1
|
Tec-Campos D, Posadas C, Tibocha-Bonilla JD, Thiruppathy D, Glonek N, Zuñiga C, Zepeda A, Zengler K. The genome-scale metabolic model for the purple non-sulfur bacterium Rhodopseudomonas palustris Bis A53 accurately predicts phenotypes under chemoheterotrophic, chemoautotrophic, photoheterotrophic, and photoautotrophic growth conditions. PLoS Comput Biol 2023; 19:e1011371. [PMID: 37556472 PMCID: PMC10441798 DOI: 10.1371/journal.pcbi.1011371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/21/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
The purple non-sulfur bacterium Rhodopseudomonas palustris is recognized as a critical microorganism in the nitrogen and carbon cycle and one of the most common members in wastewater treatment communities. This bacterium is metabolically extremely versatile. It is capable of heterotrophic growth under aerobic and anaerobic conditions, but also able to grow photoautotrophically as well as mixotrophically. Therefore R. palustris can adapt to multiple environments and establish commensal relationships with other organisms, expressing various enzymes supporting degradation of amino acids, carbohydrates, nucleotides, and complex polymers. Moreover, R. palustris can degrade a wide range of pollutants under anaerobic conditions, e.g., aromatic compounds such as benzoate and caffeate, enabling it to thrive in chemically contaminated environments. However, many metabolic mechanisms employed by R. palustris to breakdown and assimilate different carbon and nitrogen sources under chemoheterotrophic or photoheterotrophic conditions remain unknown. Systems biology approaches, such as metabolic modeling, have been employed extensively to unravel complex mechanisms of metabolism. Previously, metabolic models have been reconstructed to study selected capabilities of R. palustris under limited experimental conditions. Here, we developed a comprehensive metabolic model (M-model) for R. palustris Bis A53 (iDT1294) consisting of 2,721 reactions, 2,123 metabolites, and comprising 1,294 genes. We validated the model using high-throughput phenotypic, physiological, and kinetic data, testing over 350 growth conditions. iDT1294 achieved a prediction accuracy of 90% for growth with various carbon and nitrogen sources and close to 80% for assimilation of aromatic compounds. Moreover, the M-model accurately predicts dynamic changes of growth and substrate consumption rates over time under nine chemoheterotrophic conditions and demonstrated high precision in predicting metabolic changes between photoheterotrophic and photoautotrophic conditions. This comprehensive M-model will help to elucidate metabolic processes associated with the assimilation of multiple carbon and nitrogen sources, anoxygenic photosynthesis, aromatic compound degradation, as well as production of molecular hydrogen and polyhydroxybutyrate.
Collapse
Affiliation(s)
- Diego Tec-Campos
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Camila Posadas
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Juan D. Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, United States of America
| | - Deepan Thiruppathy
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla California, United States of America
| | - Nathan Glonek
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Cristal Zuñiga
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
| | - Alejandro Zepeda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, University of California, San Diego, La Jolla California, United States of America
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
2
|
Nitrate Removal from Groundwater by Heterotrophic and Electro-Autotrophic Denitrification. WATER 2022. [DOI: 10.3390/w14111759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A heterotrophic and autotrophic denitrification (HAD) system shows satisfactory performance for groundwater with nitrate contamination. In this study, an HAD system combining solid-phase heterotrophic denitrification and electrochemical hydrogen autotrophic denitrification (SHD-EHD) was developed for the treatment of nitrate-contaminated groundwater, in which polycaprolactone (PCL) was used as the carbon source to enhance the nitrate removal performance and prevent secondary pollution of the electrochemical hydrogen autotrophic denitrification (EHD) system. The denitrification performance, microbial community structure and nitrogen metabolism were investigated. The results showed that a high nitrate removal rate of 99.04% was achieved with an influent nitrate concentration of 40 mg/L, a current of 40 mA and a hydraulic retention time (HRT) of 4 h. By comparing the performance with the EHD system, it was found that the HAD system with PCL promoted the complete denitrification and reduced the accumulation of NO2−-N. Analysis of the microbial community structure identified the key denitrifying bacteria: Dechloromonas, Thauera and Hydrogenophaga. A comparison of microbial communities from SHD-EHD and solid-phase heterotrophic denitrification (SHD) demonstrated that electrical stimulation promoted the abundance of the dominant denitrifying bacteria and the electroactive bacteria. Analysis of the nitrogen metabolic pathway revealed that the conversion of NO to N2O was the rate-limiting step in the overall denitrification pathway. The SHD-EHD developed in this study showed great potential for groundwater nitrate removal.
Collapse
|
3
|
Cabral L, Pereira de Sousa ST, Júnior GVL, Hawley E, Andreote FD, Hess M, de Oliveira VM. Microbial functional responses to long-term anthropogenic impact in mangrove soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:231-239. [PMID: 29807296 DOI: 10.1016/j.ecoenv.2018.04.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 06/08/2023]
Abstract
Mangroves are coastal ecosystems of transition between terrestrial and marine environments, that have been particularly contaminated in the last decades. Organic compounds are part of these contaminants, which have increased in the environment due to industrial activities and accidental oil spills. These contaminants are toxic to higher organisms, but microorganisms can metabolize most of these compounds and thus offer a tool for bioremediation purposes. The aim of the present study was to characterize the microbial potential and activity for degradation of aromatic compounds in sediment samples from mangroves using metagenomic and metatranscriptomic approaches. Sediment samples were collected for DNA and RNA extraction from each of the mangrove sites: highly oil-impacted (Oil Mgv), anthropogenically impacted (Ant Mgv) and pristine (Prs Mgv) mangrove. Hydrocarbon concentrations in Oil Mgv sediments were higher than those observed in Ant Mgv and Prs Mgv. Genes and transcripts associated with aromatic compound degradation, particularly the meta and ortho-pathways, were more abundant in Oil Mgv and Ant Mgv suggesting that many of the aromatic compounds are being aerobically degraded by the microbiome in these sites. Functions involved in the degradation of aromatic compounds were also found in pristine site, although in lower abundance. Members of the genera Aromatoleum, Desulfococcus, Desulfatibacillum, Desulfitobacterium and Vibrio were actively involved in the detoxification of sediments affected by the oil spill. Results obtained from this study provided strong evidence that microbial degradation of aromatic compounds plays an active role in the biological response to mangrove sediment pollution and subsequent ecosystem recovery.
Collapse
Affiliation(s)
- Lucélia Cabral
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Sanderson Tarciso Pereira de Sousa
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB) - University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gileno Vieira Lacerda Júnior
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Institute of Biology (IB) - University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Erik Hawley
- Washington State University, Pullman, WA, USA
| | - Fernando Dini Andreote
- Department of Soil Science, ''Luiz de Queiroz'' College of Agriculture, University of Sao Paulo, Piracicaba, São Paulo, Brazil
| | - Matthias Hess
- University of California, Davis, Department of Animal Science, Davis, CA, USA
| | - Valéria Maia de Oliveira
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Lo KJ, Lin SS, Lu CW, Kuo CH, Liu CT. Whole-genome sequencing and comparative analysis of two plant-associated strains of Rhodopseudomonas palustris (PS3 and YSC3). Sci Rep 2018; 8:12769. [PMID: 30143697 PMCID: PMC6109142 DOI: 10.1038/s41598-018-31128-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/13/2018] [Indexed: 11/14/2022] Open
Abstract
Rhodopseudomonas palustris strains PS3 and YSC3 are purple non-sulfur phototrophic bacteria isolated from Taiwanese paddy soils. PS3 has beneficial effects on plant growth and enhances the uptake efficiency of applied fertilizer nutrients. In contrast, YSC3 has no significant effect on plant growth. The genomic structures of PS3 and YSC3 are similar; each contains one circular chromosome that is 5,269,926 or 5,371,816 bp in size, with 4,799 or 4,907 protein-coding genes, respectively. In this study, a large class of genes involved in chemotaxis and motility was identified in both strains, and genes associated with plant growth promotion, such as nitrogen fixation-, IAA synthesis- and ACC deamination-associated genes, were also identified. We noticed that the growth rate, the amount of biofilm formation, and the relative expression levels of several chemotaxis-associated genes were significantly higher for PS3 than for YSC3 upon treatment with root exudates. These results indicate that PS3 responds better to the presence of plant hosts, which may contribute to the successful interactions of PS3 with plant hosts. Moreover, these findings indicate that the existence of gene clusters associated with plant growth promotion is required but not sufficient for a bacterium to exhibit phenotypes associated with plant growth promotion.
Collapse
Affiliation(s)
- Kai-Jiun Lo
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.,Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.,National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, 300, Taiwan
| | - Chia-Wei Lu
- Center for Shrimp Disease Control and Genetic Improvement, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan. .,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 115, Taiwan. .,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung City, 402, Taiwan.
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
5
|
Srisuwun A, Tantiwa N, Kuntiya A, Kawee-ai A, Manassa A, Techapun C, Seesuriyachan P. Decolorization of Reactive Red 159 by a consortium of photosynthetic bacteria using an anaerobic sequencing batch reactor (AnSBR). Prep Biochem Biotechnol 2018; 48:303-311. [DOI: 10.1080/10826068.2018.1431782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Aungkana Srisuwun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Nidtaya Tantiwa
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Ampin Kuntiya
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | | | - Apisit Manassa
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Charin Techapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Phisit Seesuriyachan
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Advanced Manufacturing Technology Research Center, Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
Nikolic N, Schreiber F, Dal Co A, Kiviet DJ, Bergmiller T, Littmann S, Kuypers MMM, Ackermann M. Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations. PLoS Genet 2017; 13:e1007122. [PMID: 29253903 PMCID: PMC5773225 DOI: 10.1371/journal.pgen.1007122] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/18/2018] [Accepted: 11/22/2017] [Indexed: 12/05/2022] Open
Abstract
While we have good understanding of bacterial metabolism at the population level, we know little about the metabolic behavior of individual cells: do single cells in clonal populations sometimes specialize on different metabolic pathways? Such metabolic specialization could be driven by stochastic gene expression and could provide individual cells with growth benefits of specialization. We measured the degree of phenotypic specialization in two parallel metabolic pathways, the assimilation of glucose and arabinose. We grew Escherichia coli in chemostats, and used isotope-labeled sugars in combination with nanometer-scale secondary ion mass spectrometry and mathematical modeling to quantify sugar assimilation at the single-cell level. We found large variation in metabolic activities between single cells, both in absolute assimilation and in the degree to which individual cells specialize in the assimilation of different sugars. Analysis of transcriptional reporters indicated that this variation was at least partially based on cell-to-cell variation in gene expression. Metabolic differences between cells in clonal populations could potentially reduce metabolic incompatibilities between different pathways, and increase the rate at which parallel reactions can be performed. This study addresses a fundamental question in bacterial metabolism: do all individuals in a clonal population express the same metabolic functions, or do individuals specialize on different metabolic functions and assimilate different substrates? Reports about stochastic gene expression in bacterial populations raise the possibility that transcriptional differences between individuals translate into different metabolic behaviors, but the prevalence and magnitude of such effects is currently not known. Here, we quantified the assimilation of two isotope-labeled sugars by single Escherichia coli cells using nanometer-scale secondary ion mass spectrometry, an analytical approach seldom used in systems biology. By comparing sugar assimilation and gene expression dynamics, we were able to differentiate the metabolic profiles of individual cells. We observed a previously hidden level of cell-to-cell variation in metabolism: cells differed both in the total amount of sugar they assimilated, as well as with respect to which of the two sugars they preferentially assimilated. Intriguingly, a cell’s preference in sugar assimilation was only partially based on specialization in gene expression. Taken together, this study is a step towards understanding the magnitude and the relevance of metabolic differences between genetically identical cells.
Collapse
Affiliation(s)
- Nela Nikolic
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
- * E-mail: (NN); (MA)
| | - Frank Schreiber
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
- Division of Biodeterioration and Reference Organisms, Department of Materials and Environment, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Alma Dal Co
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Daniel J. Kiviet
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
| | - Tobias Bergmiller
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Sten Littmann
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marcel M. M. Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- Department of Environmental Microbiology, Eawag, Duebendorf, Switzerland
- * E-mail: (NN); (MA)
| |
Collapse
|
7
|
Cavaliere M, Feng S, Soyer OS, Jiménez JI. Cooperation in microbial communities and their biotechnological applications. Environ Microbiol 2017; 19:2949-2963. [PMID: 28447371 PMCID: PMC5575505 DOI: 10.1111/1462-2920.13767] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022]
Abstract
Microbial communities are increasingly utilized in biotechnology. Efficiency and productivity in many of these applications depends on the presence of cooperative interactions between members of the community. Two key processes underlying these interactions are the production of public goods and metabolic cross-feeding, which can be understood in the general framework of ecological and evolutionary (eco-evo) dynamics. In this review, we illustrate the relevance of cooperative interactions in microbial biotechnological processes, discuss their mechanistic origins and analyse their evolutionary resilience. Cooperative behaviours can be damaged by the emergence of 'cheating' cells that benefit from the cooperative interactions but do not contribute to them. Despite this, cooperative interactions can be stabilized by spatial segregation, by the presence of feedbacks between the evolutionary dynamics and the ecology of the community, by the role of regulatory systems coupled to the environmental conditions and by the action of horizontal gene transfer. Cooperative interactions enrich microbial communities with a higher degree of robustness against environmental stress and can facilitate the evolution of more complex traits. Therefore, the evolutionary resilience of microbial communities and their ability to constraint detrimental mutants should be considered to design robust biotechnological applications.
Collapse
Affiliation(s)
- Matteo Cavaliere
- School of Informatics, BBSRC/EPSRC/MRC Synthetic Biology Research CentreUniversity of EdinburghEdinburghEH8 9ABUK
| | - Song Feng
- Center for Nonlinear StudiesTheoretical Division (T‐6), Los Alamos National LaboratoryLos AlamosNM 87545USA
| | - Orkun S. Soyer
- School of Life Sciences, BBSRC/EPSRC Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
| | - José I. Jiménez
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| |
Collapse
|
8
|
Doud DFR, Angenent LT. Single-Genotype Syntrophy by Rhodopseudomonas palustris Is Not a Strategy to Aid Redox Balance during Anaerobic Degradation of Lignin Monomers. Front Microbiol 2016; 7:1082. [PMID: 27471497 PMCID: PMC4943940 DOI: 10.3389/fmicb.2016.01082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 06/28/2016] [Indexed: 11/13/2022] Open
Abstract
Rhodopseudomonas palustris has emerged as a model microbe for the anaerobic metabolism of p-coumarate, which is an aromatic compound and a primary component of lignin. However, under anaerobic conditions, R. palustris must actively eliminate excess reducing equivalents through a number of known strategies (e.g., CO2 fixation, H2 evolution) to avoid lethal redox imbalance. Others had hypothesized that to ease the burden of this redox imbalance, a clonal population of R. palustris could functionally differentiate into a pseudo-consortium. Within this pseudo-consortium, one sub-population would perform the aromatic moiety degradation into acetate, while the other sub-population would oxidize acetate, resulting in a single-genotype syntrophy through acetate sharing. Here, the objective was to test this hypothesis by utilizing microbial electrochemistry as a research tool with the extracellular-electron-transferring bacterium Geobacter sulfurreducens as a reporter strain replacing the hypothesized acetate-oxidizing sub-population. We used a 2 × 4 experimental design with pure cultures of R. palustris in serum bottles and co-cultures of R. palustris and G. sulfurreducens in bioelectrochemical systems. This experimental design included growth medium with and without bicarbonate to induce non-lethal and lethal redox imbalance conditions, respectively, in R. palustris. Finally, the design also included a mutant strain (NifA*) of R. palustris, which constitutively produces H2, to serve both as a positive control for metabolite secretion (H2) to G. sulfurreducens, and as a non-lethal redox control for without bicarbonate conditions. Our results demonstrate that acetate sharing between different sub-populations of R. palustris does not occur while degrading p-coumarate under either non-lethal or lethal redox imbalance conditions. This work highlights the strength of microbial electrochemistry as a tool for studying microbial syntrophy.
Collapse
Affiliation(s)
- Devin F R Doud
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| | - Largus T Angenent
- Department of Biological and Environmental Engineering, Cornell University Ithaca, NY, USA
| |
Collapse
|
9
|
Wong WT, Tseng CH, Hsu SH, Lur HS, Mo CW, Huang CN, Hsu SC, Lee KT, Liu CT. Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input. Microbes Environ 2014; 29:303-13. [PMID: 25130882 PMCID: PMC4159042 DOI: 10.1264/jsme2.me14056] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several Rhodopseudomonas palustris strains have been isolated from rice paddy fields in Taiwan by combining the Winogradsky column method and molecular marker detection. These isolates were initially screened by employing seed germination and seedling vigor assays to evaluate their potential as inoculants. To fulfill the demand in the present farming system for reducing the application of chemical fertilizers, we assessed the plant growth-promoting effects of the R. palustris YSC3, YSC4, and PS3 inoculants on Brassica rapa chinensis (Chinese cabbage) cultivated under a half quantity of fertilizer. The results obtained showed that supplementation with approximately 4.0×10(6) CFU g(-1) soil of the PS3 inoculant at half the amount of fertilizer consistently produced the same plant growth potential as 100% fertility, and also increased the nitrogen use efficiency of the applied fertilizer nutrients. Furthermore, we noted that the plant growth-promotion rate elicited by PS3 was markedly higher with old seeds than with new seeds, suggesting it has the potential to boost the development of seedlings that were germinated from carry-over seeds of poor quality. These beneficial traits suggest that the PS3 isolate may serve as a potential PGPR inoculant for integrated nutrient management in agriculture.
Collapse
Affiliation(s)
- Wai-Tak Wong
- Department of Agronomy, National Taiwan University
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Díaz E, Jiménez JI, Nogales J. Aerobic degradation of aromatic compounds. Curr Opin Biotechnol 2013; 24:431-42. [DOI: 10.1016/j.copbio.2012.10.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/04/2012] [Accepted: 10/09/2012] [Indexed: 12/21/2022]
|
11
|
Xia A, Cheng J, Lin R, Liu J, Zhou J, Cen K. Sequential generation of hydrogen and methane from glutamic acid through combined photo-fermentation and methanogenesis. BIORESOURCE TECHNOLOGY 2013; 131:146-151. [PMID: 23347921 DOI: 10.1016/j.biortech.2012.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/29/2012] [Accepted: 12/01/2012] [Indexed: 06/01/2023]
Abstract
Glutamic acid can hardly produce hydrogen via dark- or photo-fermentation without pretreatment. In this study, a novel process of acidogenic pretreatment with bacteria and zeolite treatment for NH4(+) removal was proposed to use glutamic acid as feedstock in photo-fermentation for efficient hydrogen production. Glutamic acid pretreated with acidogenic bacteria produces soluble metabolite products. After zeolite treatment, the acidulated solution, which mainly contains acetate, butyrate, and NH4(+), shows a decrease in NH4(+) concentration from 36.7mM to 3.2mM (NH4(+) removal efficiency of 91.1%). After NH4(+) removal, the treated solution is incubated with photosynthetic bacteria, exhibiting a maximum hydrogen yield of 292.9mL/g(-glutamic acid) during photo-fermentation. The residual solution from photo-fermentation is reused by methanogenic bacteria to produce a maximum methane yield of 102.7mL/g. The heating value conversion efficiency from glutamic acid to gas fuel significantly increases from 18.9% during photo-fermentation to 40.9% in the combined photo-fermentation and methanogenesis process.
Collapse
Affiliation(s)
- Ao Xia
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | | | |
Collapse
|
12
|
Simmons SS, Isokpehi RD, Brown SD, McAllister DL, Hall CC, McDuffy WM, Medley TL, Udensi UK, Rajnarayanan RV, Ayensu WK, Cohly HHP. Functional Annotation Analytics of Rhodopseudomonas palustris Genomes. Bioinform Biol Insights 2011; 5:115-29. [PMID: 22084572 PMCID: PMC3201837 DOI: 10.4137/bbi.s7316] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rhodopseudomonas palustris, a nonsulphur purple photosynthetic bacteria, has been extensively investigated for its metabolic versatility including ability to produce hydrogen gas from sunlight and biomass. The availability of the finished genome sequences of six R. palustris strains (BisA53, BisB18, BisB5, CGA009, HaA2 and TIE-1) combined with online bioinformatics software for integrated analysis presents new opportunities to determine the genomic basis of metabolic versatility and ecological lifestyles of the bacteria species. The purpose of this investigation was to compare the functional annotations available for multiple R. palustris genomes to identify annotations that can be further investigated for strain-specific or uniquely shared phenotypic characteristics. A total of 2,355 protein family Pfam domain annotations were clustered based on presence or absence in the six genomes. The clustering process identified groups of functional annotations including those that could be verified as strain-specific or uniquely shared phenotypes. For example, genes encoding water/glycerol transport were present in the genome sequences of strains CGA009 and BisB5, but absent in strains BisA53, BisB18, HaA2 and TIE-1. Protein structural homology modeling predicted that the two orthologous 240 aa R. palustris aquaporins have water-specific transport function. Based on observations in other microbes, the presence of aquaporin in R. palustris strains may improve freeze tolerance in natural conditions of rapid freezing such as nitrogen fixation at low temperatures where access to liquid water is a limiting factor for nitrogenase activation. In the case of adaptive loss of aquaporin genes, strains may be better adapted to survive in conditions of high-sugar content such as fermentation of biomass for biohydrogen production. Finally, web-based resources were developed to allow for interactive, user-defined selection of the relationship between protein family annotations and the R. palustris genomes.
Collapse
Affiliation(s)
- Shaneka S Simmons
- Department of Biology, Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, PO Box 18540 Jackson MS 39217 USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|