1
|
Liu Y, Hao W, Huang C, Feng P, Liu H, Guo Z. Interaction of PGC7 and HP1BP3 Maintains Meg3-DMR Methylation by Regulating Chromatin Configuration. J Cell Biochem 2024:e30667. [PMID: 39422314 DOI: 10.1002/jcb.30667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Genomic imprinting is essential for mammalian development. PGC7, an important maternal factor, binds to dimethylated histone H3K9 (H3K9me2), maintaining DNA methylation in zygotes and stem cells. However, the underlying molecular mechanisms of PGC7-maintained genomic imprinting in stem cells are not clear. Our previous study has identified that PGC7 interacts with HP1BP3, a novel member of the histone H1 family. In this study, we found that PGC7 interacts with the central globular domain of HP1BP3 through its C-terminal tail and that HP1BP3 is responsible for the recruitment of PGC7 at the Meg3 differentially methylated region (DMR) in the Dlk1-Dio3 imprinted domain. HP1BP3 or PGC7 depletion decreases enrichment in the Meg3-DMR, leading to DNA hypermethylation in this region. Moreover, the cooperative binding of PGC7 and HP1BP3 can antagonize the enrichment of DNMT3A in the Meg3-DMR, and the depletion of HP1BP3 or PGC7 separately induces chromosome decondensation in this region. In summary, this is the first study demonstrating that PGC7 and HP1BP3 synergistically maintain the methylation status of the Meg3-DMR by enabling a chromatin configuration that interferes with the binding of the de novo DNA methyltransferase DNMT3A.
Collapse
Affiliation(s)
- Yingxiang Liu
- Department of Orthopedic Surgery, Orthopedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Weijie Hao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Chenyang Huang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Peiwen Feng
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Zekun Guo
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
2
|
Xavier JM, Magno R, Russell R, de Almeida BP, Jacinta-Fernandes A, Besouro-Duarte A, Dunning M, Samarajiwa S, O'Reilly M, Maia AM, Rocha CL, Rosli N, Ponder BAJ, Maia AT. Identification of candidate causal variants and target genes at 41 breast cancer risk loci through differential allelic expression analysis. Sci Rep 2024; 14:22526. [PMID: 39341862 PMCID: PMC11438911 DOI: 10.1038/s41598-024-72163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Understanding breast cancer genetic risk relies on identifying causal variants and candidate target genes in risk loci identified by genome-wide association studies (GWAS), which remains challenging. Since most loci fall in active gene regulatory regions, we developed a novel approach facilitated by pinpointing the variants with greater regulatory potential in the disease's tissue of origin. Through genome-wide differential allelic expression (DAE) analysis, using microarray data from 64 normal breast tissue samples, we mapped the variants associated with DAE (daeQTLs). Then, we intersected these with GWAS data to reveal candidate risk regulatory variants and analysed their cis-acting regulatory potential. Finally, we validated our approach by extensive functional analysis of the 5q14.1 breast cancer risk locus. We observed widespread gene expression regulation by cis-acting variants in breast tissue, with 65% of coding and noncoding expressed genes displaying DAE (daeGenes). We identified over 54 K daeQTLs for 6761 (26%) daeGenes, including 385 daeGenes harbouring variants previously associated with BC risk. We found 1431 daeQTLs mapped to 93 different loci in strong linkage disequilibrium with risk-associated variants (risk-daeQTLs), suggesting a link between risk-causing variants and cis-regulation. There were 122 risk-daeQTL with stronger cis-acting potential in active regulatory regions with protein binding evidence. These variants mapped to 41 risk loci, of which 29 had no previous report of target genes and were candidates for regulating the expression levels of 65 genes. As validation, we identified and functionally characterised five candidate causal variants at the 5q14.1 risk locus targeting the ATG10 and ATP6AP1L genes, likely acting via modulation of alternative transcription and transcription factor binding. Our study demonstrates the power of DAE analysis and daeQTL mapping to identify causal regulatory variants and target genes at breast cancer risk loci, including those with complex regulatory landscapes. It additionally provides a genome-wide resource of variants associated with DAE for future functional studies.
Collapse
Affiliation(s)
- Joana M Xavier
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal.
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal.
| | - Ramiro Magno
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal
- Pattern Institute PT, Faro, Portugal
| | - Roslin Russell
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Bernardo P de Almeida
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
- InstaDeep, Paris, France
| | - Ana Jacinta-Fernandes
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
| | | | - Mark Dunning
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
- Sheffield Bioinformatics Core, The School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Shamith Samarajiwa
- Medical Research Council (MRC) Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- Genetics and Genomics Section, Imperial College London, London, UK
| | - Martin O'Reilly
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
| | | | - Cátia L Rocha
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Faculty of Medicine, Instituto de Saúde Ambiental (ISAMB), University of Lisbon, Lisbon, Portugal
| | - Nordiana Rosli
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Training Division, Ministry of Health Malaysia, Putrajaya, Malaysia
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Bruce A J Ponder
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
| | - Ana-Teresa Maia
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal.
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
3
|
Farhadova S, Ghousein A, Charon F, Surcis C, Gomez-Velazques M, Roidor C, Di Michele F, Borensztein M, De Sario A, Esnault C, Noordermeer D, Moindrot B, Feil R. The long non-coding RNA Meg3 mediates imprinted gene expression during stem cell differentiation. Nucleic Acids Res 2024; 52:6183-6200. [PMID: 38613389 PMCID: PMC11194098 DOI: 10.1093/nar/gkae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The imprinted Dlk1-Dio3 domain comprises the developmental genes Dlk1 and Rtl1, which are silenced on the maternal chromosome in different cell types. On this parental chromosome, the domain's imprinting control region activates a polycistron that produces the lncRNA Meg3 and many miRNAs (Mirg) and C/D-box snoRNAs (Rian). Although Meg3 lncRNA is nuclear and associates with the maternal chromosome, it is unknown whether it controls gene repression in cis. We created mouse embryonic stem cells (mESCs) that carry an ectopic poly(A) signal, reducing RNA levels along the polycistron, and generated Rian-/- mESCs as well. Upon ESC differentiation, we found that Meg3 lncRNA (but not Rian) is required for Dlk1 repression on the maternal chromosome. Biallelic Meg3 expression acquired through CRISPR-mediated demethylation of the paternal Meg3 promoter led to biallelic Dlk1 repression, and to loss of Rtl1 expression. lncRNA expression also correlated with DNA hypomethylation and CTCF binding at the 5'-side of Meg3. Using Capture Hi-C, we found that this creates a Topologically Associating Domain (TAD) organization that brings Meg3 close to Dlk1 on the maternal chromosome. The requirement of Meg3 for gene repression and TAD structure may explain how aberrant MEG3 expression at the human DLK1-DIO3 locus associates with imprinting disorders.
Collapse
Affiliation(s)
- Sabina Farhadova
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
- Genetic Resources Research Institute, Azerbaijan National Academy of Sciences (ANAS), AZ1106 Baku, Azerbaijan
| | - Amani Ghousein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - François Charon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Caroline Surcis
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
| | - Melisa Gomez-Velazques
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Clara Roidor
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Flavio Di Michele
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Maud Borensztein
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Albertina De Sario
- University of Montpellier, 34090 Montpellier, France
- PhyMedExp, Institut National de la Santé et de la Recherche Médicale (INSERM), CNRS, 34295 Montpellier, France
| | - Cyril Esnault
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Benoit Moindrot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91190 Gif-sur-Yvette, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), Centre National de Recherche Scientifique (CNRS), 34090 Montpellier, France
- University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
4
|
Wang Z, Heid B, He J, Xie H, Reilly CM, Dai R, Ahmed SA. Egr2 Deletion in Autoimmune-Prone C57BL6/lpr Mice Suppresses the Expression of Methylation-Sensitive Dlk1-Dio3 Cluster MicroRNAs. Immunohorizons 2023; 7:898-907. [PMID: 38153351 PMCID: PMC10759154 DOI: 10.4049/immunohorizons.2300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
We previously demonstrated that the upregulation of microRNAs (miRNAs) at the genomic imprinted Dlk1-Dio3 locus in murine lupus is correlated with global DNA hypomethylation. We now report that the Dlk1-Dio3 genomic region in CD4+ T cells of MRL/lpr mice is hypomethylated, linking it to increased Dlk1-Dio3 miRNA expression. We evaluated the gene expression of methylating enzymes, DNA methyltransferases (DNMTs), and demethylating ten-eleven translocation proteins (TETs) to elucidate the molecular basis of DNA hypomethylation in lupus CD4+ T cells. There was a significantly elevated expression of Dnmt1 and Dnmt3b, as well as Tet1 and Tet2, in CD4+ T cells of three different lupus-prone mouse strains compared to controls. These findings suggest that the hypomethylation of murine lupus CD4+ T cells is likely attributed to a TET-mediated active demethylation pathway. Moreover, we found that deletion of early growth response 2 (Egr2), a transcription factor gene in B6/lpr mice markedly reduced maternally expressed miRNA genes but not paternally expressed protein-coding genes at the Dlk1-Dio3 locus in CD4+ T cells. EGR2 has been shown to induce DNA demethylation by recruiting TETs. Surprisingly, we found that deleting Egr2 in B6/lpr mice induced more hypomethylated differentially methylated regions at either the whole-genome level or the Dlk1-Dio3 locus in CD4+ T cells. Although the role of methylation in EGR2-mediated regulation of Dlk1-Dio3 miRNAs is not readily apparent, these are the first data to show that in lupus, Egr2 regulates Dlk1-Dio3 miRNAs, which target major signaling pathways in autoimmunity. These data provide a new perspective on the role of upregulated EGR2 in lupus pathogenesis.
Collapse
Affiliation(s)
- Zhuang Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Jianlin He
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute at Virginia Tech, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
5
|
Mortezagholi S, Mahmoudi AR, Shojaeian S, Vafaei S, Soltanghoraei H, Bayat AA, Shokri F, Ghods R, Zarnani AH. Discovery of a novel marker for human granulocytes and tissue macrophages: RTL1 revisited. Cell Tissue Res 2023; 394:177-188. [PMID: 37535101 DOI: 10.1007/s00441-023-03817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
Here, retrotransposon-like 1 (RTL1) is introduced as a marker for circulating and tissue neutrophils, tissue macrophages, and tumor-associated macrophages (TAM) and neutrophils (TAN). Anti-RTL1 polyclonal and monoclonal antibodies were produced, and their reactivity was examined by Western blotting (WB), ELISA, and immunostaining of human normal and cancer tissues. The reactivity of the anti-RTL1 antibodies with peripheral blood leukocytes and a panel of hematopoietic cell lines was examined. The generated antibodies specifically detected RTL1 in the WB of the placenta and U937 cells. The polyclonal antibody showed excellent reactivity with tissue-resident macrophages, Hofbauer cells, alveolar and splenic macrophages, Kupffer cells, and inflammatory cells in the tonsil, appendix, and gallbladder. In vitro GM-CSF-differentiated macrophages also showed a high level of intracellular RTL1 expression. TAM and TAN also showed excellent reactivity with this antibody. Almost all circulating granulocytes but not lymphocytes or monocytes expressed RTL1 at their surface. Serial sections of the appendix stained with CD15 and RTL1 and placenta stained with CD68 and RTL1 showed a considerable overlap in RTL1 expression in CD15+ granulocytes and CD68+ macrophages. A small percentage of myelomonocytic cell lines was positive for surface RTL1, while promyelocytic, monocytic, megaloblastic, and lymphoblastic cell lines were negative. Endothelial cells of normal and cancer tissues highly expressed RTL1. RTL1 could be considered a new marker for different normal tissue macrophages, TAM, circulating and tissue neutrophils, and TAN.
Collapse
Affiliation(s)
- Sahar Mortezagholi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Sedigheh Vafaei
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Soltanghoraei
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali-Ahmad Bayat
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir-Hassan Zarnani
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Zhang L, Han Z, He H, Zhang X, Zhang M, Li B, Wu Q. Meg8-DMR as the Secondary Regulatory Region Regulates the Expression of MicroRNAs While It Does Not Affect Embryonic Development in Mice. Genes (Basel) 2023; 14:1264. [PMID: 37372444 DOI: 10.3390/genes14061264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Meg8-DMR is the first maternal methylated DMR to be discovered in the imprinted Dlk1-Dio3 domain. The deletion of Meg8-DMR enhances the migration and invasion of MLTC-1 depending on the CTCF binding sites. However, the biological function of Meg8-DMR during mouse development remains unknown. In this study, a CRISPR/Cas9 system was used to generate 434 bp genomic deletions of Meg8-DMR in mice. High-throughput and bioinformatics profiling revealed that Meg8-DMR is involved in the regulation of microRNA: when the deletion was inherited from the mother (Mat-KO), the expression of microRNA was unchanged. However, when the deletion occurred from the father (Pat-KO) and homozygous (Homo-KO), the expression was upregulated. Then, differentially expressed microRNAs (DEGs) were identified between WT with Pat-KO, Mat-KO, and Homo-KO, respectively. Subsequently, these DEGs were subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) term enrichment analysis to explore the functional roles of these genes. In total, 502, 128, and 165 DEGs were determined. GO analysis showed that these DEGs were mainly enriched in axonogenesis in Pat-KO and Home-KO, while forebrain development was enriched in Mat-KO. Finally, the methylation levels of IG-DMR, Gtl2-DMR, and Meg8-DMR, and the imprinting status of Dlk1, Gtl2, and Rian were not affected. These findings suggest that Meg8-DMR, as a secondary regulatory region, could regulate the expression of microRNAs while not affecting the normal embryonic development of mice.
Collapse
Affiliation(s)
- Liang Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhengbin Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Hongjuan He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ximeijia Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Mengyan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Boran Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
7
|
Kumar S, Alam SS, Bareke E, Beauchamp MC, Dong Y, Chan W, Majewski J, Jerome-Majewska LA. Sf3b4 regulates chromatin remodeler splicing and Hox expression. Differentiation 2023; 131:59-73. [PMID: 37167859 DOI: 10.1016/j.diff.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
SF3B proteins form a heptameric complex in the U2 small nuclear ribonucleoprotein, essential for pre-mRNA splicing. Heterozygous pathogenic variants in human SF3B4 are associated with head, face, limb, and vertebrae defects. Using the CRISPR/Cas9 system, we generated mice with constitutive heterozygous deletion of Sf3b4 and showed that mutant embryos have abnormal vertebral development. Vertebrae abnormalities were accompanied by changes in levels and expression pattern of Hox genes in the somites. RNA sequencing analysis of whole embryos and somites of Sf3b4 mutant and control litter mates revealed increased expression of other Sf3b4 genes. However, the mutants exhibited few differentially expressed genes and a large number of transcripts with differential splicing events (DSE), predominantly increased exon skipping and intron retention. Transcripts with increased DSE included several genes involved in chromatin remodeling that are known to regulate Hox expression. Our study confirms that Sf3b4 is required for normal vertebrae development and shows, for the first time, that like Sf3b1, Sf3b4 also regulates Hox expression. We propose that abnormal splicing of chromatin remodelers is primarily responsible for vertebral defects found in Sf3b4 heterozygous mutant embryos.
Collapse
Affiliation(s)
- Shruti Kumar
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| | | | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Marie-Claude Beauchamp
- Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A 3J1, Canada
| | - Yanchen Dong
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Wesley Chan
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 2B2, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Loydie A Jerome-Majewska
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3A 2B2, Canada; Research Institute of the McGill University Health Centre at Glen Site, Montreal, QC, H4A 3J1, Canada; Department of Pediatrics, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
8
|
Ryu IS, Kim DH, Cho HJ, Ryu JH. The role of microRNA-485 in neurodegenerative diseases. Rev Neurosci 2023; 34:49-62. [PMID: 35793556 DOI: 10.1515/revneuro-2022-0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023]
Abstract
Neurodegenerative diseases (NDDs) are age-related disorders characterized by progressive neurodegeneration and neuronal cell loss in the central nervous system. Neuropathological conditions such as the accumulation of misfolded proteins can cause neuroinflammation, apoptosis, and synaptic dysfunction in the brain, leading to the development of NDDs including Alzheimer's disease (AD) and Parkinson's disease (PD). MicroRNAs (miRNAs) are small noncoding RNA molecules that regulate gene expression post-transcriptionally via RNA interference. Recently, some studies have reported that some miRNAs play an important role in the development of NDDs by regulating target gene expression. MiRNA-485 (miR-485) is a highly conserved brain-enriched miRNA. Accumulating clinical reports suggest that dysregulated miR-485 may be involved in the pathogenesis of AD and PD. Emerging studies have also shown that miR-485 plays a novel role in the regulation of neuroinflammation, apoptosis, and synaptic function in the pathogenesis of NDDs. In this review, we introduce the biological characteristics of miR-485, provide clinical evidence of the dysregulated miR-485 in NDDs, novel roles of miR-485 in neuropathological events, and discuss the potential of targeting miR-485 as a diagnostic and therapeutic marker for NDDs.
Collapse
Affiliation(s)
- In Soo Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, South Korea
| | - Jin-Hyeob Ryu
- Biorchestra Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea.,Biorchestra Co. Ltd., 245 Main St, Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Han X, He H, Shao L, Cui S, Yu H, Zhang X, Wu Q. Deletion of Meg8-DMR Enhances Migration and Invasion of MLTC-1 Depending on the CTCF Binding Sites. Int J Mol Sci 2022; 23:ijms23158828. [PMID: 35955961 PMCID: PMC9369160 DOI: 10.3390/ijms23158828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
The Dlk1-Dio3 imprinted domain on mouse chromosome 12 contains three well-characterized paternally methylated differentially methylated regions (DMRs): IG-DMR, Gtl2-DMR, and Dlk1-DMR. These DMRs control the expression of many genes involved in embryonic development, inherited diseases, and human cancer in this domain. The first maternal methylation DMR discovered in this domain was the Meg8-DMR, the targets and biological function of which are still unknown. Here, using an enhancer-blocking assay, we first dissected the functional parts of the Meg8-DMR and showed that its insulator activity is dependent on the CCCTC-binding factor (CTCF) in MLTC-1. Results from RNA-seq showed that the deletion of the Meg8-DMR and its compartment CTCF binding sites, but not GGCG repeats, lead to the downregulation of numerous genes on chromosome 12, in particular the drastically reduced expression of Dlk1 and Rtl1 in the Dlk1-Dio3 domain, while differentially expressed genes are enriched in the MAPK pathway. In vitro assays revealed that the deletion of the Meg8-DMR and CTCF binding sites enhances cell migration and invasion by decreasing Dlk1 and activating the Notch1-Rhoc-MAPK/ERK pathway. These findings enhance research into gene regulation in the Dlk1-Dio3 domain by indicating that the Meg8-DMR functions as a long-range regulatory element which is dependent on CTCF binding sites and affects multiple genes in this domain.
Collapse
Affiliation(s)
- Xiao Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Hongjuan He
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Lan Shao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Shuang Cui
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Haoran Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ximeijia Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
- Correspondence: ; Tel./Fax: +86-0451-86416944
| |
Collapse
|
10
|
Chou MY, Hu MC, Chen PY, Hsu CL, Lin TY, Tan MJ, Lee CY, Kuo MF, Huang PH, Wu VC, Yang SH, Fan PC, Huang HY, Akbarian S, Loo TH, Stewart CL, Huang HP, Gau SSF, Huang HS. RTL1/PEG11 imprinted in human and mouse brain mediates anxiety-like and social behaviors and regulates neuronal excitability in the locus coeruleus. Hum Mol Genet 2022; 31:3161-3180. [PMID: 35567414 PMCID: PMC9476620 DOI: 10.1093/hmg/ddac110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/01/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
RTL1/PEG11, which has been associated with anxiety disorders, is a retrotransposon-derived imprinted gene in the placenta. However, imprinting patterns and functions of RTL1 in the brain have not been well-investigated. We found Rtl1 was paternally, but not maternally, expressed in brain stem, thalamus, and hypothalamus of mice, and imprinting status of RTL1 was maintained in human brain. Paternal Rtl1 knockout (Rtl1m+/p-) mice had higher neonatal death rates due to impaired suckling, and low body weights beginning on embryonic day 16.5. High paternal expression of Rtl1 was detected in the locus coeruleus (LC) and Rtl1m+/p- mice showed an increased delay in time of onset for action potentials and inward currents with decreased neuronal excitability of LC neurons. Importantly, Rtl1m+/p- mice exhibited behaviors associated with anxiety, depression, fear-related learning and memory, social dominance, and low locomotor activity. Taken together, our findings demonstrate RTL1 is imprinted in brain, mediates emotional and social behaviors, and regulates excitability in LC neurons.
Collapse
Affiliation(s)
- Ming-Yi Chou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Meng-Chuen Hu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Pin-Yu Chen
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chi-Lin Hsu
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Ting-Yu Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Mao-Jia Tan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Chih-Yu Lee
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Meng-Fai Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Pei-Hsin Huang
- Department of Pathology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Shih-Hung Yang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 10051, Taiwan
| | - Pi-Chuan Fan
- Department of Pediatrics, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Tsui-Han Loo
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, 138632, Singapore
| | - Colin L Stewart
- A*STAR Skin Research Labs, Agency for Science, Technology and Research, 138632, Singapore
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| |
Collapse
|
11
|
Essential Role of the 14q32 Encoded miRNAs in Endocrine Tumors. Genes (Basel) 2021; 12:genes12050698. [PMID: 34066712 PMCID: PMC8151414 DOI: 10.3390/genes12050698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The 14q32 cluster is among the largest polycistronic miRNA clusters. miRNAs encoded here have been implicated in tumorigenesis of multiple organs including endocrine glands. METHODS Critical review of miRNA studies performed in endocrine tumors have been performed. The potential relevance of 14q32 miRNAs through investigating their targets, and integrating the knowledge provided by literature data and bioinformatics predictions have been indicated. RESULTS Pituitary adenoma, papillary thyroid cancer and a particular subset of pheochromocytoma and adrenocortical cancer are characterized by the downregulation of miRNAs encoded by the 14q32 cluster. Pancreas neuroendocrine tumors, most of the adrenocortical cancer and medullary thyroid cancer are particularly distinct, as 14q32 miRNAs were overexpressed. In pheochromocytoma and growth-hormone producing pituitary adenoma, however, both increased and decreased expression of 14q32 miRNAs cluster members were observed. In the background of this phenomenon methodological, technical and biological factors are hypothesized and discussed. The functions of 14q32 miRNAs were also revealed by bioinformatics and literature data mining. CONCLUSIONS 14q32 miRNAs have a significant role in the tumorigenesis of endocrine organs. Regarding their stable expression in the circulation of healthy individuals, further investigation of 14q32 miRNAs could provide a potential for use as biomarkers (diagnostic or prognostic) in endocrine neoplasms.
Collapse
|
12
|
Guo K, Qi D, Huang B. LncRNA MEG8 promotes NSCLC progression by modulating the miR-15a-5p-miR-15b-5p/PSAT1 axis. Cancer Cell Int 2021; 21:84. [PMID: 33526036 PMCID: PMC7852147 DOI: 10.1186/s12935-021-01772-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/11/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common tumor with severe morbidity and high mortality. Long non-coding RNAs (lncRNAs) as crucial regulators participate in multiple cancer progressions. However, the role of lncRNA MEG8 in the development of NSCLC remains unclear. Here, we aimed to investigate the effect of lncRNA MEG8 on the progression of NSCLC and the underlying mechanism. METHODS Cell proliferation was analyzed by EdU assays. The impacts of lncRNA MEG8, miR-15a-5p, and miR-15b-5p on cell invasion and migration of NSCLC were assessed by transwell assay. The luciferase reporter gene assay was performed using the Dual-luciferase Reporter Assay System. The effect of lncRNA MEG8, miR-15a-5p, and miR-15b-5p on tumor growth was evaluated in nude mice of Balb/c in vivo. RESULTS We revealed that the expression levels of MEG8 were elevated in the NSCLC patient tissues compared to that in adjacent normal tissues. The expression of MEG8 was negatively relative to that of miR-15a-5p and miR-15b-5p in the NSCLC patient tissues. The expression of MEG8 was upregulated, while miR-15a-5p and miR-15b-5p were downregulated in NSCLC cell lines. The depletion of MEG8 inhibited NSCLC cell proliferation, migration, and invasion in vitro. MEG8 contributed to NSCLC progression by targeting miR-15a-5p/miR-15b-5p in vitro. LncRNA MEG8 contributes to tumor growth of NSCLC via the miR-15a/b-5p/PSAT1 axis in vivo. Thus, we concluded that lncRNA MEG8 promotes NSCLC progression by modulating the miR-15a/b-5p/PSAT1 axis. CONCLUSIONS Our findings demonstrated that lncRNA MEG8 plays a critical role in NSCLC development. LncRNA MEG8, miR-15a-5p, miR-15b-5p, and PSAT1 may serve as potential targets for NSCLC therapy.
Collapse
Affiliation(s)
- Kai Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Renming Street #5-2, Guta District, Jinzhou City, Liaoning Province, 121000, People's Republic of China
| | - Di Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Renming Street #5-2, Guta District, Jinzhou City, Liaoning Province, 121000, People's Republic of China
| | - Bo Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinzhou Medical University, Renming Street #5-2, Guta District, Jinzhou City, Liaoning Province, 121000, People's Republic of China.
| |
Collapse
|
13
|
Zheng K, Yan J, Deng J, Wu W, Wen Y. Modification of Experimental Design and Statistical Method for Mapping Imprinted QTLs Based on Immortalized F2 Population. Front Genet 2020; 11:589047. [PMID: 33329733 PMCID: PMC7714927 DOI: 10.3389/fgene.2020.589047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/29/2020] [Indexed: 11/20/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon, which plays important roles in the growth and development of animals and plants. Immortalized F2 (imF2) populations generated by random cross between recombinant inbred (RI) or doubled haploid (DH) lines have been proved to have significant advantages for mapping imprinted quantitative trait loci (iQTLs), and statistical methods for this purpose have been proposed. In this paper, we propose a special type of imF2 population (R-imF2) for iQTL mapping, which is developed by random reciprocal cross between RI/DH lines. We also propose two modified iQTL mapping methods: two-step point mapping (PM-2) and two-step composite point mapping (CPM-2). Simulation studies indicated that: (i) R-imF2 cannot improve the results of iQTL mapping, but the experimental design can probably reduce the workload of population construction; (ii) PM-2 can increase the precision of estimating the position and effects of a single iQTL; and (iii) CPM-2 can precisely map not only iQTLs, but also non-imprinted QTLs. The modified experimental design and statistical methods will facilitate and promote the study of iQTL mapping.
Collapse
Affiliation(s)
- Kehui Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiqiang Yan
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiacong Deng
- School of Ocean and Biochemical Engineering, Fuqing Branch of Fujian Normal University, Fuzhou, China
| | - Weiren Wu
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Weiren Wu,
| | - Yongxian Wen
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Yongxian Wen,
| |
Collapse
|
14
|
Giwa A, Fatai A, Gamieldien J, Christoffels A, Bendou H. Identification of novel prognostic markers of survival time in high-risk neuroblastoma using gene expression profiles. Oncotarget 2020; 11:4293-4305. [PMID: 33245713 PMCID: PMC7679032 DOI: 10.18632/oncotarget.27808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor in childhood. Patients in high-risk group often have poor outcomes with low survival rates despite several treatment options. This study aimed to identify a genetic signature from gene expression profiles that can serve as prognostic indicators of survival time in patients of high-risk neuroblastoma, and that could be potential therapeutic targets. RNA-seq count data was downloaded from UCSC Xena browser and samples grouped into Short Survival (SS) and Long Survival (LS) groups. Differential gene expression (DGE) analysis, enrichment analyses, regulatory network analysis and machine learning (ML) prediction of survival group were performed. Forty differentially expressed genes (DEGs) were identified including genes involved in molecular function activities essential for tumor proliferation. DEGs used as features for prediction of survival groups included EVX2, NHLH2, PRSS12, POU6F2, HOXD10, MAPK15, RTL1, LGR5, CYP17A1, OR10AB1P, MYH14, LRRTM3, GRIN3A, HS3ST5, CRYAB and NXPH3. An accuracy score of 82% was obtained by the ML classification models. SMIM28 was revealed to possibly have a role in tumor proliferation and aggressiveness. Our results indicate that these DEGs can serve as prognostic indicators of survival in high-risk neuroblastoma patients and will assist clinicians in making better therapeutic and patient management decisions.
Collapse
Affiliation(s)
- Abdulazeez Giwa
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Azeez Fatai
- Department of Biochemistry, Lagos State University, Lagos, Nigeria
| | - Junaid Gamieldien
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Alan Christoffels
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Hocine Bendou
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
15
|
Lu HP, Lin CJ, Chen WC, Chang YJ, Lin SW, Wang HH, Chang CJ. TRIM28 Regulates Dlk1 Expression in Adipogenesis. Int J Mol Sci 2020; 21:ijms21197245. [PMID: 33008113 PMCID: PMC7582669 DOI: 10.3390/ijms21197245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 12/23/2022] Open
Abstract
The tripartite motif-containing protein 28 (TRIM28) is a transcription corepressor, interacting with histone deacetylase and methyltransferase complexes. TRIM28 is a crucial regulator in development and differentiation. We would like to investigate its function and regulation in adipogenesis. Knockdown of Trim28 by transducing lentivirus-carrying shRNAs impairs the differentiation of 3T3-L1 preadipocytes, demonstrated by morphological observation and gene expression analysis. To understand the molecular mechanism of Trim28-mediated adipogenesis, the RNA-seq was performed to find out the possible Trim28-regulated genes. Dlk1 (delta-like homolog 1) was increased in Trim28 knockdown 3T3-L1 cells both untreated and induced to differentiation. Dlk1 is an imprinted gene and known as an inhibitor of adipogenesis. Further knockdown of Dlk1 in Trim28 knockdown 3T3-L1 would rescue cell differentiation. The epigenetic analysis showed that DNA methylation of Dlk1 promoter and differentially methylated regions (DMRs) was not altered significantly in Trim28 knockdown cells. However, compared to control cells, the histone methylation on the Dlk1 promoter was increased at H3K4 and decreased at H3K27 in Trim28 knockdown cells. Finally, we found Trim28 might be recruited by transcription factor E2f1 to regulate Dlk1 expression. The results imply Trim28-Dlk1 axis is critical for adipogenesis.
Collapse
Affiliation(s)
- Hsin-Pin Lu
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (H.-P.L.); (C.-J.L.); (W.-C.C.)
| | - Chieh-Ju Lin
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (H.-P.L.); (C.-J.L.); (W.-C.C.)
| | - Wen-Ching Chen
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (H.-P.L.); (C.-J.L.); (W.-C.C.)
| | - Yao-Jen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (Y.-J.C.); (S.-W.L.)
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (Y.-J.C.); (S.-W.L.)
| | - Hsin-Hui Wang
- Department of Pediatrics, Division of Pediatric Immunology and Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei 11217, Taiwan
| | - Ching-Jin Chang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan; (H.-P.L.); (C.-J.L.); (W.-C.C.)
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; (Y.-J.C.); (S.-W.L.)
- Correspondence:
| |
Collapse
|
16
|
Abstract
Genomic imprinting is a parent-of-origin dependent phenomenon that restricts transcription to predominantly one parental allele. Since the discovery of the first long noncoding RNA (lncRNA), which notably was an imprinted lncRNA, a body of knowledge has demonstrated pivotal roles for imprinted lncRNAs in regulating parental-specific expression of neighboring imprinted genes. In this Review, we will discuss the multiple functionalities attributed to lncRNAs and how they regulate imprinted gene expression. We also raise unresolved questions about imprinted lncRNA function, which may lead to new avenues of investigation. This Review is dedicated to the memory of Denise Barlow, a giant in the field of genomic imprinting and functional lncRNAs. With her passion for understanding the inner workings of science, her indominable spirit and her consummate curiosity, Denise blazed a path of scientific investigation that made many seminal contributions to genomic imprinting and the wider field of epigenetic regulation, in addition to inspiring future generations of scientists.
Collapse
Affiliation(s)
- William A. MacDonald
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Rangos Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mellissa R. W. Mann
- Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Magee-Womens Research Institute, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
17
|
Wood SL, Brown JE. Personal Medicine and Bone Metastases: Biomarkers, Micro-RNAs and Bone Metastases. Cancers (Basel) 2020; 12:cancers12082109. [PMID: 32751181 PMCID: PMC7465268 DOI: 10.3390/cancers12082109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Bone metastasis is a major cause of morbidity within solid tumours of the breast, prostate, lung and kidney. Metastasis to the skeleton is associated with a wide range of complications including bone fractures, spinal cord compression, hypercalcaemia and increased bone pain. Improved treatments for bone metastasis, such as the use of anti-bone resorptive bisphosphonate agents, within post-menopausal women have improved disease-free survival; however, these treatments are not without side effects. There is thus a need for biomarkers, which will predict the risk of developing the spread to bone within these cancers. The application of molecular profiling techniques, together with animal model systems and engineered cell-lines has enabled the identification of a series of potential bone-metastasis biomarker molecules predictive of bone metastasis risk. Some of these biomarker candidates have been validated within patient-derived samples providing a step towards clinical utility. Recent developments in multiplex biomarker quantification now enable the simultaneous measurement of up to 96 micro-RNA/protein molecules in a spatially defined manner with single-cell resolution, thus enabling the characterisation of the key molecules active at the sites of pre-metastatic niche formation as well as tumour-stroma signalling. These technologies have considerable potential to inform biomarker discovery. Additionally, a potential future extension of these discoveries could also be the identification of novel drug targets within cancer spread to bone. This chapter summarises recent findings in biomarker discovery within the key bone metastatic cancers (breast, prostate, lung and renal cell carcinoma). Tissue-based and circulating blood-based biomarkers are discussed from the fields of genomics, epigenetic regulation (micro-RNAs) and protein/cell-signalling together with a discussion of the potential future development of these markers towards clinical development.
Collapse
Affiliation(s)
- Steven L. Wood
- Department of Oncology and Metabolism, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Correspondence:
| | - Janet E. Brown
- Department of Oncology and Metabolism, Weston Park Hospital, Whitham Road, Sheffield S10 2SJ, UK;
| |
Collapse
|
18
|
Verjans R, van Bilsen M, Schroen B. Reviewing the Limitations of Adult Mammalian Cardiac Regeneration: Noncoding RNAs as Regulators of Cardiomyogenesis. Biomolecules 2020; 10:biom10020262. [PMID: 32050588 PMCID: PMC7072544 DOI: 10.3390/biom10020262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
The adult mammalian heart is incapable of regeneration following cardiac injury, leading to a decline in function and eventually heart failure. One of the most evident barriers limiting cardiac regeneration is the inability of cardiomyocytes to divide. It has recently become clear that the mammalian heart undergoes limited cardiomyocyte self-renewal throughout life and is even capable of modest regeneration early after birth. These exciting findings have awakened the goal to promote cardiomyogenesis of the human heart to repair cardiac injury or treat heart failure. We are still far from understanding why adult mammalian cardiomyocytes possess only a limited capacity to proliferate. Identifying the key regulators may help to progress towards such revolutionary therapy. Specific noncoding RNAs control cardiomyocyte division, including well explored microRNAs and more recently emerged long noncoding RNAs. Elucidating their function and molecular mechanisms during cardiomyogenesis is a prerequisite to advance towards therapeutic options for cardiac regeneration. In this review, we present an overview of the molecular basis of cardiac regeneration and describe current evidence implicating microRNAs and long noncoding RNAs in this process. Current limitations and future opportunities regarding how these regulatory mechanisms can be harnessed to study myocardial regeneration will be addressed.
Collapse
Affiliation(s)
- Robin Verjans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Marc van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Blanche Schroen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
- Correspondence: ; Tel.: +31-433882949
| |
Collapse
|
19
|
Llères D, Moindrot B, Pathak R, Piras V, Matelot M, Pignard B, Marchand A, Poncelet M, Perrin A, Tellier V, Feil R, Noordermeer D. CTCF modulates allele-specific sub-TAD organization and imprinted gene activity at the mouse Dlk1-Dio3 and Igf2-H19 domains. Genome Biol 2019; 20:272. [PMID: 31831055 PMCID: PMC6909504 DOI: 10.1186/s13059-019-1896-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genomic imprinting is essential for mammalian development and provides a unique paradigm to explore intra-cellular differences in chromatin configuration. So far, the detailed allele-specific chromatin organization of imprinted gene domains has mostly been lacking. Here, we explored the chromatin structure of the two conserved imprinted domains controlled by paternal DNA methylation imprints-the Igf2-H19 and Dlk1-Dio3 domains-and assessed the involvement of the insulator protein CTCF in mouse cells. RESULTS Both imprinted domains are located within overarching topologically associating domains (TADs) that are similar on both parental chromosomes. At each domain, a single differentially methylated region is bound by CTCF on the maternal chromosome only, in addition to multiple instances of bi-allelic CTCF binding. Combinations of allelic 4C-seq and DNA-FISH revealed that bi-allelic CTCF binding alone, on the paternal chromosome, correlates with a first level of sub-TAD structure. On the maternal chromosome, additional CTCF binding at the differentially methylated region adds a further layer of sub-TAD organization, which essentially hijacks the existing paternal-specific sub-TAD organization. Perturbation of maternal-specific CTCF binding site at the Dlk1-Dio3 locus, using genome editing, results in perturbed sub-TAD organization and bi-allelic Dlk1 activation during differentiation. CONCLUSIONS Maternal allele-specific CTCF binding at the imprinted Igf2-H19 and the Dlk1-Dio3 domains adds an additional layer of sub-TAD organization, on top of an existing three-dimensional configuration and prior to imprinted activation of protein-coding genes. We speculate that this allele-specific sub-TAD organization provides an instructive or permissive context for imprinted gene activation during development.
Collapse
Affiliation(s)
- David Llères
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Benoît Moindrot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Rakesh Pathak
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Vincent Piras
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Mélody Matelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Benoît Pignard
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Alice Marchand
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Mallory Poncelet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélien Perrin
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France
| | - Virgile Tellier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France
| | - Robert Feil
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France.
| | - Daan Noordermeer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-sud and University Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
20
|
Loo TH, Ye X, Chai RJ, Ito M, Bonne G, Ferguson-Smith AC, Stewart CL. The mammalian LINC complex component SUN1 regulates muscle regeneration by modulating drosha activity. eLife 2019; 8:e49485. [PMID: 31686651 PMCID: PMC6853637 DOI: 10.7554/elife.49485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/27/2019] [Indexed: 01/13/2023] Open
Abstract
Here we show that a major muscle specific isoform of the murine LINC complex protein SUN1 is required for efficient muscle regeneration. The nucleoplasmic domain of the isoform specifically binds to and inhibits Drosha, a key component of the microprocessor complex required for miRNA synthesis. Comparison of the miRNA profiles between wildtype and SUN1 null myotubes identified a cluster of miRNAs encoded by a non-translated retrotransposon-like one antisense (Rtl1as) transcript that are decreased in the WT myoblasts due to SUN1 inhibition of Drosha. One of these miRNAs miR-127 inhibits the translation of the Rtl1 sense transcript, that encodes the retrotransposon-like one protein (RTL1), which is also required for muscle regeneration and is expressed in regenerating/dystrophic muscle. The LINC complex may therefore regulate gene expression during muscle regeneration by controlling miRNA processing. This provides new insights into the molecular pathology underlying muscular dystrophies and how the LINC complex may regulate mechanosignaling.
Collapse
Affiliation(s)
- Tsui Han Loo
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Xiaoqian Ye
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Ruth Jinfen Chai
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Mitsuteru Ito
- Department of GeneticsUniversity of CambridgeCambridgeUnited Kingdom
| | - Gisèle Bonne
- Center of Research in Myology, Institut de MyologieSorbonne Universités, UPMC Univ Paris 06, INSERM UMRS 974, CNRS FRE 3617ParisFrance
| | | | - Colin L Stewart
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| |
Collapse
|
21
|
Huan T, Mendelson M, Joehanes R, Yao C, Liu C, Song C, Bhattacharya A, Rong J, Tanriverdi K, Keefe J, Murabito JM, Courchesne P, Larson MG, Freedman JE, Levy D. Epigenome-wide association study of DNA methylation and microRNA expression highlights novel pathways for human complex traits. Epigenetics 2019; 15:183-198. [PMID: 31282290 DOI: 10.1080/15592294.2019.1640547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA methylation (DNAm) and microRNAs (miRNAs) have been implicated in a wide-range of human diseases. While often studied in isolation, DNAm and miRNAs are not independent. We analyzed associations of expression of 283 miRNAs with DNAm at >400K CpG sites in whole blood obtained from 3565 individuals and identified 227 CpGs at which differential methylation was associated with the expression of 40 nearby miRNAs (cis-miR-eQTMs) at FDR<0.01, including 91 independent CpG sites at r2 < 0.2. cis-miR-eQTMs were enriched for CpGs in promoter and polycomb-repressed state regions, and 60% were inversely associated with miRNA expression. Bidirectional Mendelian randomization (MR) analysis further identified 58 cis-miR-eQTMCpG-miRNA pairs where DNAm changes appeared to drive miRNA expression changes and opposite directional effects were unlikely. Integration of genetic variants in joint analyses revealed an average partial between cis-miR-eQTM CpGs and miRNAs of 2% after conditioning on site-specific genetic variation, suggesting that DNAm is an important epigenetic regulator of miRNA expression. Finally, two-step MR analysis was performed to identify putatively causal CpGs driving miRNA expression in relation to human complex traits. We found that an imprinted region on 14q32 that was previously identified in relation to age at menarche is enriched with cis-miR-eQTMs. Nine CpGs and three miRNAs at this locus tested causal for age at menarche, reflecting novel epigenetic-driven molecular pathways underlying this complex trait. Our study sheds light on the joint genetic and epigenetic regulation of miRNA expression and provides insights into the relations of miRNAs to their targets and to complex phenotypes.
Collapse
Affiliation(s)
- Tianxiao Huan
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA.,The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Michael Mendelson
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA.,The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Roby Joehanes
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA.,The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Chen Yao
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA.,The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Chunyu Liu
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA.,The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.,Department of Biostatistics, Boston University School of Public Health, Boston University, Boston, MA, USA
| | - Ci Song
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA.,The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Anindya Bhattacharya
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Jian Rong
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Kahraman Tanriverdi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Joshua Keefe
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA.,The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Joanne M Murabito
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA.,Department of Medicine, Section of General Internal Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Paul Courchesne
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA.,The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Martin G Larson
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA.,Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Jane E Freedman
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel Levy
- The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, USA.,The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
22
|
Zheng Z, Wu D, Fan S, Zhang Z, Chen G, Lu J. Upregulation of miR‐675‐5p induced by lncRNA H19 was associated with tumor progression and development by targeting tumor suppressor p53 in non–small cell lung cancer. J Cell Biochem 2019; 120:18724-18735. [DOI: 10.1002/jcb.29182] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Zi‐Hui Zheng
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life ScienceNanjing University of Chinese Medicine Nanjing P. R. China
| | - Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal University Xuzhou P. R. China
- College of Health SciencesJiangsu Normal University Xuzhou P. R. China
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal University Xuzhou P. R. China
- College of Health SciencesJiangsu Normal University Xuzhou P. R. China
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal University Xuzhou P. R. China
- College of Health SciencesJiangsu Normal University Xuzhou P. R. China
| | - Gui‐Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing University Nanjing P. R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal University Xuzhou P. R. China
- College of Health SciencesJiangsu Normal University Xuzhou P. R. China
| |
Collapse
|
23
|
Bijkerk R, Au YW, Stam W, Duijs JMGJ, Koudijs A, Lievers E, Rabelink TJ, van Zonneveld AJ. Long Non-coding RNAs Rian and Miat Mediate Myofibroblast Formation in Kidney Fibrosis. Front Pharmacol 2019; 10:215. [PMID: 30914951 PMCID: PMC6421975 DOI: 10.3389/fphar.2019.00215] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
There is an increasing prevalence of chronic kidney disease (CKD), which associates with the development of interstitial fibrosis. Pericytes (perivascular fibroblasts) provide a major source of α-SMA-positive myofibroblasts that are responsible for the excessive deposition of extracellular matrix. In order to identify pericyte long non-coding RNAs (lncRNAs) that could serve as a target to decrease myofibroblast formation and counteract the progression of kidney fibrosis we employed two models of experimental kidney injury, one focused on kidney fibrosis (unilateral ureteral obstruction; UUO), and one focused on acute kidney injury that yields kidney fibrosis in the longer term (unilateral ischemia-reperfusion injury; IRI). This was performed in FoxD1-GC;tdTomato stromal cell reporter mice that allowed pericyte fate tracing. Tomato red-positive FoxD1-derivative cells of control and injured kidneys were FACS-sorted and used for lncRNA and mRNA profiling yielding a distinctive transcriptional signature of pericytes and myofibroblasts with 244 and 586 differentially expressed lncRNAs (>twofold, P < 0.05), in the UUO and IRI models, respectively. Next, we selected two differentially expressed and conserved lncRNAs, Rian (RNA imprinted and accumulated in nucleus) and Miat (Myocardial infarction associated transcript), and explored their potential regulatory role in myofibroblast formation through knockdown of their function with gapmers. While Miat was upregulated in myofibroblasts of UUO and IRI in mice, gapmer silencing of Miat attenuated myofibroblast formation as evidenced by decreased expression of α-SMA, col1α1, SMAD2, and SMAD3, as well as decreased α-SMA and pro-collagen-1α1 protein levels. In contrast, silencing Rian, which was found to be downregulated in kidney myofibroblast after IRI and UUO, resulted in increased myofibroblast formation. In addition, we found microRNAs that were previously linked to Miat (miR-150) and Rian (14q32 miRNA cluster), to be dysregulated in the FoxD1-derivative cells, suggesting a possible interaction between miRNAs and these lncRNAs in myofibroblast formation. Taken together, lncRNAs play a regulatory role in myofibroblast formation, possibly through interacting with miRNA regulation, implicating that understanding their biology and their modulation may have the potential to counteract the development of renal fibrosis.
Collapse
Affiliation(s)
- Roel Bijkerk
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Yu Wah Au
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Wendy Stam
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jacques M G J Duijs
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Angela Koudijs
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Ellen Lievers
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Experimental Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
24
|
Zhang C, Xu D, Chen W, Li J, Gao Q, Li S. LINC24065 is a monoallelically expressed long intergenic noncoding RNA located in the cattle DLK1–DIO3 cluster. J Genet 2019. [DOI: 10.1007/s12041-019-1076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Siddavattam D, Yakkala H, Samantarrai D. Lateral transfer of organophosphate degradation ( opd) genes among soil bacteria: mode of transfer and contributions to organismal fitness. J Genet 2019; 98:23. [PMID: 30945693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Genes encoding structurally independent phosphotriesterases (PTEs) are identified in soil bacteria. These pte genes, often identified on mobilizable and self-transmissible plasmids are organized as mobile genetic elements. Their dissemination through lateral gene transfer is evident due to the detection of identical organophosphate degradation genes among soil bacteria with little orno taxonomic relationship. Convergent evolution of PTEs provided selective advantages to the bacterial strain as they convert toxic phosphotriesters (PTs) into a source of phosphate. The residues of organophosphate (OP) compounds that accumulate in a soil are proposed to contribute to the evolution of PTEs through substrate-assisted gain-of-function. This review provides comprehensive information on lateral transfer of pte genes and critically examines proposed hypotheses on their evolution in the light of the short half-life of OPs in the environment. The review also proposes alternate factors that have possibly contributed to the evolution and lateral mobility of PTEs by taking into account their biology and analyses of pte genes in genomic and metagenomic databases.
Collapse
Affiliation(s)
- Dayananda Siddavattam
- Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India. ;
| | | | | |
Collapse
|
26
|
Oshima G, Poli EC, Bolt MJ, Chlenski A, Forde M, Jutzy JMS, Biyani N, Posner MC, Pitroda SP, Weichselbaum RR, Khodarev NN. DNA Methylation Controls Metastasis-Suppressive 14q32-Encoded miRNAs. Cancer Res 2019; 79:650-662. [PMID: 30538122 DOI: 10.1158/0008-5472.can-18-0692] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 09/07/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
Expression of 14q32-encoded miRNAs is a favorable prognostic factor in patients with metastatic cancer. In this study, we used genomic inhibition of DNA methylation through disruption of DNA methyltransferases DNMT1 and DNMT3B and pharmacologic inhibition with 5-Aza-2'-deoxycytidine (5-Aza-dC, decitabine) to demonstrate that DNA methylation predominantly regulates expression of metastasis-suppressive miRNAs in the 14q32 cluster. DNA demethylation facilitated CCCTC-binding factor (CTCF) recruitment to the maternally expressed gene 3 differentially methylated region (MEG3-DMR), which acts as a cis-regulatory element for 14q32 miRNA expression. 5-Aza-dC activated demethylation of the MEG3-DMR and expression of 14q32 miRNAs, which suppressed adhesion, invasion, and migration (AIM) properties of metastatic tumor cells. Cancer cells with MEG3-DMR hypomethylation exhibited constitutive expression of 14q32 miRNAs and resistance to 5-Aza-dC-induced suppression of AIM. Expression of methylation-dependent 14q32 miRNAs suppressed metastatic colonization in preclinical models of lung and liver metastasis and correlated with improved clinical outcomes in patients with metastatic cancer. These findings implicate epigenetic modification via DNA methylation in the regulation of metastatic propensity through miRNA networks and identify a previously unrecognized action of decitabine on the activation of metastasis-suppressive miRNAs. SIGNIFICANCE: This study investigates epigenetic regulation of metastasis-suppressive miRNAs and the effect on metastasis.
Collapse
Affiliation(s)
- Go Oshima
- Department of Surgery, The University of Chicago, Chicago, Illinois
| | - Elizabeth C Poli
- Department of Surgery, The University of Chicago, Chicago, Illinois
| | - Michael J Bolt
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | | | - Martin Forde
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Jessica M S Jutzy
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
| | - Neha Biyani
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | | | - Sean P Pitroda
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois.
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Nikolai N Khodarev
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois.
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| |
Collapse
|
27
|
Lackinger M, Sungur AÖ, Daswani R, Soutschek M, Bicker S, Stemmler L, Wüst T, Fiore R, Dieterich C, Schwarting RK, Wöhr M, Schratt G. A placental mammal-specific microRNA cluster acts as a natural brake for sociability in mice. EMBO Rep 2018; 20:embr.201846429. [PMID: 30552145 DOI: 10.15252/embr.201846429] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/12/2023] Open
Abstract
Aberrant synaptic function is thought to underlie social deficits in neurodevelopmental disorders such as autism and schizophrenia. Although microRNAs have been shown to regulate synapse development and plasticity, their potential involvement in the control of social behaviour in mammals remains unexplored. Here, we show that deletion of the placental mammal-specific miR379-410 cluster in mice leads to hypersocial behaviour, which is accompanied by increased excitatory synaptic transmission, and exaggerated expression of ionotropic glutamate receptor complexes in the hippocampus. Bioinformatic analyses further allowed us to identify five "hub" microRNAs whose deletion accounts largely for the upregulation of excitatory synaptic genes observed, including Cnih2, Dlgap3, Prr7 and Src. Thus, the miR379-410 cluster acts a natural brake for sociability, and interfering with specific members of this cluster could represent a therapeutic strategy for the treatment of social deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Martin Lackinger
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - A Özge Sungur
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Reetu Daswani
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Michael Soutschek
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Silvia Bicker
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Lea Stemmler
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Tatjana Wüst
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Roberto Fiore
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Rainer Kw Schwarting
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Gerhard Schratt
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
28
|
Mikovic J, Sadler K, Butchart L, Voisin S, Gerlinger-Romero F, Della Gatta P, Grounds MD, Lamon S. MicroRNA and Long Non-coding RNA Regulation in Skeletal Muscle From Growth to Old Age Shows Striking Dysregulation of the Callipyge Locus. Front Genet 2018; 9:548. [PMID: 30505320 PMCID: PMC6250799 DOI: 10.3389/fgene.2018.00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) undergo high levels of regulation in skeletal muscle development and control skeletal muscle mass, function and metabolism over the lifespan. More recently, the role of long non-coding RNAs (lncRNAs) in skeletal muscle regulation has started to emerge. Following up on our recent study describing the expression pattern and putative roles of 768 miRNAs in the quadriceps muscle of mice at early life stages, we used a high-throughput miRNA qPCR-based array to assess the expression of the same miRNAs in 28-month old male mouse quadriceps muscle. In addition, we report the expression patterns of lncRNAs playing a putative role in muscle development and adaptation from growth to old age. Twelve miRNAs were significantly downregulated in 28-month old muscle when compared with 12-week old muscle. Ten of them clustered at the Dlk1-Dio3 locus, known as ‘Callipyge,’ which is associated with muscle development and hypertrophy. This collective downregulation was paralleled by decreases in the expression levels of the maternally expressed imprinted LncRNA coding genes Meg3 and Rian stemming from the same chromosomal region. In contrast, the paternally expressed imprinted Dlk1-Dio3 locus members Rtl1, Dio3, and Dlk1 and the muscle related lncRNAs lncMyoD1, Neat_v1, Neat_v2, and Malat1 underwent significant changes during growth, but their expression levels were not altered past the age of 12 weeks, suggesting roles limited to hyperplasia and early hypertrophy. In conclusion, collective muscle miRNA expression gradually decreases over the lifespan and a cluster of miRNAs and maternally expressed lncRNAs stemming from the Callipyge locus is significantly dysregulated in aging muscle. The Dlk1-Dio3 locus therefore represents a potential new mechanism for age-related muscle decline.
Collapse
Affiliation(s)
- Jasmine Mikovic
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Kate Sadler
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Lauren Butchart
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Sarah Voisin
- Institute of Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Frederico Gerlinger-Romero
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Paul Della Gatta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Miranda D Grounds
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
29
|
Le Béguec C, Wucher V, Lagoutte L, Cadieu E, Botherel N, Hédan B, De Brito C, Guillory AS, André C, Derrien T, Hitte C. Characterisation and functional predictions of canine long non-coding RNAs. Sci Rep 2018; 8:13444. [PMID: 30194329 PMCID: PMC6128939 DOI: 10.1038/s41598-018-31770-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a family of heterogeneous RNAs that play major roles in multiple biological processes. We recently identified an extended repertoire of more than 10,000 lncRNAs of the domestic dog however, predicting their biological functionality remains challenging. In this study, we have characterised the expression profiles of 10,444 canine lncRNAs in 26 distinct tissue types, representing various anatomical systems. We showed that lncRNA expressions are mainly clustered by tissue type and we highlighted that 44% of canine lncRNAs are expressed in a tissue-specific manner. We further demonstrated that tissue-specificity correlates with specific families of canine transposable elements. In addition, we identified more than 900 conserved dog-human lncRNAs for which we show their overall reproducible expression patterns between dog and human through comparative transcriptomics. Finally, co-expression analyses of lncRNA and neighbouring protein-coding genes identified more than 3,400 canine lncRNAs, suggesting that functional roles of these lncRNAs act as regulatory elements. Altogether, this genomic and transcriptomic integrative study of lncRNAs constitutes a major resource to investigate genotype to phenotype relationships and biomedical research in the dog species.
Collapse
Affiliation(s)
- Céline Le Béguec
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Valentin Wucher
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Lætitia Lagoutte
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France.,UMR PEGASE, Agrocampus Ouest, INRA, 35042, Rennes, France
| | - Edouard Cadieu
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Nadine Botherel
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Benoît Hédan
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Clotilde De Brito
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Anne-Sophie Guillory
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Catherine André
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France.
| | - Christophe Hitte
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Rennes, France.
| |
Collapse
|
30
|
He J, Tu C, Liu Y. Role of lncRNAs in aging and age-related diseases. Aging Med (Milton) 2018; 1:158-175. [PMID: 31942494 PMCID: PMC6880696 DOI: 10.1002/agm2.12030] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 01/10/2023] Open
Abstract
Aging is progressive physiological degeneration and consequently declined function, which is linked to senescence on both cellular and organ levels. Accumulating studies indicate that long noncoding RNAs (lncRNAs) play important roles in cellular senescence at all levels-transcriptional, post-transcriptional, translational, and post-translational. Understanding the molecular mechanism of lncRNAs underlying senescence could facilitate interpretation and intervention of aging and age-related diseases. In this review, we describe categories of known and novel lncRNAs that have been involved in the progression of senescence. We also identify the lncRNAs implicated in diseases arising from age-driven degeneration or dysfunction in some representative organs and systems (brains, liver, muscle, cardiovascular system, bone pancreatic islets, and immune system). Improved comprehension of lncRNAs in the aging process on all levels, from cell to organismal, may provide new insights into the amelioration of age-related pathologies and prolonged healthspan.
Collapse
Affiliation(s)
- Jieyu He
- Department of GeriatricsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chao Tu
- Department of OrthopedicsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Youshuo Liu
- Department of GeriatricsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
31
|
Groeneveld S, Faget J, Zangger N, Meylan E. Snail mediates repression of the Dlk1-Dio3 locus in lung tumor-infiltrating immune cells. Oncotarget 2018; 9:32331-32345. [PMID: 30190790 PMCID: PMC6122344 DOI: 10.18632/oncotarget.25965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/31/2018] [Indexed: 01/08/2023] Open
Abstract
The epithelial-mesenchymal transition-inducing transcription factor Snail contributes to tumor progression in different malignancies. In the present study, we used a transcriptomics approach to elucidate the mechanism of Snail-mediated tumor growth promotion in a KrasLSL-G12D/+;p53fl/fl mouse model of lung adenocarcinoma. We discovered that Snail mediated the downregulation of the imprinted Dlk1-Dio3 locus, a complex genomic region containing protein-coding genes and non-coding RNAs that has been linked to tumor malignancy in lung cancer patients. The Dlk1-Dio3 locus repression mediated by Snail was found to occur specifically in several populations of tumor-infiltrating immune cells. It could be reproduced in primary splenocytes upon ex vivo culture with conditioned medium from Snail-expressing cancer cell lines, which suggests that a Snail-induced soluble factor secreted by the cancer cells mediates the Dlk1-Dio3 locus repression in immune cells, particularly in lymphocytes. Our findings furthermore point towards the contribution of Snail to an inflammatory tumor microenvironment, which is in line with our previous report of the Snail-mediated recruitment of pro-tumorigenic neutrophils to the lung tumors. This underlines an important role for Snail in influencing the immune compartment of lung tumors and thus contributing to disease progression.
Collapse
Affiliation(s)
- Svenja Groeneveld
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Julien Faget
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Nadine Zangger
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.,Bioinformatics Core Facility, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
A Hearty Dose of Noncoding RNAs: The Imprinted DLK1-DIO3 Locus in Cardiac Development and Disease. J Cardiovasc Dev Dis 2018; 5:jcdd5030037. [PMID: 29996488 PMCID: PMC6162432 DOI: 10.3390/jcdd5030037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022] Open
Abstract
The imprinted Dlk1-Dio3 genomic region harbors a noncoding RNA cluster encoding over fifty microRNAs (miRNAs), three long noncoding RNAs (lncRNAs), and a small nucleolar RNA (snoRNA) gene array. These distinct noncoding RNAs (ncRNAs) are thought to arise from a single polycistronic transcript that is subsequently processed into individual ncRNAs, each with important roles in diverse cellular contexts. Considering these ncRNAs are derived from a polycistron, it is possible that some coordinately regulate discrete biological processes in the heart. Here, we provide a comprehensive summary of Dlk1-Dio3 miRNAs and lncRNAs, as they are currently understood in the cellular and organ-level context of the cardiovascular system. Highlighted are expression profiles, mechanistic contributions, and functional roles of these ncRNAs in heart development and disease. Notably, a number of these ncRNAs are implicated in processes often perturbed in heart disease, including proliferation, differentiation, cell death, and fibrosis. However, most literature falls short of characterizing precise mechanisms for many of these ncRNAs, warranting further investigation. Taken together, the Dlk1-Dio3 locus represents a largely unexplored noncoding regulator of cardiac homeostasis, harboring numerous ncRNAs that may serve as therapeutic targets for cardiovascular disease.
Collapse
|
33
|
Hernandez A, Stohn JP. The Type 3 Deiodinase: Epigenetic Control of Brain Thyroid Hormone Action and Neurological Function. Int J Mol Sci 2018; 19:ijms19061804. [PMID: 29921775 PMCID: PMC6032375 DOI: 10.3390/ijms19061804] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormones (THs) influence multiple processes in the developing and adult central nervous system, and their local availability needs to be maintained at levels that are tailored to the requirements of their biological targets. The local complement of TH transporters, deiodinase enzymes, and receptors is critical to ensure specific levels of TH action in neural cells. The type 3 iodothyronine deiodinase (DIO3) inactivates THs and is highly present in the developing and adult brain, where it limits their availability and action. DIO3 deficiency in mice results in a host of neurodevelopmental and behavioral abnormalities, demonstrating the deleterious effects of TH excess, and revealing the critical role of DIO3 in the regulation of TH action in the brain. The fact the Dio3 is an imprinted gene and that its allelic expression pattern varies across brain regions and during development introduces an additional level of control to deliver specific levels of hormone action in the central nervous system (CNS). The sensitive epigenetic nature of the mechanisms controlling the genomic imprinting of Dio3 renders brain TH action particularly susceptible to disruption due to exogenous treatments and environmental exposures, with potential implications for the etiology of human neurodevelopmental disorders.
Collapse
Affiliation(s)
- Arturo Hernandez
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
- Graduate School for Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - J Patrizia Stohn
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA.
| |
Collapse
|
34
|
Song P, Li D, Wang X, Zhong X. Effects of perfluorooctanoic acid exposure during pregnancy on the reproduction and development of male offspring mice. Andrologia 2018; 50:e13059. [PMID: 29862542 DOI: 10.1111/and.13059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to explore the effects of maternal exposure to perfluorooctanoic acid (PFOA) on reproduction and development of male offspring mice. Pregnant mice were given 1, 2.5 or 5 mg/kg BW PFOA daily by gavage during gestation. The results showed that the survival number of offspring mice at weaning was significantly decreased. There were no differences in the testicular index of offspring mice between PFOA exposure groups and non-PFOA group. Maternal exposure to PFOA reduced the level of testosterone in the male offspring mice on PND 21 (p < 0.01) but increased in 1 mg/kg group and decreased in 2.5 and 5 mg/kg groups on PND 70 (p < 0.01). There were different degrees of damage to testis in a dose-dependent manner, and the number of Leydig cells markedly decreased (p < 0.01) in 2.5 and 5 mg/kg PFOA groups on PND 21 and PND 70. The expression of Dlk1-Dio3 imprinted gene cluster showed a decreasing trend, where Glt2, Rian and Dio3 gene expressions were significantly reduced (p < 0.05) on PND 21. Therefore, PFOA exposure during pregnancy reduces the number of survival offspring mice, damages testis, disrupts reproductive hormones and reduces the mRNA expressions of the Dlk1-Dio3 imprinted cluster in testis.
Collapse
Affiliation(s)
- Pengyan Song
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Danyang Li
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| | - Xiuhui Zhong
- College of Traditional Chinese Veterinary Medicine, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
35
|
Abstract
DIO3 and DIO3OS are two imprinted genes identified in mouse and humans. The DIO3 gene, which encodes for the type 3 deiodinase, is preferentially expressed from the paternal allele, while the DIO3OS transcript is transcribed in opposite orientation to DIO3, multiple noncoding and alternatively splicing isoforms from maternal allele. In this study, the five splice variants of DIO3OS were identified in Holstein cattle and had complex, tissue-specific expression patterns observed in eight tissues, including heart, liver, spleen, lung, kidney, muscle, fat and brain. In the G+C rich region, upstream from the cattle DIO3 gene, there were three small conserved regions and some promoter elements similar to those observed in mouse and humans. An allele-specific expression analysis-based SNP method revealed that DIO3 and DIO3OS genes exhibited monoallelic expression in the eight tissues, indicating that DIO3 and DIO3OS are imprinted in cattle.
Collapse
|
36
|
Soares ML, Edwards CA, Dearden FL, Ferrón SR, Curran S, Corish JA, Rancourt RC, Allen SE, Charalambous M, Ferguson-Smith MA, Rens W, Adams DJ, Ferguson-Smith AC. Targeted deletion of a 170-kb cluster of LINE-1 repeats and implications for regional control. Genome Res 2018; 28:345-356. [PMID: 29367313 PMCID: PMC5848613 DOI: 10.1101/gr.221366.117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Approximately half the mammalian genome is composed of repetitive sequences, and accumulating evidence suggests that some may have an impact on genome function. Here, we characterized a large array class of repeats of long-interspersed elements (LINE-1). Although widely distributed in mammals, locations of such arrays are species specific. Using targeted deletion, we asked whether a 170-kb LINE-1 array located at a mouse imprinted domain might function as a modulator of local transcriptional control. The LINE-1 array is lamina associated in differentiated ES cells consistent with its AT-richness, and although imprinting occurs both proximally and distally to the array, active LINE-1 transcripts within the tract are biallelically expressed. Upon deletion of the array, no perturbation of imprinting was observed, and abnormal phenotypes were not detected in maternal or paternal heterozygous or homozygous mutant mice. The array does not shield nonimprinted genes in the vicinity from local imprinting control. Reduced neural expression of protein-coding genes observed upon paternal transmission of the deletion is likely due to the removal of a brain-specific enhancer embedded within the LINE array. Our findings suggest that presence of a 170-kb LINE-1 array reflects the tolerance of the site for repeat insertion rather than an important genomic function in normal development.
Collapse
Affiliation(s)
- Miguel L Soares
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto; and i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-319 Porto, Portugal
| | - Carol A Edwards
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Frances L Dearden
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Sacri R Ferrón
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Scott Curran
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Jennifer A Corish
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Rebecca C Rancourt
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Sarah E Allen
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Marika Charalambous
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | | | - Willem Rens
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - David J Adams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
37
|
Pereira MG, Dyar KA, Nogara L, Solagna F, Marabita M, Baraldo M, Chemello F, Germinario E, Romanello V, Nolte H, Blaauw B. Comparative Analysis of Muscle Hypertrophy Models Reveals Divergent Gene Transcription Profiles and Points to Translational Regulation of Muscle Growth through Increased mTOR Signaling. Front Physiol 2017; 8:968. [PMID: 29255421 PMCID: PMC5723052 DOI: 10.3389/fphys.2017.00968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle mass is a result of the balance between protein breakdown and protein synthesis. It has been shown that multiple conditions of muscle atrophy are characterized by the common regulation of a specific set of genes, termed atrogenes. It is not known whether various models of muscle hypertrophy are similarly regulated by a common transcriptional program. Here, we characterized gene expression changes in three different conditions of muscle growth, examining each condition during acute and chronic phases. Specifically, we compared the transcriptome of Extensor Digitorum Longus (EDL) muscles collected (1) during the rapid phase of postnatal growth at 2 and 4 weeks of age, (2) 24 h or 3 weeks after constitutive activation of AKT, and (3) 24 h or 3 weeks after overload hypertrophy caused by tenotomy of the Tibialis Anterior muscle. We observed an important overlap between significantly regulated genes when comparing each single condition at the two different timepoints. Furthermore, examining the transcriptional changes occurring 24 h after a hypertrophic stimulus, we identify an important role for genes linked to a stress response, despite the absence of muscle damage in the AKT model. However, when we compared all different growth conditions, we did not find a common transcriptional fingerprint. On the other hand, all conditions showed a marked increase in mTORC1 signaling and increased ribosome biogenesis, suggesting that muscle growth is characterized more by translational, than transcriptional regulation.
Collapse
Affiliation(s)
- Marcelo G Pereira
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Kenneth A Dyar
- Venetian Institute of Molecular Medicine, Padova, Italy.,Molecular Endocrinology, Institute for Diabetes and Obesity, Helmholtz Diabetes Center and German Center for Diabetes Research, Neuherberg, Germany
| | - Leonardo Nogara
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | - Martina Baraldo
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Vanina Romanello
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Hendrik Nolte
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
38
|
Xing W, Gao W, Mao G, Zhang J, Lv X, Wang G, Yan J. Long non-coding RNAs in aging organs and tissues. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:30-37. [PMID: 28602041 DOI: 10.1111/1440-1681.12795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/27/2017] [Accepted: 05/07/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Wenmin Xing
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Wenyan Gao
- Institute of Materia Medica; Zhejiang Academy of Medical Sciences; Hangzhou China
| | - Genxiang Mao
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Jing Zhang
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Xiaoling Lv
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Guofu Wang
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| | - Jing Yan
- Geriatrics Institute of Zhejiang Province & Zhejiang Provincial Key Lab of Geriatrics; Zhejiang Hospital; Hangzhou China
| |
Collapse
|
39
|
Expression Profiling of Long Noncoding RNA Splice Variants in Human Microvascular Endothelial Cells: Lipopolysaccharide Effects In Vitro. Mediators Inflamm 2017; 2017:3427461. [PMID: 29147069 PMCID: PMC5632992 DOI: 10.1155/2017/3427461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 08/22/2017] [Indexed: 12/02/2022] Open
Abstract
Endothelial cell interactions with lipopolysaccharide (LPS) involve both activating and repressing signals resulting in pronounced alterations in their transcriptome and proteome. Noncoding RNAs are now appreciated as posttranscriptional and translational regulators of cellular signaling and responses, but their expression status and roles during endothelial interactions with LPS are not well understood. We report on the expression profile of long noncoding (lnc) RNAs of human microvascular endothelial cells in response to LPS. We have identified a total of 10,781 and 8310 lncRNA transcripts displaying either positive or negative regulation of expression, respectively, at 3 and 24 h posttreatment. A majority of LPS-induced lncRNAs are multiexonic and distributed across the genome as evidenced by their presence on all chromosomes. Present among these are a total of 44 lncRNAs with known regulatory functions, of which 41 multiexonic lncRNAs have multiple splice variants. We have further validated splice variant-specific expression of EGO (NONHSAT087634) and HOTAIRM1 (NONHSAT119666) at 3 h and significant upregulation of lnc-IL7R at 24 h. This study illustrates the genome-wide regulation of endothelial lncRNA splice variants in response to LPS and provides a foundation for further investigations of differentially expressed lncRNA transcripts in endothelial responses to LPS and pathophysiology of sepsis/septic shock.
Collapse
|
40
|
Enterina JR, Enfield KSS, Anderson C, Marshall EA, Ng KW, Lam WL. DLK1-DIO3 imprinted locus deregulation in development, respiratory disease, and cancer. Expert Rev Respir Med 2017; 11:749-761. [PMID: 28715922 DOI: 10.1080/17476348.2017.1355241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
INTRODUCTION The imprinted DLK1-DIO3 locus at 14q32.1-32.31 holds biological significance in fetal development, whereby imprinting errors are causal to developmental disorders. Emerging evidence has implicated this locus in other diseases including cancer, highlighting the biological parallels between fetal organ and tumour development. Areas covered: Controlled regulation of gene expression from the imprinted DLK1-DIO3 locus at 14q32.1-32.31 is crucial for proper fetal development. Deregulation of locus gene expression due to imprinting errors has been mechanistically linked to the developmental disorders Kagami-Ogata Syndrome and Temple Syndrome. In adult tissues, deregulation of locus genes has been associated with multiple malignancies although the causal genetic mechanisms remain largely uncharacterised. Here, we summarize the genetic mechanisms underlying the developmental disorders that arise as a result of improper locus imprinting and the resulting developmental phenotypes, emphasizing both the coding and noncoding components of the locus. We further highlight biological parallels common to both fetal development and disease, with a specific focus on lung development, respiratory disease, and lung cancer. Expert commentary: Many commonalities between respiratory and developmental defects have emerged with respect to the 14q32 locus, emphasizing the importance of studying the effects of imprinting on gene regulation patterns at this locus in both biological settings.
Collapse
Affiliation(s)
- Jhon R Enterina
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | | | | | - Erin A Marshall
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | - Kevin W Ng
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| | - Wan L Lam
- a British Columbia Cancer Research Centre , Vancouver , BC , Canada
| |
Collapse
|
41
|
Tan MC, Widagdo J, Chau YQ, Zhu T, Wong JJL, Cheung A, Anggono V. The Activity-Induced Long Non-Coding RNA Meg3 Modulates AMPA Receptor Surface Expression in Primary Cortical Neurons. Front Cell Neurosci 2017; 11:124. [PMID: 28515681 PMCID: PMC5413565 DOI: 10.3389/fncel.2017.00124] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/12/2017] [Indexed: 11/13/2022] Open
Abstract
Transcription of new RNA is crucial for maintaining synaptic plasticity, learning and memory. Although the importance of synaptic plasticity-related messenger RNAs (mRNAs) is well established, the role of a large group of long non-coding RNAs (lncRNAs) in long-term potentiation (LTP) is not known. In this study, we demonstrated the expression of a lncRNA cluster, namely maternally expressed gene 3 (Meg3), retrotransposon-like gene 1-anti-sense (Rtl1-AS), Meg8 and Meg9, which is located in the maternally imprinted Dlk1-Dio3 region on mouse chromosome 12qF1, in primary cortical neurons following glycine stimulation in an N-Methyl-D-aspartate receptor (NMDAR)-dependent manner. Importantly, we also validated the expression of Meg3, Meg8 and Meg9 in the hippocampus of mice following cued fear conditioning in vivo. Interestingly, Meg3 is the only lncRNA that is expressed in the nucleus and cytoplasm. Further analysis revealed that Meg3 loss of function blocked the glycine-induced increase of the GluA1 subunit of AMPA receptors on the plasma membrane, a major hallmark of LTP. This aberrant trafficking of AMPA receptors correlated with the dysregulation of the phosphatidylinoside-3-kinase (PI3K)/AKT signaling pathway and the downregulation of the lipid phosphatase and tensin homolog (PTEN). These findings provide the first evidence for a functional role of the lncRNA Meg3 in the intricate regulation of the PTEN/PI3K/AKT signaling cascade during synaptic plasticity in neurons.
Collapse
Affiliation(s)
- Men C Tan
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Yu Q Chau
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Tianyi Zhu
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Justin J-L Wong
- Gene and Stem Cell Therapy Program, Centenary InstituteSydney, NSW, Australia.,Sydney Medical School, University of SydneySydney, NSW, Australia
| | - Allen Cheung
- Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, The University of QueenslandBrisbane, QLD, Australia.,Queensland Brain Institute, The University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
42
|
Wang GN, Yang WZ, Xu D, Li DJ, Zhang C, Chen WN, Li SJ. Aberrant expression of MICO1 and MICO1OS in deceased somatic cell nuclear transfer calves. Mol Reprod Dev 2017; 84:517-524. [PMID: 28383772 DOI: 10.1002/mrd.22807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/31/2017] [Indexed: 11/06/2022]
Abstract
Incomplete reprogramming of a donor nucleus following somatic cell nuclear transfer (SCNT) results in aberrant expression of developmentally important genes, and is the primary source of the phenotypic abnormalities observed in cloned animals. Expression of non-coding RNAs in the murine Dlk1-Dio3 imprinted domain was previously shown to correlate with the pluripotency of mouse induced pluripotent stem cells. In this study, we examined the transcription of the bovine orthologs from this locus, MICO1 (Maternal intergenic circadian oscillating 1) and MICO1OS (MICO1 opposite strand), in tissues from artificially inseminated and SCNT calves that died during the perinatal period. A single-nucleotide polymorphism (SNP), a T-to-C transition, was used to analyze the allelic transcription of MICO1. Our results indicate monoallelic expression of the MICO1C allele among the six analyzed tissues (heart, liver, spleen, lung, kidney, and brain) of artificially inseminated calves, indicating that this gene locus may be imprinted in bovine. Conversely, we observed variable allelic transcription of MICO1 in SCNT calves. We asked if DNA methylation regulated the monoallelic expression of MICO1 and MICO1OS by evaluating the methylation levels of six regions within or around this locus in tissues with normal or aberrant MICO1 transcription; all of the samples from either artificially inseminated or SCNT calves exhibited hypermethylation, implying that DNA methylation may not be involved in regulating its monoallelic expression. Furthermore, three imprinted genes (GTL2, MEG9, and DIO3) nearby MICO1 showed monoallelic expression in SCNT calves with aberrant MICO1 transcription, indicating that not all of the genes in the bovine DLK1-DIO3 domain are mis-regulated.
Collapse
Affiliation(s)
- Guan-Nan Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, China
| | - Wen-Zhi Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, China
| | - Da Xu
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, China
| | - Dong-Jie Li
- College of Life Science and Life Engineering, Hebei Science and Technology University, Shijiazhuang, China
| | - Cui Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, China
| | - Wei-Na Chen
- Department of Traditional Chinese medicine, Hebei University, Baoding, China
| | - Shi-Jie Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, China
| |
Collapse
|
43
|
Cui J, Xie X. Non-coding RNAs: emerging regulatory factors in the derivation and differentiation of mammalian parthenogenetic embryonic stem cells. Cell Biol Int 2017; 41:476-483. [PMID: 28220611 DOI: 10.1002/cbin.10751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/17/2017] [Indexed: 02/06/2023]
Abstract
Parthenogenetic embryonic stem cells (PESCs) are ESCs derived from early parthenogenetic embryos. Haploid PESCs, containing haploid DNA, originate from a single sperm or occyte, while, diploid PESCs originate from two fused occytes. Most PESC lines used so far are diploid. PESCs exhibit representative pluripotent stem cell features, such as the capacity for self-renewal and the pariticular molecular signatures. Whereas, PESCs display distinctive properties, such as differential regulation of X-chromosome inactivation (XCI) and divergent monitor of genes involved in multiple biological processes. PESCs are considered promising in the regeneration medicine and developmental biology. Non-coding RNAs (ncRNAs), especially miRNAs and lncRNAs, have garnered increasing attention over the past 2 decades. They are now known to be involved in almost all cellular processes due to their full-range regulation of gene expression. Numerous studies have indicated that embryonic stem cells (ESCs) displayed distinct signatures of ncRNA genes, which play key roles in the pluripotency and self renewal of ESCs. However, the expression pattern of ncRNAs in PESCs and their roles in the derivation and differentiation of PESCs were rarely reported. In this paper, we reviewed recent research on the derivation and differentiation of PESCs and describe the emerging role of ncRNAs in these processes.
Collapse
Affiliation(s)
- Jihong Cui
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, China.,College of Life Science, Northwest University, Xi'an, 710069, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, 710069, China.,College of Life Science, Northwest University, Xi'an, 710069, China.,Institute for Integrated Medical Information (IIMI), Xi'an, 710018, China
| |
Collapse
|
44
|
Yang W, Li D, Wang G, Zhang C, Zhang M, Zhang W, Li S. Three intronic lncRNAs with monoallelic expression derived from the MEG8 gene in cattle. Anim Genet 2016; 48:272-277. [PMID: 27925264 DOI: 10.1111/age.12527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
Abstract
The field of long noncoding RNA (lncRNA) research has been rapidly advancing in recent years. Antisense lncRNAs, intergenetic lncRNAs and enhancer lncRNAs can regulate genomic imprinting, which leads to parent-origin-specific monoalletic expression of genes. However, the function of intronic ncRNAs in genomic imprinting remains unclear. Previously, we obtained the cDNA sequence of cattle MEG8 gene, which is located in the DLK1-DIO3 imprinted clusters of cattle chromosome 21. In this study, we undertook a systematic search for transcripts mapping to the MEG8 intronic region and identified three novel lncRNAs, named MEG8 intronic RNA 1 (MEG8-IT1), MEG8 intronic RNA 2 (MEG8-IT2) and MEG8 intronic RNA 3 (MEG8-IT3) according to the GENCODE annotated bibliography. We characterized the expression pattern of these lncRNAs using RT-PCR in adult cattle tissues, and they were expressed in all tested eight tissues, similar to the expression pattern of MEG8. The allele-specific expression of three novel lncRNAs was assessed using a polymorphism-based sequencing approach. Three single nucleotide polymorphism sites were identified in these three lncRNAs. We found that the three lncRNAs showed monoallelic expression in the analyzed tissues, suggesting that they may be imprinted in cattle. These results expand the number of known monoallelically expressed lncRNAs from the DLK1-DIO3 domain and contribute to further investigation of lncRNA regulatory mechanisms and function.
Collapse
Affiliation(s)
- W Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, 071001, China
| | - D Li
- College of Life Science and Life Engineering, Hebei Science and Technology University, Shijiazhuang, 050018, China
| | - G Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, 071001, China
| | - C Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, 071001, China
| | - M Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, 071001, China
| | - W Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, 071001, China
| | - S Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, 071001, China
| |
Collapse
|
45
|
Josson S, Chung LWK, Gururajan M. microRNAs and Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 889:105-18. [PMID: 26658999 DOI: 10.1007/978-3-319-23730-5_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
microRNAs are noncoding RNAs that are important for embryonic stem cell development and epithelial to mesenchymal transition (EMT). Tumor cells hijack EMT and stemness to grow and metastasize to distant organs including bone. In the tumor microenvironment, tumor cells interact with the stromal fibroblasts at the primary and metastatic sites and this interaction leads to tumor growth, EMT, and bone metastasis. Tumor-stromal interactions are a dynamic process that involves both cell-cell communications and extracellular vesicles and soluble factors. Growing body of evidence suggests that microRNAs are part of the payload that comprises the extracellular vesicles. microRNAs induce reactive stroma and thus convert normal stroma into tumor-associated stroma to promote aggressive tumorigenicity in vitro and in vivo. Landmark published studies demonstrate that expression of specific microRNAs of DLK1-DIO3 stem cell cluster correlates with patient survival in metastatic prostate cancer. Thus, microRNAs mediate tumor growth, EMT, and metastasis through cell intrinsic mechanisms and extracellular communications and could be novel biomarkers and therapeutic targets in bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Sajni Josson
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA. .,Neostrata Inc., Princeton, NJ, 08540, USA.
| | - Leland W K Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Murali Gururajan
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA. .,Bristol-Myers Squibb Inc., Princeton, NJ, 08543, USA.
| |
Collapse
|
46
|
Clark AL, Maruyama S, Sano S, Accorsi A, Girgenrath M, Walsh K, Naya FJ. miR-410 and miR-495 Are Dynamically Regulated in Diverse Cardiomyopathies and Their Inhibition Attenuates Pathological Hypertrophy. PLoS One 2016; 11:e0151515. [PMID: 26999812 PMCID: PMC4801331 DOI: 10.1371/journal.pone.0151515] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/29/2016] [Indexed: 12/31/2022] Open
Abstract
Noncoding RNAs have emerged as important modulators in cardiac development and pathological remodeling. Recently, we demonstrated that regulation of the Gtl2-Dio3 noncoding RNA locus is dependent on the MEF2 transcription factor in cardiac muscle, and that two of its encoded miRNAs, miR-410 and miR-495, induce robust cardiomyocyte proliferation. Given the possibility of manipulating the expression of these miRNAs to repair the damaged heart by stimulating cardiomyocyte proliferation, it is important to determine whether the Gtl2-Dio3 noncoding RNAs are regulated in cardiac disease and whether they function downstream of pathological cardiac stress signaling. Therefore, we examined expression of the above miRNAs processed from the Gtl2-Dio3 locus in various cardiomyopathies. These noncoding RNAs were upregulated in all cardiac disease models examined including myocardial infarction (MI) and chronic angiotensin II (Ang II) stimulation, and in the cardiomyopathies associated with muscular dystrophies. Consistent with these observations, we show that the Gtl2-Dio3 proximal promoter is activated by stress stimuli in cardiomyocytes and requires MEF2 for its induction. Furthermore, inhibiting miR-410 or miR-495 in stressed cardiomyocytes attenuated the hypertrophic response. Thus, the Gtl2-Dio3 noncoding RNA locus is a novel marker of cardiac disease and modulating the activity of its encoded miRNAs may mitigate pathological cardiac remodeling in these diseases.
Collapse
Affiliation(s)
- Amanda L Clark
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts, United States of America
| | - Sonomi Maruyama
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Soichi Sano
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Anthony Accorsi
- Health Sciences Department, College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Mahasweta Girgenrath
- Health Sciences Department, College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Kenneth Walsh
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Francisco J Naya
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
47
|
Tryndyak VP, Marrone AK, Latendresse JR, Muskhelishvili L, Beland FA, Pogribny IP. MicroRNA changes, activation of progenitor cells and severity of liver injury in mice induced by choline and folate deficiency. J Nutr Biochem 2016; 28:83-90. [DOI: 10.1016/j.jnutbio.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/24/2015] [Accepted: 10/07/2015] [Indexed: 12/14/2022]
|
48
|
White RR, Milholland B, MacRae SL, Lin M, Zheng D, Vijg J. Comprehensive transcriptional landscape of aging mouse liver. BMC Genomics 2015; 16:899. [PMID: 26541291 PMCID: PMC4636074 DOI: 10.1186/s12864-015-2061-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mammalian aging is a highly complex process, a full mechanistic understanding of which is still lacking. One way to help understand the molecular changes underlying aging is through a comprehensive analysis of the transcriptome, the primary determinant of age-related phenotypic diversity. Previous studies have relied on microarray analysis to examine gene expression profiles in different tissues of aging organisms. However, studies have shown microarray-based transcriptional profiling is less accurate and not fully capable of capturing certain intricacies of the global transcriptome. METHODS Here, using directional whole transcriptome RNA-sequencing of aged mouse liver we have identified a comprehensive high-resolution profile of differentially expressed liver transcripts comprised of canonical protein-coding transcripts, transcript isoforms, and non-coding RNA transcripts, including pseudogenes, long non-coding RNAs and small RNA species. RESULTS Results show extensive age-related changes in every component of the mouse liver transcriptome and a pronounced increase in inter-individual variation. Functional annotation of the protein-coding mRNAs and isoforms indicated broad alterations in immune response, cell activation, metabolic processes, and RNA modification. Interestingly, multiple lncRNAs (Meg3, Rian, Mirg) from the Dlk-Dio3 microRNA locus were found up-regulated in aging liver, classifying this locus as a putative regulatory hotspot locus in aging liver. Moreover, integration of the altered non-coding RNAs and protein-coding transcripts into interaction networks of age-related change revealed inflammation, cellular proliferation, and metabolism as the dominant aging phenotypes in mouse liver. CONCLUSIONS Our analyses provide the first comprehensive dissection of the transcriptional landscape in aging mouse liver.
Collapse
Affiliation(s)
- Ryan R White
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA. .,Albert Einstein College of Medicine, Michael F. Price Center for Genetic and Translational Research, 1301 Morris Park Ave, Bronx, NY, 10461, USA.
| | - Brandon Milholland
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Sheila L MacRae
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA. .,Albert Einstein College of Medicine, Michael F. Price Center for Genetic and Translational Research, 1301 Morris Park Ave, Bronx, NY, 10461, USA.
| |
Collapse
|
49
|
Gao YQ, Chen X, Wang P, Lu L, Zhao W, Chen C, Chen CP, Tao T, Sun J, Zheng YY, Du J, Li CJ, Gan ZJ, Gao X, Chen HQ, Zhu MS. Regulation of DLK1 by the maternally expressed miR-379/miR-544 cluster may underlie callipyge polar overdominance inheritance. Proc Natl Acad Sci U S A 2015; 112:13627-32. [PMID: 26487685 PMCID: PMC4640741 DOI: 10.1073/pnas.1511448112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Inheritance of the callipyge phenotype in sheep is an example of polar overdominance inheritance, an unusual mode of inheritance. To investigate the underlying molecular mechanism, we profiled the expression of the genes located in the Delta-like 1 homolog (Dlk1)-type III iodothyronine deiodinase (Dio3) imprinting region in mice. We found that the transcripts of the microRNA (miR) 379/miR-544 cluster were highly expressed in neonatal muscle and paralleled the expression of the Dlk1. We then determined the in vivo role of the miR-379/miR-544 cluster by establishing a mouse line in which the cluster was ablated. The maternal heterozygotes of young mutant mice displayed a hypertrophic tibialis anterior muscle, extensor digitorum longus muscle, gastrocnemius muscle, and gluteus maximus muscle and elevated expression of the DLK1 protein. Reduced expression of DLK1 was mediated by miR-329, a member of this cluster. Our results suggest that maternal expression of the imprinted miR-379/miR-544 cluster regulates paternal expression of the Dlk1 gene in mice. We therefore propose a miR-based molecular working model for polar overdominance inheritance.
Collapse
Affiliation(s)
- Yun-Qian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Xin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Pei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Lei Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Wei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Chen Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Cai-Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Tao Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Jie Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Yan-Yan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Jie Du
- Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Beijing 100029, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Zhen-Ji Gan
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Hua-Qun Chen
- School of Life Science, Nanjing Normal University, Nanjing 210009, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center and Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China; Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Beijing 100029, China;
| |
Collapse
|
50
|
MicroRNA-431 accelerates muscle regeneration and ameliorates muscular dystrophy by targeting Pax7 in mice. Nat Commun 2015; 6:7713. [PMID: 26151913 DOI: 10.1038/ncomms8713] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/02/2015] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle stem cells, called satellite cells, are a quiescent heterogeneous population. Their heterogeneity is influenced by Pax7, a well-defined transcriptional regulator of satellite cell functions that defines two subpopulations: Pax7(Hi) and Pax7(Lo). However, the mechanisms by which these subpopulations are established and maintained during myogenesis are not completely understood. Here we show that miR-431, which is predominantly expressed in the skeletal muscle, mediates satellite cell heterogeneity by fine-tuning Pax7 levels during muscle development and regeneration. In miR-431 transgenic mice, the Pax7(Lo) subpopulation is enriched, enhances myogenic differentiation and accelerates muscle regeneration. Notably, miR-431 attenuates the muscular dystrophic phenotype in mdx mice and may be a potential therapeutic target in muscular diseases. miR-431 transgenic mice are a unique genetic model for investigating the cellular features and biological functions of Pax7(Lo) satellite cells during muscle development and regeneration.
Collapse
|