1
|
Slaby S, Duflot A, Zapater C, Gómez A, Couteau J, Maillet G, Knigge T, Pinto PIS, Monsinjon T. The Dicentrarchus labrax estrogen screen test: A relevant tool to screen estrogen-like endocrine disrupting chemicals in the aquatic environment. CHEMOSPHERE 2024; 362:142601. [PMID: 38880263 DOI: 10.1016/j.chemosphere.2024.142601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
In response to the need for the diversification of regulatory bioassays to screen estrogen-like endocrine disrupting chemical (EEDC) in the environment, we propose the use of a reporter gene assay involving all nuclear estrogen receptors from Dicentrarchus labrax (i.e., sbEsr1, sbEsr2a, or sbEsr2b). Named DLES test (D. labrax estrogen screen), it aims at complementing existing standardized in vitro tests by implementing more estrogen receptors notably those that do not originate from humans. Positive responses were obtained with all three estrogen receptors, and-consistently with observations from other species-variations in sensitivity to E2 were measured. Sensitivity and EC50 values could be classified as follows: sbEsr2b < sbEsr2a < sbEsr1. The pharmacological characterization with a human estrogen receptor antagonist (fulvestrant) successfully validated the specific involvement of each sbEsr and evidenced the capacity of the DLES test to highlight antagonist interactions. The DLES test was applied to WWTP contaminant extracts. A positive response was detected in the inflow sample in accordance with the YES test, but not in the outflow sample. Notwithstanding, the DLES test (sbEsr2b) exhibited greater sensitivity for the screening of those samples. This study demonstrates the need for more comprehensive testing including representatives of marine species for a better detection of EEDCs. The DLES test appears as a pertinent tool to predict adverse effects and to widen the scope of screening and hazard assessment of EEDCs in the environment.
Collapse
Affiliation(s)
- Sylvain Slaby
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), Le Havre, France.
| | - Aurélie Duflot
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), Le Havre, France.
| | - Cinta Zapater
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellon, Spain.
| | - Ana Gómez
- Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellon, Spain.
| | | | | | - Thomas Knigge
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), Le Havre, France.
| | - Patrícia I S Pinto
- Laboratory of Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMAR), Faro, Portugal.
| | - Tiphaine Monsinjon
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), Le Havre, France.
| |
Collapse
|
2
|
Zapater C, Moreira C, Knigge T, Monsinjon T, Gómez A, Pinto PIS. Evolutionary history and functional characterization of duplicated G protein-coupled estrogen receptors in European sea bass. J Steroid Biochem Mol Biol 2024; 236:106423. [PMID: 37939740 DOI: 10.1016/j.jsbmb.2023.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Across vertebrates, the numerous estrogenic functions are mainly mediated by nuclear and membrane receptors, including the G protein-coupled estrogen receptor (GPER) that has been mostly associated with rapid non-genomic responses. Although Gper-mediated signalling has been characterized in only few fish species, Gpers in fish appear to present more mechanistic functionalities as those of mammals due to additional gene duplicates. In this study, we ran a thorough investigation of the fish Gper evolutionary history in light of available genomes, we carried out the functional characterization of the two gper gene duplicates of European sea bass (Dicentrarchus labrax) using luciferase reporter gene transactivation assays, validated it with natural and synthetic estrogen agonists/antagonists and applied it to other chemicals of aquaculture and ecotoxicological interest. Phylogenetic and synteny analyses of fish gper1 and gper1-like genes suggest their duplication may have not resulted from the teleost-specific whole genome duplication. We confirmed that both sbsGper isoforms activate the cAMP signalling pathway and respond differentially to distinct estrogenic compounds. Therefore, as observed for nuclear estrogen receptors, both sbsGpers duplicates retain estrogenic activity although they differ in their specificity and potency (Gper1 being more potent and more specific than Gper1-like), suggesting a more conserved role for Gper1 than for Gper1-like. In addition, Gpers were able to respond to estrogenic environmental pollutants known to interfere with estrogen signalling, such as the phytoestrogen genistein and the anti-depressant fluoxetine, a point that can be taken into account in aquatic environment pollution screenings and chemical risk assessment, complementing previous assays for sea bass nuclear estrogen receptors.
Collapse
Affiliation(s)
- Cinta Zapater
- Instituto de Acuicultura Torre de la Sal, CSIC, 12595 Torre de la Sal, Castellón, Spain.
| | - Catarina Moreira
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Thomas Knigge
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Tiphaine Monsinjon
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Ana Gómez
- Instituto de Acuicultura Torre de la Sal, CSIC, 12595 Torre de la Sal, Castellón, Spain.
| | - Patrícia I S Pinto
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
3
|
Schiano Di Lombo M, Cavalié I, Camilleri V, Armant O, Perrot Y, Cachot J, Gagnaire B. Tritiated thymidine induces developmental delay, oxidative stress and gene overexpression in developing zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106766. [PMID: 37980847 DOI: 10.1016/j.aquatox.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Tritium is a betta emitter radionuclide. Being an isotope of hydrogen, it is easily transferred to different environmental compartments, and to human and non-human biota. Considering that tritium levels are expected to rise in the upcoming decades with the development of nuclear facilities producing tritium using fission processes, investigating the potential toxicity of tritium to human and non-human biota is necessary. Tritiated thymidine, an organic form of tritium, has been used in this study to assess its toxicity on fish embryo development. Zebrafish embryos (3.5 hpf; hours post fertilization) have been exposed to tritiated thymidine at three different activity concentrations (7.5; 40; 110 kBq/mL) for four days. These experiments highlighted that zebrafish development was affected by the exposure to organic tritium, with smaller larvae at 3 dpf after exposure to the two lowest dose rates (22 and 170 µGy/h), a delayed hatching after exposure to the two highest dose rates (170 and 470 µGy/h), an increase in the spontaneous tail movement (1 dpf) and a decrease in the heartbeat (3 dpf) after exposure to the highest dose rate. The results also highlighted an increase in ROS production in larvae exposed to the intermediate dose rate. A dysregulation of many genes, involved in apoptosis, DNA repair or oxidative stress, was also found after 1 day of exposure to the lowest tritium dose rate. Our results thus suggest that exposure to tritiated thymidine from a dose rate as low as 22 µGy/h can lead to sublethal effects, with an effect on the development, dysregulation of many genes and increase of the ROS production. This paper provides valuable information on toxic effects arising from the exposure of fish to an organic form of tritium, which was the main objective of this study.
Collapse
Affiliation(s)
- Magali Schiano Di Lombo
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France.
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France
| | - Yann Perrot
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, 92262 Fontenay-aux-Roses CEDEX, France
| | - Jérôme Cachot
- Université de Bordeaux, Laboratoire EPOC UMR 5805, Univ. Bordeaux, CNRS, INP Bordeaux, F-33600 Pessac, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, 13115, Saint-Paul-lez-Durance, France.
| |
Collapse
|
4
|
Albendín MG, Aranda V, Corrales A, Ortiz-Delgado JB, Sarasquete C, Arellano JM. Characterisation of ChE in Solea solea and exposure of isoflavones in juveniles of commercial flatfish (Solea solea and Solea senegalensis). J Appl Toxicol 2023; 43:1916-1925. [PMID: 37551860 DOI: 10.1002/jat.4527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
The isoflavones genistein and daidzein are flavonoid compounds mainly found in legumes, especially in soybeans and their derived products. These flavonoids can be present in agricultural, domestic and industrial wastewater effluents as a result of anthropogenic activities and may be discharged in the environment. Due to the large growth of the aquaculture sector in recent decades, new and cost-effective fish feeds are being sought, but there is also a particular need to determine the effects of exposed flavonoids on fish in the aquatic environment, as this is the main route of exposure of organisms to endocrine disruptors. This study evaluated the possible effects of these isoflavones on juveniles of Solea senegalensis and Solea solea. After 48-96 h of exposure, the acetylcholinesterase activity in the sole head tissues was measured, and the cholinesterase activity in juveniles of common sole (S. solea) was determined. Experiments were carried out to determine the optimal pH, investigate the specificity of three substrates (acetylthiocholine, butyrylthiocholine, propionylthiocholine) on cholinesterase activity and determine the kinetic parameters (Vmax and Km ). The results obtained showed that neither genistein nor daidzein exposure to S. senegalensis and S. solea inhibited the activity of acetylcholinesterase at the tested concentrations (genistein: 1.25, 2.5, 5, 10 and 20 mg/L; daidzein: 0.625, 1.25, 2.5, 5 and 10 mg/L).
Collapse
Affiliation(s)
- María Gemma Albendín
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Vanessa Aranda
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Alejandro Corrales
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | | | | | - Juana María Arellano
- Toxicology Laboratory, University Institute of Marine Research (INMAR), International Campus of Excellence of the Sea (CEI MAR), Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| |
Collapse
|
5
|
Menegasso AS, Fortuna M, Soares SM, Maffi VC, Mozzato MT, Barcellos LJG, Rossato-Grando LG. Embryonic exposure to genistein induces anxiolytic and antisocial behavior in zebrafish: persistent effects until the adult stage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8957-8969. [PMID: 34498194 DOI: 10.1007/s11356-021-16324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Genistein is a phytoestrogen, which is structurally similar to 17β-estradiol. It is present in plants, food, and as a contaminant in effluents. In this article, we demonstrate the effects of embryonic exposure to three different concentrations of genistein (10 μg/L, 40 μg/L, and 80 μg/L) which is similar to those found in effluents. Zebrafish eggs were exposed during the first 72 h post-fertilization (hpf). Heart rate was evaluated at 48 hpf and mortality rate was assessed during the first 72 hpf. The light/dark (LDT) and open field (OFT) behavioral tests were applied to the larvae (6 dpf), and the novel tank (NTT), social preference (SPT), light-dark (LDT), and sexing tests were performed on adult fish (90 dpf). Embryonic exposure to genistein caused anxiolytic-like behavior in both larvae and adult animals. In adult stage, we observed an increase in locomotor activity and antisocial behavior in the concentration of 40 μg/L. There was an increase in the mortality rate in all concentrations when compared to the control and an increase in heart rate at the concentration of 80 μg/L. Exposure to 10 μg/L generated a higher frequency of females when compared to the control group. Our results show that exposure to genistein during the embryonic phase brings damage in the short and long term as it increases the mortality rate and leads to behavioral disorders both in the larval stage, with perpetuation until adult stage. The anxiolytic-like effect and less social interaction are effects that harm fish survival.
Collapse
Affiliation(s)
- Aloma Santin Menegasso
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Victoria Costa Maffi
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | | |
Collapse
|
6
|
Yamashita S, Lin I, Oka C, Kumazoe M, Komatsu S, Murata M, Kamachi S, Tachibana H. Soy isoflavone metabolite equol inhibits cancer cell proliferation in a PAP associated domain containing 5-dependent and an estrogen receptor-independent manner. J Nutr Biochem 2021; 100:108910. [PMID: 34801689 DOI: 10.1016/j.jnutbio.2021.108910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022]
Abstract
Isoflavone is a species of polyphenol found mainly in soy and soy products. Many studies have demonstrated its estrogen receptor (ER)-dependent action. Equol is an intestinal metabolite of a major soy isoflavone daidzein. We aimed to elucidate the mechanism for ER-independent actions of equol. Equol has been shown to inhibit proliferation of HeLa human cervical cancer cells and mouse melanoma B16 cells in an ER-independent manner. Using functional genetic screening, PAP associated domain containing 5 (PAPD5), which is a non-canonical poly(A) polymerase, was identified as an essential molecule in the ER-independent action. While peroral administration of equol inhibited tumor growth of control B16 cells subcutaneously inoculated in mice, it had little effect on the growth of PAPD5-ablated B16 cells. Intriguingly, equol progressed tumor growth of the PAPD5-ablated human breast cancer MCF-7 cells, which have high ERα expression. Equol has been found to induce polyadenylation of snoRNAs in a PAPD5-depdendent manner. Furthermore, peroral equol administration increased microRNA miR-320a expression in tumors. Together, these results suggest that equol may have a dual effect on ER-positive cancer cells, acting with, antiproliferative activity through PAPD5 and exhibiting proliferative activity via ERα and the former could be associated with miR-320a.
Collapse
Affiliation(s)
- Shuya Yamashita
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan; Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Ichian Lin
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Chihiro Oka
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Satomi Komatsu
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Motoki Murata
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shoko Kamachi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
7
|
Brenes-Soto A, Tye M, Esmail MY. The Role of Feed in Aquatic Laboratory Animal Nutrition and the Potential Impact on Animal Models and Study Reproducibility. ILAR J 2020; 60:197-215. [PMID: 33094819 DOI: 10.1093/ilar/ilaa006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Feed plays a central role in the physiological development of terrestrial and aquatic animals. Historically, the feeding practice of aquatic research species derived from aquaculture, farmed, or ornamental trades. These diets are highly variable, with limited quality control, and have been typically selected to provide the fastest growth or highest fecundity. These variations of quality and composition of diets may affect animal/colony health and can introduce confounding experimental variables into animal-based studies that impact research reproducibility.
Collapse
Affiliation(s)
- Andrea Brenes-Soto
- Department of Animal Science, University of Costa Rica, San José, Costa Rica
| | - Marc Tye
- Zebrafish Core Facility, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Michael Y Esmail
- Tufts Comparative Medicine Services, Tufts University Health Science Campus, Boston, Massachusetts
| |
Collapse
|
8
|
Balbuena-Pecino S, Lutfi E, Riera-Heredia N, Gasch-Navalón E, Vélez EJ, Gutiérrez J, Capilla E, Navarro I. Genistein Induces Adipogenic and Autophagic Effects in Rainbow Trout ( Oncorhynchus mykiss) Adipose Tissue: In Vitro and In Vivo Models. Int J Mol Sci 2020; 21:E5884. [PMID: 32824312 PMCID: PMC7461592 DOI: 10.3390/ijms21165884] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/08/2023] Open
Abstract
Soybeans are one of the most used alternative dietary ingredients in aquafeeds. However, they contain phytoestrogens like genistein (GE), which can have an impact on fish metabolism and health. This study aimed to investigate the in vitro and in vivo effects of GE on lipid metabolism, apoptosis, and autophagy in rainbow trout (Oncorhynchus mykiss). Primary cultured preadipocytes were incubated with GE at different concentrations, 10 or 100 μM, and 1 μM 17β-estradiol (E2). Furthermore, juveniles received an intraperitoneal injection of GE at 5 or 50 µg/g body weight, or E2 at 5 µg/g. In vitro, GE 100 μM increased lipid accumulation and reduced cell viability, apparently involving an autophagic process, indicated by the higher LC3-II protein levels, and higher lc3b and cathepsin d transcript levels achieved after GE 10 μM. In vivo, GE 50 µg/g upregulated the gene expression of fatty acid synthase (fas) and glyceraldehyde-3-phosphate dehydrogenase in adipose tissue, suggesting enhanced lipogenesis, whereas it increased hormone-sensitive lipase in liver, indicating a lipolytic response. Besides, autophagy-related genes increased in the tissues analyzed mainly after GE 50 µg/g treatment. Overall, these findings suggest that an elevated GE administration could lead to impaired adipocyte viability and lipid metabolism dysregulation in rainbow trout.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Isabel Navarro
- Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (S.B.-P.); (E.L.); (N.R.-H.); (E.G.-N.); (E.J.V.); (J.G.); (E.C.)
| |
Collapse
|
9
|
Pinto PIS, Andrade AR, Moreira C, Zapater C, Thorne MAS, Santos S, Estêvão MD, Gomez A, Canario AVM, Power DM. Genistein and estradiol have common and specific impacts on the sea bass (Dicentrarchus labrax) skin-scale barrier. J Steroid Biochem Mol Biol 2019; 195:105448. [PMID: 31421232 DOI: 10.1016/j.jsbmb.2019.105448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Teleost fish scales play important roles in animal protection and homeostasis. They can be targeted by endogenous estrogens and by environmental estrogenic endocrine disruptors. The phytoestrogen genistein is ubiquitous in the environment and in aquaculture feeds and is a disruptor of estrogenic processes in vertebrates. To test genistein disrupting actions in teleost fish we used a minimally invasive approach by analysing scales plucked from the skin of sea bass (Dicentrarchus labrax). Genistein transactivated all three fish nuclear estrogen receptors and was most potent with the Esr2, had the highest efficacy with Esr1, but reached, in all cases, transactivation levels lower than those of estradiol. RNA-seq revealed 254 responsive genes in the sea bass scales transcriptome with an FDR < 0.05 and more than 2-fold change in expression, 1 or 5 days after acute exposure to estradiol or to genistein. 65 genes were specifically responsive to estradiol and 106 by genistein while 83 genes were responsive to both compounds. Estradiol specifically regulated genes of protein/matrix turnover and genistein affected sterol biosynthesis and regeneration, while innate immune responses were affected by both compounds. This comprehensive study revealed the impact on the fish scale transcriptome of estradiol and genistein, providing a solid background to further develop fish scales as a practical screening tool for endocrine disrupting chemicals in teleosts.
Collapse
Affiliation(s)
- Patricia I S Pinto
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - André R Andrade
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - Catarina Moreira
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600 Le Havre, France.
| | - Cinta Zapater
- IATS - Instituto de Acuicultura Torre la Sal, Ribera de Cabanes, 12595 Castellón, Spain.
| | - Michael A S Thorne
- British Antarctic Survey (BAS), High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Soraia Santos
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - M Dulce Estêvão
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal; Escola Superior de Saúde, Universidade do Algarve, Campus de Gambelas, Edifício 1, 8005-139 Faro, Portugal.
| | - Ana Gomez
- IATS - Instituto de Acuicultura Torre la Sal, Ribera de Cabanes, 12595 Castellón, Spain.
| | - Adelino V M Canario
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| | - Deborah M Power
- CCMAR - Centro de Ciencias do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139 Faro, Portugal.
| |
Collapse
|
10
|
Rosenfeld CS. Effects of Phytoestrogens on the Developing Brain, Gut Microbiota, and Risk for Neurobehavioral Disorders. Front Nutr 2019; 6:142. [PMID: 31555657 PMCID: PMC6727358 DOI: 10.3389/fnut.2019.00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/14/2019] [Indexed: 01/11/2023] Open
Abstract
Many pregnant and nursing women consume high amounts of soy and other plant products that contain phytoestrogens, such as genistein (GEN) and daidzein. Infants may also be provided soy based formulas. With their ability to bind and activate estrogen receptors (ESR) in the brain, such compounds can disrupt normal brain programming and lead to later neurobehavioral disruptions. However, other studies suggest that maternal consumption of soy and soy based formulas containing such phytoestrogens might lead to beneficial behavioral effects. Select gut microbes might also convert daidzein and to a lesser extent genistein to even more potent forms, e.g., equol derivatives. Thus, infant exposure to phytoestrogens may result in contrasting effects dependent upon the gut flora. It is also becoming apparent that consumption or exposure to these xenoestrogens may lead to gut dysbiosis. Phytoestrogen-induced changes in gut bacteria might in turn affect the brain through various mechanisms. This review will consider the evidence to date in rodent and other animal models and human epidemiological data as to whether developmental exposure to phytoestrogens, in particular genistein and daidzein, adversely or beneficially impact offspring neurobehavioral programming. Consideration will be given to potential mechanisms by which such compounds might affect neurobehavioral responses. A better understanding of effects perinatal exposure to phytoestrogen can exert on brain programming will permit pregnant women and those seeking to become pregnant to make better-educated choices. If phytoestrogen-induced gut dysbiosis contributes to neurobehavioral disruptions, remediation strategies may be designed to prevent such gut microbiota alterations and thereby improve neurobehavioral outcomes.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- MU Informatics Institute, University of Missouri, Columbia, MO, United States
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States
- Biomedical Sciences, University of Missouri, Columbia, MO, United States
- Genetics Area Program, University of Missouri, Columbia, MO, United States
| |
Collapse
|
11
|
Hu C, Wong WT, Wu R, Lai WF. Biochemistry and use of soybean isoflavones in functional food development. Crit Rev Food Sci Nutr 2019; 60:2098-2112. [PMID: 31272191 DOI: 10.1080/10408398.2019.1630598] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Soybeans and their food products exist in the market in various forms, ranging from crude oils and bean meals to nutritious products (e.g. soy milk powers). With the availability of technologies for mass production of soy products and for enrichment of soy components (e.g. phospholipids, saponins, isoflavones, oligosaccharides and edible fiber), the nutritional values of soy products have been enhanced remarkably, offering the potential for functional food development. Among different bioactive components in soybeans, one important component is isoflavones, which have been widely exploited for health implications. While there are studies supporting the health benefits of isoflavones, concerns on adverse effects have been raised in the literature. The objective of this article is to review the recent understanding of the biological activities, adverse effects, and use of isoflavones in functional food development.
Collapse
Affiliation(s)
- Chengshen Hu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- Center for Human Tissue and Organs Degeneration, Institute of Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Runyu Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| |
Collapse
|
12
|
Maskey E, Crotty H, Wooten T, Khan IA. Disruption of oocyte maturation by selected environmental chemicals in zebrafish. Toxicol In Vitro 2019; 54:123-129. [PMID: 30266436 DOI: 10.1016/j.tiv.2018.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
Abstract
Oocyte maturation can be a target of endocrine disruption by environmental chemicals capable of acting as hormone mimics, receptor blockers, and/or enzyme inhibitors. Six environmental chemicals (genistein, endosulfan, malathion, iprodione, carbaryl, and glyphosate) were selected to determine their ability to interfere with oocyte maturation in zebrafish. The translucent oocytes undergoing germinal vesicle (nucleus) breakdown (GVBD) were counted and expressed as a ratio of oocytes undergoing GVBD and total oocytes exposed. The GVBD increased significantly in oocytes exposed to 10 IU/ml to 100 IU/ml human chorionic gonadotropin (hCG). The lowest effective concentration of genistein that inhibited hCG-induced GVBD was 30 μM, while endosulfan inhibited it at 0.03 μM concentration. In addition, malathion inhibited hCG-induced GVBD at the lowest concentration of 60 μM. These inhibitory effects were likely due to the chemicals acting as estrogen mimics, induction of estrogen receptors, or increase in aromatase activity resulting in enhanced estrogen action. Fungicide iprodione, possibly acting as a progestin mimic, promoted hCG-induced GVBD at the lowest concentration of 20 μM, while the weed killer glyphosate inhibited hCG-induced GVBD starting at the 50 μM concentration. These results demonstrate the feasibility of using fully grown zebrafish oocytes arrested at the prophase I stage in an in vitro incubation system to evaluate the effects of a variety of environmental chemicals on oocyte maturation.
Collapse
Affiliation(s)
- Era Maskey
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, TX, USA; Nutribiotech USA, Garland, TX, USA
| | - Hannah Crotty
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, TX, USA
| | - Taelah Wooten
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, TX, USA; Kansas City University of Medicine and Biosciences, Joplin, MO, USA
| | - Izhar A Khan
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, TX, USA.
| |
Collapse
|
13
|
AnvariFar H, Amirkolaie AK, Jalali AM, Miandare HK, Sayed AH, Üçüncü Sİ, Ouraji H, Ceci M, Romano N. Environmental pollution and toxic substances: Cellular apoptosis as a key parameter in a sensible model like fish. AQUATIC TOXICOLOGY 2018; 204:144-159. [PMID: 30273782 DOI: 10.1016/j.aquatox.2018.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/06/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
The industrial wastes, sewage effluents, agricultural run-off and decomposition of biological waste may cause high environmental concentration of chemicals that can interfere with the cell cycle activating the programmed process of cells death (apoptosis). In order to provide a detailed understanding of environmental pollutants-induced apoptosis, here we reviewed the current knowledge on the interactions of environmental chemicals and programmed cell death. Metals (aluminum, arsenic, cadmium, chromium, cobalt, zinc, copper, mercury and silver) as well as other chemicals including bleached kraft pulp mill effluent (BKME), persistent organic pollutants (POPs), and pesticides (organo-phosphated, organo-chlorinated, carbamates, phyretroids and biopesticides) were evaluated in relation to apoptotic pathways, heat shock proteins and metallothioneins. Although research performed over the past decades has improved our understanding of processes involved in apoptosis in fish, yet there is lack of knowledge on associations between environmental pollutants and apoptosis. Thus, this review could be useful tool to study the cytotoxic/apoptotic effects of different pollutants in fish species.
Collapse
Affiliation(s)
- Hossein AnvariFar
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran; University of Applied Science and Technology, Provincial Unit, P.O. Box: 4916694338, Golestan, Iran
| | - A K Amirkolaie
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Ali M Jalali
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran; Sturgeon Affairs Management, Gorgan, Golestan, Iran; Center for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, VIC, 3280, Australia
| | - H K Miandare
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49138-15739, Iran
| | - Alaa H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Sema İşisağ Üçüncü
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, İzmir, Turkey
| | - Hossein Ouraji
- Department of Fisheries, Faculty of Animal Science and Fisheries, University of Agriculture and Natural Resources, P.O. Box 578, Sari, Iran
| | - Marcello Ceci
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy
| | - Nicla Romano
- Department Ecological and Biological Sciences, University of Tuscia, Tuscia University, Viterbo, 01100, Italy.
| |
Collapse
|
14
|
Sarasquete C, Úbeda-Manzanaro M, Ortiz-Delgado JB. Toxicity and non-harmful effects of the soya isoflavones, genistein and daidzein, in embryos of the zebrafish, Danio rerio. Comp Biochem Physiol C Toxicol Pharmacol 2018; 211:57-67. [PMID: 29870789 DOI: 10.1016/j.cbpc.2018.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023]
Abstract
Based on the assumed oestrogenic and apoptotic properties of soya isoflavones (genistein, daidzein), and following the current OECD test-guidelines and principle of 3Rs, we have studied the potential toxicity of phytochemicals on the zebrafish embryos test (ZFET). For this purpose, zebrafish embryos at 2-3 h post-fertilisation (hpf) were exposed to both soya isoflavones (from 1.25 mg/L to 20 mg/L) and assayed until 96 hpf. Lethal and sub-lethal endpoints (mortality, hatching rates and malformations) were estimated in the ZFET, which was expanded to potential gene expression markers, determining the lowest observed effect (and transcriptional) concentrations (LOEC, LOTEC), and the no-observable effect (and transcriptional) concentrations (NOEC, NOTEC). The results revealed that genistein is more toxic (LC50-96 hpf: 4.41 mg/L) than daidzein (over 65.15 mg/L). Both isoflavones up-regulated the oestrogen (esrrb) and death receptors (fas) and cyp1a transcript levels. Most thyroid transcript signals were up-regulated by genistein (except for thyroid peroxidase/tpo), and the hatching enzyme (he1a1) was exclusively up-regulated by daidzein (from 1.25 mg/L onwards). The ZFET proved suitable for assessing toxicant effects of both isoflavones and potential disruptions (i.e. oestrogenic, apoptotic, thyroid, enzymatic) during the embryogenesis and the endotrophic larval period.
Collapse
Affiliation(s)
- Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN-CSIC, Spain; Campus Universitario Rio San Pedro, Apdo oficial, 11510, Puerto Real, Cádiz, Spain.
| | - María Úbeda-Manzanaro
- Instituto de Ciencias Marinas de Andalucía-ICMAN-CSIC, Spain; Campus Universitario Rio San Pedro, Apdo oficial, 11510, Puerto Real, Cádiz, Spain
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN-CSIC, Spain; Campus Universitario Rio San Pedro, Apdo oficial, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
15
|
Huang M, Jiao J, Wang J, Xia Z, Zhang Y. Characterization of acrylamide-induced oxidative stress and cardiovascular toxicity in zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2018; 347:451-460. [PMID: 29353190 DOI: 10.1016/j.jhazmat.2018.01.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
Acrylamide (AA) is a high production volume chemical in industrial applications and widely found in baked or fried carbohydrate-rich foods. In this study, we unravelled that AA induced developmental toxicity associated with oxidative stress status and disordered lipid distribution in heart region of developing zebrafish. Treatment with AA caused a deficient cardiovascular system with significant heart malformation and dysfunction. We also found that AA could reduce the number of cardiomyocytes through the reduced capacity of cardiomyocyte proliferation rather than cell apoptosis. The cardiac looping and ballooning appeared abnormal though cardiac chamber-specific identity in the differentiated myocardium was maintained well after AA treatment through MF20/S46 immunofluorescence assay. Furthermore, treatment with AA disturbed the differentiation of atrioventricular canal, which was demonstrated by the disordered expressions of the atrioventricular boundary markers bmp4, tbx2b and notch1b and further confirmed by the ectopic expressions of the cardiac valve precursor markers has2, klf2a and nfatc1 through whole-mount in situ hybridization. Thus, our studies provide the evidence of cardiac developmental toxicity of AA in the cardiovascular system, and also raised health concern about the harm of trans-placental exposure to high level of AA for foetuses and the risk of high exposure to AA for the pregnant women.
Collapse
Affiliation(s)
- Mengmeng Huang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jun Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zhidan Xia
- Department of Nutrition and Food Hygiene, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
16
|
Lv Z, Fan H, Zhang B, Ning C, Xing K, Guo Y. Dietary genistein supplementation in laying broiler breeder hens alters the development and metabolism of offspring embryos as revealed by hepatic transcriptome analysis. FASEB J 2018. [DOI: 10.1096/fj.201701457r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zengpeng Lv
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Hao Fan
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Beibei Zhang
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Chao Ning
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Kun Xing
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yuming Guo
- State Key Laboratory of Animal NutritionCollege of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
17
|
Early life exposure to ethinylestradiol enhances subsequent responses to environmental estrogens measured in a novel transgenic zebrafish. Sci Rep 2018; 8:2699. [PMID: 29426849 PMCID: PMC5807302 DOI: 10.1038/s41598-018-20922-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/04/2018] [Indexed: 11/11/2022] Open
Abstract
Estrogen plays fundamental roles in a range of developmental processes and exposure to estrogen mimicking chemicals has been associated with various adverse health effects in both wildlife and human populations. Estrogenic chemicals are found commonly as mixtures in the environment and can have additive effects, however risk analysis is typically conducted for single-chemicals with little, or no, consideration given for an animal’s exposure history. Here we developed a transgenic zebrafish with a photoconvertable fluorophore (Kaede, green to red on UV light exposure) in a skin pigment-free mutant element (ERE)-Kaede-Casper model and applied it to quantify tissue-specific fluorescence biosensor responses for combinations of estrogen exposures during early life using fluorescence microscopy and image analysis. We identify windows of tissue-specific sensitivity to ethinylestradiol (EE2) for exposure during early-life (0–5 dpf) and illustrate that exposure to estrogen (EE2) during 0–48 hpf enhances responsiveness (sensitivity) to different environmental estrogens (EE2, genistein and bisphenol A) for subsequent exposures during development. Our findings illustrate the importance of an organism’s stage of development and estrogen exposure history for assessments on, and possible health risks associated with, estrogen exposure.
Collapse
|
18
|
Sarasquete C, Úbeda-Manzanaro M, Ortiz-Delgado JB. Effects of the isoflavone genistein in early life stages of the Senegalese sole, Solea senegalensis: role of the Survivin and proliferation versus apoptosis pathways. BMC Vet Res 2018; 14:16. [PMID: 29343251 PMCID: PMC5772717 DOI: 10.1186/s12917-018-1333-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/03/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Phytochemical flavonoids are widely distributed in the environment and are derived from many anthropogenic activities. The isoflavone genistein is a naturally occurring compound found in soya products that are habitual constituents of the aquafeeds. This isoflavone possesses oestrogenic biological activity and also apoptotic properties. The present study has been performed to determine the effects of the genistein in the early life stages of the flatfish Senegalese sole during the first month of larval life, and it is focused especially at the metamorphosis, analysing the expression transcript levels and the immunohistochemical protein patterns implicated in the cell proliferation and apoptosis pathways (proliferation cellular/PCNA, anti-apoptosis Survivin/BIRC-5, death receptors/Fas, and Caspases). RESULTS The isoflavone genistein induced some temporal disrupting effects in several pro-apoptotic signalling pathways (Fas, CASP-6) at both genistein doses (3 mg/L and 10 mg/L), with increased Fas transcripts and also decreasing CASP-6 mRNA expression levels during metamorphic and post-metamorphic stages of the Senegalese sole. On the other hand, the anti-apoptotic BIRC-5 expression levels were weakly down-regulated with both the highest and lowest doses, but all of these imbalances were stabilised to the baseline levels. In early life stages of the controls, the constitutive basal transcript levels were temporarily and differentially expressed, reaching the highest levels at the pre-metamorphosis phase, as especially in endotrophic larvae (i.e. BIRC-5 mRNA), as well as in the metamorphic (i.e. CASP-6 mRNA) and post-metamorphic stages (i.e. Fas mRNA). In general, through development, continuous and progressive increases in the protein patterns of cell proliferation-PCNA (e.g. mitotic nuclei), anti-apoptotic Survivin (e.g. haematopoietic system, brain, digestive system, gills) and CASP-2 and -6 (e.g. brain, gills, kidney, digestive system, vascular systems, among others) have been immunohistochemically detected. Besides, both the controls and genistein exposed larvae displayed parallel immunostaining protein patterns in the different organ-systems and tissues. CONCLUSIONS The transcriptional imbalances observed in the studied genes (BIRC-5, CASP-6, Fas) were only temporarily induced, and apparently no changes in the immunohistochemical protein patterns were detected. Thus, the isoflavone genistein caused not harmful effects in the development and metamorphosis of the Senegalese sole exposed to chronic environmentally relevant concentrations (3 and 10 mg/L).
Collapse
Affiliation(s)
- Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía-ICMAN.CSIC-Campus Universitario Río San Pedro, Puerto Real, 11510 Cádiz, Spain
| | - María Úbeda-Manzanaro
- Instituto de Ciencias Marinas de Andalucía-ICMAN.CSIC-Campus Universitario Río San Pedro, Puerto Real, 11510 Cádiz, Spain
| | - Juan B. Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN.CSIC-Campus Universitario Río San Pedro, Puerto Real, 11510 Cádiz, Spain
| |
Collapse
|
19
|
Santos D, Vieira R, Luzio A, Félix L. Zebrafish Early Life Stages for Toxicological Screening: Insights From Molecular and Biochemical Markers. ADVANCES IN MOLECULAR TOXICOLOGY 2018. [DOI: 10.1016/b978-0-444-64199-1.00007-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Sarasquete C, Úbeda-Manzanaro M, Ortiz-Delgado JB. Effects of the soya isoflavone genistein in early life stages of the Senegalese sole, Solea senegalensis: Thyroid, estrogenic and metabolic biomarkers. Gen Comp Endocrinol 2017; 250:136-151. [PMID: 28634083 DOI: 10.1016/j.ygcen.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/16/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022]
Abstract
This study examines the effects induced by environmentally relevant concentrations of the isoflavone genistein (3mg/L and 10mg/L) during early life stages of the Senegalese sole. Throughout the hypothalamus-pituitary-thyroid (HPT) axis, several neurohormonal regulatory thyroid signalling patterns (thyroglobulin/Tg, thyroid peroxidase/TPO, transthyretin/TTR, thyroid receptors/TRβ, and iodothrynonine deiodinases, Dio2 and Dio3) were analysed. Furthermore, the expression patterns of estrogen receptor ERβ and haemoprotein Cyp1a were also evaluated. In the control larvae, progressive increases of constitutive hormonal signalling pathways have been evidenced from the pre-metamorphosis phase onwards, reaching the highest expression basal levels at the metamorphosis (Tg, TPO, Dio2) and/or during post-metamorphosis (TTR, TRβ, ERβ). When the early larvae were exposed to both genistein concentrations (3mg/L and 10mg/L), a statistically significant down-regulation of TPO, TTR and Tg mRNA levels was clearly detected at the metamorphic stages. In addition, the Dio2 and Dio3 transcript expression levels were also down and up-regulated when exposed to both genistein concentrations. In the larvae exposed to genistein, no statistically significant responses were recorded for the TRβ expression patterns. Nevertheless, the ERβ and Cyp1a transcript levels were up-regulated at the middle metamorphic stage (S2, at 16 dph) in the larvae exposed to high genistein concentrations and, only the ERβ was down-regulated (S1, at 12dph) at the lower doses. Finally, all these pointed out imbalances were only temporarily disrupted by exposure to genistein, since most of the modulated transcriptional signals (i.e. up or down-regulation) were quickly restored to the baseline levels. Additionally, the control and genistein-exposed Senegalese sole specimens showed characteristic ontogenetic patterns and completely suitable for an optimal development, metamorphosis, and growth.
Collapse
Affiliation(s)
- Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Maria Úbeda-Manzanaro
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Juan Bosco Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
21
|
Pinto PIS, Estêvão MD, Santos S, Andrade A, Power DM. In vitro screening for estrogenic endocrine disrupting compounds using Mozambique tilapia and sea bass scales. Comp Biochem Physiol C Toxicol Pharmacol 2017; 199:106-113. [PMID: 28602910 DOI: 10.1016/j.cbpc.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/19/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023]
Abstract
A wide range of estrogenic endocrine disruptors (EDCs) are accumulating in the environment and may disrupt the physiology of aquatic organisms. The effects of EDCs on fish have mainly been assessed using reproductive endpoints and in vivo animal experiments. We used a simple non-invasive assay to evaluate the impact of estrogens and EDCs on sea bass (Dicentrarchus labrax) and tilapia (Oreochromis mossambicus) scales. These were exposed to estradiol (E2), two phytoestrogens and six anthropogenic estrogenic/anti-estrogenic EDCs and activities of enzymes related to mineralized tissue turnover (TRAP, tartrate-resistant acid phosphatase and ALP, alkaline phosphatase) were measured. Semi-quantitative RT-PCR detected the expression of both membrane and nuclear estrogen receptors in the scales of both species, confirming scales as a target for E2 and EDCs through different mechanisms. Changes in TRAP or ALP activities after 30minute and 24h exposure were detected in sea bass and tilapia scales treated with E2 and three EDCs, although compound-, time- and dose-specific responses were observed for the two species. These results support again that the mineralized tissue turnover of fish is regulated by estrogens and reveals that the scales are a mineralized estrogen-responsive tissue that may be affected by some EDCs. The significance of these effects for whole animal physiology needs to be further explored. The in vitro fish scale bioassay is a promising non-invasive screening tool for E2 and EDCs effects, although the low sensitivity of TRAP/ALP quantification limits their utility and indicates that alternative endpoints are required.
Collapse
Affiliation(s)
- Patrícia I S Pinto
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - M Dulce Estêvão
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Escola Superior de Saúde, Universidade do Algarve, Av. Dr. Adelino da Palma Carlos, 8000-510 Faro, Portugal
| | - Soraia Santos
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - André Andrade
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
22
|
Abstract
Nuclear receptors (NRs) form a superfamily of transcription factors that can be activated by ligands and are involved in a wide range of physiological processes. NRs are well conserved between vertebrate species. The zebrafish, an increasingly popular animal model system, contains a total of 73 NR genes, and orthologues of almost all human NRs are present. In this review article, an overview is presented of NR research in which the zebrafish has been used as a model. Research is described on the three most studied zebrafish NRs: the estrogen receptors (ERs), retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). The studies on these receptors illustrate the versatility of the zebrafish as a model for ecotoxicological, developmental and biomedical research. Although the use of the zebrafish in NR research is still relatively limited, it is expected that in the next decade the full potential of this animal model will be exploited.
Collapse
Affiliation(s)
- Marcel J M Schaaf
- Institute of Biology (IBL)Leiden University, Leiden, The Netherlands
| |
Collapse
|
23
|
Patisaul HB. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proc Nutr Soc 2017; 76:130-144. [PMID: 27389644 PMCID: PMC5646220 DOI: 10.1017/s0029665116000677] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A wide range of health benefits have been ascribed to soya intake including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms. Because it is a hormonally active diet, however, soya can also be endocrine disrupting, suggesting that intake has the potential to cause adverse health effects in certain circumstances, particularly when exposure occurs during development. Consequently, the question of whether or not soya phyto-oestrogens are beneficial or harmful to human health is neither straightforward nor universally applicable to all groups. Possible benefits and risks depend on age, health status, and even the presence or absence of specific gut microflora. As global consumption increases, greater awareness and consideration of the endocrine-disrupting properties of soya by nutrition specialists and other health practitioners is needed. Consumption by infants and small children is of particular concern because their hormone-sensitive organs, including the brain and reproductive system, are still undergoing sexual differentiation and maturation. Thus, their susceptibility to the endocrine-disrupting activities of soya phyto-oestrogens may be especially high. As oestrogen receptor partial agonists with molecular and cellular properties similar to anthropogenic endocrine disruptors such as bisphenol A, the soya phyto-oestrogens provide an interesting model for how attitudes about what is 'synthetic' v. what is 'natural,' shapes understanding and perception of what it means for a compound to be endocrine disrupting and/or potentially harmful. This review describes the endocrine-disrupting properties of soya phyto-oestrogens with a focus on neuroendocrine development and behaviour.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences,Center for Human Health and the Environment,NC State University,Raleigh,NC 27695,USA
| |
Collapse
|
24
|
Draut H, Rehm T, Begemann G, Schobert R. Antiangiogenic and Toxic Effects of Genistein, Usnic Acid, and Their Copper Complexes in Zebrafish Embryos at Different Developmental Stages. Chem Biodivers 2017; 14. [PMID: 27936296 DOI: 10.1002/cbdv.201600302] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/18/2016] [Indexed: 02/01/2023]
Abstract
Angiogenesis plays a major role in the normal embryonic development and in diseases such as cancer. Drugs that control angiogenesis are an alternative way to tackle this disease. The polyphenols usnic acid (3), genistein (5), and daidzein (6) were tested for antiangiogenic and unwanted effects in zebrafish embryos whose blood vessel system resembles that of mammals. The established tyrosine kinase inhibitors axitinib (1) and tyrphostin AG490 (2) were included for comparison. All compounds except 6 caused distinct antiangiogenic effects such as a concentration-dependent reduction of intersegmental vessels, dorsal longitudinal anastomotic vessels, subintestinal veins and secondary sprouts. As side effects, pericardial oedema and the impairment of blood flow were observed. Usnic acid (3), genistein (5) and Cu(II)-genisteinate (7) gave rise to a curvature of the spine. Compounds 5 and 7 also induced cell death in the head of the embryos at higher doses. All effects were more pronounced when the compounds had been applied at an early stage (24 hpf) rather than at 48 hpf. The copper complexes 4 and 7 showed a stronger antiangiogenic effect than the free ligands 3 and 5. The genistein complex 7 was antiangiogenic at doses so low that side effects were tolerable, and thus it may be a potential anticancer drug candidate.
Collapse
Affiliation(s)
- Heidrun Draut
- Organic Chemistry, University Bayreuth, Universitätsstrasse 30, NW 1, 95447, Bayreuth, Germany.,Developmental Biology, University Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Tobias Rehm
- Organic Chemistry, University Bayreuth, Universitätsstrasse 30, NW 1, 95447, Bayreuth, Germany
| | - Gerrit Begemann
- Developmental Biology, University Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry, University Bayreuth, Universitätsstrasse 30, NW 1, 95447, Bayreuth, Germany
| |
Collapse
|
25
|
Bugel SM, Bonventre JA, Tanguay RL. Comparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System. Toxicol Sci 2016; 154:55-68. [PMID: 27492224 DOI: 10.1093/toxsci/kfw139] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flavonoids are a large, structurally diverse class of bioactive naturally occurring chemicals commonly detected in breast milk, soy based infant formulas, amniotic fluid, and fetal cord blood. The potential for pervasive early life stage exposures raises concerns for perturbation of embryogenesis, though developmental toxicity and bioactivity information is limited for many flavonoids. Therefore, we evaluated a suite of 24 flavonoid and flavonoid-like chemicals using a zebrafish embryo-larval toxicity bioassay-an alternative model for investigating developmental toxicity of environmentally relevant chemicals. Embryos were exposed to 1-50 µM of each chemical from 6 to 120 h postfertilization (hpf), and assessed for 26 adverse developmental endpoints at 24, 72, and 120 hpf. Behavioral changes were evaluated in morphologically normal animals at 24 and 72 hpf, at 120 hpf using a larval photomotor response (LPR) assay. Gene expression was comparatively evaluated for all compounds for effects on biomarker transcripts indicative of AHR (cyp1a) and ER (cyp19a1b, esr1, lhb, vtg) pathway bioactivity. Overall, 15 of 24 flavonoids elicited adverse effects on one or more of the developmental or behavioral endpoints. Hierarchical clustering and principle component analyses compared toxicity profiles and identified 3 distinct groups of bioactive flavonoids. Despite robust induction of multiple estrogen-responsive biomarkers, co-exposure with ER and GPER antagonists did not ameliorate toxicity, suggesting ER-independence and alternative modes of action. Taken together, these studies demonstrate that development is sensitive to perturbation by bioactive flavonoids in zebrafish that are not related to traditional estrogen receptor mode of action pathways. This integrative zebrafish platform provides a useful framework for evaluating flavonoid developmental toxicity and hazard prioritization.
Collapse
Affiliation(s)
- Sean M Bugel
- *Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, and the Sinnhuber Aquatic Research Laboratory
| | - Josephine A Bonventre
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Robert L Tanguay
- *Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, and the Sinnhuber Aquatic Research Laboratory
| |
Collapse
|
26
|
Fraher D, Hodge JM, Collier FM, McMillan JS, Kennedy RL, Ellis M, Nicholson GC, Walder K, Dodd S, Berk M, Pasco JA, Williams LJ, Gibert Y. Citalopram and sertraline exposure compromises embryonic bone development. Mol Psychiatry 2016; 21:656-64. [PMID: 26347317 DOI: 10.1038/mp.2015.135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 05/15/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed treatments for depression and, as a class of drugs, are among the most used medications in the world. Concern regarding possible effects of SSRI treatment on fetal development has arisen recently as studies have suggested a link between maternal SSRI use and an increase in birth defects such as persistent pulmonary hypertension, seizures and craniosynostosis. Furthermore, SSRI exposure in adults is associated with decreased bone mineral density and increased fracture risk, and serotonin receptors are expressed in human osteoblasts and osteoclasts. To determine possible effects of SSRI exposure on developing bone, we treated both zebrafish, during embryonic development, and human mesenchymal stem cells (MSCs), during differentiation into osteoblasts, with the two most prescribed SSRIs, citalopram and sertraline. SSRI treatment in zebrafish decreased bone mineralization, visualized by alizarin red staining and decreased the expression of mature osteoblast-specific markers during embryogenesis. Furthermore, we showed that this inhibition was not associated with increased apoptosis. In differentiating human MSCs, we observed a decrease in osteoblast activity that was associated with a decrease in expression of the osteoblast-specific genes Runx2, Sparc and Spp1, measured with quantitative real-time PCR (qRT-PCR). Similar to the developing zebrafish, no increase in expression of the apoptotic marker Caspase 3 was observed. Therefore, we propose that SSRIs inhibit bone development by affecting osteoblast maturation during embryonic development and MSC differentiation. These results highlight the need to further investigate the risks of SSRI use during pregnancy in exposing unborn babies to potential skeletal abnormalities.
Collapse
Affiliation(s)
- D Fraher
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, Australia.,IMPACT and MMR Strategic Research Centres, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - J M Hodge
- IMPACT and MMR Strategic Research Centres, School of Medicine, Deakin University, Geelong, VIC, Australia.,Barwon Biomedical Research, University Hospital, Geelong, VIC, Australia
| | - F M Collier
- IMPACT and MMR Strategic Research Centres, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - J S McMillan
- Barwon Biomedical Research, University Hospital, Geelong, VIC, Australia
| | - R L Kennedy
- Barwon Biomedical Research, University Hospital, Geelong, VIC, Australia
| | - M Ellis
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, Australia.,IMPACT and MMR Strategic Research Centres, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - G C Nicholson
- Barwon Biomedical Research, University Hospital, Geelong, VIC, Australia
| | - K Walder
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, Australia.,IMPACT and MMR Strategic Research Centres, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - S Dodd
- IMPACT and MMR Strategic Research Centres, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - M Berk
- IMPACT and MMR Strategic Research Centres, School of Medicine, Deakin University, Geelong, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health and the Centre for Youth Mental Health, Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - J A Pasco
- IMPACT and MMR Strategic Research Centres, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Medicine, Northwest Academic Centre, The University of Melbourne, St Albans, VIC, Australia
| | - L J Williams
- IMPACT and MMR Strategic Research Centres, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Y Gibert
- Metabolic Genetic Diseases Laboratory, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, Australia.,IMPACT and MMR Strategic Research Centres, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
27
|
Grimaldi M, Boulahtouf A, Delfosse V, Thouennon E, Bourguet W, Balaguer P. Reporter cell lines to evaluate the selectivity of chemicals for human and zebrafish estrogen and peroxysome proliferator activated γ receptors. Front Neurosci 2015; 9:212. [PMID: 26106289 PMCID: PMC4460427 DOI: 10.3389/fnins.2015.00212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/26/2015] [Indexed: 11/13/2022] Open
Abstract
Zebrafish is increasingly used as an animal model to study the effects of environmental nuclear receptors (NRs) ligands. As most of these compounds have only been tested on human NRs, it is necessary to measure their effects on zebrafish NRs. Estrogen receptors (ER) α and β and peroxysome proliferator activated receptor (PPAR) γ are main targets of environmental disrupting compounds (EDCs). In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα, zfERβ1, and zfERβ2. Only one isoform of PPARγ is expressed in both humans and zebrafish. In this review, we described reporter cell lines that we established to study the interaction of EDCs with human and zebrafish ERs and PPARγ. Using these cell lines, we observed that zfERs are thermo-sensitive while zfPPARγ is not. We also showed significant differences in the ability of environmental and synthetic ligands to modulate activation of zfERs and zfPPARγ in comparison to hERs and hPPARγ. Some environmental estrogens (bisphenol A, mycoestrogens) which are hER panagonists displayed greater potency for zfERα as compared to zfERβs. hERβ selective agonists (8βVE2, DPN, phytoestrogens) also displayed zfERα selectivity. Among hERα selective synthetic agonists, 16α-LE2 was the most zfERα selective compound. Almost all zfPPARγ environmental ligands (halogenated bisphenol A derivatives, phthalates, perfluorinated compounds) displayed similar affinity for human and zebrafish PPARγ while pharmaceutical hPPARγ agonists like thiazolidones are not recognized by zfPPARγ. Altogether, our studies show that all hERs and hPPARγ ligands do not control in a similar manner the transcriptional activity of zfERs and zfPPARγ and point out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology.
Collapse
Affiliation(s)
- Marina Grimaldi
- Institut de Recherche en Cancérologie de MontpellierMontpellier, France
- Institut National de la Santé et de la Recherche Médicale U1194Montpellier, France
- Université MontpellierMontpellier, France
- Institut Reìgional du Cancer de MontpellierMontpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de MontpellierMontpellier, France
- Institut National de la Santé et de la Recherche Médicale U1194Montpellier, France
- Université MontpellierMontpellier, France
- Institut Reìgional du Cancer de MontpellierMontpellier, France
| | - Vanessa Delfosse
- Institut National de la Santé et de la Recherche Médicale U1054Montpellier, France
- Centre National de la Recherche Scientifique UMR5048, Centre de Biochimie Structurale, Université MontpellierMontpellier, France
| | - Erwan Thouennon
- Institut de Recherche en Cancérologie de MontpellierMontpellier, France
- Institut National de la Santé et de la Recherche Médicale U1194Montpellier, France
- Université MontpellierMontpellier, France
- Institut Reìgional du Cancer de MontpellierMontpellier, France
| | - William Bourguet
- Institut National de la Santé et de la Recherche Médicale U1054Montpellier, France
- Centre National de la Recherche Scientifique UMR5048, Centre de Biochimie Structurale, Université MontpellierMontpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de MontpellierMontpellier, France
- Institut National de la Santé et de la Recherche Médicale U1194Montpellier, France
- Université MontpellierMontpellier, France
- Institut Reìgional du Cancer de MontpellierMontpellier, France
| |
Collapse
|
28
|
Schiller V, Zhang X, Hecker M, Schäfers C, Fischer R, Fenske M. Species-specific considerations in using the fish embryo test as an alternative to identify endocrine disruption. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:62-72. [PMID: 24992288 DOI: 10.1016/j.aquatox.2014.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/03/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
A number of regulations have been implemented that aim to control the release of potentially adverse endocrine disrupters into the aquatic environment based on evidence from laboratory studies. Currently, such studies rely on testing approaches with adult fish because reliable alternatives have not been validated so far. Fish embryo tests have been proposed as such an alternative, and here we compared two species (medaka and zebrafish) to determine their suitability for the assessment of substances with estrogenic and anti-androgenic activity. Changes in gene expression (in here the phrase gene expression is used synonymously to gene transcription, although it is acknowledged that gene expression is additionally regulated, e.g., by translation and protein stability) patterns between the two species were compared in short term embryo exposure tests (medaka: 7-day post fertilization [dpf]; zebrafish: 48 and 96h post fertilization [hpf]) by using relative quantitative real-time RT-PCR. The tested genes were related to the hypothalamic-gonadal-axis and early steroidogenesis. Test chemicals included 17α-ethinylestradiol and flutamide as estrogenic and anti-androgenic reference compounds, respectively, as well as five additional substances with endocrine activities, namely bisphenol A, genistein, prochloraz, linuron and propanil. Estrogenic responses were comparable in 7-dpf medaka and 48/96-hpf zebrafish embryos and included transcriptional upregulation of aromatase b, vitellogenin 1 as well as steroidogenic genes, suggesting that both species reliably detected exposure to estrogenic compounds. However, anti-androgenic responses differed between the two species, with each species providing specific information concerning the mechanism of anti-androgenic disruption in fish embryos. Although small but significant changes in the expression of selected genes was observed in 48-hpf zebrafish embryos, exposure prolonged to 96hpf was necessary to obtain a response indicative of anti-androgenic activity. In contrast, for medaka clear anti-androgenic response, e.g. transcriptional downregulation of 11β-hydroxylase, 3β-hydroxysteroid-dehydrogenase, gonadotropin-releasing hormone receptor 2, was already observed at the pre-hatch stage. Together, this data suggests that medaka and zebrafish embryos would provide a beneficial alternative testing platform for endocrine disruption that involves additive information on interspecies and exposure time variability when using both species.
Collapse
Affiliation(s)
- Viktoria Schiller
- Fraunhofer Institute for Molecular Biology and Applied Ecology, 52074 Aachen, Germany.
| | - Xiaowei Zhang
- Toxicology Centre University of Saskatchewan, 44 Campus Drive Saskatoon, Saskatchewan, Canada
| | - Markus Hecker
- Toxicology Centre University of Saskatchewan, 44 Campus Drive Saskatoon, Saskatchewan, Canada
| | - Christoph Schäfers
- Fraunhofer Institute for Molecular Biology and Applied Ecology, 57392 Schmallenberg, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, 52074 Aachen, Germany
| | - Martina Fenske
- Fraunhofer Institute for Molecular Biology and Applied Ecology, 52074 Aachen, Germany
| |
Collapse
|
29
|
Santos D, Matos M, Coimbra AM. Developmental toxicity of endocrine disruptors in early life stages of zebrafish, a genetic and embryogenesis study. Neurotoxicol Teratol 2014; 46:18-25. [PMID: 25172296 DOI: 10.1016/j.ntt.2014.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/01/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
Endocrine disrupting compounds (EDCs) are capable of interfering with the endocrine system and are increasingly widespread in the aquatic environments. In the present study, zebrafish (Danio rerio) embryos and larvae were used to assess how EDCs may interfere with embryogenesis. Therefore, zebrafish embryos were exposed to 17α-ethinylestradiol (EE2: 0.4, 2, 4 and 20 ng/L), genistein (Gen: 2, 20, 200 and 2000 ng/L) and fadrozole (Fad: 2, 10, 50 and 250 μg/L), between 2 and 144 h post-fertilization (hpf). Somite development, heartbeat, malformations, mortality and hatching rates were evaluated. In parallel, the expression patterns of hormone receptors (esr1, esr2a, esr2b and ar) and apoptotic pathways related genes (p53 and c-jun) were determined using quantitative real-time PCR. Results showed that EE2, Gen and Fad caused a higher mortality and also malformations in larvae compared with control. A significant toxic effect was observed in the heartbeat rate, at 144 hpf, in larvae exposed to EE2 and Fad. QPCR revealed alterations in the expression levels of all the evaluated genes, at different time points. esr1 and c-jun genes were upregulated by EE2 and Gen exposure while the expression of esr2a, esr2b and ar genes was downregulated. Fad exposure decreased esr1, p53 and c-jun expression levels. This study shows a toxic effect of EE2, Gen and Fad to vertebrate embryogenesis and a relation between hormones action and apoptosis pathways.
Collapse
Affiliation(s)
- Dércia Santos
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal.
| | - Manuela Matos
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal; Institute of Biotechnology and Bioengineering/Centre of Genomics and Biotechnology (IBB/CGB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal.
| | - Ana M Coimbra
- Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados 5000-801 Vila Real, Portugal.
| |
Collapse
|
30
|
Pinto C, Grimaldi M, Boulahtouf A, Pakdel F, Brion F, Aït-Aïssa S, Cavaillès V, Bourguet W, Gustafsson JA, Bondesson M, Balaguer P. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors. Toxicol Appl Pharmacol 2014; 280:60-9. [PMID: 25106122 DOI: 10.1016/j.taap.2014.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/17/2014] [Accepted: 07/26/2014] [Indexed: 12/28/2022]
Abstract
Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28°C as compared to 37°C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology.
Collapse
Affiliation(s)
- Caroline Pinto
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5056, USA
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé de la Recherche Médicale U896, Institut Régional de Cancérologie de Montpellier, Université Montpellier 1, 34298 Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé de la Recherche Médicale U896, Institut Régional de Cancérologie de Montpellier, Université Montpellier 1, 34298 Montpellier, France
| | - Farzad Pakdel
- Institut de Recherche sur la Santé, Environnement et Travail (IRSET), INSERM U1085, Université de Rennes 1, Rennes, France
| | - François Brion
- Unité Écotoxicologie In Vitro et In Vivo, INERIS, Parc ALATA, 60550 Verneuil-en-Halatte, France
| | - Sélim Aït-Aïssa
- Unité Écotoxicologie In Vitro et In Vivo, INERIS, Parc ALATA, 60550 Verneuil-en-Halatte, France
| | - Vincent Cavaillès
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé de la Recherche Médicale U896, Institut Régional de Cancérologie de Montpellier, Université Montpellier 1, 34298 Montpellier, France
| | - William Bourguet
- U1054, Centre de Biochimie Structurale, CNRS UMR5048, Université Montpellier 1 et 2, 34290 Montpellier, France
| | - Jan-Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5056, USA; Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Maria Bondesson
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5056, USA
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé de la Recherche Médicale U896, Institut Régional de Cancérologie de Montpellier, Université Montpellier 1, 34298 Montpellier, France.
| |
Collapse
|
31
|
Delov V, Muth-Köhne E, Schäfers C, Fenske M. Transgenic fluorescent zebrafish Tg(fli1:EGFP)y¹ for the identification of vasotoxicity within the zFET. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:189-200. [PMID: 24685623 DOI: 10.1016/j.aquatox.2014.03.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/12/2014] [Accepted: 03/09/2014] [Indexed: 06/03/2023]
Abstract
The fish embryo toxicity test (FET) is currently one of the most advocated animal alternative tests in ecotoxicology. To date, the application of the FET with zebrafish (zFET) has focused on acute toxicity assessment, where only lethal morphological effects are accounted for. An application of the zFET beyond acute toxicity, however, necessitates the establishment of more refined and quantifiable toxicological endpoints. A valuable tool in this context is the use of gene expression-dependent fluorescent markers that can even be measured in vivo. We investigated the application of embryos of Tg(fli1:EGFP)(y1) for the identification of vasotoxic substances within the zFET. Tg(fli1:EGFP)(y1) fish express enhanced GFP in the entire vasculature under the control of the fli1 promoter, and thus enable the visualization of vascular defects in live zebrafish embryos. We assessed the fli1 driven EGFP-expression in the intersegmental blood vessels (ISVs) qualitatively and quantitatively, and found an exposure concentration related increase in vascular damage for chemicals like triclosan, cartap and genistein. The fluorescence endpoint ISV-length allowed an earlier and more sensitive detection of vasotoxins than the bright field assessment method. In combination with the standard bright field morphological effect assessment, an increase in significance and value of the zFET for a mechanism-specific toxicity evaluation was achieved. This study highlights the benefits of using transgenic zebrafish as convenient tools for identifying toxicity in vivo and to increase sensitivity and specificity of the zFET.
Collapse
Affiliation(s)
- Vera Delov
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstr. 6, 52074 Aachen, Germany; Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Elke Muth-Köhne
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Christoph Schäfers
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Martina Fenske
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Forckenbeckstr. 6, 52074 Aachen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| |
Collapse
|
32
|
Phytoestrogens β -sitosterol and genistein have limited effects on reproductive endpoints in a female fish, Betta splendens. BIOMED RESEARCH INTERNATIONAL 2014; 2014:681396. [PMID: 24707495 PMCID: PMC3953504 DOI: 10.1155/2014/681396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/08/2014] [Accepted: 01/12/2014] [Indexed: 01/25/2023]
Abstract
Phytoestrogens are produced by plants and may cause endocrine disruption in vertebrates. The present study hypothesizes that phytoestrogen exposure of female Siamese fighting fish (Betta splendens) may disrupt endogenous steroid levels, change agonistic behavior expression, and potentially also disrupt oocyte development. However, only the pharmacologic dose of β-sitosterol had a significant effect on opercular flaring behavior, while we did not find significant effects of β-sitosterol or genistein on steroids or gonads. These findings are in direct contrast with previous studies on the effects of phytoestrogens in female fish. Results of the current study support previous work showing that the effects of phytoestrogen exposure may be less acute in mature female B. splendens than in other fish.
Collapse
|
33
|
Schiller V, Wichmann A, Kriehuber R, Schäfers C, Fischer R, Fenske M. Transcriptome alterations in zebrafish embryos after exposure to environmental estrogens and anti-androgens can reveal endocrine disruption. Reprod Toxicol 2013; 42:210-23. [PMID: 24051129 DOI: 10.1016/j.reprotox.2013.09.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 08/13/2013] [Accepted: 09/07/2013] [Indexed: 12/16/2022]
Abstract
Exposure to environmental chemicals known as endocrine disruptors (EDs) is in many cases associated with an unpredictable hazard for wildlife and human health. The identification of endocrine disruptive properties of chemicals certain to enter the aquatic environment relies on toxicity tests with fish, assessing adverse effects on reproduction and sexual development. The demand for quick, reliable ED assays favored the use of fish embryos as alternative test organisms. We investigated the application of a transcriptomics-based assay for estrogenic and anti-androgenic chemicals with zebrafish embryos. Two reference compounds, 17α-ethinylestradiol and flutamide, were tested to evaluate the effects on development and the transcriptome after 48h-exposures. Comparison of the transcriptome response with other estrogenic and anti-androgenic compounds (genistein, bisphenol A, methylparaben, linuron, prochloraz, propanil) showed commonalities and differences in regulated pathways, enabling us to classify the estrogenic and anti-androgenic potencies. This demonstrates that different mechanism of ED can be assessed already in fish embryos.
Collapse
Affiliation(s)
- Viktoria Schiller
- Fraunhofer Institute for Molecular Biology and Applied Ecology, 52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Kurogi K, Liu TA, Sakakibara Y, Suiko M, Liu MC. The use of zebrafish as a model system for investigating the role of the SULTs in the metabolism of endogenous compounds and xenobiotics. Drug Metab Rev 2013; 45:431-40. [DOI: 10.3109/03602532.2013.835629] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Luzio A, Monteiro SM, Fontaínhas-Fernandes AA, Pinto-Carnide O, Matos M, Coimbra AM. Copper induced upregulation of apoptosis related genes in zebrafish (Danio rerio) gill. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:183-189. [PMID: 23314331 DOI: 10.1016/j.aquatox.2012.12.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/11/2012] [Accepted: 12/19/2012] [Indexed: 06/01/2023]
Abstract
Copper (Cu) is an essential micronutrient that, when present in high concentrations, becomes toxic to aquatic organisms. It is known that Cu toxicity may induce apoptotic cell death. However, the precise mechanism and the pathways that are activated, in fish, are still unclear. Thus, this study aimed to assess which apoptotic pathways are triggered by Cu, in zebrafish (Danio rerio) gill, the main target of waterborne pollutants. Fish where exposed to 12.5 and 100 μg/L of Cu during 6, 12, 24 and 48 h. Fish gills were collected to TUNEL assay and mRNA expression analysis of selected genes by real time PCR. An approach to different apoptosis pathways was done selecting p53, caspase-8, caspase-9 and apoptosis inducing factor (AIF) genes. The higher incidence of TUNEL-positive cells, in gill epithelia of the exposed fish, proved that Cu induced apoptosis. The results suggest that different apoptosis pathways are triggered by Cu at different time points of the exposure period, as the increase in transcripts was sequential, instead of simultaneous. Apoptosis seems to be initiated via intrinsic pathway (caspase-9), through p53 activation; then followed by the extrinsic pathway (caspase-8) and finally by the caspase-independent pathway (AIF). A possible model for Cu-induce apoptosis pathways is proposed.
Collapse
Affiliation(s)
- Ana Luzio
- Centro de Investigação de Tecnologias Agro-Ambientais e Biológicas (CITAB), Departamento de Biologia e Ambiente (DeBA), Escola de Ciências da Vida e Ambiente (ECVA), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, Portugal.
| | | | | | | | | | | |
Collapse
|
36
|
Schiller V, Wichmann A, Kriehuber R, Muth-Köhne E, Giesy JP, Hecker M, Fenske M. Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption. Comp Biochem Physiol C Toxicol Pharmacol 2013; 157:41-53. [PMID: 23017276 DOI: 10.1016/j.cbpc.2012.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 12/11/2022]
Abstract
Assessment of endocrine disruption currently relies on testing strategies involving adult vertebrates. In order to minimize the use of animal tests according to the 3Rs principle of replacement, reduction and refinement, we propose a transcriptomics and fish embryo based approach as an alternative to identify and analyze an estrogenic activity of environmental chemicals. For this purpose, the suitability of 48 h and 7 days post-fertilization zebrafish and medaka embryos to test for estrogenic disruption was evaluated. The embryos were exposed to the phytoestrogen genistein and subsequently analyzed by microarrays and quantitative real-time PCR. The functional analysis showed that the genes affected related to multiple metabolic and signaling pathways in the early fish embryo, which reflect the known components of genistein's mode of actions, like apoptosis, estrogenic response, hox gene expression and steroid hormone synthesis. Moreover, the transcriptomic data also suggested a thyroidal mode of action and disruption of the nervous system development. The parallel testing of two fish species provided complementary data on the effects of genistein at gene expression level and facilitated the separation of common from species-dependent effects. Overall, the study demonstrated that combining fish embryo testing with transcriptomics can deliver abundant information about the mechanistic effects of endocrine disrupting chemicals, rendering this strategy a promising alternative approach to test for endocrine disruption in a whole organism in-vitro scale system.
Collapse
Affiliation(s)
- Viktoria Schiller
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Schug T, Abagyan R, Blumberg B, Collins T, Crews D, DeFur P, Dickerson S, Edwards T, Gore A, Guillette L, Hayes T, Heindel J, Moores A, Patisaul H, Tal T, Thayer K, Vandenberg L, Warner J, Watson C, Saal FV, Zoeller R, O’Brien K, Myers J. Designing Endocrine Disruption Out of the Next Generation of Chemicals. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2013; 15:181-198. [PMID: 25110461 PMCID: PMC4125359 DOI: 10.1039/c2gc35055f] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical's potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at "the drawing board." It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a 'proof-of-principle' test, we ran 6 endocrine disrupting chemicals (EDCs) that act via different endocrinological mechanisms through the protocol using published literature. Each was identified as endocrine active by one or more tiers. We believe that this voluntary testing protocol will be a dynamic tool to facilitate efficient and early identification of potentially problematic chemicals, while ultimately reducing the risks to public health.
Collapse
Affiliation(s)
- T.T Schug
- Corresponding authors: T.T. Schug, . K.P. O’Brien, . J.P. Myers,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - K.P. O’Brien
- Corresponding authors: T.T. Schug, . K.P. O’Brien, . J.P. Myers,
| | - J.P. Myers
- Corresponding authors: T.T. Schug, . K.P. O’Brien, . J.P. Myers,
| |
Collapse
|
38
|
Scholz S, Renner P, Belanger SE, Busquet F, Davi R, Demeneix BA, Denny JS, Léonard M, McMaster ME, Villeneuve DL, Embry MR. Alternatives to in vivo tests to detect endocrine disrupting chemicals (EDCs) in fish and amphibians--screening for estrogen, androgen and thyroid hormone disruption. Crit Rev Toxicol 2012. [PMID: 23190036 DOI: 10.3109/10408444.2012.737762] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endocrine disruption is considered a highly relevant hazard for environmental risk assessment of chemicals, plant protection products, biocides and pharmaceuticals. Therefore, screening tests with a focus on interference with estrogen, androgen, and thyroid hormone pathways in fish and amphibians have been developed. However, they use a large number of animals and short-term alternatives to animal tests would be advantageous. Therefore, the status of alternative assays for endocrine disruption in fish and frogs was assessed by a detailed literature analysis. The aim was to (i) determine the strengths and limitations of alternative assays and (ii) present conclusions regarding chemical specificity, sensitivity, and correlation with in vivo data. Data from 1995 to present were collected related to the detection/testing of estrogen-, androgen-, and thyroid-active chemicals in the following test systems: cell lines, primary cells, fish/frog embryos, yeast and cell-free systems. The review shows that the majority of alternative assays measure effects directly mediated by receptor binding or resulting from interference with hormone synthesis. Other mechanisms were rarely analysed. A database was established and used for a quantitative and comparative analysis. For example, a high correlation was observed between cell-free ligand binding and cell-based reporter cell assays, between fish and frog estrogenic data and between fish embryo tests and in vivo reproductive effects. It was concluded that there is a need for a more systematic study of the predictive capacity of alternative tests and ways to reduce inter- and intra-assay variability.
Collapse
Affiliation(s)
- S Scholz
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yamashita S, Tsukamoto S, Kumazoe M, Kim YH, Yamada K, Tachibana H. Isoflavones suppress the expression of the FcεRI high-affinity immunoglobulin E receptor independent of the estrogen receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8379-85. [PMID: 22871233 DOI: 10.1021/jf301759s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Isoflavones found in soybeans and soy products possess clinically relevant properties. However, the anti-allergic effect of isoflavones has been poorly studied. We examined the effects of isoflavones, genistein, daidzein, and equol, on the expression of the high-affinity immunoglobulin E (IgE) receptor, FcεRI, which plays a central role in IgE-mediated allergic response. Flow cytometric analysis showed that all of these isoflavones reduced the cell surface expression of FcεRI on mouse bone-marrow-derived mast cells and human basophilic KU812 cells. All isoflavones decreased the levels of the FcεRIα mRNA in the cells. Genistein reduced the mRNA expression of the β chain, and daidzein and equol downregulated that of the γ chain. The suppressive effects of isoflavones on FcεRI expression were unaffected by ICI 182,780, an estrogen receptor antagonist, suggesting that these effects were independent of estrogen receptors.
Collapse
Affiliation(s)
- Shuya Yamashita
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Ren X, Lu F, Cui Y, Wang X, Bai C, Chen J, Huang C, Yang D. Protective effects of genistein and estradiol on PAHs-induced developmental toxicity in zebrafish embryos. Hum Exp Toxicol 2012; 31:1161-9. [PMID: 22736253 DOI: 10.1177/0960327112450900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The toxicity of exposure to polycyclic aromatic hydrocarbons (PAHs) or phytoestrogen is relatively well characterized. However, the toxicity of combined exposure to PAHs and phytoestrogen is not well investigated. In the present study, benzo(a)pyrene (B(a)P) and benzo(k)fluorathene (B(k)F), genistein, along with 17β-estradiol (E2), were investigated for their single and combined developmental toxicity using zebrafish embryos as model system. We demonstrated that two representative PAHs, both B(a)P (≥1 μM) and B(k)F (≥10 μM), can cause significant malformation and mortality in developing zebrafish embryos. The toxicity effect of B(a)P was in general higher than that of B(k)F. Developmental exposure to high level of genistein (>20 μM) or E2 (>10 μM), also caused significant malformation and mortality in zebrafish larvae at 120 hours post fertilization (hpf). However, different toxic effects were observed for the combined exposure to PAHs and phytoestrogen in zebrafish. Lower doses of genistein (1 and 10 μM) and E2 (0.1 and 1 μM), when used in combination with high concentration of B(a)P (1 μM) or B(k)F (20 μM), can significantly suppress the toxicity effect of B(a)P and B(k)F in developing zebrafish embryos. The beneficial effect of genistein may be due to the inhibition of cytochrome P450 enzymes via directly interacting with aryl-hydrocarbon receptor (AhR) pathway, or disturbing the AhR pathway through interacting with estrogen receptor pathway.
Collapse
Affiliation(s)
- X Ren
- Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP) zebrafish embryos. PLoS One 2012; 7:e36069. [PMID: 22586461 PMCID: PMC3346763 DOI: 10.1371/journal.pone.0036069] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 03/30/2012] [Indexed: 11/19/2022] Open
Abstract
The tg(cyp19a1b-GFP) transgenic zebrafish expresses GFP (green fluorescent protein) under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i) it is only expressed in radial glial progenitors in the brain of fish and (ii) it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture), including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective.
Collapse
|
42
|
Brion F, Le Page Y, Piccini B, Cardoso O, Tong SK, Chung BC, Kah O. Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP) zebrafish embryos. PLoS One 2012. [PMID: 22586461 DOI: 10.1372/journal.pone.0036069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The tg(cyp19a1b-GFP) transgenic zebrafish expresses GFP (green fluorescent protein) under the control of the cyp19a1b gene, encoding brain aromatase. This gene has two major characteristics: (i) it is only expressed in radial glial progenitors in the brain of fish and (ii) it is exquisitely sensitive to estrogens. Based on these properties, we demonstrate that natural or synthetic hormones (alone or in binary mixture), including androgens or progestagens, and industrial chemicals induce a concentration-dependent GFP expression in radial glial progenitors. As GFP expression can be quantified by in vivo imaging, this model presents a very powerful tool to screen and characterize compounds potentially acting as estrogen mimics either directly or after metabolization by the zebrafish embryo. This study also shows that radial glial cells that act as stem cells are direct targets for a large panel of endocrine disruptors, calling for more attention regarding the impact of environmental estrogens and/or certain pharmaceuticals on brain development. Altogether these data identify this in vivo bioassay as an interesting alternative to detect estrogen mimics in hazard and risk assessment perspective.
Collapse
Affiliation(s)
- François Brion
- Unité d'Ecotoxicologie in vitro et in vivo, Direction des Risques Chroniques, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Notch EG, Mayer GD. Efficacy of pharmacological estrogen receptor antagonists in blocking activation of zebrafish estrogen receptors. Gen Comp Endocrinol 2011; 173:183-9. [PMID: 21641908 DOI: 10.1016/j.ygcen.2011.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/27/2011] [Accepted: 05/17/2011] [Indexed: 12/23/2022]
Abstract
A variety of pharmacological agonists, antagonists and selective estrogen receptor modulators (SERM) have been used to better understand the role of specific receptors in various physiological processes. Despite similar structure and function, less is known about the effect of agonists and antagonists on teleost estrogen receptors and the results of these studies have indicated wide variation among species. The goal of this study was to determine the ability of two human SERMs to modulate activation of three zebrafish estrogen receptor isoforms. Full length cDNA of zebrafish estrogen receptor 1 (esr1), estrogen receptor 2a (esr2a) and estrogen receptor 2b (esr2b) were cloned into expression vectors and transfected into cells that do not endogenously express any estrogen receptor along with an estrogen responsive luciferase vector. Cells transfected with any of the zebrafish estrogen receptors individually and then exposed to 17β-estradiol (E₂) or 17α-ethinylestradiol (EE₂) exhibited a dose dependent increase in luciferase activity. None of the pharmacological antagonists, ICI 182, 780, methyl-piperidino-pyrazole (MPP) or pyrazolo [1,5-a] pyrimidine (PHTPP), were able to independently transactivate luciferase expression with any of the zebrafish estrogen receptors. Of the three ER antagonists, only ICI 182, 780 was able to block EE₂ induced luciferase activity, although a 10 to 100-fold excess of ICI 182, 780 was necessary with all receptors. Neither MPP nor PHTPP were able to block EE₂ induced luciferase activity with any isoform of zebrafish estrogen receptor. These results indicate that the difference between human ER and zebrafish ER ligand binding is not conserved enough for the SERMs MPP or PHTPP to elicit similar effects in zebrafish as those manifested in humans.
Collapse
Affiliation(s)
- Emily G Notch
- Dartmouth Medical School, Department of Microbiology and Immunology, Hanover, NH 03755, USA
| | | |
Collapse
|
44
|
Abstract
Estrogens regulate a diverse range of physiological processes and affect multiple tissues. Estrogen receptors (ERs) regulate transcription by binding to DNA at conserved estrogen response elements, and such elements have been used to report ER activity in cultured cells and in transgenic mice. We generated stable, transgenic zebrafish containing five consecutive elements upstream of a c-fos minimal promoter and green fluorescent protein (GFP) to visualize and quantify transcriptional activation in live larvae. Transgenic larvae show robust, dose-dependent estrogen-dependent fluorescent labeling in the liver, consistent with er gene expression, whereas ER antagonists inhibit GFP expression. The nonestrogenic steroids dexamethasone and progesterone fail to activate GFP, confirming ER selectivity. Natural and synthetic estrogens activated the transgene with varying potency, and two chemicals, genistein and bisphenol A, preferentially induce GFP expression in the heart. In adult fish, fluorescence was observed in estrogenic tissues such as the liver, ovary, pituitary gland, and brain. Individual estrogen-responsive neurons and their projections were visualized in the adult brain, and GFP-positive neurons increased in number after 17β-estradiol exposure. The transgenic estrogen-responsive zebrafish allow ER signaling to be monitored visually and serve as in vivo sentinels for detection of estrogenic compounds.
Collapse
Affiliation(s)
- Daniel A Gorelick
- Carnegie Institution for Science, Department of Embryology, 3520 San Martin Drive, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
45
|
Gibert Y, Sassi-Messai S, Fini JB, Bernard L, Zalko D, Cravedi JP, Balaguer P, Andersson-Lendahl M, Demeneix B, Laudet V. Bisphenol A induces otolith malformations during vertebrate embryogenesis. BMC DEVELOPMENTAL BIOLOGY 2011; 11:4. [PMID: 21269433 PMCID: PMC3040707 DOI: 10.1186/1471-213x-11-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 01/26/2011] [Indexed: 01/09/2023]
Abstract
Background The plastic monomer and plasticizer bisphenol A (BPA), used for manufacturing polycarbonate plastic and epoxy resins, is produced at over 2.5 million metric tons per year. Concerns have been raised that BPA acts as an endocrine disruptor on both developmental and reproductive processes and a large body of evidence suggests that BPA interferes with estrogen and thyroid hormone signaling. Here, we investigated BPA effects during embryonic development using the zebrafish and Xenopus models. Results We report that BPA exposure leads to severe malformations of the otic vesicle. In zebrafish and in Xenopus embryos, exposure to BPA during the first developmental day resulted in dose-dependent defects in otolith formation. Defects included aggregation, multiplication and occasionally failure to form otoliths. As no effects on otolith development were seen with exposure to micromolar concentrations of thyroid hormone, 17-ß-estradiol or of the estrogen receptor antagonist ICI 182,780 we conclude that the effects of BPA are independent of estrogen receptors or thyroid-hormone receptors. Na+/K+ ATPases are crucial for otolith formation in zebrafish. Pharmacological inhibition of the major Na+/K+ ATPase with ouabain can rescue the BPA-induced otolith phenotype. Conclusions The data suggest that the spectrum of BPA action is wider than previously expected and argue for a systematic survey of the developmental effects of this endocrine disruptor.
Collapse
Affiliation(s)
- Yann Gibert
- Institut de Génomique Fonctionnelle de Lyon; Université de Lyon; Université Lyon 1; CNRS; INRA; Ecole Normale Supérieure de Lyon; 46 allée d'Italie, 69364 Lyon Cedex 07, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The zebrafish has emerged over the past several decades to become a mainstream animal model. While the growth of the use of the fish in basic biomedical research has been characterized by innovation, the methods and tools for fish husbandry, management, and care have been slow to evolve beyond those conceived during the initial establishment of the model system. While these approaches and technologies have certainly served the purposes of the field, they must now be improved to better match the widening scope and scale of research being done in fish. Such advances are made possible by applying new scientific information to the development of more sophisticated approaches for fish husbandry and management, and by considering the lessons learned during the establishment of the rodent model system. This review highlights the recent progress made in various areas of fish husbandry and management and points out new directions for further improvements.
Collapse
Affiliation(s)
- Christian Lawrence
- Aquatic Resources Program, Children’s Hospital Boston, Karp Family Research Laboratories, One BlackfanCircle, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Jerome-Morais A, Diamond AM, Wright ME. Dietary supplements and human health: for better or for worse? Mol Nutr Food Res 2010; 55:122-35. [PMID: 21207517 DOI: 10.1002/mnfr.201000415] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/27/2010] [Accepted: 10/28/2010] [Indexed: 12/14/2022]
Abstract
Encouraged by the potential health benefits of higher dietary intake of substances with beneficial properties, the use of supplements containing these compounds has increased steadily over recent years. The effects of several of these, many of which are antioxidants, have been supported by data obtained in vitro, in animal models, and often by human studies as well. However, as carefully controlled human supplementation trials have been conducted, questions about the efficacy and safety of these supplements have emerged. In this Educational Paper, three different supplements were selected for consideration of the benefits and risks currently associated with their intake. The selected supplements include β-carotene, selenium, and genistein. The use of each is discussed in the context of preclinical and clinical data that provide evidence for both their use in reducing disease incidence and the possible liabilities that accompany their enhanced consumption. Variables that may influence their impact, such as lifestyle habits, baseline nutritional levels, and genetic makeup are considered and the application of these issues to broader classes of supplements is discussed.
Collapse
Affiliation(s)
- Anita Jerome-Morais
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
48
|
Balunas MJ, Kinghorn AD. Natural compounds with aromatase inhibitory activity: an update. PLANTA MEDICA 2010; 76:1087-93. [PMID: 20635310 PMCID: PMC2965731 DOI: 10.1055/s-0030-1250169] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Several synthetic aromatase inhibitors are currently in clinical use for the treatment of postmenopausal women with hormone-receptor positive breast cancer. However, these treatments may lead to untoward side effects and so the search for new aromatase inhibitors continues, especially those for which the activity is promoter-specific, targeting the breast-specific promoters I.3 and II. Recently, numerous natural compounds have been found to inhibit aromatase in noncellular, cellular, and IN VIVO studies. These investigations, covering the last two years, as well as additional studies that have focused on the evaluation of natural compounds as promoter-specific aromatase inhibitors or as aromatase inducers, are described in this review.
Collapse
Affiliation(s)
- Marcy J Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, School of Pharmacy, Storrs, CT 06269, USA.
| | | |
Collapse
|
49
|
Barnes S. The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol 2010; 8:89-98. [PMID: 20235891 PMCID: PMC2883528 DOI: 10.1089/lrb.2009.0030] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this review of the chemistry, absorption, metabolism, and mechanisms of action of plant isoflavones, emphasis is placed on the isoflavones in soy and the food products derived from them. Soybeans have been part of food history in Asia for several millennia but did not reach the Americas and Europe until the eighteenth century. In the twentieth century, there was a tremendous increase in the cultivation of soybeans in the United States and more recently in South America. Soy foods have entered the U.S. food supply in ever-increasing amounts both in the form of traditional products (soy milk, tofu) and in more subtle ways in dairy and bread/cake products. The isoflavones in non-fermented foods are for the most part in the form of glycoside conjugates. These undergo changes due to different processing procedures. Isoflavones and their metabolites are well absorbed and undergo an enterohepatic circulation. They are often termed phytoestrogens because they bind to the estrogen receptors although weakly compared to physiologic estrogens. This estrogenicity is not the only mechanism by which isoflavones may have bioactivity-they inhibit tyrosine kinases, have antioxidant activity, bind to and activate peroxisome proliferator regulators alpha and gamma, inhibit enzymes in steroid biosynthesis, strongly influence natural killer cell function and the activation of specific T-cell subsets, and inhibit metastasis. These various properties may explain the much lower incidence of hormonally-dependent breast cancer in Asian populations compared to Americans and Europeans.
Collapse
Affiliation(s)
- Stephen Barnes
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham and Purdue University - University of Alabama at Birmingham Botanicals Center for Age-Related Disease, Birmingham, Alabama 35294, USA.
| |
Collapse
|
50
|
Gu SH, Lin JL, Lin PL. PTTH-stimulated ERK phosphorylation in prothoracic glands of the silkworm, Bombyx mori: role of Ca(2+)/calmodulin and receptor tyrosine kinase. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:93-101. [PMID: 19800889 DOI: 10.1016/j.jinsphys.2009.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 08/20/2009] [Accepted: 09/18/2009] [Indexed: 05/28/2023]
Abstract
Our previous studies showed that the prothoracicotropic hormone (PTTH) stimulated extracellular signal-regulated kinase (ERK) phosphorylation in prothoracic glands of Bombyx mori both in vitro and in vivo. In the present study, the signaling pathway by which PTTH activates ERK phosphorylation was further investigated using PTTH, second messenger analogs, and various inhibitors. ERK phosphorylation induced by PTTH was partially reduced in Ca(2+)-free medium. The calmodulin antagonist, calmidazolium, partially inhibited both PTTH-stimulated ERK phosphorylation and ecdysteroidogenesis, indicating the involvement of calmodulin. When the prothoracic glands were treated with agents that directly elevate the intracellular Ca(2+) concentration [either A23187, thapsigargin, or the protein kinase C (PKC) activator, phorbol 12-myristate acetate (PMA)], a great increase in ERK phosphorylation was observed. In addition, it was found that PTTH-stimulated ecdysteroidogenesis was greatly attenuated by treatment with PKC inhibitors (either calphostin C or chelerythrine C). However, PTTH-stimulated ERK phosphorylation was not attenuated by the above PKC inhibitors, indicating that PKC is not involved in PTTH-stimulated ERK phosphorylation. A potent and specific inhibitor of insulin receptor tyrosine kinase, HNMPA-(AM)(3), greatly inhibited the ability of PTTH to activate ERK phosphorylation and stimulate ecdysteroidogenesis. However, genistein, another tyrosine kinase inhibitor, did not inhibit PTTH-stimulated ERK phosphorylation, although it did markedly attenuate the ability of A23187 to activate ERK phosphorylation. From these results, it is suggested that PTTH-stimulated ERK phosphorylation is only partially Ca(2+)- and calmodulin-dependent and that HNMPA-(AM)(3)-sensitive receptor tyrosine kinase is involved in activation of ERK phosphorylation by PTTH.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Zoology, National Museum of Natural Science, 1 Kuan-Chien Road, Taichung 404, Taiwan, ROC.
| | | | | |
Collapse
|