lumen mainly forms via coalescence of large intracellular vacuoles generated by pinocytosis. Alternatively, it was proposed that the vascular lumen initiates extracellularly between adjacent apical endothelial cell surfaces. Here we discuss invertebrate and vertebrate cardiovascular lumen formation and highlight the possible modes of blood vessel formation. Finally, we point to the importance of a better understanding of vascular lumen formation for treating human pathologies, including cancer and coronary heart disease.
Collapse
Affiliation(s)
- Boris Strilić
- Institute of Metabolic Physiology, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
21
|
Panchenko MP, Siddiquee Z, Dombkowski DM, Alekseyev YO, Lenburg ME, Walker JD, Macgillivray TE, Preffer FI, Stone JR. Protein kinase CK1alphaLS promotes vascular cell proliferation and intimal hyperplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1562-72. [PMID: 20696773 DOI: 10.2353/ajpath.2010.100327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein kinase CK1alpha regulates several fundamental cellular processes including proliferation and differentiation. Up to four forms of this kinase are expressed in vertebrates resulting from alternative splicing of exons; these exons encode either the L-insert located within the catalytic domain or the S-insert located at the C terminus of the protein. Whereas the L-insert is known to target the kinase to the nucleus, the functional significance of nuclear CK1alphaLS has been unclear. Here we demonstrate that selective L-insert-targeted short hairpin small interfering RNA-mediated knockdown of CK1alphaLS in human vascular endothelial cells and vascular smooth muscle cells impairs proliferation and abolishes hydrogen peroxide-stimulated proliferation of vascular smooth muscle cells, with the cells accumulating in G(0)/G(1). In addition, selective knockdown of CK1alphaLS in cultured human arteries inhibits vascular activation, preventing smooth muscle cell proliferation, intimal hyperplasia, and proteoglycan deposition. Knockdown of CK1alphaLS results in the harmonious down-regulation of its target substrate heterogeneous nuclear ribonucleoprotein C and results in the altered expression or alternative splicing of key genes involved in cellular activation including CXCR4, MMP3, CSF2, and SMURF1. Our results indicate that the nuclear form of CK1alpha in humans, CK1alphaLS, plays a critical role in vascular cell proliferation, cellular activation, and hydrogen peroxide-mediated mitogenic signal transduction.
Collapse
Affiliation(s)
- Mikhail P Panchenko
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Endothelial lumen signaling complexes control 3D matrix-specific tubulogenesis through interdependent Cdc42- and MT1-MMP-mediated events. Blood 2010; 115:5259-69. [PMID: 20215637 DOI: 10.1182/blood-2009-11-252692] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here, we define an endothelial cell (EC) lumen signaling complex involving Cdc42, Par6b, Par3, junction adhesion molecule (Jam)-B and Jam-C, membrane type 1-matrix metalloproteinase (MT1-MMP), and integrin alpha(2)beta(1), which coassociate to control human EC tubulogenesis in 3D collagen matrices. Blockade of both Jam-B and Jam-C using antibodies, siRNA, or dominant-negative mutants completely interferes with lumen and tube formation resulting from a lack of Cdc42 activation, inhibition of Cdc42-GTP-dependent signal transduction, and blockade of MT1-MMP-dependent proteolysis. This process requires interdependent Cdc42 and MT1-MMP signaling, which involves Par3 binding to the Jam-B and Jam-C cytoplasmic tails, an interaction that is necessary to physically couple the components of the lumen signaling complex. MT1-MMP proteolytic activity is necessary for Cdc42 activation during EC tube formation in 3D collagen matrices but not on 2D collagen surfaces, whereas Cdc42 activation is necessary for MT1-MMP to create vascular guidance tunnels and tube networks in 3D matrices through proteolytic events. This work reveals a novel interdependent role for Cdc42-dependent signaling and MT1-MMP-dependent proteolysis, a process that occurs selectively in 3D collagen matrices and that requires EC lumen signaling complexes, to control human EC tubulogenesis during vascular morphogenesis.
Collapse
|
23
|
Strilić B, Kucera T, Eglinger J, Hughes MR, McNagny KM, Tsukita S, Dejana E, Ferrara N, Lammert E. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 2009; 17:505-15. [PMID: 19853564 DOI: 10.1016/j.devcel.2009.08.011] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 06/28/2009] [Accepted: 08/26/2009] [Indexed: 12/21/2022]
Abstract
In vertebrates, endothelial cells (ECs) form blood vessels in every tissue. Here, we investigated vascular lumen formation in the developing aorta, the first and largest arterial blood vessel in all vertebrates. Comprehensive imaging, pharmacological manipulation, and genetic approaches reveal that, in mouse embryos, the aortic lumen develops extracellularly between adjacent ECs. We show that ECs adhere to each other, and that CD34-sialomucins, Moesin, F-actin, and non-muscle Myosin II localize at the endothelial cell-cell contact to define the luminal cell surface. Resultant changes in EC shape lead to lumen formation. Importantly, VE-Cadherin and VEGF-A act at different steps. VE-Cadherin is required for localizing CD34-sialomucins to the endothelial cell-cell contact, a prerequisite to Moesin and F-actin recruitment. In contrast, VEGF-A is required for F-actin-nm-Myosin II interactions and EC shape change. Based on these data, we propose a molecular mechanism of in vivo vascular lumen formation in developing blood vessels.
Collapse
Affiliation(s)
- Boris Strilić
- Institute of Metabolic Physiology, Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer.
Collapse
|
25
|
Midwood KS, Orend G. The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal 2009; 3:287-310. [PMID: 19838819 PMCID: PMC2778592 DOI: 10.1007/s12079-009-0075-1] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 09/30/2009] [Indexed: 01/14/2023] Open
Abstract
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer.
Collapse
Affiliation(s)
- Kim S. Midwood
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, 65 Aspenlea Road, Hammersmith, London, W6 8LH UK
| | - Gertraud Orend
- Inserm U682, Strasbourg, 67200 France
- University of Strasbourg, UMR-S682, Strasbourg, 67081 France
- Department of Molecular Biology, CHRU Strasbourg, Strasbourg, 67200 France
| |
Collapse
|
26
|
Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev 2009; 89:957-89. [PMID: 19584318 DOI: 10.1152/physrev.00041.2008] [Citation(s) in RCA: 674] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An important factor in the transition from an open to a closed circulatory system was a change in vessel wall structure and composition that enabled the large arteries to store and release energy during the cardiac cycle. The component of the arterial wall in vertebrates that accounts for these properties is the elastic fiber network organized by medial smooth muscle. Beginning with the onset of pulsatile blood flow in the developing aorta, smooth muscle cells in the vessel wall produce a complex extracellular matrix (ECM) that will ultimately define the mechanical properties that are critical for proper function of the adult vascular system. This review discusses the structural ECM proteins in the vertebrate aortic wall and will explore how the choice of ECM components has changed through evolution as the cardiovascular system became more advanced and pulse pressure increased. By correlating vessel mechanics with physiological blood pressure across animal species and in mice with altered vessel compliance, we show that cardiac and vascular development are physiologically coupled, and we provide evidence for a universal elastic modulus that controls the parameters of ECM deposition in vessel wall development. We also discuss mechanical models that can be used to design better tissue-engineered vessels and to test the efficacy of clinical treatments.
Collapse
Affiliation(s)
- Jessica E Wagenseil
- Department of Biomedical Engineering, Saint Louis University, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|